WO2013035519A1 - All solid-state battery and method of manufacturing same - Google Patents
All solid-state battery and method of manufacturing same Download PDFInfo
- Publication number
- WO2013035519A1 WO2013035519A1 PCT/JP2012/071047 JP2012071047W WO2013035519A1 WO 2013035519 A1 WO2013035519 A1 WO 2013035519A1 JP 2012071047 W JP2012071047 W JP 2012071047W WO 2013035519 A1 WO2013035519 A1 WO 2013035519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- electrode layer
- layer
- solid electrolyte
- laser
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an all-solid battery and a method for manufacturing the same.
- the battery having the above configuration has a risk of leakage of the electrolyte.
- the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
- Patent Document 1 discloses an all-solid state in which a plurality of battery elements formed by sequentially laminating a positive electrode made of an inorganic compound, a solid electrolyte, and a negative electrode are provided on a current collector.
- the battery element is dicing, laser ablation, chemical etching, plasma etching, ion etching, electron beam, or a combination thereof.
- a battery element is disposed on an aluminum current collector and the battery element is cut using a YAG laser is disclosed.
- an object of the present invention is to provide a manufacturing method of an all-solid battery capable of suppressing the generation of burrs on a cut surface and cutting a laminate, and an all-solid battery manufactured by the method.
- the present invention has the following features.
- the manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
- (B) A cutting step of cutting the laminate by irradiating a laser having a wavelength of 266 nm or more and 810 nm or less.
- the method for producing an all solid state battery of the present invention may further include a firing step of firing the laminate after the cutting step, and may further include a firing step of firing the laminate before the cutting step.
- the laser is preferably one type of laser selected from the group consisting of FHG laser, THG laser, SHG laser, and semiconductor laser.
- the green body may be formed by laminating the green body of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer, or the green body of the current collector layer.
- a laminate may be formed by laminating a plurality of laminates having the above single cell structure with the intervening layer.
- At least one material of the positive electrode layer, the solid electrolyte layer, or the negative electrode layer includes a solid electrolyte made of a lithium-containing phosphate compound having a NASICON structure.
- At least one material of the positive electrode layer or the negative electrode layer includes an electrode active material made of a lithium-containing phosphate compound.
- a non-sintered electrode layer and a non-sintered solid electrolyte layer should just have the form of a green sheet or a printing layer.
- the all solid state battery according to the present invention is manufactured by a manufacturing method having the above-described features.
- An all solid state battery according to the present invention is an all solid state battery comprising a laminate including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein at least a part of the end surface of the laminate is melted by the solid electrolyte layer.
- the insulating film formed in this way is covered.
- a laminate 10 of an all-solid battery as one embodiment to which the manufacturing method of the present invention is applied is a single battery composed of a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3. Composed.
- the positive electrode layer 1 is disposed on one surface of the solid electrolyte layer 2, and the negative electrode layer 3 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 2.
- the positive electrode layer 1 and the negative electrode layer 3 are provided at positions facing each other via the solid electrolyte layer 2, and a pair of the positive electrode layer 1 and the negative electrode layer 3 are laminated via the solid electrolyte layer 2.
- a current collector layer 4 is disposed on the other surface opposite to the one surface of the positive electrode layer 1 facing the solid electrolyte layer 2.
- a current collector layer 4 is disposed on one surface of the negative electrode layer 3 facing the solid electrolyte layer 2 and the other surface on the opposite side.
- an all-solid battery laminate 20 as another embodiment to which the manufacturing method of the present invention is applied includes a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3.
- a plurality of, for example, two unit cells are connected in series via the current collector layer 4.
- the current collector layer 4 disposed inside the laminate 20 of the all solid state battery is provided between the positive electrode layer 1 and the negative electrode layer 3.
- a current collector layer 4 is disposed on the other surface opposite to the one surface of the positive electrode layer 1 facing the solid electrolyte layer 2.
- a current collector layer 4 is disposed on one surface of the negative electrode layer 3 facing the solid electrolyte layer 2 and the other surface on the opposite side.
- each of the positive electrode layer 1 and the negative electrode layer 3 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 2 includes a solid electrolyte.
- Each of the positive electrode layer 1 and the negative electrode layer 3 may include a carbon material, a metal material, or the like as an electron conductive material.
- an unsintered body that is an unsintered body of at least one of the positive electrode layer 1 and the negative electrode layer 3
- An electrode layer, a green solid electrolyte layer that is a green body of the solid electrolyte layer 2, and a green current collector layer that is a green body of the current collector layer 4 are prepared. Thereafter, the produced unsintered electrode layer, unsintered solid electrolyte layer, and unsintered current collector layer are laminated to form laminates 10 and 20 (laminate formation step).
- the laminated bodies 10 and 20 are cut into a predetermined size by irradiating a laser having a wavelength of 266 nm or more and 810 nm or less (cutting step). And the laminated bodies 10 and 20 are baked (baking process).
- the wavelength of the laser used in this way By limiting the wavelength of the laser used in this way to a specific range, the generation of burrs on the cut surface can be suppressed, and the laminates 10 and 20 can be cut efficiently.
- the baking process which bakes the laminated bodies 10 and 20 is performed after the cutting process as mentioned above, you may perform the baking process which bakes the laminated bodies 10 and 20 before a cutting process.
- the laser having a wavelength of 266 nm or more and 810 nm or less an FHG laser, a THG laser, an SHG laser, or a semiconductor laser can be used. Further, the laser irradiation output can be appropriately changed according to the type of laser used or the laser oscillator. Generally, the shorter the laser wavelength is used, the lower the laser irradiation output tends to be. However, when the laminates 10 and 20 are cut using a laser having a wavelength of 266 nm or more and 810 nm or less, Preferably, the stacked bodies 10 and 20 can be cut more efficiently by setting the laser irradiation output to 5 W or more and 50 W or less.
- the green body 10 shown in FIG. 1 may be formed by laminating the green body of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3.
- the laminate 20 may be formed by laminating a plurality of the laminates 10 having the single cell structure with a green body of the current collector layer 4 interposed therebetween.
- a plurality of laminates 10 having a single cell structure may be laminated in series electrically or in parallel.
- the unsintered electrode layer, unsintered solid electrolyte layer, and unsintered current collector layer only have to be in the form of a green sheet or a printed layer.
- the laminate is preferably fired under pressure.
- the positive electrode layer 1 or the negative electrode layer 3 and the solid electrolyte layer 2 are easily joined by sintering without any gap.
- the method of forming the green electrode layer, the green solid electrolyte layer, and the green current collector layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, etc. are used to form a green sheet. Screen printing or the like can be used to form a print layer.
- the method for laminating the green electrode layer, green solid electrolyte layer and green current collector layer is not particularly limited, but hot isostatic pressing, cold isostatic pressing, isostatic pressing, etc. It can be used to laminate a green layer.
- a slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which a polymer material is dissolved in a solvent and a positive electrode active material, a negative electrode active material, a solid electrolyte, or a current collector material. can do.
- Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used.
- a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
- the slurry may contain a plasticizer.
- plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
- the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
- the kind of electrode active material contained in the positive electrode layer 1 or the negative electrode layer 3 of the laminated bodies 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) 3 and other lithium-containing phosphate compounds having NASICON type structure, LiFePO 4 and LiMnPO 4 and other lithium-containing phosphate compounds, LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1 A layered compound such as / 3 O 2 and a lithium-containing compound having a spinel structure such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 can be used.
- the positive electrode active material Li 3 V 2 (PO 4 ) 3 and other lithium-containing phosphate compounds having NASICON type structure, LiFePO 4 and LiMnPO 4 and other lithium-containing phosphate compounds, LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1 A layered compound such as / 3 O 2 and a lithium-containing compound having
- MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ⁇ x ⁇ 2.0.
- a compound having a composition represented by the following formula can be used.
- a mixture obtained by mixing two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used.
- graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.
- the kind of solid electrolyte contained in the positive electrode layer 1, the negative electrode layer 3, or the solid electrolyte layer 2 of the laminates 10 and 20 of the all-solid battery to which the manufacturing method of the present invention is applied is not limited, Can use a lithium-containing phosphate compound having a NASICON structure.
- Lithium-containing phosphoric acid compound having a NASICON-type structure the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ⁇ x ⁇ 2, y is a number in the range of 1 ⁇ y ⁇ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr).
- part of P in the above chemical formula may be substituted with B, Si, or the like.
- a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.
- the lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
- a material used for said solid electrolyte it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure.
- examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof.
- Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
- Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4 ⁇ x N x ) in which nitrogen is introduced into lithium phosphate
- Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc.
- Examples thereof include compounds having
- At least one material of the positive electrode layer 1, the solid electrolyte layer 2, or the negative electrode layer 3 of the laminates 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is composed of a lithium-containing phosphate compound having a NASICON structure. It is preferable to contain the solid electrolyte which becomes. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained.
- glass or glass ceramics having a composition of a lithium-containing phosphate compound having a NASICON type structure is used as a solid electrolyte, a denser sintered body can be easily obtained due to the viscous flow of the glass phase in the firing step. Therefore, it is particularly preferable to prepare the starting material for the solid electrolyte in the form of glass or glass ceramics.
- At least one material of the positive electrode layer 1 or the negative electrode layer 3 of the laminates 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied includes an electrode active material made of a lithium-containing phosphate compound. .
- the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased.
- an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
- the current collector layer 4 of the laminate 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied contains an electron conductive material.
- the electron conductive material preferably contains at least one selected from the group consisting of conductive oxides, metals, and carbon materials.
- Example shown below is an example and this invention is not limited to the following Example.
- the following materials were prepared as starting materials for the solid electrolyte layer, the positive electrode layer, the negative electrode layer, and the current collector layer.
- Each slurry was prepared by the following method using the above materials.
- Main materials are solid electrolyte material for solid electrolyte slurry, positive electrode active material for positive electrode slurry, powder mixed with electron conductive material and solid electrolyte material in mass ratio of 40:10:50, and negative electrode active material for negative electrode slurry.
