WO2013035657A1 - 吸着性ガス分析装置及び吸着性ガス分析方法 - Google Patents

吸着性ガス分析装置及び吸着性ガス分析方法 Download PDF

Info

Publication number
WO2013035657A1
WO2013035657A1 PCT/JP2012/072309 JP2012072309W WO2013035657A1 WO 2013035657 A1 WO2013035657 A1 WO 2013035657A1 JP 2012072309 W JP2012072309 W JP 2012072309W WO 2013035657 A1 WO2013035657 A1 WO 2013035657A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
measurement
pipe
injection
amount
Prior art date
Application number
PCT/JP2012/072309
Other languages
English (en)
French (fr)
Inventor
隆宏 板谷
中谷 茂
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to CN201280042315.1A priority Critical patent/CN103765210A/zh
Priority to US14/342,979 priority patent/US20140223993A1/en
Priority to EP12829660.5A priority patent/EP2755013A1/en
Publication of WO2013035657A1 publication Critical patent/WO2013035657A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an adsorptive gas analyzer for measuring a value related to the amount of measurement target gas having adsorptivity.
  • a urea SCR Selective Catalytic Reduction
  • a urea SCR Selective Catalytic Reduction
  • Examples include research and development scenes. Specifically describing the urea SCR system, by spraying urea into the high-temperature exhaust gas discharged from the diesel engine and supplying NH 3 generated by the thermal decomposition of urea to the SCR catalyst as a reducing agent, It is configured to reduce NO x in the exhaust gas and change it into harmless N 2 or H 2 O.
  • the exhaust gas analyzer 100A including the sensor 21A for example, it is necessary to flow the exhaust gas from an automobile muffler to the concentration sensor 21A.
  • NH 3 is adsorbed on the inner surfaces of the gas pipe 1A and the sampling pipe 2A as shown in FIG. 7B, which is an enlarged view of the region R in FIG. 7A. Therefore, as shown in the graph of FIG. 8, a value lower than the actually flowing concentration is output.
  • the concentration of NH 3 that is actually flowing is approximately the same, but when the inflow of exhaust gas is stopped, this time FIG. and NH 3 is peeled adsorbed on the inner wall surface as shown in d), in fact despite should not detected NH 3 no exhaust gas flows, the NH 3 as shown in the graph of FIG. 8 The concentration is measured.
  • the adsorbing gas such as NH 3 is adsorbed on the inner surface of the pipe through which the exhaust gas flows, and therefore, between the actually flowing NH 3 concentration and the measured NH 3 concentration indication value, There will be a time delay, and it will not be possible to measure in real time. In other words, the response speed of the exhaust gas analyzer is not sufficient with respect to gas having adsorbability such as NH 3 .
  • Patent Document 1 discloses that the alkali treatment is performed by immersing the inner surface of the sampling pipe in an aqueous NaOH solution so that NH 3 is not adsorbed on the inner face of the pipe. ing.
  • the alkali treatment is performed by immersing the inner surface of the sampling pipe in an aqueous NaOH solution so that NH 3 is not adsorbed on the inner face of the pipe. ing.
  • a portion not subjected to alkali treatment is generated, and adsorption of NH 3 occurs in this portion.
  • the method disclosed in Patent Document 1 cannot completely solve the problem related to the response delay that occurs in the measurement of the gas having adsorptivity.
  • the present invention has been made in view of the above-described problems, and it is possible to reduce the delay in response in measuring adsorptive gas and to measure in real time the gas having adsorbability under various conditions.
  • an adsorptive gas analyzer capable of being used.
  • the adsorptive gas analyzer of the present invention includes a gas measurement mechanism that measures a value related to the amount of the measurement target gas that flows through the gas pipe, and at least the gas measurement mechanism measures the measurement target gas.
  • a gas injection mechanism for injecting a predetermined amount of an adsorbent injection gas into the gas pipe from upstream of the measurement point at which the gas to be measured is measured. It is characterized by that.
  • the adsorptive gas analysis method of the present invention includes a gas measurement step for measuring a value related to the amount of the measurement target gas flowing through the gas pipe, and at least during measurement of the measurement target gas.
  • the gas measurement step includes a gas injection step of injecting a predetermined amount of an injection gas having adsorptivity into the gas pipe from upstream of the measurement point at which the measurement target gas is measured.
  • the injection gas having the adsorptivity is injected into the gas pipe, and the injection gas is adsorbed on the wall surface in the gas pipe. By doing so, it is possible to make the gas to be measured not directly contact the inner wall surface and to make it difficult to adsorb to the inner wall surface.
  • the injection gas is also adsorbed on the surface of the dirt by the new injection gas injected by the gas injection mechanism. A layer will be formed immediately.
  • the injection gas continues to flow in the gas pipe, so that a new coating is always formed in the gas pipe. Therefore, the measurement target gas is absorbed by the injection gas. Measurement errors and response delays can be prevented.
  • the injected gas has the same component as the measurement target gas and can be measured by the gas measurement mechanism.
  • the gas pipe is adjusted to a saturation amount or more that the injection gas and the measurement target gas can adsorb, and the equilibrium state with respect to the adsorption of the gas to the wall surface is achieved.
  • the same amount of the injected gas can be immediately separated from the wall surface and flow to the gas analysis mechanism. The amount measured by the mechanism can be prevented from fluctuating.
  • the measurement amount loss caused by the adsorption of the measurement target gas having the adsorptivity on the inner surface of the gas pipe continues. And a delay in response can be prevented, and the amount of the measurement target gas flowing in can be measured by the gas measurement mechanism.
  • the amount of the injected gas injected by the gas injection mechanism is subtracted from the amount measured and instructed by the gas measuring device, the amount of the measurement target gas at the time of flowing into the gas pipe can be accurately determined. Can be calculated.
  • the measurement target gas should not be completely prevented from adsorbing to the inner surface of the gas pipe, but should be measured only with the measurement target gas.
  • the amount of the measurement target gas that has reached the measurement point without being adsorbed on the inner surface, and the measurement target gas separated from the inner surface of the gas pipe instead of the measurement target gas adsorbed on the inner surface of the gas pipe Alternatively, since the measurement is performed based on the amount of the injected gas, the value related to the amount of the adsorptive gas can be accurately measured in real time without causing a response delay.
  • the injection amount of the injection gas for preventing a delay in response as much as possible include an adsorption amount of the measurement object gas and the injection gas adsorbed on the inner surface of the gas pipe, and the adsorption gas.
  • the predetermined amount is set equal to or more than the amount in which the amount of separation of the injected gas from the inner surface of the gas pipe is substantially balanced.
  • the gas measurement mechanism includes It is only necessary that the predetermined amount is set so that a value related to the amount of the injected gas shown is equal to or less than a tolerance.
  • the gas to be measured is measured with the gas to be measured while the gas injection mechanism injects the gas to be adsorbed into the gas pipe. Therefore, even if dirt such as soot occurs, a new injection gas coating can be produced immediately, and the measurement target gas can always be hardly adsorbed on the inner surface of the gas pipe. For this reason, it is possible to prevent measurement errors and response delays in the measurement target gas.
  • the schematic diagram which shows the structure of the exhaust gas analyzer which concerns on one Embodiment of this invention.
  • the graph which shows the result of having verified about the quantity of the injection
  • Schematic diagram showing the change in the adsorption state of the NH 3 in the region indicated by configuration and phantom of a conventional exhaust gas analyzing apparatus.
