WO2013035540A1 - Hydraulic pressure cylinder - Google Patents

Hydraulic pressure cylinder Download PDF

Info

Publication number
WO2013035540A1
WO2013035540A1 PCT/JP2012/071271 JP2012071271W WO2013035540A1 WO 2013035540 A1 WO2013035540 A1 WO 2013035540A1 JP 2012071271 W JP2012071271 W JP 2012071271W WO 2013035540 A1 WO2013035540 A1 WO 2013035540A1
Authority
WO
WIPO (PCT)
Prior art keywords
cushion
piston rod
bearing
bypass
cylinder
Prior art date
Application number
PCT/JP2012/071271
Other languages
French (fr)
Japanese (ja)
Inventor
中野 智和
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to CN201280042046.9A priority Critical patent/CN103765018B/en
Priority to KR1020147004376A priority patent/KR101596176B1/en
Publication of WO2013035540A1 publication Critical patent/WO2013035540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/223Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having a piston with a piston extension or piston recess which completely seals the main fluid outlet as the piston approaches its end position

Definitions

  • the present invention relates to a fluid pressure cylinder that decelerates a piston rod near the stroke end of the piston rod in a cylinder tube.
  • a fluid pressure cylinder (hydraulic cylinder) used for a hydraulic excavator or the like includes a cushion mechanism that generates a cushion pressure near the stroke end of the piston rod to decelerate the piston rod.
  • JP8-61311A and JP11-230117A disclose a cushion mechanism provided with a cushion bearing that defines a cushion gap through which a working fluid passes when the piston rod comes near the stroke end.
  • a cushion seal (seal) having a function as a check valve is interposed inside the cushion bearing supported by floating.
  • the cushion seal groove for accommodating the cushion seal is formed on the outer periphery of the piston rod, the piston rod needs to be grooved.
  • An object of the present invention is to provide a fluid pressure cylinder capable of obtaining a predetermined cushion pressure without using a cushion seal.
  • a fluid pressure cylinder including a cushion mechanism that decelerates the piston rod in the vicinity of the stroke end of the piston rod with respect to the cylinder tube, the cushion mechanism including a cushion bearing provided on the piston rod, and a stroke end.
  • a fluid pressure cylinder is provided that includes a resistor interposed in the passage and in which an orifice is formed in the resistor to restrict the flow of working fluid through the bypass passage.
  • FIG. 1 is a cross-sectional view of a hydraulic cylinder according to an embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of a hydraulic cylinder in which a part of FIG. 1 is enlarged.
  • FIG. 2B is a cross-sectional view showing the AA cross section of FIG. 2A.
  • FIG. 3 is a cross-sectional view of the hydraulic cylinder showing a state during the extension operation.
  • FIG. 4 is a cross-sectional view of the hydraulic cylinder showing a state during the contraction operation.
  • FIG. 1 is a cross-sectional view of a hydraulic cylinder 1 according to an embodiment of the present invention.
  • the hydraulic cylinder 1 is used, for example, as an arm cylinder of a hydraulic excavator, and the arm of the hydraulic excavator rotates when the hydraulic cylinder 1 expands and contracts.
  • the hydraulic cylinder (fluid pressure cylinder) 1 includes a cylindrical cylinder tube 10, a piston 20 that partitions the rod chamber 2 and the end chamber 3 in the cylinder tube 10, and a piston rod 30 that is coupled to the piston 20. Prepare.
  • the rod chamber 2 and the end chamber 3 communicate with a hydraulic source (working fluid pressure source) (not shown), and the piston rod 30 moves in the direction of the central axis O by the working hydraulic pressure (working fluid pressure) guided from this hydraulic power source. Telescopic operation.
  • a water-soluble alternative liquid may be used instead of oil as the working fluid.
  • a cylindrical cylinder head 40 through which the piston rod 30 is slidably inserted is provided at the open end of the cylinder tube 10.
  • the cylinder head 40 is fastened by an outer peripheral screw portion (male screw) 41 screwed into an inner peripheral screw portion (female screw) 12 of the cylinder tube 10.
  • the cylinder head 40 has a cylindrical head fitting portion 42 fitted to the cylinder inner peripheral surface 11.
  • An O-ring 9 and a backup ring 19 are interposed on the outer periphery of the head fitting portion 42.
  • a bearing 55, a sub seal 56, a main seal 57, and a dust seal 58 are interposed in the inner peripheral portion of the cylinder head 40, and these are in sliding contact with the rod outer peripheral surface 31 of the piston rod 30.
  • the bearing 55 is in sliding contact with the rod outer peripheral surface 31, the piston rod 30 is supported so as to translate in the direction of the central axis O of the cylinder tube 10.
  • the cylinder head 40 has a supply / discharge port 43, and the supply / discharge passage 5 is defined by the supply / discharge port 43.
  • the supply / discharge passage 5 communicates with a hydraulic source via a hydraulic pipe (not shown) connected to the pipe port 17 of the cylinder tube 10.
  • a cylindrical inner peripheral surface 44 is formed on the inner periphery of the cylinder head 40.
  • One end of the supply / discharge port 43 opens in the head inner peripheral surface 44, and the supply / discharge passage 5 is defined between the head inner peripheral surface 44 and the rod outer peripheral surface 31.
  • a holder 23 is interposed inside the cylinder tube 10.
  • the holder 23 is formed in an annular shape centered on the central axis O.
  • the holder 23 is fitted to the cylinder inner peripheral surface 11 along with the head fitting portion 42 of the cylinder head 40.
  • An O-ring 28 and a backup ring 18 are interposed on the outer periphery of the holder 23.
  • the holder 23 has a cushion cylindrical surface 24 as an inner peripheral surface thereof.
  • the cushion cylindrical surface 24 is formed in a cylindrical surface shape with the central axis O as the center.
  • the holder 23 has an outer peripheral tapered portion fitted into the tapered surface 13 of the cylinder inner peripheral surface 11, and an upper end surface thereof is fixed in contact with a head end surface 45 formed at the lower end of the cylinder head 40.
  • the method for fixing the holder 23 is not limited to this.
  • the holder 23 may be fixed to the cylinder head 40 via a bolt (not shown). In this case, it is not necessary to form the tapered surface 13 on the inner surface of the cylinder tube 10. Further, the holder 23 may be integrally formed with the cylinder head 40.
  • the hydraulic cylinder 1 is provided with a cushion mechanism 6 that decelerates the piston rod 30 when the piston rod 30 comes near the stroke end.
  • FIG. 1 shows a state where the piston rod 30 is in front of the stroke end and in the vicinity of the stroke end.
  • the cushion mechanism 6 includes a cylindrical cushion bearing 60 attached to the piston rod 30.
  • the cushion bearing 60 enters the inside of the holder 23, and the cushion gap 4 (see FIG. 3) is defined between the two.
  • the cushion gap 4 provides resistance to the flow of hydraulic oil flowing out from the rod chamber 2 through the supply / discharge passage 5, and the pressure in the rod chamber 2 (hereinafter referred to as cushion pressure) increases.
  • cushion pressure increases, the piston rod 30 is decelerated.
  • the cushion bearing 60 has a bearing outer peripheral surface 61 as its outer peripheral surface.
  • the bearing outer peripheral surface 61 is formed in a cylindrical surface shape centered on the central axis O.
  • the outer diameter of the bearing outer peripheral surface 61 is formed larger than the outer diameter of the rod outer peripheral surface 31 and smaller than the inner diameter of the cushion cylindrical surface 24.
  • the cushion gap 4 is defined between the bearing outer peripheral surface 61 and the cushion cylindrical surface 24.
  • the split bearing part 62 (notch) which cut the bearing outer peripheral surface 61 partially is formed in the cushion bearing 60. That is, the split portion 62 is a recess provided in the bearing outer peripheral surface 61.
  • the width of the split portion 62 is formed so as to decrease as it goes downward in FIG. Thereby, the flow path cross-sectional area defined by the split-circle portion 62 in the cushion gap 4 gradually decreases as the piston rod 30 approaches the stroke end.
  • the clearance (gap width) of the cushion gap 4 and the shape of the split part 62 are set according to the deceleration characteristics required for the cushion mechanism 6.
  • the cushion mechanism 6 includes a bypass passage 50 that guides hydraulic oil that bypasses the cushion gap 4 and a resistor (set screw) 63 interposed in the bypass passage 50, and the resistor 63 passes through the bypass passage 50.
  • An orifice 64 that restricts the flow of oil is formed.
  • the bypass passage 50 is defined by a bypass hole 25 penetrating the holder 23.
  • the bypass through holes 25 extend substantially parallel to the central axis O and open to the upper and lower end surfaces of the holder 23, respectively.
  • FIG. 2A is an enlarged cross-sectional view of a part of FIG. 1, and FIG. 2B is a cross-sectional view showing the AA cross section of FIG. 2A.
  • a holder recess 26 that is recessed from the upper end surface of the holder 23 is formed on the upper end surface of the holder 23, and the upper end of the bypass through hole 25 opens in the holder recess 26.
  • the configuration is not limited to this, and the upper end surface of the holder 23 may be open at the upper end of the bypass hole 25 without providing the holder recess 26.
  • a head end surface 45 orthogonal to the central axis O is formed at the lower end of the cylinder head 40, and the upper end surface of the holder 23 abuts on the head end surface 45.
  • the head end face 45 is formed with a bypass recess 46 that is recessed in a disc shape with the central axis O as the center.
  • the bypass recess 46 is formed opposite to the holder recess 26 of the holder 23 and the opening end of the bypass through hole 25, and a bypass passage 50 is defined between the holder recess 26 and the opening end of the bypass through hole 25 and the bypass recess 46.