- Each green sheet was produced by the following method using each obtained slurry.
- Each slurry was coated on a polyethylene terephthalate (PET) film using a doctor blade method, dried on a hot plate heated to a temperature of 40 ° C., formed into a sheet having a thickness of 10 ⁇ m, and 25 mm ⁇ 25 mm Each green sheet was prepared by cutting into a size of.
- PET polyethylene terephthalate
- the laminate 20 was formed by thermocompression in order. Thermocompression bonding was performed by heating each green sheet to a temperature of 60 ° C. and applying pressure.
- the laminate 20 is sealed in a polyethylene bag in a vacuum state, and the polyethylene bag is placed in water at a temperature of 80 ° C. Immersion and pressure was applied to the water. A pressure of 180 MPa was applied to the water by an isotropic pressure press.
- the laminated body 20 has a structure in which two unit cells are laminated so as to be electrically connected in series, and the two unit cells are formed from two current collector green sheets.
- the current collector layers 4 are connected in series. Further, the two current collector layers 4 are arranged so as to sandwich the outside of the two unit cells.
- Each unit cell includes a positive electrode layer 1 composed of two positive electrode green sheets, a solid electrolyte layer 2 composed of five solid electrolyte green sheets, and a negative electrode layer 3 composed of one negative electrode sheet.
- two current collector green sheets constituting the current collector layer 4, one negative green sheet constituting the negative electrode layer 3, and the solid electrolyte layer 2 are constituted from the bottom. 5 solid electrolyte green sheets, 2 positive green sheets constituting positive electrode layer 1, 2 current collector green sheets constituting current collector layer 4, 1 negative green sheet constituting negative electrode layer 3, solid electrolyte layer
- the green sheets are stacked in the order of five solid electrolyte green sheets constituting 2, two positive electrode green sheets constituting the positive electrode layer 1, and two current collector green sheets constituting the current collector layer 4 to form a laminate 20. did.
- the unsintered laminate 20 was placed on the XY stage with the negative electrode layer 3 side up, and irradiated with lasers of various wavelengths as shown in Examples 1 to 5 and Comparative Examples in Table 1 below.
- the laminate 20 was cut into a size of 10 mm ⁇ 10 mm by moving the XY stage by about 10 mm. Then, the cut part of the laminated body 20 was observed with the optical microscope, and it was confirmed whether it was cut
- the irradiation direction of the laser and the observation direction of the cut portion are as shown in FIG.
- Laser irradiation was performed using a laser oscillator shown in Table 1 or a laser irradiation apparatus.
- the pulse period of laser irradiation was appropriately adjusted in the range of 10 to 100 kHz.
- the cutting speed (XY stage moving speed) was appropriately adjusted in the range of 50 to 1000 mm / s.
- FIG. 4 shows a photograph of the cut portion observed.
- the layer that appears white in FIG. 4 corresponds to the solid electrolyte layer 2 (FIG. 2).
- the laminate 20 could be cut by laser irradiation, but in the comparative example, it could not be cut.
- the unsintered laminate 20 cut by laser irradiation in Examples 1 to 5 was baked at a temperature of 400 ° C. in a nitrogen gas atmosphere to decompose and remove the polybutyral resin. Thereafter, the laminate 20 is baked at a temperature of 550 ° C. in an oxygen gas atmosphere to remove resin carbide, and further baked at a temperature of 700 ° C. in a nitrogen gas atmosphere. The laminated body 20 was produced.
- the all-solid battery stack 20 of Examples 1 to 5 obtained in this way was sealed in a 2032 type coin cell and charged and discharged with a current of 10 ⁇ A. And confirmed to operate as a two-series battery having a discharge plateau.
- the unsintered laminate 20 was fired in a nitrogen gas atmosphere at a temperature of 400 ° C. to decompose and remove the polybutyral resin. Thereafter, the laminate 20 as a sintered body is fired at a temperature of 550 ° C. in an oxygen gas atmosphere to remove the carbide of the resin, and further fired at a temperature of 700 ° C. in a nitrogen gas atmosphere. Produced.
- the unsintered laminate 20 was placed on the XY stage with the negative electrode layer 3 side up, and lasers of various wavelengths were irradiated as shown in Examples 1 to 5 and Comparative Example in Table 1. While moving the XY stage about 10 mm, the laminate 20 was cut into a size of 10 mm ⁇ 10 mm.
- the sintered body could be cut by irradiating a semiconductor laser (wavelength 810 nm) and a laser having a shorter wavelength than the semiconductor laser, but could not be cut by a YAG laser (wavelength 1064 nm). It was. Therefore, in order to cut the sintered laminate 20 containing a solid electrolyte made of a phosphoric acid compound, it is effective to irradiate a semiconductor laser (wavelength 810 nm) and a laser having a shorter wavelength than the semiconductor laser. was confirmed.
- the all-solid-state battery laminate 20 obtained by cutting after sintering was sealed in a 2032 type coin cell and charged and discharged at a current of 10 ⁇ A. In each case, a discharge plateau was applied at a voltage of 2 to 4 V. It confirmed that it operate
- a method of disposing the unsintered or sintered laminate 20 on the XY stage and moving the XY stage to cut the laminate 20 is adopted.
- the laminate 20 may be cut by fixing 20 and arbitrarily scanning a laser using a galvano scanner.
- the photograph which observed the cut surface of the laminated body 20 before and after baking in Example 2 with the scanning electron microscope is shown by (A) and (B) of FIG.
- FIG. 5 when the laminated body 20 is cut using a laser having a wavelength of 266 nm or more and 810 nm or less, at least a part of the end surface is covered with an insulating film formed by melting the solid electrolyte layer. Yes. Since the insulating film has electronic insulating properties, a short circuit at the end face can be suppressed. Note that the insulating film formed by melting the solid electrolyte layer may exhibit ionic conduction.
- the manufacturing method of the all-solid-state battery of the present invention by limiting the wavelength of the laser to be used within a specific range, it is possible to suppress the generation of burrs on the cut surface and efficiently cut the laminate.
- the present invention is particularly useful for the production of all-solid secondary batteries.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Provided are a method of manufacturing an all solid-state battery with which it is possible to cut a layered body with burr in a cutting face being alleviated, and an all solid-state battery which is manufactured by the method. The method of manufacturing the all solid-state battery comprises: a layered body forming step of forming a layered body of a non-sintered electrode layer which is a non-sintered body of at least either a positive electrode layer (1) or a negative electrode layer (3), and a non-sintered solid-state electrolyte layer which is a non-sintered body of a solid-state electrolyte layer (2); and a cutting step of cutting the layered body by projecting a laser having a wavelength of 266nm-810nm.
Description
本発明は、全固体電池およびその製造方法に関する。
The present invention relates to an all-solid battery and a method for manufacturing the same.
近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。
In recent years, the demand for batteries as a power source for portable electronic devices such as mobile phones and portable personal computers has greatly increased. In a battery used for such an application, an electrolyte (electrolytic solution) such as an organic solvent has been conventionally used as a medium for moving ions.
しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性をさらに高めることが求められている。
However, the battery having the above configuration has a risk of leakage of the electrolyte. Moreover, the organic solvent etc. which are used for electrolyte solution are combustible substances. For this reason, it is required to further increase the safety of the battery.
そこで、電池の安全性を高めるための一つの対策は、電解質として、電解液に代えて、固体電解質を用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
Therefore, as one countermeasure for improving the safety of the battery, it has been proposed to use a solid electrolyte as the electrolyte instead of the electrolytic solution. Furthermore, development of an all-solid battery in which a solid electrolyte is used as an electrolyte and the other constituent elements are also made of solid is being promoted.
たとえば、特開2001‐15153号公報(以下、特許文献1という)には、無機化合物からなる正極、固体電解質、および負極を順次積層して形成した電池要素を集電体上に複数設ける全固体二次電池の製造方法において、集電体上に電池要素を形成した後、この電池要素をダイシング、レーザーアブレッション、化学エッチング、プラズマエッチング、イオンエッチング、電子線のいずれかもしくはこれらを組み合わせて複数に切断することが開示されている。具体的には、アルミニウム集電体の上に電池要素を配置して、YAGレーザーを用いて電池要素を切断した例が開示されている。
For example, Japanese Patent Laid-Open No. 2001-15153 (hereinafter referred to as Patent Document 1) discloses an all-solid state in which a plurality of battery elements formed by sequentially laminating a positive electrode made of an inorganic compound, a solid electrolyte, and a negative electrode are provided on a current collector. In the secondary battery manufacturing method, after the battery element is formed on the current collector, the battery element is dicing, laser ablation, chemical etching, plasma etching, ion etching, electron beam, or a combination thereof. Is disclosed. Specifically, an example in which a battery element is disposed on an aluminum current collector and the battery element is cut using a YAG laser is disclosed.
発明者らが、特許文献1に記載されているような全固体電池の製造方法を種々検討した結果、使用するレーザーの種類(波長)によっては、電池要素を構成する積層体へのレーザーの吸収率が不十分であるために、切断面に大きなバリが発生すること等により、積層体を切断することができない場合があることがわかった。本発明は、上記の知見に基づいてなされたものである。
As a result of various investigations by the inventors on the production method of an all-solid-state battery as described in Patent Document 1, depending on the type (wavelength) of the laser used, absorption of the laser into the laminate constituting the battery element It has been found that the laminate may not be cut due to the occurrence of large burrs on the cut surface because the rate is insufficient. The present invention has been made based on the above findings.
したがって、本発明の目的は、切断面におけるバリの発生を抑制し、積層体を切断することが可能な全固体電池の製造方法とその方法によって製造された全固体電池を提供することである。
Therefore, an object of the present invention is to provide a manufacturing method of an all-solid battery capable of suppressing the generation of burrs on a cut surface and cutting a laminate, and an all-solid battery manufactured by the method.