  • Schematic graph showing the response characteristics at a concentration measurement of the NH 3 in the conventional exhaust gas analyzing apparatus.
  • the adsorptive gas analyzer of this embodiment is a so-called exhaust gas analyzer 100, which is used to measure the concentration of NH 3 contained in exhaust gas discharged from a diesel engine equipped with a urea SCR system. .
  • a gas pipe 1 through which an exhaust gas as a sample gas flows, a sampling pipe 2 for sampling a part of the exhaust gas from the gas pipe 1, and a measurement point in the sampling pipe 2 A gas measuring mechanism 21 for measuring the concentration of NH 3 contained in the exhaust gas, a gas injection mechanism 3 for injecting a gas having the same component as the measurement target gas having adsorbability into the gas pipe 1, and And a control mechanism 4 for controlling each part.
  • the gas pipe 1 and the sampling pipe 2 form a flow path 11 through which exhaust gas flows.
  • a region R surrounded by an imaginary line in FIG. 1 indicates an enlarged portion in FIG. 3 to be described later.
  • the gas pipe 1 is substantially cylindrical for example, stainless steel tube attached to the automobile muffler, not shown, on the inner surface in contact with the exhaust gas, NO x and the surface of the electrolytic polishing such as soot and the like is hard to adhere Processed. Further, most of the exhaust gas introduced into the gas pipe 1 is led out from the downstream opening as it is.
  • the sampling pipe 2 is a substantially thin cylindrical stainless pipe bent in an L shape, and has one end pierced in the radial direction with respect to the central portion of the gas pipe 1 and the inside of the gas pipe 1. A part of the exhaust gas can be sampled.
  • an on-off valve 23, a suction pump 22, and the gas measuring mechanism 21 are provided in order from the upstream.
  • the on-off valve is opened and the suction pump 22 sucks the exhaust gas at a predetermined flow rate so as to flow into the sampling pipe 2.
  • the inner surface is subjected to surface processing by electrolytic polishing or the like.
  • the gas measuring device 21 for example contained in exhaust gas by FTIR (Fourier Transform Infrared Spectroscopy), but also NH 3, NO x, CO, CO 2, measurable hydrocarbons, the concentration of the various components, such as equal time For example, the concentration of each component measured at a cycle of 1 second is updated and output. That is, the concentration instruction values of various components contained in the exhaust gas can be updated in substantially real time.
  • the measurement point M of the gas measurement mechanism 21 in the present embodiment corresponds to the point where the gas measurement mechanism 21 is provided in the sampling pipe 2.
  • the gas injection mechanism 3 is for injecting adsorbing NH 3 among the components to be measured into the gas pipe 1 as an injection gas, one end of which is an injection gas source 31 in which NH 3 is stored. And a gas injection pipe 34 having the other end opened in the gas pipe 1, an on-off valve 33 provided on the gas pipe 1, and a flow rate control valve 32.
  • the gas injection mechanism 3 continues to supply a predetermined amount of NH 3 into the gas pipe 1 at least while the concentration of NH 3 in the exhaust gas is measured by the gas measurement mechanism 21.
  • the gas injection mechanism 3 is also used when calibration before measurement is performed by introducing NH 3 zero gas and span gas.
  • the position where the gas injection pipe 34 opens into the gas pipe 1 will be described in detail.
  • the position where the injection gas is introduced is set upstream of the measurement point M of the gas injection mechanism 21. More specifically, one end of the gas injection pipe 34 is located upstream of the location where the sampling pipe 2 is open in the gas pipe 1 and in the vicinity of the opening where the gas pipe 1 is attached to the muffler. Is opened. That is, the NH 3 gas can be dispersed by the gas injection mechanism 3 over substantially the entire area of the flow path 11 from when the exhaust gas is introduced to the measurement point M.
  • the area where both NH 3 and the injection gas in the exhaust gas, which is the measurement object gas, contact the inner surface is the area where only NH 3 in the exhaust gas contacts.
  • the injection position of the injection gas is set so as to be sufficiently larger than that. For example, even if adsorption occurs on the inner surface where only NH 3 in the exhaust gas contacts, it is set so that only an amount below the measurement limit of the gas measurement mechanism 21 is adsorbed.
  • the control mechanism 4 is a so-called computer having an input / output interface, a memory, a CPU, an A / D, a D / A converter, etc., and controls various valves by executing a program stored in the memory. Or, at least the function as the dirt determination unit 41 is exhibited.
  • the contamination determination unit 41 is configured to determine the presence or absence of contamination in the flow path 11 based on a value related to a response speed when the gas measurement mechanism 21 detects an adsorptive gas. Specifically, an adsorbent gas (injection gas) having a known concentration or flow rate is introduced into the gas pipe 1 and the sampling pipe 2 by the gas injection mechanism 3 and output from the gas measurement mechanism 21 at that time.
  • an adsorbent gas injection gas
  • the value related to the response speed calculated from the measured value is worse than a predetermined specified value, the inner surface in contact with the flow path 11 through which the exhaust gas as the sample gas flows is more than acceptable. It is determined that dirt is attached.
  • the dirt determination unit 41 determines dirt based on a response time required until the value is stabilized at a predetermined value from a state in which nothing is detected as a value related to the response speed. When the time exceeds a predetermined time, it is determined that more than an allowable amount of dirt has adhered to the inner surface of the gas pipe 1 or the sampling pipe 2.
  • the output value of the gas measurement mechanism 21 is calibrated by the zero gas and the span gas injected by the gas injection mechanism 3. Note that sample gas such as exhaust gas is not introduced into the gas pipe 1 during dirt detection.
  • the contamination determination unit 41 injects a span gas in which NH 3 is set to a concentration in the vicinity of the full scale of the gas measurement mechanism 21 into the gas pipe 1, and measures the NH 3 gas measured by the gas measurement mechanism 21.
  • the response time t n which is the time taken for the concentration change to stabilize is measured.
  • the response time t n when there is dirt is longer than the response time t 0 in the initial state without dirt.
  • the surface area increases accordingly, and more adsorbing gas such as NH 3 is adsorbed. Therefore, even if the span gas is injected from the gas injection mechanism 3, the amount of NH 3 gas trapped increases as the contamination increases, and it takes time for the indicated value to reach the concentration set for the span gas. become. That is, the dirt determination unit 41 detects dirt using the fact that the responsiveness of the gas measurement mechanism 21 is deteriorated due to adsorption of adsorbable gas to the dirt.
  • the contamination determination unit 41 configured as described above, since the contamination is detected based on the adsorptivity of NH 3 that is an adsorptive gas, it is difficult to detect depending on the flow rate and other parameters, and the adsorptive gas. This makes it possible to immediately detect dirt that has a particularly adverse effect on the measurement of water.
  • dirt for example, the gas pipe 1 and the sampling pipe 2 are automatically cleaned up to improve the response speed of the gas measurement mechanism 21 in NH 3 measurement, It is possible to prevent a situation in which an incorrect calibration is performed while adhering to dirt and the measurement is continued with a large error in subsequent measurement.
  • the injection gas source 31 is switched to a different one so that NH 3 can be supplied as an injection gas to the gas pipe 1 and the sampling pipe 2 at a concentration different from that of the span gas.
  • the concentration of NH 3 as the injection gas is set to be, for example, a value of half or less in the measurable range of the gas measurement mechanism 21, and even if NH 3 derived from exhaust gas is further added, In the gas measurement mechanism 21, the concentration instruction value is not saturated.
