JP2017204365A - Method for manufacturing solid battery - Google Patents

Method for manufacturing solid battery Download PDF

Info

Publication number
JP2017204365A
JP2017204365A JP2016094825A JP2016094825A JP2017204365A JP 2017204365 A JP2017204365 A JP 2017204365A JP 2016094825 A JP2016094825 A JP 2016094825A JP 2016094825 A JP2016094825 A JP 2016094825A JP 2017204365 A JP2017204365 A JP 2017204365A
Authority
JP
Japan
Prior art keywords
active material
material layer
solid electrolyte
layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016094825A
Other languages
Japanese (ja)
Other versions
JP6683001B2 (en
JP2017204365A5 (en
Inventor
慎司 小島
Shinji Kojima
慎司 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016094825A priority Critical patent/JP6683001B2/en
Publication of JP2017204365A publication Critical patent/JP2017204365A/en
Publication of JP2017204365A5 publication Critical patent/JP2017204365A5/ja
Application granted granted Critical
Publication of JP6683001B2 publication Critical patent/JP6683001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid battery which is improved in battery performance by preventing a short circuit in a battery element.SOLUTION: A method for manufacturing a solid battery comprises the steps of: applying a laser to a surface of an active material layer, which is a positive or negative electrode active material layer of a battery element having the positive electrode active material layer, a solid electrolyte layer and the negative electrode active material layer in this order, thereby causing the delamination of the active material layer and solid electrolyte layer at an interface thereof, provided that the laser has an intensity enough to cause the delamination at the interface of the active material layer and solid electrolyte layer; and removing the active material layer subjected to the delamination.SELECTED DRAWING: Figure 2

Description

本発明は、固体電池の製造方法に関する。   The present invention relates to a method for manufacturing a solid state battery.

通常の二次電池における電解液を固体電解質に置換した固体電池が注目されている。固体電池は、電池の過充電に起因する電解液の分解等を生じることがなく、高いサイクル耐久性及びエネルギー密度を有する点で魅力的である。   A solid battery in which an electrolyte solution in a normal secondary battery is replaced with a solid electrolyte has attracted attention. The solid battery is attractive in that it does not cause decomposition of the electrolyte due to overcharging of the battery and has high cycle durability and energy density.

固体電池は、その内部に、正極活物質層、固体電解質層、負極活物質層等が積層されて成る電池用積層体を有する。この電池用積層体は、例えば、加工工程における裁断等による変形が生じること、充放電を繰り返すことによる変形が生じること、使用中の振動等に起因して構造の一部に破損が生じること、等によって、正極活物質層及び負極活物質層が互いに接触して短絡する可能性がある。従って、固体電池中の電池用積層体については、上記の事象が起こった場合でも短絡を抑制することが可能な形状及び構造、並びにその製造方法が検討されている。   The solid battery has a battery laminate in which a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and the like are laminated. For example, the battery laminate may be deformed by cutting or the like in a processing process, may be deformed by repeated charge / discharge, or may be partially damaged due to vibration during use. For example, the positive electrode active material layer and the negative electrode active material layer may contact each other and short-circuit. Therefore, regarding the battery laminate in the solid state battery, a shape and structure capable of suppressing a short circuit even when the above-described event occurs, and a manufacturing method thereof have been studied.

例えば特許文献1には、集電体上に、正極、固体電解質、及び負極の積層体である電池要素を形成した後、該電池要素をレーザーアブレーション等の手段によって切断する工程を含む固体二次電池の製造方法が開示されている。   For example, Patent Document 1 discloses a solid secondary including a step of forming a battery element that is a laminate of a positive electrode, a solid electrolyte, and a negative electrode on a current collector, and then cutting the battery element by means such as laser ablation. A battery manufacturing method is disclosed.

特開2001−015153号公報JP 2001-015153 A

特許文献1の技術は、レーザーアブレーション等の手段により、電池要素を切断して分割し、該分割された一方領域の電池用積層体の短絡の影響を、他の複数の領域の電池要素に及ぼさないことを意図するものである。しかしながら、本発明者らの検討によると、活物質層の除去に単純なレーザーアブレーション法を適用すると、該活物質層の除去に困難を来たす場合がある。更にこの技術は、電池要素自体の短絡を根本的に回避することを意図するものではない。   In the technique of Patent Document 1, the battery element is cut and divided by means such as laser ablation, and the effect of the short circuit of the divided battery stack in one region is exerted on the battery elements in other regions. It is intended not to be. However, according to studies by the present inventors, when a simple laser ablation method is applied to the removal of the active material layer, it may be difficult to remove the active material layer. Furthermore, this technique is not intended to fundamentally avoid short circuiting of the battery element itself.

