WO2013037095A1 - 海上应急示位系统 - Google Patents

海上应急示位系统 Download PDF

Info

Publication number
WO2013037095A1
WO2013037095A1 PCT/CN2011/001885 CN2011001885W WO2013037095A1 WO 2013037095 A1 WO2013037095 A1 WO 2013037095A1 CN 2011001885 W CN2011001885 W CN 2011001885W WO 2013037095 A1 WO2013037095 A1 WO 2013037095A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
beacon
search
power
Prior art date
Application number
PCT/CN2011/001885
Other languages
English (en)
French (fr)
Inventor
严小商
梁懿
严鹏
Original Assignee
上海无线电设备研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011102694051A external-priority patent/CN102435976B/zh
Priority claimed from CN2011102694032A external-priority patent/CN102423515B/zh
Priority claimed from CN201110269423XA external-priority patent/CN102361172B/zh
Application filed by 上海无线电设备研究所 filed Critical 上海无线电设备研究所
Priority to US13/703,540 priority Critical patent/US9384648B2/en
Priority to CN201180064648.XA priority patent/CN103998948A/zh
Publication of WO2013037095A1 publication Critical patent/WO2013037095A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/08Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water
    • G08B21/088Alarms for ensuring the safety of persons responsive to the presence of persons in a body of water, e.g. a swimming pool; responsive to an abnormal condition of a body of water by monitoring a device worn by the person, e.g. a bracelet attached to the swimmer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0226Transmitters
    • G01S5/0231Emergency, distress or locator beacons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements

Definitions

  • the invention relates to a communication rescue device for maritime emergency search and rescue, in particular to a marine emergency position display system. Background technique
  • the object of the present invention is to provide a marine emergency position display system, which can perform radio direction finding on signals sent by a beacon in a surrounding area through a search and rescue ship or an airborne search machine of a search and rescue device on the aircraft, and help the search and rescue personnel to determine the carrying.
  • the location of the waterers of the beacons therefore, it can overcome the impact of bad weather on maritime search and rescue, speed up the search and rescue process, and increase the probability of success in fixed-point rescue.
  • a marine emergency position display system which includes:
  • a beaconing machine which is worn by a marine operator and emits a wireless communication signal after a ship is difficult to fall into the water;
  • the beacon includes a power supply circuit, a signal processing circuit and an antenna connected through a circuit;
  • a search engine which is set up on a search and rescue ship or aircraft that travels to an accident location;
  • the power supply circuit of the beacon includes a power management module, and the signal respectively connected to the power management module through a circuit triggers a switch and a battery;
  • the signal trigger switch includes a manual switch respectively connected to the power management module through a circuit and Falling water automatically: Among them,
  • the battery provides a working power source of the beacon
  • the manual switch manually turns on the power management module to enable the beacon to be turned into a working state.
  • the automatic water switch automatically turns on the power management module by detecting whether it is intruding into the water, so that the beacon is turned into a working state;
  • the power management module converts the power supply voltage provided by the battery into a stable working voltage output when the manual switch or the water drop automatic switch is turned on.
  • a power switch is also disposed between the battery and the power management module to control the beacon to switch between a low power standby state and a power off state.
  • the signal processing circuit of the beacon includes a system control module, a modulation module, a power amplifier, and a filter that are sequentially connected by a circuit; the system control module is connected to the power management module through a circuit; the filter and the The antenna is connected by a circuit;
  • the system control module After receiving the working voltage output by the power management module, the system control module transmits the transmission data to the modulation module and controls the transmission time point;
  • the modulation module converts the received transmit data into a modulated signal and transmits the modulated signal to a power amplifier
  • the power amplifier amplifies the received modulated signal to the power required for transmission and transmits it to the filter;
  • the filter receives the modulated signal amplified by the power amplifier and filters out the clutter and harmonics therein.
  • the beacon further includes a buzzer connected to the power management module through a circuit; when the buzzer receives the stable operating voltage output by the power management module, a beep sounds.
  • the search machine further includes:
  • a communication antenna which receives a frequency-matched wireless communication signal sent by the beacon;
  • a filter amplification module that receives the signal output by the communication antenna, and performs the interference signal therein Filter out and amplify the required radio signal;
  • the signal demodulation module demodulates the signal output by the filter amplification module, determines whether the signal is transmitted by the beacon, and determines the beacon number according to the demodulated information content to perform multi-user differentiation. And determining whether the communication is valid by determining whether the transmission data is incorrect, so as to implement collision detection;
  • a module for giving a relative distance of a beacon in the search machine comprising:
  • the signal detecting module performs signal size detection on the signal output by the filtering amplifying module, and estimates a relative distance between the beacon machine that sends the signal and the searching machine.
  • a module for giving a beacon direction in the search machine comprising:
  • a DF antenna array comprising a plurality of antennas constituting an array according to a designed distribution position to respectively receive wireless communication signals matched by frequencies issued by the same beacon 1;
  • An antenna signal processing module that synthesizes the multiplexed signals obtained by the respective receiving antennas in the DF antenna array into one integrated signal
  • a mixing amplification module which converts an integrated signal output by the antenna signal processing module to a set frequency, and amplifies the signal to a set output amplitude in a full signal range; the direction finding data processing module, The signal outputted by the mixing and amplifying module is time-divisionally sampled, and is restored to a multi-channel signal received by each antenna on the direction-finding antenna array, and the phase difference of the multi-channel signal is calculated, and then the signal is transmitted.
  • the relative direction of the beacon and the search engine converts an integrated signal output by the antenna signal processing module to a set frequency, and amplifies the signal to a set output amplitude in a full signal range
  • the antenna signal processing module further includes:
  • An interface driving module which receives a control command and a power supply output by the host of the onboard search engine to form a control driving signal
  • a switch which combines the multiple received signals sent by the direction finding antenna array into one integrated signal according to an associated control driving command
  • the sound table filter and amplifier after filtering and amplifying the integrated signal for this channel, send the signal to the subsequent module.
  • the switch includes:
  • a plurality of control instruction input terminals corresponding to receiving the relevant control commands output by the onboard search engine host through the interface driving module; a signal output terminal, which is driven by the control command, and is connected to one of the received signals of the switched input in each strobing state, so that the multiple received signals are time-divisionally present and merged into one way The integrated signal.
  • the search machine further includes:
  • a system control module which respectively receives signal data sent by the signal demodulation module, the signal detection module, and the direction-finding data processing module, and controls the working state of the entire search engine;
  • a display module that is connected to the system control module to visually display the information indicating the orientation and distance of the beacon on the liquid crystal display;
  • a buzzer is connected to the system control module to emit different sounds according to the received beacon signal to remind the search and rescue personnel to pay attention.
  • the marine emergency position display system of the present invention has the advantages that: in the present invention, the beacon is worn by a sea operator (crew or passenger), and the ship is difficult to fall in the ship. After that, the beacon is used to transmit wireless communication signals and call for help alarm signals. When not in use, the beacon power is turned off and stops working; when the person is working outside the ship, the power can be turned on to keep the beacon in the power consumption standby state, that is, no signal is emitted externally; when falling, it can pass through the water Automatically turn on or manually turn on the power of the beacon and send signals for double protection.
  • the search and reception of a call signal with a radius of 5 kilometers and a beacon transmitted by the Shanghai domain can be searched and searched by the radio positioning technology. Knowing the position and approximate distance of the water drowning person carrying the beacon with respect to the search machine, helping the search and rescue personnel to carry out fixed-point rescue.
  • the direction-finding antenna array disposed therein receives the same transmitted signal from three antennas at different positions, and measures the phase difference of the three received signals, thereby estimating the orientation of the transmitted signal and achieving the purpose of measuring the angle.
  • the three receiving signals are time-synthesized into one integrated signal, which effectively overcomes the shortcomings of the system phase calibration difficulty, reduces the debugging difficulty and reduces the cost.
  • the marine emergency position display system of the present invention can overcome the impact of bad weather on maritime search and rescue, speed up the search and rescue process, and improve the probability of success of fixed-point rescue.
  • FIG. 1 is a schematic diagram showing the overall structure of a personal portable beacon in the marine emergency position display system of the present invention
  • 2 is a circuit block diagram of a power management module in the beacon of the present invention
  • FIG. 3 is a schematic diagram showing the overall structure of an onboard search engine in the marine emergency position display system of the present invention
  • FIG. 4 is a search machine according to the present invention
  • Schematic diagram of the medium direction antenna array and antenna signal processing module
  • FIG. 5 is a circuit block diagram of a three-way receiving antenna of a direction finding antenna array in the search engine of the present invention
  • FIG. 6 is a circuit block diagram of a switching switch in the search machine of the present invention
  • FIG. 7 is a circuit block diagram of a sound table filter in the search machine of the present invention
  • FIG. 8 is a circuit block diagram of an amplifier in the search machine of the present invention
  • FIG. 9 is a circuit block diagram of an interface driver module in the search engine of the present invention.
  • Figure 10 is a circuit block diagram of a voltage dividing power supply module of an antenna signal processing module in the search engine of the present invention. The best way to implement the invention
  • the marine emergency position display system of the invention comprises two parts: a beacon machine and a search machine.
  • the beacon is worn by the sea operator (crew or passenger), mainly used to launch wireless communication signals and call for help alarm signals after the ship is difficult to fall into the water.
  • the search engine is equipped on a search and rescue ship or search and rescue helicopter that travels to the accident site to intercept, discover, communicate and locate the wireless communication signals sent by the beacons carried by the water users, thus giving directions and distance information of the water dropper. To guide search and rescue personnel to implement rescue in a targeted manner.
  • Beacon part Beacon part:
  • the beacon of the present invention includes a power supply circuit 110, a signal processing circuit 120, and an antenna 130 which are connected by a circuit.
  • the power supply circuit 110 includes a power management module 111, and a signal that is connected to the power management module 11 1 through a circuit to trigger the switch and the battery 114.
  • the signal trigger switch includes a manual switch 112 and a water drop automatic switch 113 that are respectively electrically connected to the power management module 111.
  • a power switch is also disposed between the battery 114 and the power management module 11 11 .
  • the battery 114 provides operational power to the power management module 111, which in turn provides operational power to the entire beacon.
  • the manual switch 1 12 is used to manually turn on the power management module 111, so that the beacon is Open to work.
  • the water falling automatic switch 113 automatically determines whether the beacon is dropped into the water by detecting whether it intrudes into the water, thereby automatically turning on the power management module 111, so that the beacon is opened to the working state.
  • the power management module 111 is configured to turn the power supply voltage provided by the battery 114 into a stable voltage output when the manual switch 112 or the water drop automatic switch 113 is turned on.
  • the power switch is used to control the power management module 111, that is, the beacon is switched between a low power standby state and a power off state.
  • Fig. 2 is a circuit diagram of the power management module 111 in the embodiment.
  • the power management module 111 can be implemented by using a power chip U11 of the type ADP3339-3.3 for converting the 7V-9V voltage provided by the battery 105 to a stable 3.3V voltage output.
  • the VIN pin of the power chip U1 is the battery power input positive terminal; the GND pin is the battery power input negative terminal; the VOUT pin is the 3.3V voltage output; the EN pin is the chip select enable pin, when it is high power Normally, the power chip U11 is in the working state. When it is low level, the power chip U11 is in the standby state; the ADJ pin is the output voltage regulation. Since the output voltage in the embodiment is 3.3V, there is no need to adjust.
  • the power supply is implemented by using the main power interface J11.