  • the gas injection mechanism 3 starts injecting NH 3 as an injection gas into the gas pipe 1 before the exhaust gas flows into the gas pipe 1, that is, before the automobile starts the engine. To do. At this time, the suction pump 22 provided on the sampling pipe 2 has also started to be driven, and the injection gas flows into the sampling pipe 2. Then, as shown in FIG. 3A, the exhaust gas is introduced after the saturation amount that NH 3 is adsorbed on the inner surfaces of the gas pipe 1 and the sampling pipe 2. For example, the exhaust gas may be introduced after a predetermined time has elapsed since the gas injection mechanism 3 started to inject NH 3 , and the gas concentration measured by the gas measurement mechanism 21 is determined by the gas injection mechanism 3. The introduction of exhaust gas may be started when the concentration of the injected gas is substantially stable.
  • the predetermined amount which is the amount of the injection gas injected from the gas injection mechanism 3, is adsorbed on the inner surface of the gas pipe 1 of the adsorption gas and the injection gas as shown in FIG.
  • the amount of adsorption and the amount of separation of the measurement object gas and the injected gas from the inner surface of the gas pipe 1 are set to be equal to or more than the amount that is substantially balanced.
  • the measurement result of the conventional exhaust gas analyzer and the exhaust gas analyzer 100 of the present embodiment are used. A description will be given while comparing the measurement results.
  • the actual concentration value is not shown immediately after the engine is started, but the response is caused by the adsorption of NH 3 on the inner surface of the pipe. Delay occurs. After a while, it becomes stable at the actual concentration value, but after the engine is stopped, NH 3 peeled off from the inner surface is detected despite the fact that exhaust gas does not flow in, and the concentration indication value gradually decreases. It will be.
  • NH 3 gas is allowed to flow through the gas pipe 1 and the sampling pipe 2 at a constant concentration value as an injection gas before the start of measurement.
  • the state is raised by a predetermined density instruction value.
  • the concentration indication value output from the gas measuring mechanism 21 can reproduce the actual concentration change derived from the exhaust gas in substantially real time.
  • the rise time and fall time in the experimental conditions of (1), (2), and (3) are , 26s, 6s and 2s, respectively. That is, it can be seen that the rise time and the fall time tend to be shorter as the amount of the injected gas is increased and the NH 3 is closer to the saturation amount adsorbed on the inner surface.
  • the exhaust gas measured as an exhaust gas analyzer of the present embodiment while continuing to flow the NH 3 from the gas injection mechanism 3, by measuring the NH 3 in the exhaust gas, the response relates NH 3 Measurement of gas measurement mechanism 21 It was proved that the sex could be improved.
  • the gas analyzer of the present invention has been described by taking the exhaust gas analyzer as an example, but other gases may be measured as the sample gas.
  • NH 3 is taken as an example of the measurement target gas having adsorptivity, but other adsorptive gas such as HCl and hydrocarbon (HC) may be used.
  • the hydrocarbon (HC) include aromatic hydrocarbons such as toluene, alcohols such as metal rule and ethanol, and high boiling point HC.
  • examples of the gas having high adsorptivity include those having polarity such as NO 2 , SO 2 , H 2 0 and the like.
  • the predetermined amount may be set so that the value relating to the amount of the injected gas indicated by the gas measurement mechanism is equal to or less than a tolerance, in addition to making the predetermined amount an amount that can maintain an equilibrium state for adsorption and separation.
  • the tolerance indicates, for example, the amount of error allowed in advance with respect to the full scale that can be measured by a certain measuring instrument, and specifically, a numerical value such as about several percent of the full scale. It is represented by In other words, the measurement range is hardly narrowed by maintaining the equilibrium state so that the concentration indication value derived from the injected gas is within the error of the concentration measurement value allowed by the gas measurement mechanism. In addition, it is possible to know a sufficiently accurate value without performing an operation of subtracting the concentration value derived from the injected gas from the value obtained in order to know the concentration value derived from the exhaust gas.
  • the contamination determination unit is configured to detect the presence or absence of contamination based on a response time that is a value related to the response speed of the adsorptive gas.
  • the contamination determination unit is different from a certain measurement value indicated by the gas measurement mechanism.
  • Other related values such as the rate of change when changing to the measured value may be used. That is, the stain determination unit may make a determination based on a density value measured within a predetermined time.
  • the span gas is injected by the gas injection mechanism, and the concentration to be actually measured is stepped, but various measurement values such as a rectangular wave, a sine wave, and a pulse appear. It does not matter.
  • a pulse-like change when measured by the gas measurement mechanism, it takes from the time when the adsorptive gas is injected by the gas injection mechanism until it is actually detected by the gas measurement mechanism.
  • the presence or absence of dirt may be determined based on the time.
  • the place where the adsorptive injection gas is injected by the gas injection mechanism may be anywhere in the flow path through which the sample gas flows and upstream of the measurement point of the gas measurement mechanism.
  • An adsorbing injection gas may be injected.
  • the stain determination unit may not only detect the presence / absence of stain but also determine the degree of stain based on the measured value.
  • the response time of the non-adsorbing gas is acquired, and the response time of the adsorbing gas and the response time of the non-adsorbing gas are substantially the same, maintenance of the suction pump is necessary, or leakage
  • the dirt determination unit can strictly determine the cause of two different response delays.
  • the gas measuring device is preferably capable of simultaneously measuring multi-component gases, and specific examples of the non-adsorbing gas include CO, CO 2 , NO, N 2 O and the like. .
  • the dirt determination unit is not only used in the exhaust gas analyzer, but may be used in other gas analyzers.
  • the gas measurement mechanism can measure multi-component gases by FTIR, it may be one that can measure only other adsorptive gases.
  • the gas measuring mechanism may be capable of measuring only an adsorptive gas such as NH 3 as in NDIR or laser measurement.
  • the value measured by the gas measurement mechanism is not limited to the concentration, and may be a value related to the amount of the adsorptive gas such as the flow rate and the volume.
  • the measurement point of the gas measurement mechanism may be provided not in the sampling pipe but in the gas pipe. In short, the injection gas injected from the gas injection mechanism may flow from the upstream of the measurement point together with the gas to be measured.
  • the gas measuring mechanism is installed downstream of the suction pump in the embodiment, but may be installed upstream of the suction pump, for example. Even in the case of such a so-called reduced pressure flow, it is possible to obtain the same effects as those described above with respect to contamination detection and measurement of the measurement target gas having adsorptivity.
  • the gas to be measured is measured with the gas to be measured while the gas injection mechanism injects the gas to be adsorbed into the gas pipe. Therefore, even if dirt such as soot occurs, a new injection gas coating can be produced immediately, and the measurement target gas can always be hardly adsorbed on the inner surface of the gas pipe. For this reason, it is possible to prevent measurement errors and response delays in the measurement target gas. That is, for example, the present invention can be suitably applied to an exhaust gas analyzer that uses an adsorptive gas as a measurement target.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Of Engines (AREA)