  • a notch 29 is formed on the lower end surface of the holder 23. Thereby, the upper end surface 22 of the piston 20 contacts the lower end surface of the holder 23 when the hydraulic cylinder 1 is extended most. At this time, the cushion gap 4 and the bypass passage 50 communicate with the rod chamber 2 through the notch 29.
  • the orifice 64 gives resistance to the hydraulic fluid flowing through the bypass passage 50. Along with this, the cushion pressure in the rod chamber 2 increases, and the piston rod 30 is decelerated.
  • the opening diameter and passage length of the orifice 64 are set according to the deceleration characteristics required for the cushion mechanism 6.
  • the hydraulic oil that has passed through the orifice 64 flows into the gap between the holder recess 26 of the holder 23 and the bypass recess 46 of the cylinder head 40, hits the inner wall surface of the bypass recess 46, and bends in the direction toward the central axis O. It is done. This prevents noise from being generated by the jet of hydraulic oil that has passed through the orifice 64.
  • An outer peripheral thread portion (male thread) 66 is formed on the outer periphery of the cylindrical resistor 63.
  • an inner peripheral screw portion 27 is formed in the bypass through hole 25 of the holder 23.
  • the resistor 63 is attached by screwing the outer peripheral screw portion 66 to the inner peripheral screw portion 27 of the holder 23. Since the holder 23 is provided separately from the cylinder head 40, the machining of the bypass through hole 25 can be easily performed, and the cost of the product can be reduced.
  • the orifice 64 and the hexagonal hole 65 are formed side by side on the inner periphery of the resistor 63.
  • the resistor 63 is fastened and fixed to the inner peripheral screw portion 27 by a tool (not shown) engaged with the hexagonal hole 65.
  • the present invention is not limited to this, and the resistor 63 may be configured to be press-fitted and attached to the bypass through hole 25 of the holder 23. Moreover, although the resistor 63 was interposed in the upper end part of the bypass through-hole 25 of the holder 23, you may interpose not only in this but in the lower end part of the bypass through-hole 25.
  • a through hole defining the bypass passage 50 may be formed in the holder 23 so as to extend in a direction substantially perpendicular to the central axis O, and the resistor 63 may be interposed in the through hole.
  • the opening end of the through hole faces the cylinder inner peripheral surface 11, and the cylinder inner peripheral surface 11 stops the resistor 63 from falling off.
  • a length (curvature radius) R1 from the central axis O to the outer peripheral wall defining the bypass recess 46 of the cylinder head 40 is formed to be smaller than a length R2 from the central axis O to the outer peripheral end of the resistor 63. . As shown in FIG. 2B, a part of the head end surface 45 of the cylinder head 40 faces a part of the resistor 63.
  • the cushion bearing 60 is fitted to the piston rod 30 so as to have a bearing inner circumferential gap 7 in the radial direction, and is supported in a floating manner so as to be movable with respect to the piston rod 30.
  • the bearing inner circumferential gap 7 is defined between the inner circumferential surface 67 of the cushion bearing 60 and the end outer circumferential surface 33 of the piston rod 30.
  • the cushion bearing 60 is interposed so as to have a gap 8 in the direction of the central axis O with respect to the piston rod 30.
  • the gap 8 is defined between the upper end surface 68 of the cushion bearing 60 and the annular step portion 32 of the piston rod 30.
  • a notch 69 is formed on the lower end surface of the cushion bearing 60. In a state where the lower end surface of the cushion bearing 60 is in contact with the upper end surface 22 of the piston 20, the notch 69 communicates the bearing inner circumferential gap 7 and the rod chamber 2.
  • FIG. 3 is a cross-sectional view showing a state in which the piston rod 30 is in the vicinity of the stroke end during the extension operation of the hydraulic cylinder 1 in which the piston rod 30 moves upward as indicated by the white arrow. .
  • the cushion gap 4 gives resistance to the flow of hydraulic oil flowing out from the rod chamber 2 to the supply / discharge passage 5 and the cushion pressure in the rod chamber 2 increases.
  • the cushion bearing 60 is pushed upward, the upper end surface of the cushion bearing 60 comes into contact with the annular step 32 of the piston rod 30, the gap 8 is closed, and the bearing inner circumferential gap 7 and the supply / discharge passage 5 Is blocked.
  • the hydraulic oil in the rod chamber 2 flows out from the supply / discharge passage 5 through the cushion gap 4 and the bypass passage 50 as indicated by arrows in FIG.
  • the cushion gap 4 and the orifice 64 of the bypass passage 50 provide resistance to the flow of hydraulic oil flowing out from the rod chamber 2, and the cushion pressure in the rod chamber 2 increases, whereby the piston rod 30 is decelerated.
  • FIG. 4 is a cross-sectional view showing a state in which the piston rod 30 comes near the stroke end during the contraction operation of the hydraulic cylinder 1 in which the piston rod 30 moves downward as indicated by the white arrow. .
  • a gap 8 is defined to open a space between the bearing inner circumferential gap 7 and the supply / discharge passage 5.
  • the pressurized hydraulic oil supplied to the supply / discharge passage 5 flows into the rod chamber 2 through the gap 8, the bearing inner circumferential gap 7, and the notch 69, as indicated by arrows in FIG. It flows through the cushion gap 4 and the bypass passage 50, respectively.
  • the piston rod 30 quickly moves in the contraction direction.
  • the cushion bearing 60 functions as a check valve in the vicinity of the stroke end, which closes the bearing inner circumferential gap 7 during the extension operation and opens the bearing inner circumferential gap 7 during the contraction operation.
  • the hydraulic cylinder 1 of this embodiment includes a cushion mechanism 6 that decelerates the piston rod 30 in the vicinity of the stroke end of the piston rod 30 relative to the cylinder tube 10.
  • the cushion mechanism 6 is defined and operated between a cushion bearing 60 provided on the piston rod 30, a cushion cylindrical surface 24 into which the cushion bearing 60 enters near the stroke end, and the cushion cylindrical surface 24 and the cushion bearing 60.
  • a cushion gap 4 that restricts the flow of fluid, a bypass passage 50 that guides a working fluid that bypasses the cushion gap 4, and a resistor 63 interposed in the bypass passage 50 are provided.
  • the resistor 63 is formed with an orifice 64 that restricts the flow of the working fluid passing through the bypass passage 50.
  • the holder 23 that defines the bypass passage 50 can be made common among products of different specifications, and the resistor 23 can be used without increasing the part number of the holder 23. By changing 63, it is possible to cope with different specifications. Further, as compared with the case where the orifice is formed in the holder 23 that defines the bypass passage 50, the processing accuracy of the orifice 64 can be improved, and variations in cushion performance can be suppressed.
  • the cushion mechanism 6 includes a cylinder head 40 that slidably supports the piston rod 30 and an annular holder 23 that is interposed inside the cylinder tube 10 alongside the cylinder head 40.
  • the holder 23 has a cushion cylindrical surface 24 and a bypass through hole 25 that defines a part of the bypass passage 50 and in which a resistor 63 is interposed.
  • the cylinder head 40 has a head end surface 45 that faces the opening end of the bypass passage hole 25, and a bypass recess 46 that is recessed in the head end surface 45 and defines a part of the bypass passage 50.
  • the length R1 from the central axis O of the piston rod 30 to the outer peripheral end of the resistor 63 is set to be smaller than the length R2 from the central axis O of the piston rod 30 to the outer peripheral wall defining the bypass recess 46. The removal from the hole 25 is locked.
  • the resistor 63 is prevented from falling off from the bypass passage hole 25 of the holder 23 and the bypass passage 50 is not blocked, so that the operation of the cushion mechanism 6 can be maintained.
  • the cushion performance can be easily improved by replacing the holder 23 and the resistor 63 according to the required deceleration characteristics. Can be adjusted.
  • the cylinder head 40 is formed with a head end surface 45 that faces the bypass through hole 25.
  • the cushion mechanism 6 can be configured by adding the holder 23 without changing the basic shape of the cylinder head 40, and the cost of the product can be suppressed.
  • the cushion mechanism 6 includes a cylinder head 40 that slidably supports the piston rod 30, and a supply / discharge passage 5 that is defined between the piston rod 30 and the cylinder head 40 and supplies and discharges the working fluid.
  • the cushion bearing 60 is floatingly supported on the piston rod 30 so as to have a bearing inner circumferential gap 7. When the cushion bearing 60 enters the cushion cylindrical surface 24, the space between the bearing inner peripheral gap 7 and the supply / exhaust passage 5 is closed. On the other hand, when the cushion bearing 60 exits the cushion cylindrical surface 24, The space between the circumferential gap 7 and the supply / discharge passage 5 is opened.
  • the cushion bearing 60 functions as a check valve that opens and closes between the bearing inner circumferential gap 7 and the supply / discharge passage 5, so that the piston rod 30 can be quickly moved when the fluid pressure cylinder 1 is driven.
  • a plurality of annular grooves may be formed in the inner peripheral surface 67 of the cushion bearing 60 that defines the bearing inner peripheral gap 7 and the end outer peripheral surface 33 of the piston rod 30.
  • the cushion mechanism decelerates the piston rod when the hydraulic cylinder 1 is extended is illustrated.
  • the piston rod may be decelerated near the stroke end of the piston rod when the hydraulic cylinder 1 is contracted. Good.