  • the battery 114 stops supplying the power voltage to the power chip U11, and the power chip U11 also stops supplying working power to the beacon, so the beacon. Stop working; when J11 is turned on, the beacon is in a low-power standby state, but does not transmit signals externally.
  • the water automatic switch 113 adopts the water switch J21.
  • the water switch J21 When the water switch J21 is immersed in water at both ends, the water switch J21 is turned on to trigger the EN pin of the power chip U11 to be at a high level, and the power chip U11 is turned on to make it In the working state, the 7V-9V power supply voltage provided by the battery 114 is converted into a stable output 3.3V working power supply and supplied to the beacon.
  • the manual switch 112 adopts a common button switch S21.
  • the button switch S21 When the button switch S21 is pressed, the EN pin of the power chip U11 is also triggered to be at a high level, and the power chip Ul1 is turned on to make it in a working state, which will be
  • the 7V-9V supply voltage provided by the battery 114 is converted to a stable output 3.3V operating power supply and supplied to the beacon.
  • the signal processing circuit 120 includes a system control module 121, a modulation module 122, a power amplifier 123, and a filter 124 that are sequentially connected by a circuit.
  • the system control module 121 is connected to the power management module 111 by a circuit; the filter 124 is connected to the antenna 130 by a circuit.
  • the system control module 121 can adopt a chip of the model MEGA48V-10AN, and after receiving the 3.3V working voltage output by the power management module 111, it starts to enter the working state, and transmits and transmits to the modulation module 122. Data and control specific delivery time points.
  • the modulation module 122 uses a chip of the type ADF7020-1 to convert the received transmission data into a modulated signal, and transmits the modulated signal to the power amplifier 123.
  • the power amplifier 123 amplifies the received modulated signal to the power required for transmission.
  • the filter 124 receives the modulated signal amplified by the power amplifier 123 and filters out the clutter and harmonics therein.
  • the beacon includes a buzzer 140 connected to the power management module 111.
  • the buzzer 140 receives the 3.3V operating voltage output by the power management module 111, the buzzer 140 starts to sound to alert The role can attract the attention of search and rescue personnel.
  • the buzzer 140 uses a small speaker commonly used in electronic devices.
  • the personal portable beacon of the present invention can be worn or sewn in a life jacket.
  • the beacon When the beacon is not in use, turn off the power switch to put the beacon on and off.
  • the power switch When the crew or passengers carry out the open-air operation outside the ship, the power switch is turned on, so that the beacon is in a low-power standby state, that is, the signal is not transmitted externally, but the automatic water-on function is provided, or the power can be turned on by a manual switch.
  • the beacon can be turned on by the water drop person pressing the manual switch 112, or automatically turned on due to the watering automatic switch 113 being turned on under the seawater immersion, so that the power management module 111 is
  • the trigger system control module 121 transmits a transmission signal to the modulation module 122, and after the transmission signal is further modulated, amplified, and filtered, the antenna 130 transmits a radio to the search engine.
  • the distress signal in order to wait for the search machine to receive the distress signal, confirm the specific location of the drowning person, and implement a quick and effective rescue.
  • the onboard search engine part - as shown in FIG. 3 and FIG.
  • the search machine of the present invention includes an antenna device, and a corresponding control cable, a radio frequency cable, etc. Connected search machine host.
  • the antenna device includes a communication antenna 211, a direction finding antenna array 221 and an antenna signal processing module 222 thereof; and several other modules in Fig. 3 are located at the search engine host position.
  • the communication antenna 211 sends the received wireless communication signal to the filter.
  • Wave amplification module 212 The interference signal is filtered by the filter amplification module 212, and the desired radio signal is amplified and sent to the signal demodulation module 213.
  • the signal demodulation module 213 demodulates the communication signal to determine whether the signal is a radio distress signal transmitted by the beacon; and also has a multi-user discrimination and collision detection function.
  • the signal demodulation module 213 specifically determines the beacon number according to the demodulated information content to perform multi-user differentiation, and determines whether the communication is valid by determining whether the transmission data is incorrect, so as to implement collision detection.
  • the signal detection module 214 performs signal size detection on the output of the filter amplification module 212, and estimates a beacon that sends the call signal according to an algorithm for the correspondence between the size of the received signal and the relative distance.
  • the direction finding antenna array 221 includes three receiving antennas A, B, and C which are arranged in an array of designed distribution positions, respectively receive the wireless communication signals transmitted by the same beacon, and send them to the antenna signal processing module 222. .
  • the antenna signal processing module 222 is provided with a switch 2221, which combines the three received signals into one integrated signal according to the relevant control drive command.
  • the integrated signal of this way is filtered and amplified by the sound table filter 2222 and the amplifier 2223 in sequence, so that the noise coefficient of the received signal can be effectively reduced when the integrated signal is transmitted to the search machine host through the RF cable.
  • the three receiving antennas A, B, and C are arranged at different positions as needed, and after receiving the same radio signal, corresponding output three.
  • the circuit receives the signals AntA ⁇ AntC to the chip U3 of the switching gate 221.
  • the corresponding modules Dl, D3, and D4 set in the three antennas A, B, and C are diodes of the type HSMP3812. Since the antenna is installed at an outdoor high place, the antenna is large due to lightning strikes and the like. When the voltage signal is used, large signals can be introduced into the ground through the diodes to prevent the subsequent circuit from being burned out.
  • the pins 4, 17, 7, and 14 are correspondingly set to four signal input terminals RF1 to RF4 ; the three received signals AntA to AntC are respectively sent to the RF1 shown in FIG. RF2, RF4 signal input.
  • the chip U3 of the switching gate 2221 also sets the pins 20, 19, 1 as three control command input terminals A0, A1, EN.
  • An interface driving module 2226 is provided with a 7-core control connector J2, which is connected to the host of the onboard search machine via a 7-core cable, and receives the +5V power supply, the ground, and the three-way control command FPGA-Ctrll ⁇ FPGA- Ctrl3.
  • the control After the two instructions are driven by the two non-gates of the gate circuit, the three-way drive commands Ctrl1, Ctrl2, and EN are generated, and corresponding to the three control command inputs A0, Al on the chip U3 of the switch 2221. EN.
  • the wiring shown in Figure 6, module D2 is another diode that builds a voltage divider circuit that converts 3.3 V to 2.6V for use by the latter switch.
  • the above drive command EN is an enable signal of the chip U3.
  • the switch strobe as shown in Table 1 can be completed for the above four signal input terminals RF1 ⁇ RF4 of the chip U3:
  • the signal output terminal RFC of the switching switch 2221 that is, the pin 10 of the chip U3 in FIG. 6, is only connected to the input receiving signal in each strobing state and It is output to the outside. Therefore, by continuously changing the states of the drive commands Ctrl1 and Ctrl2, the three received signals AntA ⁇ AntC can be time-divisionally present and combined into one integrated signal RFIN.
  • the sound table filter 2222 receives the integrated signal RPIN output by the switch 2221, filters out the out-of-band interference signal, and obtains a signal RFOUT, which is sent.
  • the amplifier 2223 is amplified to obtain a signal RF_OUT.
  • the signal RF_OUT is coaxially spliced through the signal connected to the RF SMA connector J1 and output to an external host searcher. Since the cable distance from the antenna signal to the host of the onboard search machine exceeds 20m, the signal amplification and then conduction can effectively reduce the noise figure of the received signal.
  • the chip U3 of the switch 2221 can be used as an ADG904. In each strobe state, it only communicates with one of the input signals and outputs the signal to the external output.
  • the chip U2 of the amplifier 2223 can be used with the model number MBC13916.
  • the gate type of the control command drive is SN74LVCU04.
  • the peripheral circuits of the above respective modules can be arranged as shown in Figs. .
  • the amplification module 223 converts the processed integrated signal to a fixed frequency, and amplifies the signal to a fixed output amplitude in the full signal range, and outputs the signal to the direction finding data processing module 224.
  • the direction-finding data processing module 224 performs time-division sampling on the signal and restores it to the three-way signals received on the direction-finding antenna array 221, thereby calculating the phase difference of the received signals of the respective receiving antennas on the direction-finding antenna array 221. .
  • the relative direction of the beacon transmitting the call signal is calculated according to the relative positional relationship of each receiving antenna and the phase difference and the like.
  • the system control module 230 is configured to receive the signal data sent by the signal demodulation module 213, the signal detection module 214, and the direction-finding data processing module 224, and respectively connect a display module 240 and a buzzer. 250.
  • the system control module 230 controls the operating state of the entire search engine, including time division combining of signals, display control sound control, data processing and storage, and the like.
  • the display module 240 displays the beacon orientation and distance information sent by the system control module 230 on the liquid crystal display in a specific manner, and visually displays the relative position information of the beacon.
  • the buzzer 250 emits different sounds according to the condition of receiving the beacon signal, reminding the search and rescuer Beverly.
  • the power module 260 of the search engine shown in Figure 3 converts 220V AC to DC power, providing +12V and +5V DC regulated power for the entire search system.
  • An additional voltage dividing power module 2225 (FIG. 10) may be further disposed in the antenna signal processing module 222, which includes a voltage converting portion (see the right portion in FIG. 10), and converts the 5V voltage provided by the power module 260 into 3.3 V.
  • the voltage is used to power the circuit in the antenna signal processing module 222; and a power filtering portion is provided to filter out the interference signal on the power line (see the left part of FIG. 10).
  • the chip U4 used in this voltage divider power module 2225 is model S1112.
  • the mixing and amplifying module 223 can use a dedicated chip of a company such as Motorola, mini, etc., including amplifiers MBC13916, MAR-6SM, ERA-8SM, and mixer ADE-1; the signal detection The module 214 and the signal demodulation module 213 can use the AD company-specific chip ADF7020-1; the direction-finding data processing module 224 can be implemented by using the A/D dedicated chip AD9432BSQ-105, the FPGA chip EP3C16Q240, and the DSP chip TMS320DM642-600A; The display module 240 is completed by using an ARM-driven liquid crystal panel, and the power module 260 is completed by an ARCH-specific AC-DC power supply module 260.
  • a dedicated chip of a company such as Motorola, mini, etc., including amplifiers MBC13916, MAR-6SM, ERA-8SM, and mixer ADE-1
  • the signal detection The module 214 and the signal demodulation module 213 can use the AD company-specific chip ADF7020-1
  • the marine emergency position display system of the present invention when the person carrying the beaconing machine falls into the water, the power of the beacon can be automatically turned on or manually turned on by the falling water, and the wireless call is transmitted from the beacon. Save the signal.
  • the rescue ship or aircraft of the device search machine When the rescue ship or aircraft of the device search machine is rescued at the accident site, it can search and receive the call for help signal transmitted by the beacon in Shanghai domain with a radius of 5 kilometers.
  • the search machine can know the carrying of the beacon by radio positioning technology.
  • the position and approximate distance of the drowning person relative to the search engine helps the search and rescue personnel to carry out fixed-point rescue. Therefore, the marine emergency position display system of the present invention can overcome the impact of bad weather on maritime search and rescue, speed up the search and rescue process, and improve the probability of success of fixed-point rescue.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)
  • Transmitters (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