Abstract

 吸着性ガスの測定において応答の遅れを小さくし、様々な条件での吸着性ガスの測定をリアルタイムで行うことを可能とするために、ガス配管1内を流れる吸着性ガスの量に関連する値を測定するガス測定機構21と、少なくとも前記ガス測定機構21が前記吸着性ガスを測定している間において、当該ガス測定機構21が前記吸着性ガスを測定している測定点よりも上流から、前記ガス配管1内へ吸着性を有する注入ガスを所定量注入するガス注入機構3と、を備えた。

Description

吸着性ガス分析装置及び吸着性ガス分析方法
 本発明は、吸着性を有する測定対象ガスの量に関連する値を測定するための吸着性ガス分析装置に関するものである。
 例えば、自動車の内燃機関から排出された排ガス中のNO等の成分について測定が行われている。近年、この種の排ガス分析装置においては、NO以外の成分であるNH等の吸着性を有するガスの分析についても重要度が高くなってきている。
 NH等の吸着性を有するガスが測定される具体例としては、ディーゼルエンジンを高効率で駆動することができるとともに、NOの発生量を抑えることができる尿素SCR(Selective Catalytic Reduction)システムの研究開発の場面等が挙げられる。前記尿素SCRシステムについて具体的に説明すると、ディーゼルエンジンから排出された高温の排出ガス中に尿素を噴霧し、尿素が熱分解することにより生じるNHを還元剤としてSCR触媒に供給することで、排出ガス中のNOを還元し無害なNやHOに変化させるよう構成されたものである。
 ところで、前述した尿素SCRシステムにおいて過剰な尿素が供給されてしまうと、排出ガス中にNHが含まれてしまうことになり、悪臭が発生する、あるいは、環境基準を満たせないことになる。このため、様々な運転条件において適正な尿素が供給できているかどうかを知るために、排ガス中のNHの測定が行われている。
 しかしながら、従来からの測定対象であるNOのようなガスとは異なり、NHのような吸着性ガスの場合、NHの量を測定可能なガス分析機構に到達するまでに、配管の内壁等へ吸着されてしまいリアルタイムで正確な値を測定する事が難しい。
 より詳細に説明すると、図7(a)に示すようなガス配管1A内を流れる排ガスの一部をサンプリングするサンプリング配管2Aと、そのサンプリング配管2A上に設けられたNHの濃度を測定する濃度センサ21Aと、を備えた排ガス分析装置100Aでは、例えば自動車のマフラーから前記濃度センサ21Aまで排ガスを流す必要がある。排ガスが流れ始めた際には、図7(a)の領域Rの拡大図である図7(b)に示すように前記ガス配管1Aや前記サンプリング配管2Aの内面にNHが吸着されてしまうため、図8のグラフに示すように実際に流れている濃度よりも低い値が出力される。しばらくすると図7(c)と図8のグラフで示すように実際に流れているNHの濃度と略同じ濃度が測定されるようになるが、排ガスの流入をストップすると、今度は図7(d)に示すように内壁面に吸着していたNHが剥離し、実際には排ガスが流れておらずNHは検出されないはずにもかかわらず、図8のグラフに示すようにNHの濃度が測定されてしまう。
 このように、排ガスの流れる配管の内面にNH等の吸着性ガスが吸着してしまうことにより、実際に流れているNHの濃度と測定されるNHの濃度指示値との間には時間遅れが生じ、リアルタイムで測定できていないことになる。言い換えると、NH等の吸着性を有するガスに関しては排ガス分析装置の応答速度を十分なものにできていない。
 また、NH等の吸着性を有するガスを測定すると、測定開始初期に測定されるべきであった図7の領域S1の分は、測定終了間際に図7の領域S2分として現れる等してしまい、いつNHが排出されたのかという時間に関する情報が一部欠落してしまうという問題もある。
 ところで、特許文献1ではアンモニア分析装置の応答速度を改善するために、NHが配管の内面に吸着しないよう、前記サンプリング配管の内面をNaOH水溶液に浸漬して、アルカリ処理を行うことが開示されている。しかしながら、このようなアルカリ処理を行っておいたとしても、例えば排ガス中のすす等が配管内面に付着する等すると、アルカリ処理されていない部分が生じ、この部分でNHの吸着が生じてしまう。つまり、継続した使用を考えた場合には特許文献1に示されている方法では、吸着性を有するガスの測定において生じる応答の遅れに関する問題を完全に解決することはできない。
特開2000-155115号公報
 本発明は上述したような問題を鑑みてなされたものであり、吸着性を有するガスの測定において応答の遅れを小さくし、様々な条件での吸着性を有するガスの測定をリアルタイムで行うことを可能とする吸着性ガス分析装置を提供する。
 すなわち、本発明の吸着性ガス分析装置は、ガス配管内を流れる吸着性を有する測定対象ガスの量に関連する値を測定するガス測定機構と、少なくとも前記ガス測定機構が前記測定対象ガスを測定している間において、当該ガス測定機構が前記測定対象ガスを測定している測定点よりも上流から、前記ガス配管内へ吸着性を有する注入ガスを所定量注入するガス注入機構と、を備えたことを特徴とする。
 また、本発明の吸着性ガス分析方法は、ガス配管内を流れる吸着性を有する測定対象ガスの量に関連する値を測定するガス測定ステップと、少なくとも前記測定対象ガスを測定している間である前記ガス測定ステップにおいて、前記測定対象ガスを測定している測定点よりも上流から、前記ガス配管内へ吸着性を有する注入ガスを所定量注入するガス注入ステップと、を備えたことを特徴とする。
 このようなものであれば、少なくとも吸着性を有する測定対象ガスの測定時において、吸着性を有する前記注入ガスを前記ガス配管内に注入して、前記ガス配管内の壁面に前記注入ガスを吸着させておくことにより、前記測定対象ガスが直接内壁面に接触しないようにして、前記内壁面に吸着しにくくすることができる。
 さらに、前記注入ガスによりコーティングされている前記ガス配管内にすす等の汚れが付着したとしても、前記ガス注入機構により注入される新たな注入ガスによって、その汚れの表面にも注入ガスが吸着した層がすぐに形成されることになる。
 従って、従来のようにガス配管内をアルカリ処理していただけであれば、新たに発生したすす等の汚れにより測定対象ガスの吸着を防ぐ効果が低減してしまっていたところを、注入ガスにより常に新たなコーティングが形成されることによって前記測定対象ガスが吸着してしまうことも防ぐことができる。
 これらのことから、少なくとも前記測定ガスの測定時において前記注入ガスをガス配管内に流し続けることで、常に新しいコーティングが前記ガス配管内に形成されるので、測定対象ガスが前記注入ガスの吸着による測定誤差や応答遅れが生じるのを防ぐことができる。
 測定対象ガスの測定における測定誤差や応答遅れをより小さくするには、前記注入ガスが、前記測定対象ガスと同成分であるとともに前記ガス測定機構により測定可能なガスであればよい。
 このようなものであれば、注入ガスの注入量を調整することによって、ガス配管内を注入ガス及び測定対象ガスが吸着することができる飽和量以上にし、壁面へのガスの吸着に関して平衡状態を保つことができる。つまり、仮に測定対象ガスが壁面に吸着しても、その量と等量の前記注入ガスがすぐに壁面から剥離して前記ガス分析機構まで流れるようにすることができるので、吸着によって前記ガス分析機構により測定される量が変動するのを防ぐことができる。