発明者らが上記の課題を解決するために種々検討を重ねた結果、使用するレーザーの波長を特定の範囲内に限定することにより、切断面におけるバリの発生を抑制し、積層体を切断することができることを見出した。このような発明者らの知見に基づいて、本発明は以下の特徴を備えている。
As a result of various studies conducted by the inventors to solve the above problems, the generation of burrs on the cut surface is suppressed and the laminate is cut by limiting the wavelength of the laser to be used within a specific range. I found that I can do it. Based on such knowledge of the inventors, the present invention has the following features.
本発明に従った全固体電池の製造方法は、以下の工程を備える。
The manufacturing method of the all-solid-state battery according to the present invention includes the following steps.
(A)正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層の未焼結体である未焼結固体電解質層とを積層して積層体を形成する積層体形成工程
(A) A laminate in which a green electrode layer that is a green body of at least one of a positive electrode layer and a negative electrode layer and a green solid electrolyte layer that is a green body of a solid electrolyte layer are stacked. Laminate formation process for forming
(B)266nm以上810nm以下の波長を有するレーザーを照射することにより、積層体を切断する切断工程
(B) A cutting step of cutting the laminate by irradiating a laser having a wavelength of 266 nm or more and 810 nm or less.
本発明の全固体電池の製造方法は、切断工程の後に積層体を焼成する焼成工程をさらに備えてもよく、切断工程の前に積層体を焼成する焼成工程をさらに備えてもよい。
The method for producing an all solid state battery of the present invention may further include a firing step of firing the laminate after the cutting step, and may further include a firing step of firing the laminate before the cutting step.
また、本発明の全固体電池の製造方法において、レーザーは、FHGレーザー、THGレーザー、SHGレーザー、および、半導体レーザーからなる群より選ばれた1種のレーザーであることが好ましい。
In the all-solid-state battery manufacturing method of the present invention, the laser is preferably one type of laser selected from the group consisting of FHG laser, THG laser, SHG laser, and semiconductor laser.
積層体形成工程において、正極層、固体電解質層、および、負極層の未焼結体を積層して単電池構造の積層体を形成してもよく、または、集電体層の未焼結体を介在させて、上記の単電池構造の積層体を複数個、積層して積層体を形成してもよい。
In the laminated body formation step, the green body may be formed by laminating the green body of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer, or the green body of the current collector layer. A laminate may be formed by laminating a plurality of laminates having the above single cell structure with the intervening layer.
本発明の全固体電池の製造方法において、正極層、固体電解質層、または、負極層の少なくとも一つの材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。
In the method for producing an all solid state battery of the present invention, it is preferable that at least one material of the positive electrode layer, the solid electrolyte layer, or the negative electrode layer includes a solid electrolyte made of a lithium-containing phosphate compound having a NASICON structure.
本発明の全固体電池の製造方法において、正極層または負極層の少なくとも一つの材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。
In the method for producing an all solid state battery of the present invention, it is preferable that at least one material of the positive electrode layer or the negative electrode layer includes an electrode active material made of a lithium-containing phosphate compound.
なお、本発明の全固体電池の製造方法において、未焼結電極層と未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有していればよい。
In addition, in the manufacturing method of the all-solid-state battery of this invention, a non-sintered electrode layer and a non-sintered solid electrolyte layer should just have the form of a green sheet or a printing layer.
本発明に従った全固体電池は、上述の特徴を備えた製造方法によって製造されたものである。
The all solid state battery according to the present invention is manufactured by a manufacturing method having the above-described features.
本発明に従った全固体電池は、正極層、固体電解質層、および、負極層を含む積層体を備えた全固体電池であって、積層体の端面の少なくとも一部は、固体電解質層が溶融して形成された絶縁膜で被覆されている。
An all solid state battery according to the present invention is an all solid state battery comprising a laminate including a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, wherein at least a part of the end surface of the laminate is melted by the solid electrolyte layer. The insulating film formed in this way is covered.
本発明の全固体電池の製造方法では、使用するレーザーの波長を特定の範囲内に限定することにより、切断面におけるバリの発生を抑制し、積層体を効率的に切断することができる。
In the method for producing an all solid state battery of the present invention, by limiting the wavelength of the laser to be used within a specific range, generation of burrs on the cut surface can be suppressed, and the laminate can be efficiently cut.
図1に示すように、本発明の製造方法が適用される一つの実施の形態としての全固体電池の積層体10は、正極層1と固体電解質層2と負極層3とからなる単電池で構成される。固体電解質層2の一方面に正極層1が配置され、固体電解質層2の一方面と反対側の他方面に負極層3が配置されている。いいかえれば、正極層1と負極層3とは、固体電解質層2を介して互いに対向する位置に設けられ、一対の正極層1と負極層3が固体電解質層2を介して積層されている。固体電解質層2に相対する正極層1の一方面と反対側の他方面に集電体層4が配置されている。固体電解質層2に相対する負極層3の一方面と反対側の他方面とに集電体層4が配置されている。
As shown in FIG. 1, a laminate 10 of an all-solid battery as one embodiment to which the manufacturing method of the present invention is applied is a single battery composed of a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3. Composed. The positive electrode layer 1 is disposed on one surface of the solid electrolyte layer 2, and the negative electrode layer 3 is disposed on the other surface opposite to the one surface of the solid electrolyte layer 2. In other words, the positive electrode layer 1 and the negative electrode layer 3 are provided at positions facing each other via the solid electrolyte layer 2, and a pair of the positive electrode layer 1 and the negative electrode layer 3 are laminated via the solid electrolyte layer 2. A current collector layer 4 is disposed on the other surface opposite to the one surface of the positive electrode layer 1 facing the solid electrolyte layer 2. A current collector layer 4 is disposed on one surface of the negative electrode layer 3 facing the solid electrolyte layer 2 and the other surface on the opposite side.
図2に示すように、本発明の製造方法が適用されるもう一つの実施の形態としての全固体電池の積層体20では、正極層1と固体電解質層2と負極層3とから構成される単電池が複数個、たとえば2個、集電体層4を介して直列に接続されている。全固体電池の積層体20の内部に配置される集電体層4は、正極層1と負極層3との間に設けられている。固体電解質層2に相対する正極層1の一方面と反対側の他方面に集電体層4が配置されている。固体電解質層2に相対する負極層3の一方面と反対側の他方面とに集電体層4が配置されている。
As shown in FIG. 2, an all-solid battery laminate 20 as another embodiment to which the manufacturing method of the present invention is applied includes a positive electrode layer 1, a solid electrolyte layer 2, and a negative electrode layer 3. A plurality of, for example, two unit cells are connected in series via the current collector layer 4. The current collector layer 4 disposed inside the laminate 20 of the all solid state battery is provided between the positive electrode layer 1 and the negative electrode layer 3. A current collector layer 4 is disposed on the other surface opposite to the one surface of the positive electrode layer 1 facing the solid electrolyte layer 2. A current collector layer 4 is disposed on one surface of the negative electrode layer 3 facing the solid electrolyte layer 2 and the other surface on the opposite side.
なお、正極層1と負極層3のそれぞれは固体電解質と電極活物質とを含み、固体電解質層2は固体電解質を含む。正極層1と負極層3のそれぞれは、電子伝導材料として、炭素材料、金属材料等を含んでもよい。
Note that each of the positive electrode layer 1 and the negative electrode layer 3 includes a solid electrolyte and an electrode active material, and the solid electrolyte layer 2 includes a solid electrolyte. Each of the positive electrode layer 1 and the negative electrode layer 3 may include a carbon material, a metal material, or the like as an electron conductive material.
上記のように構成された全固体電池の積層体10、20を製造するために、本発明では、まず、正極層1または負極層3の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層2の未焼結体である未焼結固体電解質層と、集電体層4の未焼結体である未焼結集電体層とを作製する。その後、作製された未焼結電極層と未焼結固体電解質層と未焼結集電体層とを積層して積層体10、20を形成する(積層体形成工程)。次に、266nm以上810nm以下の波長を有するレーザーを照射することにより、積層体10、20を所定の大きさに切断する(切断工程)。そして、積層体10、20を焼成する(焼成工程)。
In order to manufacture the laminated bodies 10 and 20 of the all-solid-state battery configured as described above, in the present invention, first, an unsintered body that is an unsintered body of at least one of the positive electrode layer 1 and the negative electrode layer 3 An electrode layer, a green solid electrolyte layer that is a green body of the solid electrolyte layer 2, and a green current collector layer that is a green body of the current collector layer 4 are prepared. Thereafter, the produced unsintered electrode layer, unsintered solid electrolyte layer, and unsintered current collector layer are laminated to form laminates 10 and 20 (laminate formation step). Next, the laminated bodies 10 and 20 are cut into a predetermined size by irradiating a laser having a wavelength of 266 nm or more and 810 nm or less (cutting step). And the laminated bodies 10 and 20 are baked (baking process).
このように使用するレーザーの波長を特定の範囲内に限定することにより、切断面におけるバリの発生を抑制し、積層体10、20を効率的に切断することができる。
By limiting the wavelength of the laser used in this way to a specific range, the generation of burrs on the cut surface can be suppressed, and the laminates 10 and 20 can be cut efficiently.
なお、上述したように切断工程の後に積層体10、20を焼成する焼成工程を行っているが、切断工程の前に積層体10、20を焼成する焼成工程を行ってもよい。
In addition, although the baking process which bakes the laminated bodies 10 and 20 is performed after the cutting process as mentioned above, you may perform the baking process which bakes the laminated bodies 10 and 20 before a cutting process.
266nm以上810nm以下の波長を有するレーザーとしては、FHGレーザー、THGレーザー、SHGレーザー、または、半導体レーザーを用いることができる。また、レーザーの照射出力は、使用するレーザーの種類、またはレーザー発振機によって適宜変更することができる。一般的には、短波長のレーザーを用いるほど、レーザーの照射出力は低めになる傾向があるが、266nm以上810nm以下の波長を有するレーザーを用いて積層体10、20を切断する場合には、好ましくはレーザーの照射出力を5W以上50W以下にすることにより、積層体10、20をより効率的に切断することができる。
As the laser having a wavelength of 266 nm or more and 810 nm or less, an FHG laser, a THG laser, an SHG laser, or a semiconductor laser can be used. Further, the laser irradiation output can be appropriately changed according to the type of laser used or the laser oscillator. Generally, the shorter the laser wavelength is used, the lower the laser irradiation output tends to be. However, when the laminates 10 and 20 are cut using a laser having a wavelength of 266 nm or more and 810 nm or less, Preferably, the stacked bodies 10 and 20 can be cut more efficiently by setting the laser irradiation output to 5 W or more and 50 W or less.