一种海上应急示位系统,在信标机和搜索机之间进行无线通信;携带信标机的人员落水时,能够通过落水自动开启或手动开启信标机的电源,由信标机向外发射无线呼救信号。装置搜索机的救援船或飞机在前往事故地点救援时,可沿途搜索并接收半径5公里以上海域内所有信标机发射的呼救信号,该搜索机通过无线电通信技术和无线电定位技术,能够区分作用范围内全部信标机并可获知携带信标机的全部落水者相对该搜索机的方位及大致距离,帮助搜救人员实施定点营救。因此,本发明所述海上应急示位系统能够克服恶劣天气对海上搜救的影响,加快搜救进程,提高定点救援的成功概率。

Description

海上应急示位系统 技术领域
本发明涉及一种海上应急搜救的通信救援设备, 特别涉及一种海上应急 示位系统。 背景技术
按照国际海事组织及我国海事局有关规定, 海船上大多安装有 VHF电 台、 海事无线电话、 GPS定位系统以及卫星船站等通信救援设备。 事故发生 时, 船只可以通过这些设备向搜救部门求救。 但船员落水后, 在水流的作用 下, 将漂离失事地点。 由于落水船员基本无个人用通讯或示位设备, 因此当 救援人员赶到失事地点能很快发现失事船只, 却很难确定落水船员的具体方 位。 目前, 搜救人员的救援手段落后, 只能通过分析失事区域的水流情况, 推断船只上落水人员可能漂流到的位置; 通过摄像系统、 照明系统和红外夜 视系统搜寻海面, 进行拉网式查找。 在沿海岛礁较多区域, 岛礁环流复杂多 变, 难以推测落水者的方位; 恶劣气候条件下, 搜救更为困难。 发明的公开
本发明的目的是提供一种海上应急示位系统, 通过搜救船或搜救飞机上 装置的机载搜索机, 对周边范围内信标机发出的信号进行无线电测向定位, 帮助搜救人员确定携带了该些信标机的落水者的位置; 因此, 能够克服恶劣 天气对海上搜救的影响, 加快搜救进程, 提高定点救援的成功概率。
为了达到上述目的, 本发明的技术方案是提供一种海上应急示位系统, 其包含: '
信标机, 其由海上作业人员随身配戴, 并在发生船难落水后向外发射无 线通信信号; 所述信标机包含通过电路连接的电源电路、 信号处理电路和天 线; '
搜索机, 其设置在前往事故地点救援的搜救船或飞机上; 所述搜索机接
1
确认本 收在其周边一定范围内的所有信标机发出的无线通信信号, 并设置有用户区 分与冲突检测的信号解调模块, 以及分别根据该通信信号给出每台信标机相 对距离及方向的两组信号处理模块。
所述信标机的电源电路包含电源管理模块, 分别与所述电源管理模块通 过电路连接的信号触发开关和电池; 所述信号触发开关包含分别与所述电源 管理模块通过电路连接的手动开关和落水自动幵关: 其中,
所述电池提供信标机的工作电源;
所述手动幵关手动开启电源管理模块, 使信标机被打开进入工作状态 Γ 所述落水自动开关通过检测其是否侵入水中, 自动开启电源管理模块, 使信标机被打开进入工作状态;
所述电源管理模块在手动幵关或落水自动开关开启时, 将电池所提供的 电源电压转为稳定的工作电压输出。
所述电池和电源管理模块之间还设置有一电源幵关, 控制信标机在低功 耗待机状态和关机状态之间切换。
所述信标机的信号处理电路包含依次通过电路连接的系统控制模块、 调 制模块、 功率放大器和滤波器; 所述系统控制模块与所述电源管理模块通过 电路连接; 所述滤波器与所述天线通过电路连接; 其中,
所述系统控制模块接收到电源管理模块所输出的工作电压后, 向调制模 块传输发射数据并控制发送时间点;
所述调制模块将接收到的发射数据转变为调制信号, 并将该调制信号传 输至功率放大器;
所述功率放大器将接收到的调制信号放大至发射所需的功率后传输至滤 波器;
所述滤波器接收到经过功率放大器放大的调制信号后, 滤除其中的杂波 和谐波。
所述信标机还包含与电源管理模块通过电路连接的蜂鸣器; 当该蜂鸣器 接收到电源管理模块所输出的稳定工作电压后, 发出响声。
所述搜索机中还包含:
通信天线, 其接收信标机发出的频率相匹配的无线通信信号; 滤波放大模块, 接收所述通信天线输出的信号, 对其中的干扰信号迸行 滤除, 并对所需要的无线电信号进行放大;
所述信号解调模块对滤波放大模块输出的信号进行解调, 判断该信号是 否是由信标机所发射的同时, 根据解调得到的信息内容确定信标机编号, 来 进行多用户区分, 并通过判断传输数据是否有误, 确定本次通信是否有效, 以实现冲突检测;
所述搜索机中给出信标机相对距离的模块, 包含:
信号检测模块, 其对滤波放大模块输出的信号进行信号大小检测, 估算 发出该信号的信标机与所述搜索机的相对距离。
所述搜索机中给出信标机方向的模块, 包含:
测向天线阵, 其包含按设计分布位置组成阵列的多个天线, 来分别接收 同一个信标 1发出的频率相匹配的无线通信信号;
天线信号处理模块, 其将所述测向天线阵中各个接收天线获得的多路信 号合成一路整合信号;
混频放大模块, 其将所述天线信号处理模块输出的一路整合信号转换到 一设定的频率, 并在全信号范围内将该信号放大到一设定的输出幅度; 测向数据处理模块, 其对混频放大模块输出的信号进行分时采样, 并将 其恢复成测向天线阵上各个天线接收到的多路信号, 并计算所述多路信号的 相位差, 进而给出发射该信号的信标机与所述搜索机的相对方向。
所述天线信号处理模块进一歩包含:
接口驱动模块, 其接收所述机载搜索机主机输出的控制指令和电源, 形 成控制驱动信号;
切换开关, 其根据相关控制驱动指令, 将所述测向天线阵发送的多路接 收信号分时合并为一路整合信号;
声表滤波器和放大器, 对应为这一路整合信号进行滤波和放大处理后, 将信号向后续模块发送。
所述切换开关上包含有:
多个信号输入端, 其与所述测向天线阵的多个天线对应连接, 来接收该 些天线发送的多路接收信号;
若干控制指令输入端, 其通过所述接口驱动模块对应接收所述机载搜索 机主机输出的相关控制指令; 一个信号输出端, 其在所述控制指令的驱动下, 在每个选通状态下只与 输入该切换开 的其中一路接收信号连通, 从而使所述多路接收信号分时存 在并合并为一路所述整合信号。
所述搜索机中还包含:
系统控制模块, 其分别接收所述信号解调模块、 信号检测模块和测向数 据处理模块发送的信号数据, 对整个搜索机的工作状态进行控制;
• 显示模块, 其与系统控制模块连接, 将表示信标机方位和距离的信息, 直观显示在液晶显示器上;
蜂鸣器,其与所述系统控制模块连接,根据接收到的信标机信号的情况, 发出不同声音, 提醒搜救人员注意。
与现有技术相比, 本发明本所述海上应急示位系统中, 其优点在于: 本 发明中信标机是由海上作业人员 (船员或乘客) 配戴在身上, 在人员发生船 难落氷后,信标机用于对外发射无线通信信号及呼救报警信号。在不使用时, 信标机电源关闭, 停止工作; 当人员进行船外露天作业时, 可开启电源使信 标机处于 ί氏功耗待机状态, 即不对外发射信号; 落水时, 能够通过落水自动 开启或手动幵启信标机的电源, 进行信号发送, 具有双重保障。
另一方面,本发明中装置搜索机的救援船或飞机在前往事故地点救援时, 可沿途搜索并接收半径 5公里以上海域内信标机发射的呼救信号, 该搜索机 通过无线电定位技术, 能够获知携带该信标机的落水者相对该搜索机的方位 及大致距离, 帮助搜救人员实施定点营救。 尤其是其中设置的测向天线阵, 由不同位置的三路天线接收同一发射信号后, 对这三路接收信号的相位差进 行测量, 从而推算出发射信号的方位, 达到测角的目的。 通过采用开关切换 将该三路接收信号分时合并为一路整合信号, 有效克服了系统相位校准困难 的缺点, 同时减少了调试难度, 降低了成本。