 このようにガス配管内で測定対象ガス及び注入ガスの吸着に関する平衡が保たれているので、吸着性を有する測定対象ガスがガス配管の内表面に吸着して留まり続けることにより生じる測定量のロスや応答遅れが生じるのを防ぎ、前記ガス測定機構で前記測定対象ガスが流入した量を測定することができる。この際、前記ガス測定装置で測定され指示されている量から前記ガス注入機構で注入している注入ガスの量を差し引けば、前記ガス配管に流入した時点での測定対象ガスの量を正確に算出することができる。
 また、このような構成における作用及び効果について言い換えると、前記ガス配管の内面に吸着性を有する測定対象ガスが吸着することを完全に防ぐのではなく、本来前記測定対象ガスのみで測定されるべき量を、内表面に吸着することなく前記測定点まで到達した測定対象ガスの量と、ガス配管の内表面に吸着した前記測定対象ガスの代わりにガス配管の内表面から剥離した前記測定対象ガス又は前記注入ガスの量とに基づいて測定が行われるように構成されているので、吸着性ガスの量に関連する値について応答遅れを生じさせることなく、正確にリアルタイムで測定できる。
 さらに、前記ガス配管内にすす等の汚れが付着したとしてもその汚れの表面にも注入ガスが吸着した層が形成されることになり、ここでも平衡が略保たれることで、前記注入ガスの吸着による応答遅れが生じるのを防ぐことができる。
 応答の遅れができる限り生じないようにするための前記注入ガスを注入量の具体例としては、前記測定対象ガス及び前記注入ガスの前記ガス配管の内表面へ吸着する吸着量と、前記吸着ガス及び前記注入ガスの前記ガス配管の内表面から剥離する剥離量とが略平衡となる量と等量又はそれ以上に前記所定量が設定されているものが挙げられる。
 前記ガス配管内に流入した測定対象ガスの量の算出について、前記注入ガスの量を差し引くといった操作を行わなくても容易に略正確な値を算出できるようにするには、前記ガス測定機構が示す前記注入ガスの量に関する値が、許容差以下となるように前記所定量が設定されていればよい。
 このように本発明の吸着性ガス分析装置によれば、前記ガス注入機構により吸着性を有する注入ガスを前記ガス配管内に注入しながら、吸着性を有する前記測定対象ガスを測定するように構成されているので、すす等の汚れが生じてもすぐに新たな注入ガスのコーティングを生じさせることができ、常に測定対象ガスを前記ガス配管内の内表面に吸着しにくくすることができる。このため、測定対象ガスの測定誤差や応答遅れが生じるのを防ぐことができる。
本発明の一実施形態に係る排ガス分析装置の構成を示す模式図。 同実施形態における汚れ判定時において濃度変化及び応答速度について示す模式的グラフ。 図1の模式図において想像線で示した領域を拡大したものであり、内表面におけるNHの吸着、剥離の状態を示した模式図。 同実施形態と従来技術におけるNH濃度測定時の応答の違いを示すグラフ。 同実施形態と従来技術におけるNH微量濃度測定時の応答の違いを示すグラフ。 同実施形態における注入ガスの量と、立ち上がり時間、立下り時間との関係について検証した結果を示すグラフ。 従来の排ガス分析装置の構成及び想像線で示した領域におけるNHの吸着状態の変化について示す模式図。 従来の排ガス分析装置におけるNHの濃度測定での応答特性を示す模式的グラフ。
100・・・排ガス分析装置(吸着性ガス分析装置)
1  ・・・ガス配管
21 ・・・ガス測定機構
3  ・・・ガス注入機構
 本発明の一実施形態について図面を参照しながら説明する。
 本実施形態の吸着性ガス分析装置は、いわゆる排ガス分析装置100であって、尿素SCRシステムを搭載したディーゼルエンジンから排出される排ガス中に含まれるNHの濃度を測定するために用いるものである。
 より具体的には、図1に示すように試料ガスである排ガスが流れるガス配管1と、前記ガス配管1内から排ガスの一部をサンプリングするサンプリング配管2と、前記サンプリング配管2内に測定点Mを有し、排ガス中に含まれるNHの濃度を測定するガス測定機構21と、吸着性を有する測定対象ガスと同じ成分のガスを前記ガス配管1内に注入するガス注入機構3と、各部を制御する制御機構4と、を備えたものである。言い換えると、前記ガス配管1と、前記サンプリング配管2とにより排ガスの流れる流路11が形成してある。なお、図1において想像線で囲まれている領域Rは、後述する図3において拡大している部分を示すものである。
 各部について説明する。
 前記ガス配管1は、図示しない自動車のマフラーに取り付けられる概略円筒状の例えばステンレス管であり、前記排ガスと接触する内表面には、NOやすす等が付着しにくいように電解研磨等の表面加工が施してある。また、このガス配管1に導入された排ガスの大部分はそのまま下流側の開口から外部へと導出されるようにしてある。
 前記サンプリング配管2は、L字状に曲がった概略細円筒状のステンレス管であって、その一端を前記ガス配管1の中央部に対して半径方向に突き刺してあるとともに、当該ガス配管1の内部に開口させて、排ガスの一部をサンプリングできるようにしてある。このサンプリング配管2上には、上流から順に開閉弁23と、吸引ポンプ22と、前記ガス測定機構21とが設けてある。排ガス中のNHガスの濃度を測定する場合には、前記開閉弁が開放されるとともに、前記吸引ポンプ22により所定流量の排ガスが前記サンプリング配管2内へと流入するよう吸引される。なお、このサンプリング配管2も前記ガス配管1と同様に内表面については電解研磨等により表面加工が施してある。
 前記ガス測定機構21は、例えばFTIR(Fourier Transform Infrared Spectroscopy)により排ガス中に含まれる、NHだけでなく、NO、CO、CO、炭化水素、等といった各種成分の濃度を同時に測定可能なものであり、例えば1秒ごとの周期で測定されている各成分の濃度を更新して出力するよう構成してある。つまり、略リアルタイムで排ガス中に含まれる各種成分の濃度指示値を更新することができる。なお、本実施形態における前記ガス測定機構21の測定点Mは、サンプリング配管2において当該ガス測定機構21が設けてある場所がその点に該当する。
 前記ガス注入機構3は、測定対象である成分のうち吸着性のあるNHを注入ガスとして前記ガス配管1内へと注入するものであって、一端がNHの貯留された注入ガス源31に接続され、前記ガス配管1内にもう一端が開口したガス注入管34と、前記ガス配管1上に設けられた開閉弁33と、流量制御弁32とを備えたものである。このガス注入機構3は、少なくとも前記ガス測定機構21により排ガス中のNHの濃度が測定されている間は、所定量のNHを前記ガス配管1内へと供給し続けるようにしてある。また、NHのゼロガス、スパンガスを導入することにより、測定前の校正を行う際にもこのガス注入機構3は用いられる。
 前記ガス注入管34が前記ガス配管1内に開口する位置について詳述すると、注入ガスが導入される位置は、前記ガス注前記ガス測定機構21の測定点Mよりも上流に設定してある。より詳細には、前記サンプリング配管2が前記ガス配管1内に開口している場所よりも上流であり、前記ガス配管1がマフラーに取り付けられている側の開口近傍に前記ガス注入管34の一端を開口させてある。すなわち、排ガスが導入されてから前記測定点Mに至るまでの流路11の略全域にわたって前記ガス注入機構3によりNHガスが散布され得るように構成してある。更に言い換えると、測定点Mよりも上流の配管内において、前記測定対象ガスである排ガス中のNHと注入ガスの両方が内表面に接触する面積が、排ガス中のNHだけが接触する面積よりも十分に大きくなるように注入ガスの注入位置を設定してある。例えば、排ガス中のNHのみが接触する内表面において吸着が生じたとしても、前記ガス測定機構21の測定限界以下の量しか吸着されないように設定してある。