積層体形成工程では、正極層1、固体電解質層2、および、負極層3の未焼結体を積層して図1に示す単電池構造の積層体10を形成してもよく、積層体形成工程において、集電体層4の未焼結体を介在させて、上記の単電池構造の積層体10を複数個、積層して積層体20を形成してもよい。この場合、単電池構造の積層体10を複数個、電気的に直列、または並列に積層してもよい。
In the laminated body forming step, the green body 10 shown in FIG. 1 may be formed by laminating the green body of the positive electrode layer 1, the solid electrolyte layer 2, and the negative electrode layer 3. In the process, the laminate 20 may be formed by laminating a plurality of the laminates 10 having the single cell structure with a green body of the current collector layer 4 interposed therebetween. In this case, a plurality of laminates 10 having a single cell structure may be laminated in series electrically or in parallel.
なお、未焼結電極層と未焼結固体電解質層と未焼結集電体層は、グリーンシートまたは印刷層の形態を有していればよい。
The unsintered electrode layer, unsintered solid electrolyte layer, and unsintered current collector layer only have to be in the form of a green sheet or a printed layer.
焼成工程では、圧力を加えた状態で積層体を焼成することが好ましい。圧力を加えた状態で積層体10、20を焼成することにより、正極層1または負極層3と固体電解質層2とを隙間なく焼結によって接合しやすくなる。
In the firing step, the laminate is preferably fired under pressure. By firing the laminates 10 and 20 in a state where pressure is applied, the positive electrode layer 1 or the negative electrode layer 3 and the solid electrolyte layer 2 are easily joined by sintering without any gap.
上記の未焼結電極層と未焼結固体電解質層と未焼結集電体層を形成する方法は特に限定されないが、グリーンシートを形成するためにはドクターブレード法、ダイコーター、コンマコーター等を使用することができ、印刷層を形成するためにはスクリーン印刷等を使用することができる。上記の未焼結電極層と未焼結固体電解質層と未焼結集電体層を積層する方法は特に限定されないが、熱間等方圧プレス、冷間等方圧プレス、静水圧プレス等を使用して未焼結層を積層することができる。
The method of forming the green electrode layer, the green solid electrolyte layer, and the green current collector layer is not particularly limited, but a doctor blade method, a die coater, a comma coater, etc. are used to form a green sheet. Screen printing or the like can be used to form a print layer. The method for laminating the green electrode layer, green solid electrolyte layer and green current collector layer is not particularly limited, but hot isostatic pressing, cold isostatic pressing, isostatic pressing, etc. It can be used to laminate a green layer.
グリーンシートまたは印刷層を形成するためのスラリーは、高分子材料を溶剤に溶解した有機ビヒクルと、正極活物質、負極活物質、固体電解質、または、集電体材料とを湿式混合することによって作製することができる。湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。
A slurry for forming a green sheet or printed layer is prepared by wet-mixing an organic vehicle in which a polymer material is dissolved in a solvent and a positive electrode active material, a negative electrode active material, a solid electrolyte, or a current collector material. can do. Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
スラリーは可塑剤を含んでもよい。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用してもよい。
The slurry may contain a plasticizer. Although the kind of plasticizer is not particularly limited, phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
焼成工程では、雰囲気は特に限定されないが、電極活物質に含まれる遷移金属の価数が変化しない条件で行うことが好ましい。
In the firing step, the atmosphere is not particularly limited, but it is preferably performed under conditions that do not change the valence of the transition metal contained in the electrode active material.
なお、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1または負極層3に含まれる電極活物質の種類は限定されないが、正極活物質としては、Li3V2(PO4)3等のナシコン型構造を有するリチウム含有リン酸化合物、LiFePO4、LiMnPO4等のオリビン型構造を有するリチウム含有リン酸化合物、LiCoO2、LiCo1/3Ni1/3Mn1/3O2等の層状化合物、LiMn2O4、LiNi0.5Mn1.5O4等のスピネル型構造を有するリチウム含有化合物を用いることができる。
In addition, although the kind of electrode active material contained in the positive electrode layer 1 or the negative electrode layer 3 of the laminated bodies 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is not limited, as the positive electrode active material, Li 3 V 2 (PO 4 ) 3 and other lithium-containing phosphate compounds having NASICON type structure, LiFePO 4 and LiMnPO 4 and other lithium-containing phosphate compounds, LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1 A layered compound such as / 3 O 2 and a lithium-containing compound having a spinel structure such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 can be used.
負極活物質としては、MOx(MはTi、Si、Sn、Cr、Fe、NbおよびMoからなる群より選ばれた少なくとも1種以上の元素であり、xは0.9≦x≦2.0の範囲内の数値である)で表わされる組成を有する化合物を用いることができる。たとえば、TiO2とSiO2等の異なる元素Mを含むMOxで表わされる組成を有する2つ以上の活物質を混合した混合物を用いてもよい。また、負極活物質としては、黒鉛-リチウム化合物、Li‐Al等のリチウム合金、Li3V2(PO4)3、Li3Fe2(PO4)3、Li4Ti5O12等の酸化物等を用いることができる。
As the negative electrode active material, MOx (M is at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and x is 0.9 ≦ x ≦ 2.0. A compound having a composition represented by the following formula can be used. For example, a mixture obtained by mixing two or more active materials having a composition represented by MOx containing different elements M such as TiO 2 and SiO 2 may be used. As the negative electrode active material, graphite-lithium compounds, lithium alloys such as Li-Al, oxidation of Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12, etc. A thing etc. can be used.
また、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1、負極層3、または、固体電解質層2に含まれる固体電解質の種類は限定されないが、固体電解質としては、ナシコン型構造を有するリチウム含有リン酸化合物を用いることができる。ナシコン型構造を有するリチウム含有リン酸化合物は、化学式LixMy(PO4)3(化学式中、xは1≦x≦2、yは1≦y≦2の範囲内の数値であり、MはTi、Ge、Al、GaおよびZrからなる群より選ばれた1種以上の元素である)で表わされる。この場合、上記化学式においてPの一部をB、Si等で置換してもよい。たとえば、Li1.5Al0.5Ge1.5(PO4)3とLi1.2Al0.2Ti1.8(PO4)3等の異なる組成を有する2つ以上のナシコン型構造を有するリチウム含有リン酸化合物を混合した混合物を用いてもよい。
Moreover, although the kind of solid electrolyte contained in the positive electrode layer 1, the negative electrode layer 3, or the solid electrolyte layer 2 of the laminates 10 and 20 of the all-solid battery to which the manufacturing method of the present invention is applied is not limited, Can use a lithium-containing phosphate compound having a NASICON structure. Lithium-containing phosphoric acid compound having a NASICON-type structure, the chemical formula Li x M y (PO 4) 3 ( Formula, x 1 ≦ x ≦ 2, y is a number in the range of 1 ≦ y ≦ 2, M Is one or more elements selected from the group consisting of Ti, Ge, Al, Ga and Zr). In this case, part of P in the above chemical formula may be substituted with B, Si, or the like. For example, a mixture obtained by mixing two or more Nasicon-type lithium-containing phosphate compounds having different compositions such as Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 is used. It may be used.
また、上記の固体電解質に用いられるナシコン型構造を有するリチウム含有リン酸化合物としては、ナシコン型構造を有するリチウム含有リン酸化合物の結晶相を含む化合物、または、熱処理によりナシコン型構造を有するリチウム含有リン酸化合物の結晶相を析出するガラスを用いてもよい。
The lithium-containing phosphate compound having a NASICON structure used in the solid electrolyte is a compound containing a crystal phase of a lithium-containing phosphate compound having a NASICON structure or a lithium-containing phosphate having a NASICON structure by heat treatment. You may use the glass which precipitates the crystal phase of a phosphoric acid compound.
なお、上記の固体電解質に用いられる材料としては、ナシコン型構造を有するリチウム含有リン酸化合物以外に、イオン伝導性を有し、電子伝導性が無視できるほど小さい材料を用いることが可能である。このような材料として、たとえば、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩、および、これらの誘導体を挙げることができる。また、リン酸リチウム(Li3PO4)等のLi‐P‐O系化合物、リン酸リチウムに窒素が導入されたLIPON(LiPO4-xNx)、Li4SiO4等のLi‐Si‐O系化合物、Li‐P‐Si‐O系化合物、Li‐V‐Si‐O系化合物、La0.51Li0.35TiO2.94、La0.55Li0.35TiO3、Li3xLa2/3-xTiO3等のぺロブスカイト型構造を有する化合物、Li、La、Zrを有するガーネット型構造を有する化合物等を挙げることができる。
In addition, as a material used for said solid electrolyte, it is possible to use the material which has ion conductivity and is so small that electronic conductivity can be disregarded other than the lithium-containing phosphate compound which has a NASICON structure. Examples of such a material include lithium halide, lithium nitride, lithium oxyacid salt, and derivatives thereof. In addition, Li—PO compounds such as lithium phosphate (Li 3 PO 4 ), LIPON (LiPO 4−x N x ) in which nitrogen is introduced into lithium phosphate, Li—Si— such as Li 4 SiO 4 O-based compounds, Li-P-Si-O based compounds, Li-V-Si-O based compounds, La 0.51 Li 0.35 TiO 2.94 , La 0.55 Li 0.35 TiO 3 , Li 3x La 2 / 3-x TiO 3, etc. Examples thereof include compounds having a perovskite structure, compounds having a garnet structure having Li, La, and Zr.