本発明は、上記の事情に鑑みてなされたものである。従って本発明の目的は、電池要素内の短絡を防止して、電池性能が向上された固体電池の製造方法を提供することである。   The present invention has been made in view of the above circumstances. Accordingly, an object of the present invention is to provide a method for manufacturing a solid state battery with improved battery performance by preventing a short circuit in the battery element.

本発明者らは、以下の手段:
正極活物質層、固体電解質層、及び負極活物質層をこの順に有する電池要素の正極活物質層又は負極活物質層である活物質層の表面に、該活物質層が前記固体電解質層との界面で剥離を生ずる強度のレーザーを照射して前記活物質層と前記固体電解質層との界面で剥離を生じさせる工程と、
前記剥離が生した活物質層を除去する工程と
を含むことを特徴とする、固体電池の製造方法
によって、上記目的を達成できることを見出した。
The inventors have the following means:
A battery element having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order on the surface of the active material layer that is a positive electrode active material layer or a negative electrode active material layer. Irradiating a laser having a strength that causes peeling at the interface to cause peeling at the interface between the active material layer and the solid electrolyte layer;
It has been found that the above object can be achieved by a method for producing a solid state battery, comprising a step of removing the active material layer from which the peeling has occurred.

本発明に従えば、電池要素内の短絡が防止され、向上された電池性能を有する固体電池を簡易な方法で製造することができる。本発明の固体電池の製造方法における活物質層の除去は、除去領域周辺の活物質に盛り上がりを生じずにレーザー照射領域の活物質層を除去することができるものである。   According to the present invention, a short circuit in the battery element is prevented, and a solid battery having improved battery performance can be manufactured by a simple method. The removal of the active material layer in the method for producing a solid battery of the present invention can remove the active material layer in the laser irradiation region without causing the active material around the removal region to rise.

図1(a)はレーザーアブレーション法による活物質層除去後の3次元レーザー顕微鏡像である。図1(b)は図1(a)A−A線の断面の状態を示す概念図である。FIG. 1A is a three-dimensional laser microscope image after removal of the active material layer by the laser ablation method. FIG.1 (b) is a conceptual diagram which shows the state of the cross section of Fig.1 (a) AA. 図2は(a)は本実施形態の方法による活物質層除去後の3次元レーザー顕微鏡像である。図2(b)は図2(a)A−A線の断面の状態を示す概念図である。FIG. 2A is a three-dimensional laser microscope image after the active material layer is removed by the method of this embodiment. FIG. 2B is a conceptual diagram showing a cross-sectional state taken along line AA in FIG. 図3は、本実施形態の方法による活物質層除去の様子を示すSEM像、3次元レーザー顕微鏡像、及び概念図である。図3(a)は処理前の電池要素の断面SEM像であり、図3(b)は活物質層が固体電解質層との界面で剥離を生ずる強度のレーザー照射を行った後の状態(上段は斜視3次元レーザー顕微鏡像、下段は上段図A−A線の断面SEM像)であり、図3(c)は剥離した部分の活物質層の除去を行った後の状態(上段は斜視3次元レーザー顕微鏡像、下段は上段図A−A線の断面概念図)である。FIG. 3 is an SEM image, a three-dimensional laser microscope image, and a conceptual diagram showing how the active material layer is removed by the method of the present embodiment. FIG. 3A is a cross-sectional SEM image of the battery element before processing, and FIG. 3B is a state after the laser irradiation with the intensity that causes the active material layer to peel off at the interface with the solid electrolyte layer (upper stage). Is a perspective three-dimensional laser microscope image, the lower is a cross-sectional SEM image of the upper line AA, and FIG. A two-dimensional laser microscope image, the lower part is a conceptual diagram of a cross section taken along line AA in the upper part). 図4(a)〜(d)は、実施例及び比較例で使用した電極要素の製造工程を説明するための概念図である。FIGS. 4A to 4D are conceptual diagrams for explaining the manufacturing process of the electrode elements used in the examples and comparative examples. 図5(a)〜(f)は、実施例及び比較例における電極要素における正極活物質層除去後の表面状態を示す斜視3次元レーザー顕微鏡像である。FIGS. 5A to 5F are perspective three-dimensional laser microscope images showing the surface state after removal of the positive electrode active material layer in the electrode elements in Examples and Comparative Examples.