因此, 本发明所述海上应急示位系统能够克服恶劣天气对海上搜救的影 响, 加快搜救进程, 提高定点救援的成功概率。 附图的简要说明
图 1是本发明所述海上应急示位系统中个人便携式信标机的总体结构示 意图; 图 2是本发明所述信标机中电源管理模块的电路框图; ' 图 3是本发明所述海上应急示位系统中机载搜索机的总体结构示意图; 图 4是本发明所述搜索机中测向天线阵及天线信号处理模块的结构示意 图;
图 5是本发明所述搜索机中测向天线阵的三路接收天线的电路框图; 图 6是本发明所述搜索机中切换开关的电路框图;
图 7是本发明所述搜索机中声表滤波器的电路框图; · 图 8是本发明所述搜索机中放大器的电路框图;
图 9是本发明所述搜索机中接口驱动模块的电路框图;
图 10是本发明所述搜索机中天线信号处理模块的分压电源模块的电路框 图。 实现本发明的最佳方式
以下结合附图说明本发明的具体实施方式。
本发明所述海上应急示位系统, 包含信标机和搜索机两部分。 其中, 信 标机是由海上作业人员(船员或乘客)配戴在身上, 主要在发生船难落水后, 用于对外发射无线通信信号及呼救报警信号。 搜索机被装备在前往事故地点 救援的搜救船或搜救直升机上, 对落水者携带的信标机发出的无线通信信号 进行侦听、 发现、 通信和定位, 从而给出落水者的方向、 距离信息, 以指引 搜救人员有针对性地实施营救。 信标机部分:
如图 1所示, 作为无线通信的信号发送部分, 本发明所述信标机中, 包含 通过电路连接的电源电路 110、 信号处理电路 120和天线 130。
其中, 所述电源电路 110包含电源管理模块 111, 分别与所述电源管理模 块 11 1通过电路连接的信号触发开关和电池 114。 所述信号触发开关包含分别 与所述电源管理模块 111通过电路连接的手动开关 112和落水自动开关 113。所 述电池 114和电源管理模块 1 11之间还设置有一电源开关。
所述电池 114向电源管理模块 111提供工作电源, 继而提供整个信标机的 工作电源。 所述手动开关 1 12用于手动开启电源管理模块 111, 使得信标机被 打开进入工作状态。所述落水自动开关 113通过检测其是否侵入水中,从而判 断信标机是否落入水中,从而自动开启电源管理模块 111,使得信标机被打开 进入工作状态。所述电源管理模块 111在手动开关 112或落水自动开关 113开启 时,用于将电池 114所提供的电源电压转为稳定的电压输出。所述电源幵关用 于控制电源管理模块 111,也就是信标机在低功耗待机状态和关机状态之间切 换。
配合参见图 1、 图 2所示, 图 2是本实施例中所述电源管理模块 111的电路 图。 所述电源管理模块 111可以采用型号为 ADP3339-3.3的电源芯片 U11来实 现, 用于将电池 105所提供的 7V-9V电压转为稳定的 3.3V电压输出。 其中, 该 电源芯片 Ul 1的 VIN引脚为电池电源输入正极; GND引脚为电池电源输入负 极; VOUT引脚为 3.3V电压输出; EN引脚为片选使能脚, 当其为高电平时, 电源芯片 U11处于工作状态,当其为低电平时,电源芯片 U11则处于待机状态; ADJ引脚为输出电压调节, 由于本实施例中输出电压采用 3.3V, 因此无须调 节。
进一步, 所述的电源幵关采用总电源接口 J11实现, 当关闭 JU时, 电池 114停止向电源芯片 U11提供电源电压, 则电源芯片 U11也停止向信标机提供 工作电源,因此信标机.停止工作;当开启 J11时,信标机处于低功耗待机状态, 但不对外发射信号。
所述的落水自动开关 113采用水开关 J21, 当水开关 J21两端均浸入水中 后,水开关 J21导通从而触发电源芯片 U11的 EN引脚为高电平,开启电源芯片 U11 , 使其处于工作状态, 将由电池 114所提供的 7V-9V电源电压转为稳定输 出的 3.3V工作电源并提供给信标机。
所述的手动开关 112采用普通的按钮开关 S21 , 当按下该按钮开关 S21时, 同样会触发电源芯片 U11的 EN引脚为高电平, 开启电源芯片 Ul l, 使其处于 工作状态,将由电池 114所提供的 7V-9V电源电压转为稳定输出的 3.3V工作电 源并提供给信标机。
所述信号处理电路 120包含依次通过电路连接的系统控制模块 121、 调制 模块 122、 功率放大器 123和滤波器 124。 其中, ^述系统控制模块 121与所述 电源管理模块 111通过电路连接; 所述滤波器 124与所述天线 130通过电路连 接。 本实施例中, 所述系统控制模块 121可以采用型号为 MEGA48V-10AN的 芯片,其接收到电源管理模块 111所输出的 3.3V工作电压后,幵始进入工作状 态,其向调制模块 122传输发射数据并控制具体的发送时间点。所述调制模块 122采用型号为 ADF7020-1的芯片, 将接收到的发射数据转变为调制信号, 并 将该调制信号传输至功率放大器 123。 所述功率放大器 123将接收到的调制信 号放大至发射所需的功率。 所述滤波器 124接收到经过功率放大器 123放大的 调制信号后, 滤除其中的杂波和谐波。
最后, 经过调制、 放大和滤波的无线电发射信号通过天线 130向外发射。 所述信标机还包含与电源管理模块 111通过电路连接的蜂鸣器 140; 当该 蜂鸣器 140接收到电源管理模块 111所输出的 3.3V工作电压后,开始发出响声, 以起到警示作用, 可引起搜救人员的注意。本实施例中, 所述蜂鸣器 140采用 电子设备常用小喇叭。
因此, 本发明所述个人便携式信标机, 可随身佩带或缝制在救生衣内。 在不使用信标机时, 将电源开关关闭, 使信标机处于关机状态, 停止工作。 当船员或乘客进行船外露天作业时, 开启该电源开关, 使得信标机处于低功 耗待机状态, 即不对外发射信号, 但具备落水自动开机功能, 或可通过手动 开关进行开机。 当遇到突发事件, 船员或乘客落水后, 信标机可通过落水人 员按下手动开关 112开机, 或者因在海水浸泡下使得落水自动开关 113导通而 自动开机, 使得电源管理模块 111在将电池 114所提供的电压转为稳定的工作 电压输出后, 触发系统控制模块 121向调制模块 122发送发射信号, 该发射信 号经过进一步的调制、放大和滤波后, 由天线 130向搜索机发射无线电呼救信 号, 以等待搜索机接收到呼救信号, 确认落水人员的具体位置后, 对其实施 快速有效的救援。 机载搜索机部分: - 配合参见图 3、 图 4所示, 作为无线通信的信号接收部分, 在本发明所述 搜索机中, 包含天线装置, 以及通过相应的控制电缆、 射频电缆等与之连接 的搜索机主机。 所述天线装置包含通信天线 211、 测向天线阵 221及其天线信 号处理模块 222; 图 3中其他若干模块均位于所述搜索机主机位置。
具体的, 所述搜索机中, 通信天线 211将接收的无线通信信号, 发送至滤 波放大模块 212。 由滤波放大模块 212滤除其中的干扰信号, 并对所需的无线 电信号进行放大后, 发送至信号解调模块 213。
信号解调模块 213对通信信号进行解调,判断该信号是否是信标机发射的 无线电呼救信号; 同时还具有多用户区分和冲突检测功能。 该信号解调模块 213具体是根据解调得到的信息内容确定信标机编号,来进行多用户区分,并 通过判断传输数据是否有误, 确定本次通信是否有效, 以实现冲突检测。