本発明の製造方法が適用される全固体電池の積層体10、20の正極層1、固体電解質層2、または、負極層3の少なくとも一つの材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含むことが好ましい。この場合、全固体電池の電池動作に必須となる高いイオン伝導性を得ることができる。また、ナシコン型構造のリチウム含有リン酸化合物の組成を有するガラス、または、ガラスセラミックスを固体電解質として用いると、焼成工程においてガラス相の粘性流動により、より緻密な焼結体を容易に得ることができるため、ガラス、または、ガラスセラミックスの形態で固体電解質の出発原料を準備することが特に好ましい。
At least one material of the positive electrode layer 1, the solid electrolyte layer 2, or the negative electrode layer 3 of the laminates 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied is composed of a lithium-containing phosphate compound having a NASICON structure. It is preferable to contain the solid electrolyte which becomes. In this case, high ion conductivity that is essential for battery operation of an all-solid battery can be obtained. In addition, when glass or glass ceramics having a composition of a lithium-containing phosphate compound having a NASICON type structure is used as a solid electrolyte, a denser sintered body can be easily obtained due to the viscous flow of the glass phase in the firing step. Therefore, it is particularly preferable to prepare the starting material for the solid electrolyte in the form of glass or glass ceramics.
また、本発明の製造方法が適用される全固体電池の積層体10、20の正極層1または負極層3の少なくとも一つの材料が、リチウム含有リン酸化合物からなる電極活物質を含むことが好ましい。この場合、焼成工程において電極活物質が相変化すること、または、電極活物質が固体電解質と反応することをリン酸骨格の高い温度安定性により容易に抑制することができるため、全固体電池の容量を高くすることができる。また、リチウム含有リン酸化合物からなる電極活物質と、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質とを組み合わせて用いると、焼成工程において電極活物質と固体電解質との反応を抑制することができるとともに、両者の良好な接触を得ることができるため、上記のように電極活物質と固体電解質の材料を組み合わせて用いることが特に好ましい。
Moreover, it is preferable that at least one material of the positive electrode layer 1 or the negative electrode layer 3 of the laminates 10 and 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied includes an electrode active material made of a lithium-containing phosphate compound. . In this case, the phase change of the electrode active material in the firing step or the reaction of the electrode active material with the solid electrolyte can be easily suppressed by the high temperature stability of the phosphoric acid skeleton. The capacity can be increased. In addition, when an electrode active material composed of a lithium-containing phosphate compound and a solid electrolyte composed of a lithium-containing phosphate compound having a NASICON structure are used in combination, the reaction between the electrode active material and the solid electrolyte is suppressed in the firing step. It is particularly preferable to use a combination of the electrode active material and the solid electrolyte material as described above, since both of them can be obtained and good contact can be obtained.
さらに、本発明の製造方法が適用される全固体電池の積層体20の集電体層4は電子伝導材料を含む。電子伝導材料は、導電性酸化物、金属、および、炭素材料からなる群より選ばれた少なくとも一種を含むことが好ましい。
Furthermore, the current collector layer 4 of the laminate 20 of the all-solid-state battery to which the manufacturing method of the present invention is applied contains an electron conductive material. The electron conductive material preferably contains at least one selected from the group consisting of conductive oxides, metals, and carbon materials.
次に、本発明の実施例を具体的に説明する。なお、以下に示す実施例は一例であり、本発明は下記の実施例に限定されるものではない。
Next, specific examples of the present invention will be described. In addition, the Example shown below is an example and this invention is not limited to the following Example.
以下、本発明の製造方法に従って作製された全固体電池について説明する。
Hereinafter, an all-solid battery manufactured according to the manufacturing method of the present invention will be described.
まず、全固体電池を作製するために、固体電解質層、正極層、負極層、および、集電体層の出発原料として以下の材料を準備した。
First, in order to produce an all-solid battery, the following materials were prepared as starting materials for the solid electrolyte layer, the positive electrode layer, the negative electrode layer, and the current collector layer.
固体電解質材料としてLi1.5Al0.5Ge1.5(PO4)3の組成を有するガラス粉末、正極活物質材料としてLi3V2(PO4)3の組成を有するナシコン型構造の結晶相を有する粉末、負極活物質材料としてアナターゼ型の結晶構造を有する二酸化チタン(TiO2)粉末、電子伝導性材料として炭素粉末、焼結性材料としてLi1.0Ge2.0(PO4)3の組成を有するガラスセラミックス粉末を準備した。
A glass powder having a composition of Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 as a solid electrolyte material, and a powder having a crystal phase of NASICON type structure having a composition of Li 3 V 2 (PO 4 ) 3 as a positive electrode active material, Titanium dioxide (TiO 2 ) powder having an anatase type crystal structure as a negative electrode active material, carbon powder as an electron conductive material, and glass ceramic powder having a composition of Li 1.0 Ge 2.0 (PO 4 ) 3 as a sinterable material Got ready.
上記の材料を用いて、以下の方法で各スラリーを作製した。
Each slurry was prepared by the following method using the above materials.
(スラリーの作製)
(Preparation of slurry)
以下に示す主材、ポリブチラール樹脂およびアルコールを、100:15:140の質量比率で秤量した。そして、ポリブチラール樹脂をアルコールに溶解した後、主材とメディアとともに容器に封入して攪拌した後、容器からメディアを取り出すことにより、各スラリーを作製した。
The following main materials, polybutyral resin and alcohol were weighed at a mass ratio of 100: 15: 140. And after melt | dissolving polybutyral resin in alcohol, after enclosing and stirring with a main material and a medium in a container, each slurry was produced by taking out a medium from a container.
主材としては、固体電解質スラリーでは固体電解質材料、正極スラリーでは正極活物質材料、電子伝導性材料および固体電解質材料を40:10:50の質量比率で混合した粉末、負極スラリーでは負極活物質材料、電子伝導性材料および固体電解質材料を40:10:50の質量比率で混合した粉末、集電体スラリーでは電子伝導性材料および焼結性材料を10:90の質量比率で混合した粉末を使用した。
Main materials are solid electrolyte material for solid electrolyte slurry, positive electrode active material for positive electrode slurry, powder mixed with electron conductive material and solid electrolyte material in mass ratio of 40:10:50, and negative electrode active material for negative electrode slurry. A powder in which an electron conductive material and a solid electrolyte material are mixed at a mass ratio of 40:10:50, and a powder in which a current collector slurry is a mixture of an electron conductive material and a sinterable material in a mass ratio of 10:90 is used. did.
得られた各スラリーを用いて各グリーンシートを以下の方法で作製した。
Each green sheet was produced by the following method using each obtained slurry.
(グリーンシート作製工程)
(Green sheet production process)
ドクターブレード法を用いてポリエチレンテレフタレート(PET)フィルムの上に各スラリーを塗工し、40℃の温度に加熱したホットプレートの上で乾燥し、厚みが10μmのシート状に成形し、25mm×25mmの大きさに切断して各グリーンシートを作製した。
Each slurry was coated on a polyethylene terephthalate (PET) film using a doctor blade method, dried on a hot plate heated to a temperature of 40 ° C., formed into a sheet having a thickness of 10 μm, and 25 mm × 25 mm Each green sheet was prepared by cutting into a size of.
得られた各グリーンシートを用いて、積層体を以下の方法で形成した。
Using each obtained green sheet, a laminate was formed by the following method.
(積層体形成工程)
(Laminate formation process)
PETフィルムから剥がした各グリーンシートを一枚ずつ重ねるごとに、順次、熱圧着して、積層体20を形成した。熱圧着は、各グリーンシートを60℃の温度に加熱し、圧力を加えることにより行った。
Each time the green sheets peeled from the PET film were stacked one by one, the laminate 20 was formed by thermocompression in order. Thermocompression bonding was performed by heating each green sheet to a temperature of 60 ° C. and applying pressure.
次に、積層体20を構成する各グリーンシート間の密着性を十分に高めるために、積層体20をポリエチレン製の袋に真空状態で封入し、ポリエチレン製の袋ごと温度が80℃の水中に浸漬して水に圧力を加えた。等方圧プレスにより水に180MPaの圧力を加えた。
Next, in order to sufficiently improve the adhesion between the green sheets constituting the laminate 20, the laminate 20 is sealed in a polyethylene bag in a vacuum state, and the polyethylene bag is placed in water at a temperature of 80 ° C. Immersion and pressure was applied to the water. A pressure of 180 MPa was applied to the water by an isotropic pressure press.
なお、積層体20は、図2に示すように、2つの単電池を電気的に直列に接続するように積層した構造を有し、2つの単電池が、2枚の集電体グリーンシートからなる集電体層4を介して直列に接続されている。さらに、2つの集電体層4が2つの単電池の外側を挟むように配置されている。各単電池は、2枚の正極グリーンシートからなる正極層1と、5枚の固体電解質グリーンシートからなる固体電解質層2と、1枚の負極シートからなる負極層3とから構成される。
In addition, as shown in FIG. 2, the laminated body 20 has a structure in which two unit cells are laminated so as to be electrically connected in series, and the two unit cells are formed from two current collector green sheets. The current collector layers 4 are connected in series. Further, the two current collector layers 4 are arranged so as to sandwich the outside of the two unit cells. Each unit cell includes a positive electrode layer 1 composed of two positive electrode green sheets, a solid electrolyte layer 2 composed of five solid electrolyte green sheets, and a negative electrode layer 3 composed of one negative electrode sheet.