 前記制御機構4は、入出力インターフェース、メモリ、CPU、A/D、D/Aコンバータ等を備えたいわゆるコンピュータであって、前記メモリに格納されたプログラムを実行することにより、各種バルブの制御等や、少なくとも汚れ判定部41としての機能を発揮するように構成してある。
 前記汚れ判定部41は、前記ガス測定機構21が吸着性ガスを検出した際の応答速度に関連する値に基づいて、前記流路11における汚れの有無を判定するように構成してある。具体的には、前記ガス注入機構3により前記ガス配管1及び前記サンプリング配管2へとその濃度又は流量が既知の吸着性ガス(注入ガス)を導入し、その際の前記ガス測定機構21から出力される測定値から算出される応答速度に関連する値が予め定めた規定値よりも悪化している場合に試料ガスである排ガスが流れる流路11と接する内表面が許容できる以上のすす等の汚れが付着していると判定するものである。
 本実施形態では前記汚れ判定部41は、前記応答速度に関連する値として何も検出されていない状態から、所定値で安定するまでにかかる応答時間に基づいて汚れを判別しており、前記応答時間が予め定めた規定時間を超えた場合に前記ガス配管1又は前記サンプリング配管2内の内表面に汚れが許容量以上付着していると判断するように構成してある。
 このように構成した排ガス分析装置100について、NHガス測定時における一連の動作等について説明する。
 まず、前記汚れ判定部41による排ガスが流れる流路11における汚れ検知の動作について説明する。
 前記ガス測定機構21により排ガス中のNHの測定が開始される前には、前記ガス注入機構3によって注入されるゼロガスとスパンガスにより前記ガス測定機構21の出力値の校正が行われる。なお、汚れ検知中においては排ガス等の試料ガスは前記ガス配管1内に導入されないようにしてある。
 前記汚れ判定部41は、NHを前記ガス測定機構21のフルスケール近傍の濃度に設定されているスパンガスが前記ガス配管1内に注入され、前記ガス測定機構21により測定されるNHガスの濃度変化が安定するまでにかかる時間である応答時間tを測定する。
 ここで、図2のグラフに示すように、汚れがある場合の応答時間tは、汚れがない初期状態における応答時間tよりも長くなっていることが分かる。これは、ガス配管1やサンプリング配管2内にすす等の汚れが付着するとその分表面積が大きくなり、NH等の吸着性ガスはより多く吸着されることになる。従って、前記ガス注入機構3からスパンガスが注入されても、汚れが多くなるとトラップされるNHガスの量が多くなり、スパンガスに設定される濃度にまで指示値が到達するのに時間がかかることになる。つまり、前記汚れ判定部41は、吸着性ガスが汚れに吸着されることにより前記ガス測定機構21の応答性が悪くなることを用いて汚れの検知を行っていることになる。このように構成された汚れ判定部41によれば、吸着性ガスであるNHの吸着性に基づいて汚れを検知しているので、流量やその他のパラメータ等によっては検知しにくく、吸着性ガスの測定に対して特に悪影響を与える汚れをすぐに検知する事が可能となる。汚れが検知された場合には、例えば、ガス配管1やサンプリング配管2のクリーンアップを自動で行うように構成し、NH測定における前記ガス測定機構21の応答速度を改善することや、スパンガスが汚れに吸着した状態のまま不正確な校正が行われてその後の測定において大きな誤差を含んだまま測定が継続される等の事態を防ぐことができる。
 次に、校正終了後における排ガス中のNHガスの濃度測定における各部の動作等について説明する。なお、校正終了後においては前記注入ガス源31を別のものに切り替えることにより、前記スパンガスとは異なる濃度でNHを注入ガスとして前記ガス配管1及びサンプリング配管2に供給できるようにしてある。この際、注入ガスとしてのNHの濃度は前記ガス測定機構21の測定可能レンジにおいて、例えば半分以下の値等となるように設定してあり、さらに排ガス由来のNHが追加されても前記ガス測定機構21において、その濃度指示値が飽和しないようにしてある。
 前記ガス注入機構3は、前記ガス配管1内に排ガスが流入するよりも前、すなわち、自動車がエンジンをスタートさせる前の状態から、前記ガス配管1内に注入ガスであるNHの注入を開始する。この際、前記サンプリング配管2上に設けられた吸引ポンプ22も駆動を開始しており、前記サンプリング配管2内にも注入ガスが流入するようにしてある。そして、図3(a)に示すように、前記ガス配管1及び前記サンプリング配管2の内表面にNHが吸着される飽和量となってから排ガスを導入する。例えば、前記ガス注入機構3がNHの注入を開始してから所定時間経過した後に排ガスを導入してもよいし、前記ガス測定機構21において測定されるガス濃度が、前記ガス注入機構3により注入されるガス濃度で略安定した場合に、排ガスの導入を開始してもよい。
 ここで、前記ガス注入機構3から注入される注入ガスの量である前記所定量は、図3(b)に示すように前記吸着ガス及び前記注入ガスの前記ガス配管1の内表面へ吸着する吸着量と、前記測定対象ガス及び前記注入ガスの前記ガス配管1の内表面から剥離する剥離量とが略平衡となる量と等量又はそれ以上に設定してある。
 このようにしてエンジンが始動してから停止するまでの間に前記ガス測定機構21により測定されるガス濃度の変化について、従来の排ガス分析装置の測定結果と、本実施形態の排ガス分析装置100の測定結果と、を比較しながら説明する。
 図4のグラフに示すように、従来の排ガス分析装置を用いた場合には、エンジンの始動後にすぐに実際の濃度値を示すのではなく、配管内表面にNHが吸着することにより応答の遅れが発生する。しばらくすると、実際の濃度値で安定するようになるが、エンジン停止後には排ガスが流入していないにも拘らず、内表面から剥離したNHが検出され、なだらかに濃度指示値が下がっていくことになる。
 一方、本実施形態の排ガス分析装置100によれば、測定の開始前から注入ガスとしてNHガスを一定濃度値で前記ガス配管1及びサンプリング配管2に流しているので、排ガスが導入される前から所定濃度指示値分だけ持ち上げられた状態となる。そして、図3(b)に示したようなNHの内表面への吸着、剥離が略平衡となる状態となっているので、仮に排ガス由来のNHが内表面に吸着したとしても、代わりに略等量のNHが内表面から剥離していくことになる。従って、吸着による応答遅れはほとんど発生しないことになるので、前記ガス測定機構21の出力する濃度指示値は、実際の排ガス由来の濃度変化を略リアルタイムで再現することができる。
 次に、前述したような大量の排ガス由来のNHが流入している場合ではなく、例えば、エンジンをコールドスタートさせた場合等においてNHが微小量だけ出力されている場について、従来と本実施形態の排ガス分析装置100の測定結果を比較しながら説明する。
 図5(a)のグラフに示すように、測定開始直後において微小量のNHが排ガス分析装置100に流入している場合には、従来の場合、全てのNHがガス配管1やサンプリング配管2の内表面に吸着してしまい、前記ガス測定機構21では検出することすらできない。そして、エンジン始動後所定時間が経過した後でも、実際のNH濃度に対して小さい値が出たり、応答波形が一致しない等の事象が生じたりした後に、実際の値と測定値とが一致して安定することになる。また、エンジン停止後は、NHは検出されないはずであるが、ガス配管1、サンプリング配管2に吸着したNHが順次剥離し、なだらかに濃度指示値が低下していくことになり、実際の波形を再現することはできない。言い換えると、リアルタイムでの計測ができていないだけなく、その測定値には時間に関する情報が欠落しているという欠陥がある。