以下、本発明の実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

<本実施形態における活物質層の除去>
本実施形態の固体電池の製造方法は、電池要素が有する活物質層の表面にレーザーを照射して前記活物質層と前記固体電解質層との界面で剥離を生じさせる工程と、前記剥離が生した活物質層を除去する工程とを含む。上記の電池要素は正極活物質層、固体電解質層、及び負極活物質層をこの順に有する積層体であり、該電池要素が有する活物質層は、正極活物質層又は負極活物質層である。本実施態様における活物質層の除去について、正極活物質層を除去する場合を例として図3(a)〜(c)に示した。
<Removal of active material layer in this embodiment>
The solid battery manufacturing method of this embodiment includes a step of irradiating a surface of an active material layer of a battery element with a laser to cause peeling at an interface between the active material layer and the solid electrolyte layer, and the peeling occurs. Removing the active material layer. Said battery element is a laminated body which has a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order, and the active material layer which this battery element has is a positive electrode active material layer or a negative electrode active material layer. The removal of the active material layer in this embodiment is shown in FIGS. 3A to 3C as an example in which the positive electrode active material layer is removed.

本実施形態の方法によって除去される活物質層は、正極活物質層及び負極活物質層のどちらでもよい。しかしながら本実施形態における活物質層除去工程を正極活物質層の除去工程として適用することが、本発明の効果をより効果的に発現する観点から好ましい(図3(a))。   The active material layer removed by the method of this embodiment may be either a positive electrode active material layer or a negative electrode active material layer. However, it is preferable to apply the active material layer removal step in the present embodiment as the positive electrode active material layer removal step from the viewpoint of more effectively expressing the effects of the present invention (FIG. 3A).

[レーザー照射]
活物質層に照射するレーザーのエネルギーは、該活物質層が固体電解質層との界面で剥離を生ずる強度に設定する。具体的なエネルギー強度は、当業者による少しの予備実験により、容易に知ることができる。すなわち、照射対象の電気要素の活物質層面に、レーザーをある特定のエネルギー強度にて試験照射し、照射領域の様子を観察する。その観察結果により、当該エネルギー強度が適当であるか否かを確認する。そして、必要に応じてエネルギー強度を変更のうえ再度試験照射を行うことにより、適正な照射エネルギー量を設定することができる。
[Laser irradiation]
The energy of the laser applied to the active material layer is set to a strength at which the active material layer causes peeling at the interface with the solid electrolyte layer. The specific energy intensity can be easily known by a few preliminary experiments by those skilled in the art. That is, the active material layer surface of the electrical element to be irradiated is irradiated with a test beam with a specific energy intensity, and the state of the irradiated region is observed. The observation result confirms whether or not the energy intensity is appropriate. And an appropriate irradiation energy amount can be set by changing energy intensity as needed and performing test irradiation again.

レーザーのエネルギー強度が不足であれば、照射領域の活物質層と固体電解質層との界面に剥離は生じない。エネルギー強度が適正であれば、照射領域の活物質層は、固体電解質層との界面で剥離して空隙を生ずるが、電池要素からは脱落しない(図3(b))。エネルギー強度が過大であれば、照射領域の活物質層の一部が蒸発除去されるが、固体電解質層露出領域と活物質層の残存領域とが斑に混在することとなる場合がある。   If the energy intensity of the laser is insufficient, peeling does not occur at the interface between the active material layer and the solid electrolyte layer in the irradiated region. If the energy intensity is appropriate, the active material layer in the irradiated region peels off at the interface with the solid electrolyte layer to form a void, but does not fall off from the battery element (FIG. 3B). If the energy intensity is excessive, a part of the active material layer in the irradiated region is removed by evaporation, but the exposed region of the solid electrolyte layer and the remaining region of the active material layer may be mixed in spots.

上記レーザー試験照射後の状態の観察は、例えば、走査型電子顕微鏡(SEM)を用いて行う断面観察、3次元レーザー顕微鏡を用いて行う表面形状観察等によって行うことができる。   Observation of the state after the laser test irradiation can be performed by, for example, cross-sectional observation using a scanning electron microscope (SEM) or surface shape observation using a three-dimensional laser microscope.

レーザー照射の際のエネルギー強度として、具体的には例えば、360mJ/mm以上570mJ/mm以下の範囲を例示することができる。 Specific examples of the energy intensity at the time of laser irradiation include a range of 360 mJ / mm 2 or more and 570 mJ / mm 2 or less.

レーザー照射のエネルギー強度が上記の範囲内であれば、本実施形態の所望の効果を発現しつつ、下層(例えば固体電解質層)へのレーザー照射の影響を最小限とすることができる。このとき、上記の適正な範囲のエネルギーを分割してパルス照射することにより、下層への影響を更に低減することも可能である。   If the energy intensity of laser irradiation is within the above range, the effect of laser irradiation on the lower layer (for example, the solid electrolyte layer) can be minimized while expressing the desired effect of the present embodiment. At this time, it is also possible to further reduce the influence on the lower layer by dividing the energy in the appropriate range and performing pulse irradiation.