具体的には、図2に示すように、下から、集電体層4を構成する集電体グリーンシート2枚、負極層3を構成する負極グリーンシート1枚、固体電解質層2を構成する固体電解質グリーンシート5枚、正極層1を構成する正極グリーンシート2枚、集電体層4を構成する集電体グリーンシート2枚、負極層3を構成する負極グリーンシート1枚、固体電解質層2を構成する固体電解質グリーンシート5枚、正極層1を構成する正極グリーンシート2枚、集電体層4を構成する集電体グリーンシート2枚の順にグリーンシートを重ねて積層体20を形成した。
Specifically, as shown in FIG. 2, two current collector green sheets constituting the current collector layer 4, one negative green sheet constituting the negative electrode layer 3, and the solid electrolyte layer 2 are constituted from the bottom. 5 solid electrolyte green sheets, 2 positive green sheets constituting positive electrode layer 1, 2 current collector green sheets constituting current collector layer 4, 1 negative green sheet constituting negative electrode layer 3, solid electrolyte layer The green sheets are stacked in the order of five solid electrolyte green sheets constituting 2, two positive electrode green sheets constituting the positive electrode layer 1, and two current collector green sheets constituting the current collector layer 4 to form a laminate 20. did.
(レーザーによる積層体の切断とその後の積層体の焼成)
(Cutting the laminate with a laser and firing the laminate thereafter)
負極層3の側を上にして未焼結の積層体20をX-Yステージに配置し、以下の表1の実施例1~5と比較例に示すように各波長のレーザーを照射しつつ、X-Yステージを約10mm移動させて、積層体20を10mm×10mmの大きさに切断した。その後、積層体20の切断部分を光学顕微鏡で観察して、切断できているか否かを確認した。レーザーの照射方向と、切断部分の観察方向は図3に示されるとおりである。
The unsintered laminate 20 was placed on the XY stage with the negative electrode layer 3 side up, and irradiated with lasers of various wavelengths as shown in Examples 1 to 5 and Comparative Examples in Table 1 below. The laminate 20 was cut into a size of 10 mm × 10 mm by moving the XY stage by about 10 mm. Then, the cut part of the laminated body 20 was observed with the optical microscope, and it was confirmed whether it was cut | disconnected. The irradiation direction of the laser and the observation direction of the cut portion are as shown in FIG.
レーザー照射は、表1に示すレーザー発振機、または、レーザー照射装置を用いて行った。レーザー照射のパルス周期は、10~100kHzの範囲で適宜調整した。切断速度(X-Yステージの移動速度)は、50~1000mm/sの範囲で適宜調整した。
Laser irradiation was performed using a laser oscillator shown in Table 1 or a laser irradiation apparatus. The pulse period of laser irradiation was appropriately adjusted in the range of 10 to 100 kHz. The cutting speed (XY stage moving speed) was appropriately adjusted in the range of 50 to 1000 mm / s.
表1に切断結果を示す。図4に切断部分を観察した写真を示す。図4において白く見える層が固体電解質層2(図2)に対応する。
Table 1 shows the cutting results. FIG. 4 shows a photograph of the cut portion observed. The layer that appears white in FIG. 4 corresponds to the solid electrolyte layer 2 (FIG. 2).
表1と図4からわかるように、実施例1~5ではレーザー照射により積層体20を切断することができたが、比較例では切断することができなかった。特に、YAGレーザー(波長1064nm)を用いた比較例では、積層体20を構成する固体電解質層2(図4では白い層)が切断されずに、固体電解質層2の上下に位置する正極層1、負極層3、集電体層4が選択的に切断されていることを確認した。したがって、ガラス状のリン酸化合物からなる固体電解質を含む未焼結の積層体20を切断するためには、半導体レーザー(波長810nm)と、半導体レーザーよりも短い波長のレーザーを照射することが有効であることが確認された。
As can be seen from Table 1 and FIG. 4, in Examples 1 to 5, the laminate 20 could be cut by laser irradiation, but in the comparative example, it could not be cut. In particular, in the comparative example using the YAG laser (wavelength 1064 nm), the positive electrode layer 1 positioned above and below the solid electrolyte layer 2 without cutting the solid electrolyte layer 2 (the white layer in FIG. 4) constituting the laminate 20. It was confirmed that the negative electrode layer 3 and the current collector layer 4 were selectively cut. Therefore, in order to cut the unsintered laminate 20 containing a solid electrolyte made of a glassy phosphate compound, it is effective to irradiate a semiconductor laser (wavelength 810 nm) and a laser having a shorter wavelength than the semiconductor laser. It was confirmed that.
次に、実施例1~5においてレーザー照射により切断された未焼結の積層体20を、窒素ガス雰囲気中にて400℃の温度で焼成してポリブチラール樹脂を分解除去した。その後、積層体20を酸素ガス雰囲気中にて550℃の温度で焼成して、樹脂の炭化物を除去し、さらに窒素ガス雰囲気中にて700℃の温度で焼成することにより、焼結体としての積層体20を作製した。
Next, the unsintered laminate 20 cut by laser irradiation in Examples 1 to 5 was baked at a temperature of 400 ° C. in a nitrogen gas atmosphere to decompose and remove the polybutyral resin. Thereafter, the laminate 20 is baked at a temperature of 550 ° C. in an oxygen gas atmosphere to remove resin carbide, and further baked at a temperature of 700 ° C. in a nitrogen gas atmosphere. The laminated body 20 was produced.
このようにして得られた実施例1~5の全固体電池の積層体20を、2032型コインセルに封入して、10μAの電流で充電と放電を実施したところ、いずれも2~4Vの電圧にて放電プラトーを有する2直列電池として動作することを確認した。
The all-solid battery stack 20 of Examples 1 to 5 obtained in this way was sealed in a 2032 type coin cell and charged and discharged with a current of 10 μA. And confirmed to operate as a two-series battery having a discharge plateau.
(積層体の焼成とその後のレーザーによる積層体の切断)
(Lamination of laminate and subsequent cutting of laminate with laser)
未焼結の積層体20を窒素ガス雰囲気中にて400℃の温度で焼成してポリブチラール樹脂を分解除去した。その後、酸素ガス雰囲気中にて550℃の温度で焼成して、樹脂の炭化物を除去し、さらに窒素ガス雰囲気中にて700℃の温度で焼成することにより、焼結体としての積層体20を作製した。
The unsintered laminate 20 was fired in a nitrogen gas atmosphere at a temperature of 400 ° C. to decompose and remove the polybutyral resin. Thereafter, the laminate 20 as a sintered body is fired at a temperature of 550 ° C. in an oxygen gas atmosphere to remove the carbide of the resin, and further fired at a temperature of 700 ° C. in a nitrogen gas atmosphere. Produced.
次に、負極層3の側を上にして未焼結の積層体20をX-Yステージに配置し、表1の実施例1~5と比較例に示すように各波長のレーザーを照射しつつ、X-Yステージを約10mm移動させて、積層体20を10mm×10mmの大きさに切断した。
Next, the unsintered laminate 20 was placed on the XY stage with the negative electrode layer 3 side up, and lasers of various wavelengths were irradiated as shown in Examples 1 to 5 and Comparative Example in Table 1. While moving the XY stage about 10 mm, the laminate 20 was cut into a size of 10 mm × 10 mm.
その結果、半導体レーザー(波長810nm)と、半導体レーザーよりも短い波長のレーザーを照射することによって、焼結体を切断することができたが、YAGレーザー(波長1064nm)では切断することができなかった。したがって、リン酸化合物からなる固体電解質を含む焼結後の積層体20を切断するためには、半導体レーザー(波長810nm)と、半導体レーザーよりも短い波長のレーザーを照射することが有効であることが確認された。
As a result, the sintered body could be cut by irradiating a semiconductor laser (wavelength 810 nm) and a laser having a shorter wavelength than the semiconductor laser, but could not be cut by a YAG laser (wavelength 1064 nm). It was. Therefore, in order to cut the sintered laminate 20 containing a solid electrolyte made of a phosphoric acid compound, it is effective to irradiate a semiconductor laser (wavelength 810 nm) and a laser having a shorter wavelength than the semiconductor laser. Was confirmed.
焼結後に切断されて得られた全固体電池の積層体20を、2032型コインセルに封入して、10μAの電流で充電と放電を実施したところ、いずれも2~4Vの電圧にて放電プラトーを有する2直列電池として動作することを確認した。
The all-solid-state battery laminate 20 obtained by cutting after sintering was sealed in a 2032 type coin cell and charged and discharged at a current of 10 μA. In each case, a discharge plateau was applied at a voltage of 2 to 4 V. It confirmed that it operate | moves as a 2 series battery which has.
なお、上記の実施例では、未焼結または焼結後の積層体20をX-Yステージに配置し、X-Yステージを移動させて積層体20を切断する方法を採用したが、積層体20を固定し、ガルバノスキャナーを用いてレーザーを任意に走査して、積層体20を切断してもよい。
In the above embodiment, a method of disposing the unsintered or sintered laminate 20 on the XY stage and moving the XY stage to cut the laminate 20 is adopted. The laminate 20 may be cut by fixing 20 and arbitrarily scanning a laser using a galvano scanner.
実施例2において焼成前と焼成後の積層体20の切断面を走査型電子顕微鏡で観察した写真を図5の(A)と(B)で示す。図5に示すように、266nm以上810nm以下の波長を有するレーザーを用いて積層体20を切断した場合、端面の少なくとも一部は、固体電解質層が溶融して形成された絶縁膜で被覆されている。絶縁膜は電子絶縁性を有するため、端面での短絡を抑制することができる。なお、固体電解質層が溶融して形成された絶縁膜がイオン伝導を示してもかまわない。
The photograph which observed the cut surface of the laminated body 20 before and after baking in Example 2 with the scanning electron microscope is shown by (A) and (B) of FIG. As shown in FIG. 5, when the laminated body 20 is cut using a laser having a wavelength of 266 nm or more and 810 nm or less, at least a part of the end surface is covered with an insulating film formed by melting the solid electrolyte layer. Yes. Since the insulating film has electronic insulating properties, a short circuit at the end face can be suppressed. Note that the insulating film formed by melting the solid electrolyte layer may exhibit ionic conduction.
今回開示された実施の形態と実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は以上の実施の形態と実施例ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての修正と変形を含むものであることが意図される。
It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the claims.