Abstract

A hydraulic pressure cylinder is provided with a cushion mechanism which reduces the speed of the piston rod when the piston rod is near the end of stroke thereof relative to the cylinder tube. The cushion mechanism is provided with: a cushion bearing provided to the piston rod; a cushion cylinder surface into which the cushion bearing enters when the piston rod is near the end of stroke thereof; a cushion gap defined between the cushion cylinder surface and the cushion bearing and which throttles the flow of hydraulic fluid; a bypass path which conducts the hydraulic fluid which bypasses the cushion gap; and a resistor disposed in the bypass path. An orifice is formed in the resistor, and the orifice throttles the flow of hydraulic fluid passing through the bypass path.

Description

流体圧シリンダFluid pressure cylinder
 本発明は、シリンダチューブにおけるピストンロッドのストローク端付近でピストンロッドを減速させる流体圧シリンダに関する。 The present invention relates to a fluid pressure cylinder that decelerates a piston rod near the stroke end of the piston rod in a cylinder tube.
 油圧ショベル等に用いられる流体圧シリンダ(油圧シリンダ)は、ピストンロッドのストローク端付近でクッション圧力を発生させてピストンロッドを減速させるクッション機構を備えている。 A fluid pressure cylinder (hydraulic cylinder) used for a hydraulic excavator or the like includes a cushion mechanism that generates a cushion pressure near the stroke end of the piston rod to decelerate the piston rod.
 JP8-61311A及びJP11-230117Aは、ピストンロッドがストローク端付近に来たときに、作動流体を通過させるクッション間隙を画成するクッションベアリングを備えるクッション機構を開示している。フローティング支持されたクッションベアリングの内側には、チェック弁としての機能を有するクッションシール(シール)が介装される。 JP8-61311A and JP11-230117A disclose a cushion mechanism provided with a cushion bearing that defines a cushion gap through which a working fluid passes when the piston rod comes near the stroke end. A cushion seal (seal) having a function as a check valve is interposed inside the cushion bearing supported by floating.
 ピストンロッドがストローク端付近に来ると、クッションベアリングがシリンダヘッドの内側に進入してクッション間隙が画成される。これにより、作動流体がこのクッション間隙とクッションシールの間隙(オリフィス溝)とをそれぞれ通って流出するので、作動流体の流れの抵抗によってクッション圧力が発生し、ピストンロッドが減速される。 ¡When the piston rod comes near the stroke end, the cushion bearing enters the inside of the cylinder head and the cushion gap is defined. As a result, the working fluid flows out through the cushion gap and the cushion seal gap (orifice groove), so that the cushion pressure is generated by the resistance of the flow of the working fluid, and the piston rod is decelerated.
 しかし、上記従来のクッション機構では、クッションベアリングの内側に仕様に応じた専用のクッションシールが介装されるため、製品のコストアップを招くとともに、クッションシールの間隙(オリフィス溝)等の寸法バラツキによってクッション性能にバラツキが生じる可能性がある。 However, in the above conventional cushion mechanism, a dedicated cushion seal corresponding to the specifications is interposed inside the cushion bearing, which increases the cost of the product, and also due to dimensional variations such as the gap (orifice groove) of the cushion seal There may be variations in cushion performance.
 また、ピストンロッドの外周にクッションシールを収容するクッションシール溝が形成されるため、ピストンロッドに溝加工が必要になる。 Also, since the cushion seal groove for accommodating the cushion seal is formed on the outer periphery of the piston rod, the piston rod needs to be grooved.
 この発明の目的は、クッションシールを用いることなく所定のクッション圧力を得ることが可能な流体圧シリンダを提供することである。 An object of the present invention is to provide a fluid pressure cylinder capable of obtaining a predetermined cushion pressure without using a cushion seal.
 本発明のある態様によれば、シリンダチューブに対するピストンロッドのストローク端付近でピストンロッドを減速させるクッション機構を備える流体圧シリンダであって、クッション機構は、ピストンロッドに設けられるクッションベアリングと、ストローク端付近でクッションベアリングが進入するクッション円筒面と、クッション円筒面とクッションベアリングとの間に画成されて作動流体の流れを絞るクッション間隙と、クッション間隙を迂回する作動流体を導くバイパス通路と、バイパス通路に介装される抵抗器と、を備え、抵抗器にバイパス通路を通過する作動流体の流れを絞るオリフィスが形成される流体圧シリンダが提供される。 According to an aspect of the present invention, there is provided a fluid pressure cylinder including a cushion mechanism that decelerates the piston rod in the vicinity of the stroke end of the piston rod with respect to the cylinder tube, the cushion mechanism including a cushion bearing provided on the piston rod, and a stroke end. A cushion cylindrical surface into which the cushion bearing enters, a cushion gap defined between the cushion cylindrical surface and the cushion bearing to restrict the flow of the working fluid, a bypass passage for guiding the working fluid bypassing the cushion gap, and a bypass A fluid pressure cylinder is provided that includes a resistor interposed in the passage and in which an orifice is formed in the resistor to restrict the flow of working fluid through the bypass passage.
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。 Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、本発明の実施形態に係る油圧シリンダの断面図である。FIG. 1 is a cross-sectional view of a hydraulic cylinder according to an embodiment of the present invention. 図2Aは、図1の一部を拡大した油圧シリンダの断面図である。FIG. 2A is a cross-sectional view of a hydraulic cylinder in which a part of FIG. 1 is enlarged. 図2Bは、図2AのA-A断面を示す断面図である。FIG. 2B is a cross-sectional view showing the AA cross section of FIG. 2A. 図3は、伸長作動時の状態を示す油圧シリンダの断面図である。FIG. 3 is a cross-sectional view of the hydraulic cylinder showing a state during the extension operation. 図4は、収縮作動時の状態を示す油圧シリンダの断面図である。FIG. 4 is a cross-sectional view of the hydraulic cylinder showing a state during the contraction operation.
 以下、本発明の実施形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の実施形態に係る油圧シリンダ1の断面図である。油圧シリンダ1は、例えば油圧ショベルのアームシリンダとして用いられ、油圧シリンダ1が伸縮作動することで油圧ショベルのアームが回動する。 FIG. 1 is a cross-sectional view of a hydraulic cylinder 1 according to an embodiment of the present invention. The hydraulic cylinder 1 is used, for example, as an arm cylinder of a hydraulic excavator, and the arm of the hydraulic excavator rotates when the hydraulic cylinder 1 expands and contracts.
 油圧シリンダ(流体圧シリンダ)1は、筒状のシリンダチューブ10と、シリンダチューブ10内にロッド室2とエンド室3とを区画するピストン20と、ピストン20に連結されるピストンロッド30と、を備える。 The hydraulic cylinder (fluid pressure cylinder) 1 includes a cylindrical cylinder tube 10, a piston 20 that partitions the rod chamber 2 and the end chamber 3 in the cylinder tube 10, and a piston rod 30 that is coupled to the piston 20. Prepare.
 ロッド室2及びエンド室3は、図示しない油圧源(作動流体圧源)に連通しており、この油圧源から導かれる作動油圧(作動流体圧)によってピストンロッド30が中心軸O方向に移動して伸縮作動する。 The rod chamber 2 and the end chamber 3 communicate with a hydraulic source (working fluid pressure source) (not shown), and the piston rod 30 moves in the direction of the central axis O by the working hydraulic pressure (working fluid pressure) guided from this hydraulic power source. Telescopic operation.
 なお、作動流体としてオイルの代わりに例えば水溶性代替液等を用いても良い。 For example, a water-soluble alternative liquid may be used instead of oil as the working fluid.
 シリンダチューブ10の開口端には、ピストンロッド30が摺動可能に挿通する円筒状のシリンダヘッド40が設けられる。シリンダヘッド40は、外周ネジ部(雄ネジ)41がシリンダチューブ10の内周ネジ部(雌ネジ)12に螺合して締結される。 A cylindrical cylinder head 40 through which the piston rod 30 is slidably inserted is provided at the open end of the cylinder tube 10. The cylinder head 40 is fastened by an outer peripheral screw portion (male screw) 41 screwed into an inner peripheral screw portion (female screw) 12 of the cylinder tube 10.
 シリンダヘッド40は、シリンダ内周面11に嵌合される円筒状のヘッド嵌合部42を有する。ヘッド嵌合部42の外周部には、Oリング9とバックアップリング19が介装される。 The cylinder head 40 has a cylindrical head fitting portion 42 fitted to the cylinder inner peripheral surface 11. An O-ring 9 and a backup ring 19 are interposed on the outer periphery of the head fitting portion 42.
 シリンダヘッド40の内周部には、軸受55、サブシール56、メインシール57、ダストシール58がそれぞれ介装され、これらがピストンロッド30のロッド外周面31に摺接する。軸受55がロッド外周面31に摺接することにより、ピストンロッド30はシリンダチューブ10の中心軸O方向に平行移動するように支持される。 A bearing 55, a sub seal 56, a main seal 57, and a dust seal 58 are interposed in the inner peripheral portion of the cylinder head 40, and these are in sliding contact with the rod outer peripheral surface 31 of the piston rod 30. When the bearing 55 is in sliding contact with the rod outer peripheral surface 31, the piston rod 30 is supported so as to translate in the direction of the central axis O of the cylinder tube 10.