 一方、本実施形態であれば、エンジンが始動する前から注入ガスを導入して、内表面におけるNHの吸着量が飽和となるようにしてあるので、エンジン始動後に微小量の排ガス由来のNHがあっても内表面に吸着しない、もしくは、吸着したとしても略等量のNHが内表面から剥離することになる。従って、図5(b)に示すように微小量の排ガス由来のNHが測定開始直後にあった場合でも正確に検出し、その濃度を測定する事が可能となる。つまり、従来であれば、そもそもNHが排出されていないといった誤った判断がされがちであったところ、微小量のNHであっても排出された時間に関する情報も失うことなく正確にリアルタイムで測定することができる。このため、従来では得られなかった知見を排ガスの測定で得ることができ、より尿素SCRの開発に対して貢献することができる。
 さらに、本実施形態の排ガス分析装置100におけるNH測定時における立ち上がり時間、立下り時間の実測結果について図6を参照しながら説明する。この実測においては、ガス注入機構3により所定量の注入ガスであるNHを流しつつ、ガス配管1の入り口側から既知量のNHをステップ入力状に導入して、ガス測定機構21における応答速度を評価している。図6(a)に示すように、(1)ガス注入機構3からNHを注入せずに、ガス配管1にNHを導入した場合、(2)ガス注入機構3から13ppmのNHを注入し続けるとともに、ガス配管1にさらにNHを導入した場合、(3)ガス注入機構3から23ppmのNHを注入し続けるとともに、ガス配管1にさらにNHを導入した場合についてそれぞれ測定を行った。
 図6(b)の立ち上がり時の拡大図、図6(c)の立下り時の拡大図から明らかなように、(1)(2)(3)の実験条件における立ち上がり時間及び立下り時間は、それぞれ26s、6s、2sであった。すなわち、注入ガスの量を増やし、NHが内表面に吸着される飽和量に近づくほど、立ち上がり時間、立下り時間が短くなる傾向があることが分かる。また、本実施形態の排ガス分析装置のように排ガス測定時に、前記ガス注入機構3からNHを流し続けながら、排ガス中のNHを測定することにより、ガス測定機構21のNH測定に関する応答性を改善できることが実証された。
 その他の実施形態について説明する。
 前記実施形態では、排ガス分析装置を例として本発明のガス分析装置を説明したが、試料ガスとしてその他のガスを測定するものであっても構わない。また、吸着性を有する測定対象ガスとしてNHを例に挙げたが、HClやハイドロカーボン(HC)等のその他の吸着性を有するガスであってもよい。ハイドロカーボン(HC)の例としては、トルエン等の芳香族炭化水素、メタルールやエタノール等のアルコール、高沸点HC等が挙げられる。さらに、吸着性の高いガスの例としては、NO、SO、H0等の極性を持ったもの挙げられる。
 前記所定量を吸着と剥離について平衡状態を保てる量にするだけなく、さらに前記ガス測定機構が示す前記注入ガスの量に関する値が、許容差以下となるように前記所定量を設定してもよい。ここで、許容差とは、例えばある測定器が測定することができるフルスケールに対して予め許される誤差の量のことを示すものであり、具体的にはフルスケールの数%程度等の数値で表されるものである。つまり、平衡状態を保ちつつ、注入ガス由来の濃度指示値が、前記ガス測定機構が許容している濃度の測定値の誤差以内となるようにしておくことにより、ほとんど測定レンジを狭めることがなく、また排ガス由来の濃度値を知るために得られた値から注入ガス由来の濃度値を差し引くといった操作を行わなくても十分に正確な値を知ることができる。
 前記汚れ判定部は、吸着性ガスの応答速度に関連する値である応答時間に基づいて汚れの有無を検知するように構成されていたが、例えば、前記ガス測定機構の示すある測定値から別の測定値へ変化する際における変化率等のその他の関連する値を用いても構わない。すなわち、前記汚れ判定部は、所定時間内において測定される濃度値に基づいて判断を行うものであってもよい。前記実施形態では、前記ガス注入機構によりスパンガスを注入して、実際に測定されるべき濃度をステップ状にしていたが、例えば矩形波状や、正弦波状、パルス状等様々な測定値の変化現れるものであっても構わない。例えば、パルス状の変化が前記ガス測定機構において測定されるようにしている場合には、前記ガス注入機構により吸着性ガスが注入されてから、実際に前記ガス測定機構で検出されるまでにかかる時間に基づいて、汚れの有無を判別してもよい。また、ガス注入機構により吸着性の注入ガスが注入される場所は、試料ガスが流れる流路中であって、前記ガス測定機構の測定点よりも上流であればどこでもよく、例えばサンプリング配管内に吸着性の注入ガスを注入するようにしても構わない。また汚れ判定部は、汚れの有無を検知するだけでなく、測定値に基づいて汚れの程度を判定するものであっても構わない。
 さらに、非吸着性ガスの応答時間を取得し、前記吸着性ガスの応答時間と、前記非吸着性ガスの応答時間が略同じ場合には、前記吸引ポンプのメンテナンスの必要がある、あるいは、リークが生じている等と判断するとともに、前記吸着性ガスのみ応答時間が長くなっている場合には測定対象のガスが流れる流路に汚れが存在すると判断するように構成してもよい。例えば、汚れが存在する場合には、配管内の表面積の変化により吸着性ガスの応答時間は悪化し長くなるのに対して、表面積が変化しても非吸着性ガスはそれほど影響を受けず、応答時間もほとんど変化しない。一方、吸引ポンプに不具合がある場合には、前記吸着性ガス及び前記非吸着性ガスの両方について、前記ガス測定機構に到達するまでにかかる時間が長くなり、応答時間が両方とも長くなる。このように、吸着性ガス及び非吸着性ガスの応答時間を比較することにより、前記汚れ判定部は、異なる2つの応答遅れの原因を厳密に判定することができる。このような構成にする場合、前記ガス測定装置は多成分のガスを同時に測定できるものが好ましく、前記非吸着性ガスの具体例としては、CO、CO、NO、NO等が挙げられる。
 また、前記汚れ判定部は、排ガス分析装置にのみ用いられるものではなく、その他のガス分析装置に用いられるものであっても構わない。
 加えて、前記ガス測定機構は、FTIRにより多成分のガスを測定可能なものであったが、その他の吸着性ガスのみを測定できるものであっても構わない。具体的には前記ガス測定機構は、NDIRやレーザ測定のようにNH等の吸着性ガスだけを測定できるものであっても構わない。また、前記ガス測定機構が測定する値は濃度に限られず、流量、体積等の吸着性ガスの量に関連する値であっても構わない。加えて、前記ガス測定機構の測定点は、サンプリング配管内ではなく、前記ガス配管内に設けても構わない。要するに前記測定点よりも上流から測定対象のガスとともに前記ガス注入機構から注入される注入ガスが流れてくるようにしておけばよい。
 また、前記ガス測定機構は、前記実施形態では前記吸引ポンプよりも下流に設置されていたが、例えば、前記吸引ポンプよりも上流に設置されていても構わない。このようないわゆる減圧フローで構成した場合でも、汚れ検知や、吸着性を有する測定対象ガスの測定に関して前述したのと同様の効果を得ることができる。
 その他、本発明の趣旨に反しない限りにおいて、様々な実施形態の組み合わせや変形を行っても構わないことは言うまでもない。
 このように本発明の吸着性ガス分析装置によれば、前記ガス注入機構により吸着性を有する注入ガスを前記ガス配管内に注入しながら、吸着性を有する前記測定対象ガスを測定するように構成されているので、すす等の汚れが生じてもすぐに新たな注入ガスのコーティングを生じさせることができ、常に測定対象ガスを前記ガス配管内の内表面に吸着しにくくすることができる。このため、測定対象ガスの測定誤差や応答遅れが生じるのを防ぐことができる。すなわち、例えば吸着性ガスを測定対象とする排ガス分析装置に本発明は好適に適用することができる。
 