本発明の全固体電池の製造方法では、使用するレーザーの波長を特定の範囲内に限定することにより、切断面におけるバリの発生を抑制し、積層体を効率的に切断することができるので、本発明は全固体二次電池の製造に特に有用である。
In the manufacturing method of the all-solid-state battery of the present invention, by limiting the wavelength of the laser to be used within a specific range, it is possible to suppress the generation of burrs on the cut surface and efficiently cut the laminate. The present invention is particularly useful for the production of all-solid secondary batteries.
1:正極層、2:固体電解質層、3:負極層、4:集電体層、10、20:積層体。
1: positive electrode layer, 2: solid electrolyte layer, 3: negative electrode layer, 4: current collector layer, 10, 20: laminate.
Claims (11)
- 正極層または負極層の少なくともいずれか一方の未焼結体である未焼結電極層と、固体電解質層の未焼結体である未焼結固体電解質層とを積層して積層体を形成する積層体形成工程と、
266nm以上810nm以下の波長を有するレーザーを照射することにより、前記積層体を切断する切断工程と、を備えた、全固体電池の製造方法。 A non-sintered electrode layer, which is at least one of a positive electrode layer and a negative electrode layer, and a non-sintered solid electrolyte layer, which is a non-sintered solid electrolyte layer, are stacked to form a laminate. A laminate forming step;
And a cutting step of cutting the laminated body by irradiating a laser having a wavelength of 266 nm or more and 810 nm or less. - 前記切断工程の後に前記積層体を焼成する焼成工程をさらに備える、請求項1に記載の全固体電池の製造方法。 The manufacturing method of the all-solid-state battery of Claim 1 further equipped with the baking process which bakes the said laminated body after the said cutting process.
- 前記切断工程の前に前記積層体を焼成する焼成工程をさらに備える、請求項1に記載の全固体電池の製造方法。 The manufacturing method of the all-solid-state battery of Claim 1 further equipped with the baking process which bakes the said laminated body before the said cutting process.
- 前記レーザーは、FHGレーザー、THGレーザー、SHGレーザー、および、半導体レーザーからなる群より選ばれた1種のレーザーである、請求項1から請求項3までのいいずれか1項に記載の全固体電池の製造方法。 4. The all solid according to claim 1, wherein the laser is one type of laser selected from the group consisting of an FHG laser, a THG laser, an SHG laser, and a semiconductor laser. Battery manufacturing method.
- 前記積層体形成工程は、前記正極層、前記固体電解質層、および、前記負極層の未焼結体を積層して単電池構造の積層体を形成することを含む、請求項1から請求項4までのいずれか1項に記載の全固体電池の製造方法。 The said laminated body formation process includes laminating | stacking the non-sintered body of the said positive electrode layer, the said solid electrolyte layer, and the said negative electrode layer, and forms the laminated body of a single cell structure. The manufacturing method of the all-solid-state battery of any one of until.
- 前記積層体形成工程は、集電体層の未焼結体を介在させて、前記単電池構造の積層体を複数個、積層して積層体を形成することを含む、請求項5に記載の全固体電池の製造方法。 The said laminated body formation process includes forming the laminated body by laminating | stacking several laminated bodies of the said single battery structure through the non-sintered body of a collector layer. Manufacturing method of all solid state battery.
- 前記正極層、前記固体電解質層、または、前記負極層の少なくとも一つの材料が、ナシコン型構造のリチウム含有リン酸化合物からなる固体電解質を含む、請求項1から請求項6までのいずれか1項に記載の全固体電池の製造方法。 7. The device according to claim 1, wherein at least one material of the positive electrode layer, the solid electrolyte layer, or the negative electrode layer includes a solid electrolyte made of a lithium-containing phosphate compound having a NASICON structure. The manufacturing method of the all-solid-state battery as described in 1 above.
- 前記正極層または前記負極層の少なくとも一つの材料が、リチウム含有リン酸化合物からなる電極活物質を含む、請求項1から請求項7までのいずれか1項に記載の全固体電池の製造方法。 The method for producing an all-solid-state battery according to any one of claims 1 to 7, wherein at least one material of the positive electrode layer or the negative electrode layer includes an electrode active material made of a lithium-containing phosphate compound.
- 前記未焼結電極層と前記未焼結固体電解質層は、グリーンシートまたは印刷層の形態を有する、請求項1から請求項8までのいずれか1項に記載の全固体電池の製造方法。 The method for producing an all solid state battery according to any one of claims 1 to 8, wherein the unsintered electrode layer and the unsintered solid electrolyte layer have a form of a green sheet or a printed layer.
- 請求項1から請求項9までのいずれか1項に記載の製造方法によって製造された全固体電池。 An all-solid-state battery manufactured by the manufacturing method according to any one of claims 1 to 9.
- 正極層、固体電解質層、および、負極層を含む積層体を備えた全固体電池であって、
前記積層体の端面の少なくとも一部は、前記固体電解質層が溶融して形成された絶縁膜で被覆されている、全固体電池。
An all-solid battery comprising a laminate comprising a positive electrode layer, a solid electrolyte layer, and a negative electrode layer,
An all-solid battery, wherein at least a part of the end face of the laminate is covered with an insulating film formed by melting the solid electrolyte layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-196712 | 2011-09-09 | ||
JP2011196712 | 2011-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013035519A1 true WO2013035519A1 (en) | 2013-03-14 |
Family
ID=47831969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/071047 WO2013035519A1 (en) | 2011-09-09 | 2012-08-21 | All solid-state battery and method of manufacturing same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2013035519A1 (en) |
WO (1) | WO2013035519A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014528632A (en) * | 2011-09-30 | 2014-10-27 | コーニング インコーポレイテッド | Microfabricated electrolyte sheet comprising lithium metal phosphate |
JP2016213070A (en) * | 2015-05-08 | 2016-12-15 | トヨタ自動車株式会社 | Method for manufacturing battery laminate |
EP3168902A1 (en) * | 2015-11-10 | 2017-05-17 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for manufacturing an electrochemical device, such as an electrochromic system or a system for storing energy, for example a microbattery, a battery or a supercapacitor |
CN106716678A (en) * | 2014-10-24 | 2017-05-24 | 株式会社Lg 化学 | Method for cutting separation membrane for battery, and separation membrane for battery manufactured thereby |
WO2017146133A1 (en) * | 2016-02-23 | 2017-08-31 | 凸版印刷株式会社 | Stacked green sheet, continuous stacked green sheet, stacked sintered body, continuous stacked sintered body, and all-solid secondary battery, and method for producing stacked green sheet, method for producing continuous stacked green sheet, and method for producing all-solid secondary battery |
JP2017527951A (en) * | 2014-06-23 | 2017-09-21 | ショット アクチエンゲゼルシャフトSchott AG | Power storage system having plate-like discrete elements, plate-like discrete elements, method for producing the same, and use thereof |
JP2017204365A (en) * | 2016-05-10 | 2017-11-16 | トヨタ自動車株式会社 | Method for manufacturing solid battery |
JP2018073512A (en) * | 2016-10-25 | 2018-05-10 | 凸版印刷株式会社 | Slurry, laminate green sheet, all-solid type secondary battery and manufacturing methods thereof |
JP2018129222A (en) * | 2017-02-09 | 2018-08-16 | パナソニックIpマネジメント株式会社 | All-solid battery and method for manufacturing the same |
US10566584B2 (en) | 2014-06-23 | 2020-02-18 | Schott Ag | Electrical storage system with a sheet-like discrete element, sheet-like discrete element, method for producing same, and use thereof |
JP2020061267A (en) * | 2018-10-10 | 2020-04-16 | トヨタ自動車株式会社 | Manufacturing method of all-solid-state battery |
US10673025B2 (en) | 2014-12-01 | 2020-06-02 | Schott Ag | Electrical storage system comprising a sheet-type discrete element, discrete sheet-type element, method for the production thereof, and use thereof |
CN111384435A (en) * | 2018-12-27 | 2020-07-07 | 松下知识产权经营株式会社 | All-solid-state battery and method for manufacturing same |
JP2020107521A (en) * | 2018-12-27 | 2020-07-09 | パナソニックIpマネジメント株式会社 | All-solid battery and method for manufacturing the same |
US10763551B2 (en) | 2016-03-15 | 2020-09-01 | Dyson Technology Limited | Method of fabricating an energy storage device |
WO2021199721A1 (en) * | 2020-03-30 | 2021-10-07 | パナソニックIpマネジメント株式会社 | Laminated battery production method |
WO2022044409A1 (en) * | 2020-08-26 | 2022-03-03 | 日本碍子株式会社 | Lithium ion secondary battery |
US11489158B2 (en) | 2017-12-18 | 2022-11-01 | Dyson Technology Limited | Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material |
US11616229B2 (en) | 2017-12-18 | 2023-03-28 | Dyson Technology Limited | Lithium, nickel, manganese mixed oxide compound and electrode comprising the same |
GB2611334A (en) * | 2021-09-30 | 2023-04-05 | Dyson Technology Ltd | Solid-state electrochemical cell |
US11658296B2 (en) | 2017-12-18 | 2023-05-23 | Dyson Technology Limited | Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material |
US11769911B2 (en) | 2017-09-14 | 2023-09-26 | Dyson Technology Limited | Methods for making magnesium salts |
US11817558B2 (en) | 2017-09-14 | 2023-11-14 | Dyson Technology Limited | Magnesium salts |
US11967711B2 (en) | 2017-12-18 | 2024-04-23 | Dyson Technology Limited | Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796472A (en) * | 1980-12-06 | 1982-06-15 | Hitachi Maxell Ltd | Manufacture of solid electrolytic cell |
JPH04504632A (en) * | 1990-01-30 | 1992-08-13 | ソシエテ・ナシオナル・エルフ・アキテーヌ | Method and apparatus for cutting a laminar electrochemical generator having a plurality of laminae or a multilayer assembly of components of such a generator |
JP2000208129A (en) * | 1999-01-13 | 2000-07-28 | Ngk Insulators Ltd | Lithium secondary battery |
JP2000323174A (en) * | 1999-05-12 | 2000-11-24 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2001176501A (en) * | 1999-12-16 | 2001-06-29 | Sony Corp | Method of manufacturing non-aqueous electrolytic battery |
JP2007005279A (en) * | 2004-12-13 | 2007-01-11 | Matsushita Electric Ind Co Ltd | Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it |