 シリンダヘッド40には、給排口43が形成され、この給排口43によって給排通路5が画成される。給排通路5は、シリンダチューブ10の配管口17に接続される図示しない油圧配管を介して油圧源に連通する。 The cylinder head 40 has a supply / discharge port 43, and the supply / discharge passage 5 is defined by the supply / discharge port 43. The supply / discharge passage 5 communicates with a hydraulic source via a hydraulic pipe (not shown) connected to the pipe port 17 of the cylinder tube 10.
 シリンダヘッド40の内周には、円筒面状のヘッド内周面44が形成される。このヘッド内周面44に給排口43の一端が開口し、ヘッド内周面44とロッド外周面31との間に給排通路5が画成される。 A cylindrical inner peripheral surface 44 is formed on the inner periphery of the cylinder head 40. One end of the supply / discharge port 43 opens in the head inner peripheral surface 44, and the supply / discharge passage 5 is defined between the head inner peripheral surface 44 and the rod outer peripheral surface 31.
 シリンダチューブ10の内側には、ホルダ23が介装される。ホルダ23は、中心軸Oを中心とする円環状に形成される。ホルダ23は、シリンダ内周面11に、シリンダヘッド40のヘッド嵌合部42と並んで嵌合される。ホルダ23の外周部にはOリング28とバックアップリング18とが介装される。 A holder 23 is interposed inside the cylinder tube 10. The holder 23 is formed in an annular shape centered on the central axis O. The holder 23 is fitted to the cylinder inner peripheral surface 11 along with the head fitting portion 42 of the cylinder head 40. An O-ring 28 and a backup ring 18 are interposed on the outer periphery of the holder 23.
 ホルダ23は、その内周面としてクッション円筒面24を有する。クッション円筒面24は、中心軸Oを中心とする円筒面状に形成される。 The holder 23 has a cushion cylindrical surface 24 as an inner peripheral surface thereof. The cushion cylindrical surface 24 is formed in a cylindrical surface shape with the central axis O as the center.
 ホルダ23は、その外周テーパ部がシリンダ内周面11のテーパ面13に嵌合し、その上端面がシリンダヘッド40の下端に形成されるヘッド端面45に当接して固定される。 The holder 23 has an outer peripheral tapered portion fitted into the tapered surface 13 of the cylinder inner peripheral surface 11, and an upper end surface thereof is fixed in contact with a head end surface 45 formed at the lower end of the cylinder head 40.
 なお、ホルダ23の固定方法については、これに限らず、例えば、シリンダヘッド40に図示しないボルトを介して固定してもよい。この場合には、シリンダチューブ10の内面にテーパ面13を形成する必要がなくなる。また、シリンダヘッド40にホルダ23を一体形成してもよい。 Note that the method for fixing the holder 23 is not limited to this. For example, the holder 23 may be fixed to the cylinder head 40 via a bolt (not shown). In this case, it is not necessary to form the tapered surface 13 on the inner surface of the cylinder tube 10. Further, the holder 23 may be integrally formed with the cylinder head 40.
 図1においてピストンロッド30が下方に移動する油圧シリンダ1の収縮作動時、油圧源から油圧配管を通って供給される加圧作動油が、給排通路5を通ってロッド室2に流入する。 1, during the contraction operation of the hydraulic cylinder 1 in which the piston rod 30 moves downward in FIG. 1, the pressurized hydraulic oil supplied from the hydraulic source through the hydraulic piping flows into the rod chamber 2 through the supply / discharge passage 5.
 一方、図1においてピストンロッド30が上方に移動する油圧シリンダ1の伸張作動時、そのストローク中程では、ロッド室2の作動油が、給排通路5、給排口43、油圧配管を通って油圧源へと流出する。 On the other hand, when the hydraulic cylinder 1 in which the piston rod 30 moves upward in FIG. 1 is extended, the hydraulic oil in the rod chamber 2 passes through the supply / discharge passage 5, the supply / discharge port 43, and the hydraulic piping in the middle of the stroke. It flows out to the hydraulic power source.
 油圧シリンダ1にはピストンロッド30がストローク端付近に来たときにピストンロッド30を減速させるクッション機構6が設けられる。図1は、ピストンロッド30がストローク端より手前であってストローク端付近にある状態を示している。 The hydraulic cylinder 1 is provided with a cushion mechanism 6 that decelerates the piston rod 30 when the piston rod 30 comes near the stroke end. FIG. 1 shows a state where the piston rod 30 is in front of the stroke end and in the vicinity of the stroke end.
 クッション機構6は、ピストンロッド30に取り付けられる円筒状のクッションベアリング60を備える。ピストンロッド30がストローク端付近に来ると、クッションベアリング60がホルダ23の内側に進入して、両者の間にクッション間隙4(図3参照)が画成される。このクッション間隙4により、ロッド室2から給排通路5を通って流出する作動油の流れに抵抗が付与され、ロッド室2の圧力(以下、クッション圧力という)が上昇する。クッション圧力が上昇するとピストンロッド30が減速される。 The cushion mechanism 6 includes a cylindrical cushion bearing 60 attached to the piston rod 30. When the piston rod 30 comes near the stroke end, the cushion bearing 60 enters the inside of the holder 23, and the cushion gap 4 (see FIG. 3) is defined between the two. The cushion gap 4 provides resistance to the flow of hydraulic oil flowing out from the rod chamber 2 through the supply / discharge passage 5, and the pressure in the rod chamber 2 (hereinafter referred to as cushion pressure) increases. When the cushion pressure increases, the piston rod 30 is decelerated.
 クッションベアリング60は、その外周面としてベアリング外周面61を有する。ベアリング外周面61は、中心軸Oを中心とする円筒面状に形成される。ベアリング外周面61の外径は、ロッド外周面31の外径より大きく、かつクッション円筒面24の内径より小さく形成される。クッション間隙4は、ベアリング外周面61とクッション円筒面24との間に画成される。 The cushion bearing 60 has a bearing outer peripheral surface 61 as its outer peripheral surface. The bearing outer peripheral surface 61 is formed in a cylindrical surface shape centered on the central axis O. The outer diameter of the bearing outer peripheral surface 61 is formed larger than the outer diameter of the rod outer peripheral surface 31 and smaller than the inner diameter of the cushion cylindrical surface 24. The cushion gap 4 is defined between the bearing outer peripheral surface 61 and the cushion cylindrical surface 24.
 クッションベアリング60には、ベアリング外周面61を部分的に切削した割円部62(切り欠き)が形成される。つまり、割円部62は、ベアリング外周面61に設けられた窪みである。割円部62の幅は、図1の下方へ行くほど小さくなるように形成される。これにより、クッション間隙4のうち、割円部62によって画成される流路断面積が、ピストンロッド30がストローク端に近づくのに応じて漸次減少する。クッション間隙4のクリアランス(間隙幅)及び割円部62の形状は、クッション機構6に要求される減速特性に応じて設定される。 The split bearing part 62 (notch) which cut the bearing outer peripheral surface 61 partially is formed in the cushion bearing 60. That is, the split portion 62 is a recess provided in the bearing outer peripheral surface 61. The width of the split portion 62 is formed so as to decrease as it goes downward in FIG. Thereby, the flow path cross-sectional area defined by the split-circle portion 62 in the cushion gap 4 gradually decreases as the piston rod 30 approaches the stroke end. The clearance (gap width) of the cushion gap 4 and the shape of the split part 62 are set according to the deceleration characteristics required for the cushion mechanism 6.
 クッション機構6は、クッション間隙4を迂回する作動油を導くバイパス通路50と、バイパス通路50に介装される抵抗器(セットスクリュ)63とを備え、抵抗器63にバイパス通路50を通過する作動油の流れを絞るオリフィス64が形成される。 The cushion mechanism 6 includes a bypass passage 50 that guides hydraulic oil that bypasses the cushion gap 4 and a resistor (set screw) 63 interposed in the bypass passage 50, and the resistor 63 passes through the bypass passage 50. An orifice 64 that restricts the flow of oil is formed.
 バイパス通路50は、ホルダ23を貫通するバイパス通孔25によって画成される。バイパス通孔25は、中心軸Oと略平行に延設され、ホルダ23の上下端面にそれぞれ開口している。 The bypass passage 50 is defined by a bypass hole 25 penetrating the holder 23. The bypass through holes 25 extend substantially parallel to the central axis O and open to the upper and lower end surfaces of the holder 23, respectively.
 図2Aは、図1の一部を拡大した断面図であり、図2Bは、図2AのA-A断面を示す断面図である。 FIG. 2A is an enlarged cross-sectional view of a part of FIG. 1, and FIG. 2B is a cross-sectional view showing the AA cross section of FIG. 2A.
 ホルダ23の上端面にはホルダ23の上端面から窪んだホルダ凹部26が形成され、ホルダ凹部26にバイパス通孔25の上端が開口する。なお、これに限らず、ホルダ凹部26を設けることなく、ホルダ23の上端面にバイパス通孔25の上端が開口する構成であってもよい。 A holder recess 26 that is recessed from the upper end surface of the holder 23 is formed on the upper end surface of the holder 23, and the upper end of the bypass through hole 25 opens in the holder recess 26. The configuration is not limited to this, and the upper end surface of the holder 23 may be open at the upper end of the bypass hole 25 without providing the holder recess 26.