如果是信标机呼救信号, 由所述信号检测模块 214, 对滤波放大模块 212 的输出进行信号大小检测, 根据接收信号的大小与相对距离的对应关系的算 法, 估算发出该呼救信号的信标机与所述搜索机的相对距离。 所述对应关系 可以是靠多次外场试验测试得到。
另一方面,所述测向天线阵 221包含按设计分布位置组成阵列的三个接收 天线 A、 B、 C, 分别接收同一个信标机发射的无线通信信号, 并发送至天线 信号处理模块 222。 天线信号处理模块 222中设置有切换开关 2221, 其根据相 关控制驱动指令, 将三路接收信号分时合并为一路整合信号。 这一路整合信 号再依次由声表滤波器 2222和放大器 2223进行滤波放大处理, 因而在后续对 该路整合信号通过射频电缆传输到搜索机主机时, 可有效降低接收信号的噪 声系数。
具体的电路配置, 请配合参见图 4、 图 5、 图 6所示, 所述的三个接收天线 A、 B、 C, 根据需要布置在不同位置, 在接收同一个无线电信号后, 对应输 出三路接收信号 AntA~AntC至所述切换幵关 2221的芯片 U3。见图 5所示接线, 对应设置在三个天线 A、 B、 C中的模块 Dl、 D3、 D4, 是型号为 HSMP3812 的二极管, 由于天线在户外高处安装, 在天线因雷击等因素产生大电压信号 时, 可以通过该些二极管将大信号导入地, 防止烧坏后级电路。 所述切换开 关 2221的芯片 U3上,将引脚 4、 17、7、 14对应设置为四个信号输入端 RF1〜RF4; 上述三路接收信号 AntA〜AntC分别发送至图 6中所示 RF1、 RF2、 RF4的信号 输入端。
配合参见图 4、 图 6、 图 9所示, 所述切换幵关 2221的芯片 U3还将引脚 20、 19、 1设置为三个控制指令输入端 A0、 Al、 EN。 一接口驱动模块 2226设置有 7芯控制接头 J2, 其经由 7芯电缆与机载搜索机的主机相连, 接收搜索机主机 输出的 +5V电源、 地, 以及三路控制指令 FPGA— Ctrll~ FPGA— Ctrl3。 所述控 δ 制指令在各自经过门电路的两个非门驱动之后, 产生三路驱动指令 Ctrll、 Ctrl2和 EN, 并对应发送至切换开关 2221的芯片 U3上的所述三个控制指令输 入端 A0、 Al、 EN。 图 6所示连线, 模块 D2是另一个二极管, 其构建了分压电 路, 将 3.3 V转化为 2.6V供后面的开关使用。
上述驱动指令 EN是芯片 U3的使能信号。 再通过驱动指令 Ctrll和 Ctri2高 低电平的配合, 可以对芯片 U3的上述四个信号输入端 RF1~RF4完成如表 1所 示的开关选通:
Figure imgf000011_0002
Figure imgf000011_0001
在上述驱动指令 Ctrll和 Ctri2的控制下, 所述切换开关 2221的信号输出端 RFC, 即图 6中芯片 U3的引脚 10, 在每个选通状态下只与输入的一路接收信 号连通并将其向外输出。 因而, 通过不断变换驱动指令 Ctrll和 Ctrl2的状态, 就能使三路接收信号 AntA〜AntC分时存在, 并合并为一路整合信号 RFIN。
配合参加图 4、图 7、图 8所示,所述声表滤波器 2222接收上述切换开关 2221 输出的所述整合信号 RPIN, 滤除其中的带外千扰信号后得到信号 RFOUT, 其被发送至所述放大器 2223进行放大后得到信号 RF—OUT。 之后, 所述信号 RF—OUT通过射频 SMA接头 J1上连接的信号同轴电缀, 输出至外部的机载搜 索机主机。由于这段将天线信号传导至机载搜索机主机的电缆距离超过 20m, 进行信号放大后再传导可有效降低接收信号的噪声系数。
本实施例中, 切换开关 2221的芯片 U3可以使用的型号为 ADG904, 其在 每个选通状态下只与输入其中的一路接收信号连通并向外输出该信号, 实现 所述分时合并处理。所述放大器 2223的芯片 U2可以使用的型号为 MBC13916。 进行控制指令驱动的门电路型号为 SN74LVCU04。 上述各个模块的外围电路 可以如图 5〜图 9中所示进行布置。 .
参见图 3所示, 天线信号处理模块 222之后, 在搜索机主机位置, 由混频 放大模块 223将那路处理后的整合信号转换到某一固定的频率,并在全信号范 围内将该信号放大到某一固定输出幅度,并输出至测向数据处理模块 224。测 向数据处理模块 224对该信号进行分时采样, 并将其恢复成测向天线阵 221上 接收到的三路信号,并以此计算测向天线阵 221上各个接收天线接收信号的相 位差。 根据各个接收天线的相对位置关系与所述相位差等数据, 计算得到发 射该呼救信号的信标机的相对方向。
所述搜索机中设置的系统控制模块 230, 其分别接收上述信号解调模块 213、信号检测模块 214和测向数据处理模块 224发送的信号数据,并分别连接 一显示模块 240和一蜂鸣器 250。所述系统控制模块 230对整个搜索机的工作状 态进行控制, 包含信号的分时合并、显示控制声音控制、数据处理和存储等。
所述显示模块 240将系统控制模块 230送来的信标机方位和距离信息通过 处理, 以特定的方式显示在液晶显示器上, 直观表示了信标机的相对位置信 息。所述蜂鸣器 250根据接收信标机信号的情况, 发出不同声音, 提醒搜救人 贝汪思。
图 3中所述搜索机的电源模块 260, 将 220V交流电向直流电转化, 为整个 搜索机的系统工作提供 +12V和 +5V的直流稳压电源。 所述天线信号处理模块 222中还可以另外设置的分压电源模块 2225 (图 10), 其包含一电压转化部分 (见图 10中右边部分) , 将电源模块 260提供的 5V电压转化为 3.3 V电压, 来 为天线信号处理模块 222中电路供电;还包含一个电源滤波部分,能够滤除电 源线上的干扰信号 (见图 10中左边部分) 。 该分压电源模块 2225中使用的芯 片 U4 型号为 S1112。
在本实施例中, 所述混频放大模块 223, 可以使用 motorola、 mini等公司 的专用芯片,包含放大器 MBC13916、MAR-6SM、ERA-8SM,和混频器 ADE-1 完成;所述信号检测模块 214与信号解调模块 213,可以使用 AD公司专用芯片 ADF7020-1;所述测向数据处理模块 224,可以使用 A/D专用芯片 AD9432BSQ -105, FPGA芯片 EP3C16Q240, DSP芯片 TMS320DM642— 600A实现; 所 述显示模块 240使用 ARM驱动液晶屏完成, 电源模块 260由 ARCH公司专用 AC-DC电源模块 260完成。
综上所述,本发明所述海上应急示位系统中,携带信标机的人员落水时, 能够通过落水自动开启或手动幵启信标机的电源, 由信标机向外发射无线呼 救信号。 装置搜索机的救援船或飞机在前往事故地点救援时, 可沿途搜索并 接收半径 5公里以上海域内信标机发射的呼救信号,该搜索机通过无线电定位 技术, 能够获知携带该信标机的落水者相对该搜索机的方位及大致距离, 帮 助搜救人员实施定点营救。 因此, 本发明所述海上应急示位系统能够克服恶 劣天气对海上搜救的影响,. 加快搜救进程, 提高定点救援的成功概率。
尽管本发明的内容己经通过上述优选实施例作了详细介绍, 但应当认识 到上述的描述不应被认为是对本发明的限制。 在本领域技术人员阅读了上述 内容后, 对于本发明的多种修改和替代都将是显而易见的。 因此, 本发明的 保护范围应由所附的权利要求来限定。