JP2008226666A (en) * | 2007-03-13 | 2008-09-25 | Ngk Insulators Ltd | Manufacturing method of solid electrolyte structure for all-solid battery, and manufacturing method of all-solid battery |
JP2009181875A (en) * | 2008-01-31 | 2009-08-13 | Ohara Inc | Laminate for lithium ion secondary battery and method of manufacturing the same |
-
2012
- 2012-08-21 WO PCT/JP2012/071047 patent/WO2013035519A1/en active Application Filing
- 2012-08-21 JP JP2013532522A patent/JPWO2013035519A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5796472A (en) * | 1980-12-06 | 1982-06-15 | Hitachi Maxell Ltd | Manufacture of solid electrolytic cell |
JPH04504632A (en) * | 1990-01-30 | 1992-08-13 | ソシエテ・ナシオナル・エルフ・アキテーヌ | Method and apparatus for cutting a laminar electrochemical generator having a plurality of laminae or a multilayer assembly of components of such a generator |
JP2000208129A (en) * | 1999-01-13 | 2000-07-28 | Ngk Insulators Ltd | Lithium secondary battery |
JP2000323174A (en) * | 1999-05-12 | 2000-11-24 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2001176501A (en) * | 1999-12-16 | 2001-06-29 | Sony Corp | Method of manufacturing non-aqueous electrolytic battery |
JP2007005279A (en) * | 2004-12-13 | 2007-01-11 | Matsushita Electric Ind Co Ltd | Laminate including active material layer and solid electrolyte layer, and all solid lithium secondary battery using it |
JP2008226666A (en) * | 2007-03-13 | 2008-09-25 | Ngk Insulators Ltd | Manufacturing method of solid electrolyte structure for all-solid battery, and manufacturing method of all-solid battery |
JP2009181875A (en) * | 2008-01-31 | 2009-08-13 | Ohara Inc | Laminate for lithium ion secondary battery and method of manufacturing the same |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10854918B2 (en) | 2011-09-30 | 2020-12-01 | Corning Incorporated | Micromachined electrolyte sheet |
US10283811B2 (en) | 2011-09-30 | 2019-05-07 | Corning Incorporated | Micromachined electrolyte sheet |
US11469446B2 (en) | 2011-09-30 | 2022-10-11 | Corning Incorporated | Micromachined electrolyte sheet |
JP2014528632A (en) * | 2011-09-30 | 2014-10-27 | コーニング インコーポレイテッド | Microfabricated electrolyte sheet comprising lithium metal phosphate |
JP2017527951A (en) * | 2014-06-23 | 2017-09-21 | ショット アクチエンゲゼルシャフトSchott AG | Power storage system having plate-like discrete elements, plate-like discrete elements, method for producing the same, and use thereof |
US10566584B2 (en) | 2014-06-23 | 2020-02-18 | Schott Ag | Electrical storage system with a sheet-like discrete element, sheet-like discrete element, method for producing same, and use thereof |
EP3211692A4 (en) * | 2014-10-24 | 2017-08-30 | LG Chem, Ltd. | Method for cutting separation membrane for battery, and separation membrane for battery manufactured thereby |
CN106716678A (en) * | 2014-10-24 | 2017-05-24 | 株式会社Lg 化学 | Method for cutting separation membrane for battery, and separation membrane for battery manufactured thereby |
CN106716678B (en) * | 2014-10-24 | 2020-04-03 | 株式会社Lg 化学 | Method for cutting separation film for battery and separation film for battery manufactured thereby |
US10673025B2 (en) | 2014-12-01 | 2020-06-02 | Schott Ag | Electrical storage system comprising a sheet-type discrete element, discrete sheet-type element, method for the production thereof, and use thereof |
US10283815B2 (en) | 2015-05-08 | 2019-05-07 | Toyota Jidosha Kabushiki Kaisha | Production method of laminate for a battery |
JP2016213070A (en) * | 2015-05-08 | 2016-12-15 | トヨタ自動車株式会社 | Method for manufacturing battery laminate |
EP3168902A1 (en) * | 2015-11-10 | 2017-05-17 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for manufacturing an electrochemical device, such as an electrochromic system or a system for storing energy, for example a microbattery, a battery or a supercapacitor |
WO2017146133A1 (en) * | 2016-02-23 | 2017-08-31 | 凸版印刷株式会社 | Stacked green sheet, continuous stacked green sheet, stacked sintered body, continuous stacked sintered body, and all-solid secondary battery, and method for producing stacked green sheet, method for producing continuous stacked green sheet, and method for producing all-solid secondary battery |
US10763551B2 (en) | 2016-03-15 | 2020-09-01 | Dyson Technology Limited | Method of fabricating an energy storage device |
JP2017204365A (en) * | 2016-05-10 | 2017-11-16 | トヨタ自動車株式会社 | Method for manufacturing solid battery |
JP2018073512A (en) * | 2016-10-25 | 2018-05-10 | 凸版印刷株式会社 | Slurry, laminate green sheet, all-solid type secondary battery and manufacturing methods thereof |
JP2018129222A (en) * | 2017-02-09 | 2018-08-16 | パナソニックIpマネジメント株式会社 | All-solid battery and method for manufacturing the same |
JP7065323B2 (en) | 2017-02-09 | 2022-05-12 | パナソニックIpマネジメント株式会社 | All-solid-state battery and its manufacturing method |
CN108417883B (en) * | 2017-02-09 | 2022-07-22 | 松下知识产权经营株式会社 | All-solid-state battery and method for manufacturing same |
CN108417883A (en) * | 2017-02-09 | 2018-08-17 | 松下知识产权经营株式会社 | All-solid-state battery and its manufacturing method |
US11817558B2 (en) | 2017-09-14 | 2023-11-14 | Dyson Technology Limited | Magnesium salts |
US11769911B2 (en) | 2017-09-14 | 2023-09-26 | Dyson Technology Limited | Methods for making magnesium salts |
US11489158B2 (en) | 2017-12-18 | 2022-11-01 | Dyson Technology Limited | Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material |
US11967711B2 (en) | 2017-12-18 | 2024-04-23 | Dyson Technology Limited | Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same |
US11658296B2 (en) | 2017-12-18 | 2023-05-23 | Dyson Technology Limited | Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material |
US11616229B2 (en) | 2017-12-18 | 2023-03-28 | Dyson Technology Limited | Lithium, nickel, manganese mixed oxide compound and electrode comprising the same |
JP2020061267A (en) * | 2018-10-10 | 2020-04-16 | トヨタ自動車株式会社 | Manufacturing method of all-solid-state battery |
JP7117588B2 (en) | 2018-12-27 | 2022-08-15 | パナソニックIpマネジメント株式会社 | All-solid-state battery and manufacturing method thereof |
JP7178633B2 (en) | 2018-12-27 | 2022-11-28 | パナソニックIpマネジメント株式会社 | All-solid-state battery and manufacturing method thereof |
JP2020107521A (en) * | 2018-12-27 | 2020-07-09 | パナソニックIpマネジメント株式会社 | All-solid battery and method for manufacturing the same |
CN111384435A (en) * | 2018-12-27 | 2020-07-07 | 松下知识产权经营株式会社 | All-solid-state battery and method for manufacturing same |
JP2020107525A (en) * | 2018-12-27 | 2020-07-09 | パナソニックIpマネジメント株式会社 | All-solid battery and method for manufacturing the same |
WO2021199721A1 (en) * | 2020-03-30 | 2021-10-07 | パナソニックIpマネジメント株式会社 | Laminated battery production method |
WO2022044409A1 (en) * | 2020-08-26 | 2022-03-03 | 日本碍子株式会社 | Lithium ion secondary battery |
GB2611334A (en) * | 2021-09-30 | 2023-04-05 | Dyson Technology Ltd | Solid-state electrochemical cell |
WO2023052748A1 (en) * | 2021-09-30 | 2023-04-06 | Dyson Technology Limited | Solid-state electrochemical cell |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013035519A1 (en) | 2015-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013035519A1 (en) | All solid-state battery and method of manufacturing same | |
JP5741689B2 (en) | All-solid battery and method for manufacturing the same | |
JP5742940B2 (en) | All-solid battery and method for manufacturing the same | |
JP5534109B2 (en) | All-solid battery and method for manufacturing the same | |
JP5742941B2 (en) | All-solid battery and method for manufacturing the same | |
JP5516749B2 (en) | All-solid battery and method for manufacturing the same | |
JP2009129790A (en) | Lithium ion secondary battery and, manufacturing method thereof | |
JP6262129B2 (en) | All-solid battery and method for manufacturing the same | |
JP6197495B2 (en) | All solid battery | |
JP6491810B2 (en) | All-solid battery and method for producing all-solid battery | |
JP6605917B2 (en) | All solid state secondary battery | |
JP2018166020A (en) | All-solid battery and manufacturing method thereof | |
WO2018198494A1 (en) | All-solid-state battery | |
WO2013100002A1 (en) | All-solid-state battery, and manufacturing method therefor | |
WO2014042083A1 (en) | All-solid-state battery, green laminate for all-solid-state battery, and method for producing all-solid-state battery | |
JP5556969B2 (en) | Laminated molded body for all solid state battery, all solid state battery and method for producing the same | |
JP6801778B2 (en) | All solid state battery | |
JP6192540B2 (en) | All-solid battery and method for manufacturing the same | |
JP6264807B2 (en) | All-solid battery and method for manufacturing the same | |
WO2013035526A1 (en) | Laminated molded body for all-solid-state battery, all-solid-state battery, and production method therefor | |
JP6003982B2 (en) | All solid battery | |
WO2017146105A1 (en) | Laminate green sheet and continuous laminate green sheet, method for manufacturing same, and method for manufacturing all-solid-state secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12830547 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013532522 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12830547 Country of ref document: EP Kind code of ref document: A1 |