 シリンダヘッド40の下端には、中心軸Oと直交するヘッド端面45が形成され、ヘッド端面45にホルダ23の上端面が当接する。 A head end surface 45 orthogonal to the central axis O is formed at the lower end of the cylinder head 40, and the upper end surface of the holder 23 abuts on the head end surface 45.
 ヘッド端面45には、中心軸Oを中心とする円盤状に窪んだバイパス凹部46が形成される。バイパス凹部46は、ホルダ23のホルダ凹部26及びバイパス通孔25の開口端に対峙して形成され、ホルダ凹部26及びバイパス通孔25の開口端とバイパス凹部46との間にバイパス通路50が画成される。 The head end face 45 is formed with a bypass recess 46 that is recessed in a disc shape with the central axis O as the center. The bypass recess 46 is formed opposite to the holder recess 26 of the holder 23 and the opening end of the bypass through hole 25, and a bypass passage 50 is defined between the holder recess 26 and the opening end of the bypass through hole 25 and the bypass recess 46. Made.
 油圧シリンダ1の伸張作動時、ピストンロッド30がストローク端付近に来ると、ロッド室2の作動油が、図2Aに矢印で示すように、バイパス通路50、給排通路5を通って油圧源へと流出する。 When the piston rod 30 comes near the stroke end during the extension operation of the hydraulic cylinder 1, the hydraulic oil in the rod chamber 2 passes through the bypass passage 50 and the supply / discharge passage 5 to the hydraulic pressure source as shown by the arrow in FIG. 2A. And leaked.
 ホルダ23の下端面には、切り欠き部29が形成される。これにより、油圧シリンダ1が最も伸長した状態では、ピストン20の上端面22がホルダ23の下端面に当接する。このとき、切り欠き部29を介してクッション間隙4及びバイパス通路50がロッド室2と連通する。 A notch 29 is formed on the lower end surface of the holder 23. Thereby, the upper end surface 22 of the piston 20 contacts the lower end surface of the holder 23 when the hydraulic cylinder 1 is extended most. At this time, the cushion gap 4 and the bypass passage 50 communicate with the rod chamber 2 through the notch 29.
 オリフィス64は、バイパス通路50を流れる作動油に抵抗を付与する。これに伴って、ロッド室2のクッション圧力が上昇し、ピストンロッド30が減速される。オリフィス64の開口径及び通路長は、クッション機構6に要求される減速特性に応じて設定される。 The orifice 64 gives resistance to the hydraulic fluid flowing through the bypass passage 50. Along with this, the cushion pressure in the rod chamber 2 increases, and the piston rod 30 is decelerated. The opening diameter and passage length of the orifice 64 are set according to the deceleration characteristics required for the cushion mechanism 6.
 バイパス通路50において、オリフィス64を通過した作動油は、ホルダ23のホルダ凹部26とシリンダヘッド40のバイパス凹部46との間隙に流出し、バイパス凹部46の内壁面に当たって中心軸Oに向かう方向に曲げられる。これにより、オリフィス64を通過した作動油の噴流によって騒音が生じることが防止される。 In the bypass passage 50, the hydraulic oil that has passed through the orifice 64 flows into the gap between the holder recess 26 of the holder 23 and the bypass recess 46 of the cylinder head 40, hits the inner wall surface of the bypass recess 46, and bends in the direction toward the central axis O. It is done. This prevents noise from being generated by the jet of hydraulic oil that has passed through the orifice 64.
 円筒状の抵抗器63の外周には、外周ネジ部(雄ネジ)66が形成される。一方、ホルダ23のバイパス通孔25には、内周ネジ部27が形成される。抵抗器63は、外周ネジ部66をホルダ23の内周ネジ部27に螺合することで取り付けられる。ホルダ23は、シリンダヘッド40とは別体で設けられるので、バイパス通孔25の機械加工を容易に行うことが可能となり、製品のコストダウンが図れる。 An outer peripheral thread portion (male thread) 66 is formed on the outer periphery of the cylindrical resistor 63. On the other hand, an inner peripheral screw portion 27 is formed in the bypass through hole 25 of the holder 23. The resistor 63 is attached by screwing the outer peripheral screw portion 66 to the inner peripheral screw portion 27 of the holder 23. Since the holder 23 is provided separately from the cylinder head 40, the machining of the bypass through hole 25 can be easily performed, and the cost of the product can be reduced.
 抵抗器63の内周には、オリフィス64と六角穴65とが並んで形成される。抵抗器63は、六角穴65に係合される工具(図示せず)によって内周ネジ部27に締め付け固定される。 The orifice 64 and the hexagonal hole 65 are formed side by side on the inner periphery of the resistor 63. The resistor 63 is fastened and fixed to the inner peripheral screw portion 27 by a tool (not shown) engaged with the hexagonal hole 65.
 なお、これに限らず、抵抗器63は、ホルダ23のバイパス通孔25に圧入して取り付けられる構成としてもよい。また、抵抗器63は、ホルダ23のバイパス通孔25の上端部に介装したが、これに限らず、バイパス通孔25の下端部に介装してもよい。 Note that the present invention is not limited to this, and the resistor 63 may be configured to be press-fitted and attached to the bypass through hole 25 of the holder 23. Moreover, although the resistor 63 was interposed in the upper end part of the bypass through-hole 25 of the holder 23, you may interpose not only in this but in the lower end part of the bypass through-hole 25.
 また、ホルダ23にバイパス通路50を画成する通孔が中心軸Oに対して略直交する方向に延びるように形成され、抵抗器63がこの通孔に介装される構成としてもよい。この場合、通孔の開口端がシリンダ内周面11に対峙し、シリンダ内周面11によって抵抗器63が脱落することが係止される。 Alternatively, a through hole defining the bypass passage 50 may be formed in the holder 23 so as to extend in a direction substantially perpendicular to the central axis O, and the resistor 63 may be interposed in the through hole. In this case, the opening end of the through hole faces the cylinder inner peripheral surface 11, and the cylinder inner peripheral surface 11 stops the resistor 63 from falling off.
 中心軸Oからシリンダヘッド40のバイパス凹部46を画成する外周壁部までの長さ(曲率半径)R1は、中心軸Oから抵抗器63の外周端部までの長さR2より小さく形成される。図2Bに示すように、シリンダヘッド40のヘッド端面45の一部が抵抗器63の一部に対峙する。 A length (curvature radius) R1 from the central axis O to the outer peripheral wall defining the bypass recess 46 of the cylinder head 40 is formed to be smaller than a length R2 from the central axis O to the outer peripheral end of the resistor 63. . As shown in FIG. 2B, a part of the head end surface 45 of the cylinder head 40 faces a part of the resistor 63.
 これにより、仮にホルダ23の内周ネジ部27に螺合する抵抗器63が緩んでバイパス通孔25から上方に突出しても、抵抗器63の一部がシリンダヘッド40のヘッド端面45に当接し、抵抗器63がそれ以上に上方に突出することが防止される。この状態で、バイパス通孔25はバイパス凹部46と連通している。これにより、抵抗器63がホルダ23のバイパス通孔25から抜け落ちることが防止されるとともに、バイパス通路50が閉塞されないため、クッション機構6の作動が維持される。 As a result, even if the resistor 63 screwed into the inner peripheral screw portion 27 of the holder 23 is loosened and protrudes upward from the bypass through hole 25, a part of the resistor 63 comes into contact with the head end surface 45 of the cylinder head 40. The resistor 63 is prevented from projecting further upward. In this state, the bypass through hole 25 communicates with the bypass recess 46. Accordingly, the resistor 63 is prevented from falling off from the bypass through hole 25 of the holder 23, and the bypass passage 50 is not closed, so that the operation of the cushion mechanism 6 is maintained.
 クッションベアリング60は、半径方向にベアリング内周間隙7を有するように、ピストンロッド30に対して嵌合され、ピストンロッド30に対して移動可能にフローティング支持される。ベアリング内周間隙7は、クッションベアリング60の内周面67とピストンロッド30の端部外周面33との間に画成される。 The cushion bearing 60 is fitted to the piston rod 30 so as to have a bearing inner circumferential gap 7 in the radial direction, and is supported in a floating manner so as to be movable with respect to the piston rod 30. The bearing inner circumferential gap 7 is defined between the inner circumferential surface 67 of the cushion bearing 60 and the end outer circumferential surface 33 of the piston rod 30.
 クッションベアリング60は、ピストンロッド30に対して中心軸O方向に間隙8を有するように介装される。クッションベアリング60の下端面がピストン20の上端面22に当接した状態において、間隙8は、クッションベアリング60の上端面68とピストンロッド30の環状段部32との間に画成される。 The cushion bearing 60 is interposed so as to have a gap 8 in the direction of the central axis O with respect to the piston rod 30. When the lower end surface of the cushion bearing 60 is in contact with the upper end surface 22 of the piston 20, the gap 8 is defined between the upper end surface 68 of the cushion bearing 60 and the annular step portion 32 of the piston rod 30.
 クッションベアリング60の下端面には、切り欠き部69が形成される。クッションベアリング60の下端面がピストン20の上端面22に当接した状態において、切り欠き部69がベアリング内周間隙7とロッド室2とを連通する。 A notch 69 is formed on the lower end surface of the cushion bearing 60. In a state where the lower end surface of the cushion bearing 60 is in contact with the upper end surface 22 of the piston 20, the notch 69 communicates the bearing inner circumferential gap 7 and the rod chamber 2.
 図3は、ピストンロッド30が白抜き矢印で示すように上方へと移動する油圧シリンダ1の伸張作動時であって、ピストンロッド30がストローク端付近に来たときの状態を示す断面図である。 FIG. 3 is a cross-sectional view showing a state in which the piston rod 30 is in the vicinity of the stroke end during the extension operation of the hydraulic cylinder 1 in which the piston rod 30 moves upward as indicated by the white arrow. .