Claims

权利要求
1. 一^5海上应急示位系统, 其特征在于, 所述系统中包含:
信标机, 其由海上作业人员随身配戴, 并在发生船难落水后向外发射 无线通信信号; 所述信标机包含通过电路连接的电源电路 (110)、 信号处 理电路 ( 120) 和天线 ( 130);
搜索机, 其设置在前往事故地点救援的搜救船或飞机上; 所述搜索机 接收在其周边一定范围内的所有信标机发出的无线通信信号, 并设置有用 户区分与冲突检测的信号解调模块 (213 ), 以及分别根据该通信信号给出 每台信标机相对距离及方向 '的两组信号处理模块。
2. 如权利要求 1所述海上应急示位系统, 其特征在于,
所述信标机的电源电路(110)包含电源管理模块(111 ), 分别与所述 电源管理模块(111 )通过电路连接的信号触发开关和电池(114); 所述信 号触发开关包含分别与所述电源管理模块(111 )通过电路连接的手动开关 ( 112) 和落水自动开关 (113 ); 其中,
所述电池 (114) 提供信标机的工作电源;
所述手动开关(112)手动幵启电源管理模块(111 ), 使信标机被打开 进入工作状态;
所述落水自动开关(113 )通过检测其是否侵入水中, 自动开启电源管 理模块 (111 ), 使信标机被打开进入工作状态;
所述电源管理模块 (111 ) 在手动开关 (112) 或落水自动开关 (113 ) 开启时, 将电池 (114) 所提供的电源电压转为稳定的工作电压输出。
"3. 如权利要求 2所述海上应急示位系统, 其特征在于,
所述电池 (114) 和电源管理模块 (111 ) 之间还设置有一电源开关, 控制信标机在低功耗待机状态和关机状态之间切换。
4. 如权利要求 3所述海上应急示位系统, 其特征在于, 所述信标机的信号处理电路(120)包含依次通过电路连接的系统控制 模块(121 )、 调制模块(122)、 功率放大器(123 )和滤波器(124);.所 系统控制模块 (121 ) 与所述电源管理模块 (111 ) 通过电路连接; 所述滤 波器 (124) 与所述天线 (130) 通过电路连接; 其中,
所述系统控制模块 (121 ) 接收到电源管理模块 (111 ) 所输出的工作 电压后, 向调制模块 (122) 传输发射数据并控制发送时间点;
所述调制模块(122)将接收到的发射数据转变为调制信号, 并将该调 制信号传输至功率放大器 (123 ); .
所述功率放大器(123 )将接收到的调制信号放大至发射所需的功率后 传输至滤波器 (124);
所述滤波器(124)接收到经过功率放大器(123 )放大的调制信号后, 滤除其中的杂波和谐波。
5. 如权利要求 2所述海上应急示位系统, 其特征在于,
所述信标机还包含与电源管理模块 (111 ) 通过电路连接的蜂鸣器 ( 140); 当该蜂鸣器 (140) 接收到电源管理模块 (111 ) 所输出的稳定工 作电压后, 发出响声。
6. 如权利要求 1或 4所述海上应急示位系统, 其特征在于,
所述搜索机中还包含:
通信天线 (211 ), 其接收信标机发出的频率相匹配的无线通信信号; 滤波放大模块(212), 接收所述通信天线(211 )输出的信号, 对其中 的千扰信号进行滤除, 并对所需要的无线电信号进行放大;
所述信号解调模块 (213 ) 对滤波放大模块 (212) 输出的信号进行解 调, 判断该信号是否是由信标机所发射的的同时, 根据解调得到的信息内 容确定信标机编号, 来进行多用户区分, 并通过判断传输数据是否有误, 确定本次通信是否有效, 以实现冲突检测;
所述搜索机中给出信标机相对距离的模块, 包含信号检测模块(214), 其对滤波放大模块(212)输出的信号进行信号大小检测, 估算发出该信号 的信标机与所述搜索机的相对距离。
7. 如权利要求 6所述海上应急示位系统, 其特征在于,
所述搜索机中给出信标机方向的模块, 包含:
测向天线阵 (221 ), 其包含按设计分布位置组成阵列的多个天线, 来 分别接收同一个信标机发出的频率相匹配的无线通信信号;
天线信号处理模块(222), 其将所述测向天线阵(221 ) 中各个接收天 线获得的多路信号合成一路整合信号;
混频放大模块(223), 其将所述天线信号处理模块(222)输出的一路 整合信号转换到一设定的频率, 并在全信号范围内将该信号放大到一设定 的输出幅度;
测向数据处理模块(224), 其对混频放大模块(223 )输出的信号进行 分时采样,并将其恢复成测向天线阵(221 )上各个天线接收到的多路信号, 并计算所述多路信号的相位差, 进而给出发射该信号的信标机与所述搜索 机的相对方向。
8. 如权利要求 6所述海上应急示位系统, 其特征在于,
所述天线信号处理模块 (222) 进一步包含:
接口驱动模块(2226), 其接收所述机载搜索机主机输出的控制指令和 电源, 形成控制驱动信号;
切换开关(2221 ),其根据相关控制驱动指令,将所述测向天线阵(221 ) 发送的多路接收信号分时合并为一路整合信号;
声表滤波器(2222)和放大器(2223 ), 对应为这一路整合信号进行滤 波和放大处理后, 将信号向后续模块发送。
9. 如权利要求 8所述海上应急示位系统,其特征在于,所述切换开关(2221 ) 上包含有:
多个信号输入端, 其与所述测向天线阵 (221 ) 的多个天线对应连接, 来接收该些天线发送的多路接收信号; '
若干控制指令输入端, 其通过所述接口驱动模块 (2226) 对应接收所 述机载搜索机主机输出的相关控制指令; 一个信号输出端, 其在所述控制指令的驱动下, 在每个选通状态下只 与输入该切换开关 (2221 ) 的其中一路接收信号连通, 从而使所述多路接 收信号分时存在并合并为一路所述整合信号。 .如权利要求 9所述海上应急示位系统, 其特征在于,
所述搜索机中还包含:
系统控制模块 (230), 其分别接收所述信号解调模块 (213 )、 信号检 测模块 (214) 和测向数据处理模块 (224) 发送的信号数据, 对整个搜索 机的工作状态进行控制;
显示模块(240), 其与系统控制模块(230)连接, 将表示信标机方位 和距离的信息, 直观显示在液晶显示器上;
蜂鸣器(250), 其与所述系统控制模块(230)连接, 根据接收到的信 标机信号的情况, 发出不同声音, 提醒搜救人员注意。
PCT/CN2011/001885 2011-09-13 2011-11-11 海上应急示位系统 WO2013037095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/703,540 US9384648B2 (en) 2011-09-13 2011-11-11 Marine emergency position indicating system
CN201180064648.XA CN103998948A (zh) 2011-09-13 2011-11-11 海上应急示位系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN2011102694051A CN102435976B (zh) 2011-09-13 2011-09-13 海上应急示位系统
CN201110269423.X 2011-09-13
CN201110269405.1 2011-09-13
CN2011102694032A CN102423515B (zh) 2011-09-13 2011-09-13 个人便携式信标机
CN201110269423XA CN102361172B (zh) 2011-09-13 2011-09-13 用于机载搜索机的天线装置
CN201110269403.2 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013037095A1 true WO2013037095A1 (zh) 2013-03-21