Claims (5)

  1.  ガス配管内を流れる吸着性を有する測定対象ガスの量に関連する値を測定するガス測定機構と、
     少なくとも前記ガス測定機構が前記測定対象ガスを測定している間において、当該ガス測定機構が前記測定対象ガスを測定している測定点よりも上流から、前記ガス配管内へ吸着性を有する注入ガスを所定量注入するガス注入機構と、を備えたことを特徴とする吸着性ガス分析装置。
  2.  前記注入ガスが、前記測定対象ガスと同成分であるとともに前記ガス測定機構により測定可能なガスである請求項1記載の吸着性ガス分析装置。
  3.  前記測定対象ガス及び前記注入ガスの前記ガス配管の内表面へ吸着する吸着量と、前記測定対象ガス及び前記注入ガスの前記ガス配管の内表面から剥離する剥離量とが略平衡となる量と等量、又は、それ以上に前記所定量が設定されている請求項1記載の吸着性ガス分析装置。
  4.  前記ガス測定機構が示す前記注入ガスの量に関する値が、許容差以下となるように前記所定量が設定されている請求項1記載の吸着性ガス分析装置。
  5.  ガス配管内を流れる吸着性を有する測定対象ガスの量に関連する値を測定するガス測定ステップと、
     少なくとも前記測定対象ガスを測定している間である前記ガス測定ステップにおいて、前記測定対象ガスを測定している測定点よりも上流から、前記ガス配管内へ吸着性を有する注入ガスを所定量注入するガス注入ステップと、を備えたことを特徴とする吸着性ガス測定方法。
PCT/JP2012/072309 2011-09-08 2012-09-03 吸着性ガス分析装置及び吸着性ガス分析方法 WO2013035657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280042315.1A CN103765210A (zh) 2011-09-08 2012-09-03 吸附性气体分析装置和吸附性气体分析方法
US14/342,979 US20140223993A1 (en) 2011-09-08 2012-09-03 Adsorbent gas analysis device and adsorbent gas analysis method
EP12829660.5A EP2755013A1 (en) 2011-09-08 2012-09-03 Adsorbent gas analysis device and adsorbent gas analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011196360 2011-09-08
JP2011-196360 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035657A1 true WO2013035657A1 (ja) 2013-03-14

Family

ID=47832102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072309 WO2013035657A1 (ja) 2011-09-08 2012-09-03 吸着性ガス分析装置及び吸着性ガス分析方法

Country Status (5)

Country Link
US (1) US20140223993A1 (ja)
EP (1) EP2755013A1 (ja)
JP (1) JPWO2013035657A1 (ja)
CN (1) CN103765210A (ja)
WO (1) WO2013035657A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112597A1 (ja) * 2021-12-15 2023-06-22 株式会社堀場製作所 ガス分析装置、排ガス分析システム及びガス分析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111007138B (zh) * 2019-11-29 2022-08-05 上海电力大学 一种用于多通道在线气体质谱测量的时间补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773648A (en) * 1980-10-27 1982-05-08 Mitsubishi Heavy Ind Ltd Analyzing method for ammonia
JPH07333114A (ja) * 1994-06-08 1995-12-22 Toshiba Corp 排ガス分析装置
JPH11295293A (ja) * 1998-04-09 1999-10-29 Ishikawajima Harima Heavy Ind Co Ltd 排ガス中の無水硫酸測定方法及び装置及び無水硫酸中和装置
JP2003014634A (ja) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3,nh3同時連続濃度計
JP2010060557A (ja) * 2008-08-14 2010-03-18 Breen Energy Solutions 煙道ガス中の三酸化硫黄および他の凝縮性物質の検出、測定および制御のための方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310910A (ja) * 2001-04-09 2002-10-23 Nippon Soken Inc ガス濃度計測装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773648A (en) * 1980-10-27 1982-05-08 Mitsubishi Heavy Ind Ltd Analyzing method for ammonia
JPH07333114A (ja) * 1994-06-08 1995-12-22 Toshiba Corp 排ガス分析装置
JPH11295293A (ja) * 1998-04-09 1999-10-29 Ishikawajima Harima Heavy Ind Co Ltd 排ガス中の無水硫酸測定方法及び装置及び無水硫酸中和装置
JP2003014634A (ja) * 2001-06-28 2003-01-15 Ishikawajima Harima Heavy Ind Co Ltd So3,nh3同時連続濃度計
JP2010060557A (ja) * 2008-08-14 2010-03-18 Breen Energy Solutions 煙道ガス中の三酸化硫黄および他の凝縮性物質の検出、測定および制御のための方法および装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112597A1 (ja) * 2021-12-15 2023-06-22 株式会社堀場製作所 ガス分析装置、排ガス分析システム及びガス分析方法

Also Published As

Publication number Publication date
US20140223993A1 (en) 2014-08-14
JPWO2013035657A1 (ja) 2015-03-23
CN103765210A (zh) 2014-04-30
EP2755013A1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
RU2721669C2 (ru) Способ (варианты) и система для выполнения самодиагностической проверки датчика оксидов азота
JP4267535B2 (ja) 排気浄化装置のNOx低減率測定方法
US10119448B2 (en) Fault diagnosis apparatus for exhaust gas purification system
WO2013035675A1 (ja) ガス分析装置及びそれに用いられる汚れ検出方法
US8694197B2 (en) Gain/amplitude diagnostics of NOx sensors
TW201829903A (zh) 內燃機及控制內燃機之方法
US10087805B2 (en) Method of determining correcting logic for reacting model of selective catalytic reduction catalyst, method of correcting parameters of reacting model of selective catalytic reduction catalyst and exhaust system using the same
US8745968B2 (en) Abnormality detection apparatus for particulate filter
JP5395318B2 (ja) 内燃機関の運転方法および装置
US10100701B2 (en) Method for the diagnosis of an exhaust gas aftertreatment system for an internal combustion engine
JP7169339B2 (ja) 排気ガスの気体種の濃度を光学的に測定する方法及びシステム
RU2667863C1 (ru) Выявление и количественное определение утечек аммиака после системы избирательного каталитического восстановления оксидов азота
JP2015001207A (ja) 尿素水供給系の診断装置
WO2012176280A1 (ja) 排気浄化装置の異常検出装置
US20170234195A1 (en) Failure diagnosis apparatus for an exhaust gas purification system
JP6175292B2 (ja) NOxセンサーの故障判定装置及び故障判定方法
WO2013035657A1 (ja) 吸着性ガス分析装置及び吸着性ガス分析方法
GB2518287A (en) Method and control assembly for operating an exhaust gas system
KR20100061145A (ko) 디젤차량에서 후처리 시스템의 암모니아 저장량 보정장치 및 방법
US8865082B2 (en) Method and system for monitoring a hydrocarbon adsorber
JP2014206150A (ja) 排ガス浄化制御装置及びプログラム
JP2019086492A (ja) 排ガス分析装置
JP2010139281A (ja) 排気ガス測定装置
Hoard et al. NH 3 storage in sample lines
JP5656746B2 (ja) 脱硝触媒の劣化判断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532575

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14342979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012829660

Country of ref document: EP