 ピストンロッド30がストローク端付近に来ると、クッションベアリング60がホルダ23の内側に進入することによって、両者の間にクッション間隙4が画成される。 When the piston rod 30 comes near the stroke end, the cushion bearing 60 enters the inside of the holder 23, so that the cushion gap 4 is defined between them.
 クッション間隙4がロッド室2から給排通路5へと流出する作動油の流れに抵抗を付与し、ロッド室2のクッション圧力が上昇する。これに伴って、クッションベアリング60が上方に押され、クッションベアリング60の上端面がピストンロッド30の環状段部32に当接し、間隙8が閉塞されてベアリング内周間隙7と給排通路5との間が閉塞される。 The cushion gap 4 gives resistance to the flow of hydraulic oil flowing out from the rod chamber 2 to the supply / discharge passage 5 and the cushion pressure in the rod chamber 2 increases. Along with this, the cushion bearing 60 is pushed upward, the upper end surface of the cushion bearing 60 comes into contact with the annular step 32 of the piston rod 30, the gap 8 is closed, and the bearing inner circumferential gap 7 and the supply / discharge passage 5 Is blocked.
 これにより、ロッド室2の作動油が、図3に矢印で示すように、クッション間隙4とバイパス通路50とをそれぞれ通って給排通路5から流出する。クッション間隙4とバイパス通路50のオリフィス64とがロッド室2から流出する作動油の流れに抵抗を付与し、ロッド室2のクッション圧力が上昇することにより、ピストンロッド30が減速される。 Thereby, the hydraulic oil in the rod chamber 2 flows out from the supply / discharge passage 5 through the cushion gap 4 and the bypass passage 50 as indicated by arrows in FIG. The cushion gap 4 and the orifice 64 of the bypass passage 50 provide resistance to the flow of hydraulic oil flowing out from the rod chamber 2, and the cushion pressure in the rod chamber 2 increases, whereby the piston rod 30 is decelerated.
 図4は、ピストンロッド30が白抜き矢印で示すように下方へと移動する油圧シリンダ1の収縮作動時であって、ピストンロッド30がストローク端付近に来たときの状態を示す断面図である。 FIG. 4 is a cross-sectional view showing a state in which the piston rod 30 comes near the stroke end during the contraction operation of the hydraulic cylinder 1 in which the piston rod 30 moves downward as indicated by the white arrow. .
 油圧源から加圧作動油が給排通路5に供給されると、クッションベアリング60が下方に押され、クッションベアリング60の上端面がピストンロッド30の環状段部32から離間し、両者の間に間隙8が画成されてベアリング内周間隙7と給排通路5との間が開放される。 When pressurized hydraulic fluid is supplied to the supply / discharge passage 5 from the hydraulic source, the cushion bearing 60 is pushed downward, and the upper end surface of the cushion bearing 60 is separated from the annular step portion 32 of the piston rod 30, and between them. A gap 8 is defined to open a space between the bearing inner circumferential gap 7 and the supply / discharge passage 5.
 これにより、給排通路5に供給される加圧作動油が、図4に矢印で示すように、間隙8、ベアリング内周間隙7、切り欠き部69を通ってロッド室2に流入するとともに、クッション間隙4とバイパス通路50とをそれぞれ通って流入する。このように作動油が、3つの流路を介してロッド室2に流入するので、ピストンロッド30は速やかに収縮方向に移動する。 As a result, the pressurized hydraulic oil supplied to the supply / discharge passage 5 flows into the rod chamber 2 through the gap 8, the bearing inner circumferential gap 7, and the notch 69, as indicated by arrows in FIG. It flows through the cushion gap 4 and the bypass passage 50, respectively. As described above, since the hydraulic oil flows into the rod chamber 2 through the three flow paths, the piston rod 30 quickly moves in the contraction direction.
 このように、クッションベアリング60は、ストローク端付近において、伸長作動時にベアリング内周間隙7を閉塞する一方、収縮作動時にベアリング内周間隙7を開放するチェック弁としての機能を果たす。 As described above, the cushion bearing 60 functions as a check valve in the vicinity of the stroke end, which closes the bearing inner circumferential gap 7 during the extension operation and opens the bearing inner circumferential gap 7 during the contraction operation.
 以下、本実施形態の要旨と作用、効果を説明する。 Hereinafter, the gist, operation, and effect of this embodiment will be described.
 本実施形態の油圧シリンダ1は、シリンダチューブ10に対するピストンロッド30のストローク端付近でピストンロッド30を減速させるクッション機構6を備える。クッション機構6は、ピストンロッド30に設けられるクッションベアリング60と、ストローク端付近でクッションベアリング60が進入するクッション円筒面24と、このクッション円筒面24とクッションベアリング60との間に画成されて作動流体の流れを絞るクッション間隙4と、このクッション間隙4を迂回する作動流体を導くバイパス通路50と、このバイパス通路50に介装される抵抗器63と、を備える。抵抗器63には、バイパス通路50を通過する作動流体の流れを絞るオリフィス64が形成される。 The hydraulic cylinder 1 of this embodiment includes a cushion mechanism 6 that decelerates the piston rod 30 in the vicinity of the stroke end of the piston rod 30 relative to the cylinder tube 10. The cushion mechanism 6 is defined and operated between a cushion bearing 60 provided on the piston rod 30, a cushion cylindrical surface 24 into which the cushion bearing 60 enters near the stroke end, and the cushion cylindrical surface 24 and the cushion bearing 60. A cushion gap 4 that restricts the flow of fluid, a bypass passage 50 that guides a working fluid that bypasses the cushion gap 4, and a resistor 63 interposed in the bypass passage 50 are provided. The resistor 63 is formed with an orifice 64 that restricts the flow of the working fluid passing through the bypass passage 50.
 これにより、抵抗器63に形成されるオリフィス64の形状や大きさを変えることにより、バイパス通路50を通過する作動油の流れに付与される抵抗を調整することができ、所定のクッション圧力を得ることができる。 Thereby, by changing the shape and size of the orifice 64 formed in the resistor 63, the resistance applied to the flow of hydraulic oil passing through the bypass passage 50 can be adjusted, and a predetermined cushion pressure is obtained. be able to.
 バイパス通路50に介装される抵抗器63にオリフィス64が形成されるので、バイパス通路50を画成するホルダ23を異なる仕様の製品間で共通化でき、ホルダ23の品番を増やすことなく抵抗器63を変えるだけで異なる仕様に対応することができる。また、バイパス通路50を画成するホルダ23にオリフィスを形成する場合と比べて、オリフィス64の加工精度を向上させることができ、クッション性能のバラツキを抑制することができる。 Since the orifice 64 is formed in the resistor 63 interposed in the bypass passage 50, the holder 23 that defines the bypass passage 50 can be made common among products of different specifications, and the resistor 23 can be used without increasing the part number of the holder 23. By changing 63, it is possible to cope with different specifications. Further, as compared with the case where the orifice is formed in the holder 23 that defines the bypass passage 50, the processing accuracy of the orifice 64 can be improved, and variations in cushion performance can be suppressed.
 従来装置のようにクッションベアリング60の内側にクッションシールを介装する必要がないので、製品のコストダウンをはかることができるとともに、クッションシールに関係するクッション性能のバラツキを解消することができる。 Since there is no need to interpose a cushion seal inside the cushion bearing 60 as in the conventional apparatus, it is possible to reduce the cost of the product and to eliminate the variation in cushion performance related to the cushion seal.
 従来装置のようにピストンロッド30の外周にクッションシールが介装されるクッションシール溝を形成する必要がないので、ピストンロッド30の強度を向上させることができる。 Since there is no need to form a cushion seal groove in which a cushion seal is interposed on the outer periphery of the piston rod 30 as in the conventional device, the strength of the piston rod 30 can be improved.
 本実施形態では、クッション機構6は、ピストンロッド30を摺動可能に支持するシリンダヘッド40と、シリンダチューブ10の内側にシリンダヘッド40と並んで介装される環状のホルダ23と、を備える。ホルダ23は、クッション円筒面24と、バイパス通路50の一部を画成して抵抗器63が介装されるバイパス通孔25と、を有する。シリンダヘッド40は、バイパス通孔25の開口端に対峙するヘッド端面45と、ヘッド端面45に凹設されバイパス通路50の一部を画成するバイパス凹部46と、を有し、中心軸Oからバイパス凹部46を画成する外周壁部までの長さR1は、ピストンロッド30の中心軸Oから抵抗器63の外周端部までの長さR2より小さく設定されるので、抵抗器63がバイパス通孔25から抜けることが係止される。 In the present embodiment, the cushion mechanism 6 includes a cylinder head 40 that slidably supports the piston rod 30 and an annular holder 23 that is interposed inside the cylinder tube 10 alongside the cylinder head 40. The holder 23 has a cushion cylindrical surface 24 and a bypass through hole 25 that defines a part of the bypass passage 50 and in which a resistor 63 is interposed. The cylinder head 40 has a head end surface 45 that faces the opening end of the bypass passage hole 25, and a bypass recess 46 that is recessed in the head end surface 45 and defines a part of the bypass passage 50. The length R1 from the central axis O of the piston rod 30 to the outer peripheral end of the resistor 63 is set to be smaller than the length R2 from the central axis O of the piston rod 30 to the outer peripheral wall defining the bypass recess 46. The removal from the hole 25 is locked.