Family

ID=47882517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001885 WO2013037095A1 (zh) 2011-09-13 2011-11-11 海上应急示位系统

Country Status (3)

Country Link
US (1) US9384648B2 (zh)
CN (1) CN103998948A (zh)
WO (1) WO2013037095A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741535A (zh) * 2021-09-17 2021-12-03 北京航空航天大学 仿载波监听机制的无人机集群避障系统及其方法
CN114389635A (zh) * 2022-01-24 2022-04-22 北京博瑞翔伦科技发展有限公司 一种具有防护救援功能的井下无线ap

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923021B (zh) * 2016-05-17 2017-09-05 吉林铁道职业技术学院 一种基于无线电技术的铁路施工安全防护系统
TWI636438B (zh) * 2017-10-23 2018-09-21 王裕隆 Portable marine indicator system
CN109031281B (zh) * 2018-06-25 2023-08-11 中国海洋大学 一种基于旋转天线的海洋搜寻系统及搜寻方法
TW202101022A (zh) * 2019-06-25 2021-01-01 沅聖科技股份有限公司 定位追蹤裝置及方法
CN110376943A (zh) * 2019-07-10 2019-10-25 江苏都万电子科技有限公司 一种车载数据dr状态指示与sos信号共用电路
EP3809526A1 (en) 2019-10-18 2021-04-21 Rohde & Schwarz GmbH & Co. KG Antenna system and antenna controlling method
CN112436884A (zh) * 2020-12-07 2021-03-02 上海波星通实业有限公司 一种海上卫星宽带上网设备、其控制方法及系统
CN112803963B (zh) * 2020-12-31 2022-05-10 福建星海通信科技有限公司 一种具备通信功能的无方向信标设备
CN115113254A (zh) * 2022-06-08 2022-09-27 中国船舶集团有限公司系统工程研究院 基于北斗和无线的水下机动部署设备通信定位装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302609Y (zh) * 2008-08-29 2009-09-02 上海无线电设备研究所 海上个人应急示位跟踪设备
CN101661094A (zh) * 2008-08-29 2010-03-03 上海无线电设备研究所 海上个人应急示位跟踪设备及其定位方法
CN201512101U (zh) * 2009-07-15 2010-06-23 东莞市华鹰电子有限公司 水上救助装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021807A (en) * 1975-04-02 1977-05-03 Texas Instruments Incorporated Beacon tracking system
GB2281660B (en) * 1993-09-03 1997-04-16 Matra Marconi Space Uk Ltd A digitally controlled beam former for a spacecraft
US6972677B2 (en) * 2002-08-27 2005-12-06 Coulthard John J Monitoring system
US8294554B2 (en) * 2006-12-18 2012-10-23 Radiofy Llc RFID location systems and methods
US7825794B2 (en) * 2007-08-10 2010-11-02 Integrity Tracking, Llc Alzheimer's patient tracking system
WO2012042315A1 (en) * 2010-09-30 2012-04-05 Nokia Corporation Positioning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201302609Y (zh) * 2008-08-29 2009-09-02 上海无线电设备研究所 海上个人应急示位跟踪设备
CN101661094A (zh) * 2008-08-29 2010-03-03 上海无线电设备研究所 海上个人应急示位跟踪设备及其定位方法
CN201512101U (zh) * 2009-07-15 2010-06-23 东莞市华鹰电子有限公司 水上救助装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113741535A (zh) * 2021-09-17 2021-12-03 北京航空航天大学 仿载波监听机制的无人机集群避障系统及其方法
CN113741535B (zh) * 2021-09-17 2024-04-02 北京航空航天大学 仿载波监听机制的无人机集群避障系统及其方法
CN114389635A (zh) * 2022-01-24 2022-04-22 北京博瑞翔伦科技发展有限公司 一种具有防护救援功能的井下无线ap
CN114389635B (zh) * 2022-01-24 2024-05-03 北京博瑞翔伦科技发展有限公司 一种具有防护救援功能的井下无线ap

Also Published As

Publication number Publication date
US9384648B2 (en) 2016-07-05
US20140191865A1 (en) 2014-07-10
CN103998948A (zh) 2014-08-20

Similar Documents

Publication Publication Date Title
WO2013037095A1 (zh) 海上应急示位系统
CN205168848U (zh) 基于无人飞行器的海上搜救系统
CN101661094B (zh) 海上个人应急示位跟踪设备及其定位方法
CN201302609Y (zh) 海上个人应急示位跟踪设备
CN205390157U (zh) 一种驱鸟无人机
CN106056976A (zh) 船舶定位导航及安全预警报警系统
CN110588973B (zh) 一种基于两栖无人航行器的青少年溺水预防和救助平台及其方法
KR102399982B1 (ko) 비행체를 이용한 선박 안전운항 지원시스템
CN107356945A (zh) 一种便携式低空无人机管控方法及系统
CN102435976B (zh) 海上应急示位系统
CN102944883A (zh) 基于北斗rdss导航系统海上救生定位标及系统
CN110406646A (zh) 一种高灵活性的水上救援装置及其控制系统
CN204556833U (zh) 一种基于北斗/gps的人员落水示位终端
CN204964763U (zh) 基于北斗短报文救生终端系统
CN212935938U (zh) 水域应急救援指挥系统
CN112583517A (zh) 一种机载无人机反制系统
CN106353774A (zh) 智能型北斗搜救报位仪及其搜救报位方法
CN202770997U (zh) 海上救生定位系统
CN202854341U (zh) 海上落水人员报警定位系统
CN109884729A (zh) 一种无人艇与机器鱼协作的水雷检测控制系统及水雷检测方法
CN113044183A (zh) 超视距水上智能救援机器人及其使用方法
CN202217049U (zh) 海上应急示位系统
CN106275235A (zh) 一种无人测量艇及其控制系统
CN114313265B (zh) 水下救生机器人系统
CN204228959U (zh) 基于射频与gps技术的人员落水定位装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13703540

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872525

Country of ref document: EP

Kind code of ref document: A1