 これにより、抵抗器63がホルダ23のバイパス通孔25から抜け落ちることが防止されるとともに、バイパス通路50が閉塞されないため、クッション機構6の作動を維持することができる。 Thereby, the resistor 63 is prevented from falling off from the bypass passage hole 25 of the holder 23 and the bypass passage 50 is not blocked, so that the operation of the cushion mechanism 6 can be maintained.
 また、抵抗器63が介装されるホルダ23がシリンダヘッド40と別体で形成されるので、要求される減速特性に応じたホルダ23及び抵抗器63を交換することにより、クッション性能を容易に調整することができる。 Further, since the holder 23 in which the resistor 63 is interposed is formed separately from the cylinder head 40, the cushion performance can be easily improved by replacing the holder 23 and the resistor 63 according to the required deceleration characteristics. Can be adjusted.
 本実施形態では、シリンダヘッド40にはバイパス通孔25に対峙するヘッド端面45が形成される。 In this embodiment, the cylinder head 40 is formed with a head end surface 45 that faces the bypass through hole 25.
 これにより、シリンダヘッド40の基本形状を変更することなくホルダ23を追加することでクッション機構6を構成することができ、製品のコストアップを抑制することができる。 Thus, the cushion mechanism 6 can be configured by adding the holder 23 without changing the basic shape of the cylinder head 40, and the cost of the product can be suppressed.
 本実施形態では、クッション機構6は、ピストンロッド30を摺動可能に支持するシリンダヘッド40と、ピストンロッド30とシリンダヘッド40との間に画成され作動流体を給排する給排通路5と、を備える。クッションベアリング60は、ピストンロッド30にベアリング内周間隙7を有するようにフローティング支持される。クッションベアリング60がクッション円筒面24に進入していく作動時にベアリング内周間隙7と給排通路5との間が閉塞される一方、クッションベアリング60がクッション円筒面24から出ていく作動時にベアリング内周間隙7と給排通路5との間が開放される。 In this embodiment, the cushion mechanism 6 includes a cylinder head 40 that slidably supports the piston rod 30, and a supply / discharge passage 5 that is defined between the piston rod 30 and the cylinder head 40 and supplies and discharges the working fluid. . The cushion bearing 60 is floatingly supported on the piston rod 30 so as to have a bearing inner circumferential gap 7. When the cushion bearing 60 enters the cushion cylindrical surface 24, the space between the bearing inner peripheral gap 7 and the supply / exhaust passage 5 is closed. On the other hand, when the cushion bearing 60 exits the cushion cylindrical surface 24, The space between the circumferential gap 7 and the supply / discharge passage 5 is opened.
 これにより、クッションベアリング60がベアリング内周間隙7と給排通路5との間を開閉するチェック弁として機能するので、流体圧シリンダ1の駆動時にピストンロッド30を速やかに移動させることができる。 Thereby, the cushion bearing 60 functions as a check valve that opens and closes between the bearing inner circumferential gap 7 and the supply / discharge passage 5, so that the piston rod 30 can be quickly moved when the fluid pressure cylinder 1 is driven.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、ベアリング内周間隙7を画成するクッションベアリング60の内周面67と、ピストンロッド30の端部外周面33と、に複数の環状溝(ラビリンス溝)を形成してもよい。これにより、ベアリング内周間隙7を流れる作動流体に抵抗を付与してクッションベアリング60をピストンロッド30に対して同軸上に保つことができる。 For example, a plurality of annular grooves (labyrinth grooves) may be formed in the inner peripheral surface 67 of the cushion bearing 60 that defines the bearing inner peripheral gap 7 and the end outer peripheral surface 33 of the piston rod 30. Thereby, resistance can be given to the working fluid flowing through the bearing inner circumferential gap 7, and the cushion bearing 60 can be kept coaxial with the piston rod 30.
 また、上記実施形態では、クッション機構が油圧シリンダ1の伸長作動時にピストンロッドを減速させる場合について例示したが、油圧シリンダ1の収縮作動時にピストンロッドのストローク端付近でピストンロッドを減速させる構造としてもよい。 In the above embodiment, the case where the cushion mechanism decelerates the piston rod when the hydraulic cylinder 1 is extended is illustrated. However, the piston rod may be decelerated near the stroke end of the piston rod when the hydraulic cylinder 1 is contracted. Good.
 本願は2011年9月6日に日本国特許庁に出願された特願2011-193792に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-193792 filed with the Japan Patent Office on September 6, 2011, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  シリンダチューブに対するピストンロッドのストローク端付近でピストンロッドを減速させるクッション機構を備える流体圧シリンダであって、
     前記クッション機構は、
     前記ピストンロッドに設けられるクッションベアリングと、
     ストローク端付近で前記クッションベアリングが進入するクッション円筒面と、
     前記クッション円筒面と前記クッションベアリングとの間に画成されて作動流体の流れを絞るクッション間隙と、
     前記クッション間隙を迂回する作動流体を導くバイパス通路と、
     前記バイパス通路に介装される抵抗器と、
    を備え、
     前記抵抗器に前記バイパス通路を通過する作動流体の流れを絞るオリフィスが形成される流体圧シリンダ。
    A fluid pressure cylinder having a cushion mechanism for decelerating the piston rod near the stroke end of the piston rod relative to the cylinder tube,
    The cushion mechanism is
    A cushion bearing provided on the piston rod;
    A cushion cylindrical surface into which the cushion bearing enters near the stroke end; and
    A cushion gap that is defined between the cushion cylindrical surface and the cushion bearing and restricts the flow of the working fluid;
    A bypass passage for guiding a working fluid that bypasses the cushion gap;
    A resistor interposed in the bypass passage;
    With
    A fluid pressure cylinder in which an orifice for restricting a flow of a working fluid passing through the bypass passage is formed in the resistor.
  2.  請求項1に記載の流体圧シリンダであって、
     前記クッション機構は、
     前記ピストンロッドを摺動可能に支持するシリンダヘッドと、
     前記シリンダチューブの内側に前記シリンダヘッドと並んで介装される環状のホルダと、
    を備え、
     前記ホルダは、前記クッション円筒面と、前記抵抗器が介装され前記バイパス通路の一部を画成するバイパス通孔と、を有し、
     前記シリンダヘッドは、前記バイパス通孔の開口端に対峙するヘッド端面と、前記ヘッド端面に形成され前記バイパス通路の一部を画成するバイパス凹部と、を有し、
     前記ピストンロッドの中心軸から前記バイパス凹部を画成する外周壁部までの長さは、前記ピストンロッドの中心軸から前記抵抗器の外周端部までの長さより小さく形成される流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The cushion mechanism is
    A cylinder head that slidably supports the piston rod;
    An annular holder interposed alongside the cylinder head inside the cylinder tube;
    With
    The holder includes the cushion cylindrical surface, and a bypass through hole in which the resistor is interposed and defines a part of the bypass passage,
    The cylinder head has a head end surface facing the opening end of the bypass through hole, and a bypass recess formed on the head end surface and defining a part of the bypass passage,
    A fluid pressure cylinder, wherein a length from a central axis of the piston rod to an outer peripheral wall portion defining the bypass recess is smaller than a length from a central axis of the piston rod to an outer peripheral end portion of the resistor.
  3.  請求項1に記載の流体圧シリンダであって、
     前記クッション機構は、
     前記ピストンロッドを摺動可能に支持するシリンダヘッドと、
     前記ピストンロッドと前記シリンダヘッドとの間に画成され作動流体を給排する給排通路と、
    を備え、
     前記クッションベアリングは、前記ピストンロッドに対してベアリング内周間隙を有するようにフローティング支持され、
     前記クッションベアリングが前記クッション円筒面に進入していく作動時に前記ベアリング内周間隙と前記給排通路との間が閉塞し、前記クッションベアリングが前記クッション円筒面から出ていく作動時に前記ベアリング内周間隙と前記給排通路との間が開放する流体圧シリンダ。
    The fluid pressure cylinder according to claim 1,
    The cushion mechanism is
    A cylinder head that slidably supports the piston rod;
    A supply / discharge passage defined between the piston rod and the cylinder head for supplying and discharging a working fluid;
    With
    The cushion bearing is floating supported so as to have a bearing inner circumferential clearance with respect to the piston rod,
    During the operation in which the cushion bearing enters the cushion cylindrical surface, the gap between the bearing inner peripheral gap and the supply / discharge passage is closed, and in the operation in which the cushion bearing exits the cushion cylindrical surface, the bearing inner periphery A fluid pressure cylinder in which a gap is opened between the supply / discharge passage.
PCT/JP2012/071271 2011-09-06 2012-08-23 Hydraulic pressure cylinder WO2013035540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280042046.9A CN103765018B (en) 2011-09-06 2012-08-23 Fluid-pressure cylinder
KR1020147004376A KR101596176B1 (en) 2011-09-06 2012-08-23 Hydraulic pressure cylinder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-193792 2011-09-06
JP2011193792A JP5789456B2 (en) 2011-09-06 2011-09-06 Fluid pressure cylinder

Publications (1)

Publication Number Publication Date
WO2013035540A1 true WO2013035540A1 (en) 2013-03-14

Family

ID=47831990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071271 WO2013035540A1 (en) 2011-09-06 2012-08-23 Hydraulic pressure cylinder

Country Status (4)

Country Link
JP (1) JP5789456B2 (en)
KR (1) KR101596176B1 (en)
CN (1) CN103765018B (en)
WO (1) WO2013035540A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6546746B2 (en) * 2015-02-10 2019-07-17 Kyb株式会社 Fluid pressure cylinder
JP6097799B2 (en) * 2015-08-25 2017-03-15 Kyb株式会社 Fluid pressure cylinder
JP6581457B2 (en) * 2015-10-01 2019-09-25 Kyb−Ys株式会社 Fluid pressure cylinder
JP6255440B2 (en) * 2016-03-31 2017-12-27 Kyb株式会社 Fluid pressure cylinder
US11067104B1 (en) 2020-11-16 2021-07-20 Caterpillar Inc. Integrated cylinder piston and bearing as a hydraulic cushion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438094Y2 (en) * 1983-09-30 1992-09-07
JPH11230117A (en) * 1998-02-18 1999-08-27 Kayaba Ind Co Ltd Hydraulic cylinder
JP2000120614A (en) * 1998-08-12 2000-04-25 Hitachi Constr Mach Co Ltd Floating type cushion device of hydraulic cylinder

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1182425A (en) * 1997-09-17 1999-03-26 Hitachi Constr Mach Co Ltd Cushioning structure of hydraulic cylinder
JP3723709B2 (en) * 1999-12-27 2005-12-07 株式会社アイチコーポレーション Hydraulic cylinder operation control device
KR101161304B1 (en) * 2009-10-28 2012-07-04 볼보 컨스트럭션 이큅먼트 에이비 Hydraulic cylinder cushion device with checkring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438094Y2 (en) * 1983-09-30 1992-09-07
JPH11230117A (en) * 1998-02-18 1999-08-27 Kayaba Ind Co Ltd Hydraulic cylinder
JP2000120614A (en) * 1998-08-12 2000-04-25 Hitachi Constr Mach Co Ltd Floating type cushion device of hydraulic cylinder

Also Published As

Publication number Publication date
KR20140050068A (en) 2014-04-28
KR101596176B1 (en) 2016-02-19
CN103765018B (en) 2015-11-25
CN103765018A (en) 2014-04-30
JP2013053718A (en) 2013-03-21
JP5789456B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
WO2013035540A1 (en) Hydraulic pressure cylinder
US7900549B2 (en) Cushion ring and fluid-pressure cylinder
KR101986262B1 (en) Fluid pressure cylinder
KR20160145541A (en) Cylinder device
KR101910227B1 (en) Hydraulic cylinder
WO2013140935A1 (en) Hydraulic cylinder
CN212177545U (en) Hydraulic valve with valve core friction force compensation under centrifugal environment
JP4638254B2 (en) Tool for cutting work material
TWI547658B (en) Wear ring for linear working apparatus
JP5594224B2 (en) Oil cooling device and machine tool
JP5730058B2 (en) Fluid pressure cylinder
KR20130137221A (en) Cushion mechanism for hydraulic cylinder
JP5583623B2 (en) Cushion mechanism of fluid pressure cylinder
JP6403639B2 (en) Cushioning device for fluid pressure cylinder
JP5563506B2 (en) Cushion mechanism of fluid pressure cylinder
KR20170116024A (en) Fluid pressure cylinder
JP2017166519A (en) Fluid pressure cylinder
JP2012202445A5 (en)
JP2012202446A5 (en)
KR20180057296A (en) Hydraulic pressure valve of assistance brake apparatus for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830476

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20147004376

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830476

Country of ref document: EP

Kind code of ref document: A1