[活物質層の除去]
本実施形態においては、上記のレーザー照射によって固体電解質層との界面で剥離が生じた照射領域の活物質層を除去し、当該領域の固体電解質層を露出させる(図3(c))。この剥離した活物質層の除去は、当該領域の活物質層に適当な物理力を印加することにより、行うことができる。ここで印加される物理力としては、例えば、ブロー(例えばエアブロー等)、レーザーの追加照射等を挙げることができる。
[Removal of active material layer]
In the present embodiment, the active material layer in the irradiated region where peeling has occurred at the interface with the solid electrolyte layer by the laser irradiation is removed to expose the solid electrolyte layer in the region (FIG. 3C). The removed active material layer can be removed by applying an appropriate physical force to the active material layer in the region. Examples of the physical force applied here include blow (for example, air blow) and additional laser irradiation.

以上のようにして、電極要素から所定領域の活物質層のみを選択的に完全に除去することができるとともに、レーザー照射領域を適切に設定することにより、電極層除去後の正負極間の面積差を最小限に抑えることができる。従って、本実施形態の方法によって所望の領域の活物質層を除去した後の電極要素は、正負極間の短絡が効果的に防止されているとともに、正負極間の面積差に起因するネルギー密度の低下が最小限に抑制された、高効率の固体電池を与えることができる。   As described above, only the active material layer in a predetermined region can be selectively and completely removed from the electrode element, and the area between the positive electrode and the negative electrode after the electrode layer is removed by appropriately setting the laser irradiation region. The difference can be minimized. Therefore, the electrode element after removing the active material layer in a desired region by the method of the present embodiment is effectively prevented from being short-circuited between the positive and negative electrodes, and the energy density due to the area difference between the positive and negative electrodes. It is possible to provide a high-efficiency solid state battery in which the decrease in the temperature is minimized.

<本実施形態における電池要素及び固体電池>
以下、本実施形態に好適に適用される電池要素、及び本実施形態によって所望領域の活物質層が除去された電極要素を用いて得られる固体電池について補足する。
<Battery element and solid state battery in this embodiment>
Hereinafter, supplementary description will be given of the battery element suitably applied to the present embodiment and the solid battery obtained by using the electrode element from which the active material layer in a desired region has been removed according to the present embodiment.

[電池要素]
本実施形態に好適に適用される電池要素の製造方法としては、下記の製造方法を採用することができる:
(1)集電体層の上に活物質スラリー(正極活物質スラリー又は負極活物質スラリー)を塗工した後に、これを乾燥又は仮焼成して活物質層(正極活物質層又は負極活物質層)を得て、次に、該活物質層の上に固体電解質スラリーを塗工し、これを乾燥又は焼成して固体電解質層を得る、ウェット・オン・ドライ方式の製造方法;
(2)活物質スラリーを塗工して活物質スラリー層を形成し、この上に固体電解質スラリーを塗工して固体電解質スラリー層を形成し、これらを乾燥又は焼成して活物質層及び固体電解質層を得る、ウェット・オン・ウェット方式の製造方法;並びに
(3)個別に乾燥又は焼成した正極活物質層、固体電解質層、及び負極活物質層を積層した後に、この積層体をプレスする積層プレス方式の製造方法。
[Battery element]
As a battery element manufacturing method suitably applied to the present embodiment, the following manufacturing method can be adopted:
(1) After applying an active material slurry (positive electrode active material slurry or negative electrode active material slurry) on the current collector layer, the active material layer (positive electrode active material layer or negative electrode active material) is dried or temporarily fired. Layer), and then applying a solid electrolyte slurry on the active material layer, and drying or baking the solid electrolyte slurry to obtain a solid electrolyte layer; a wet-on-dry manufacturing method;
(2) An active material slurry is applied to form an active material slurry layer, a solid electrolyte slurry is applied thereon to form a solid electrolyte slurry layer, and these are dried or fired to obtain an active material layer and a solid A wet-on-wet manufacturing method for obtaining an electrolyte layer; and (3) After individually drying or firing a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, the laminate is pressed. A manufacturing method using a laminated press system.

上記の方法において使用される活物質スラリーは、正極活物質又は負極活物質と、溶媒とを含み、更にバインダー、導電助剤等を含有することができる他、後述の固体電解質を更に含有していてもよい。   The active material slurry used in the above method contains a positive electrode active material or a negative electrode active material and a solvent, and can further contain a binder, a conductive auxiliary agent, etc., and further contains a solid electrolyte described later. May be.

正極活物質としては、リチウム二次電池の正極活物質材料として用いられる材料であれば限定されない。具体的には例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、Li1+xNi1/3Mn1/3Co1/3(xは−0.05以上0.50以下の数である。)、マンガン酸リチウム(LiMn)、Li1+xMn1−x−y(MはAl、Mg、Co、Fe、Ni,及びZnから選択される1種以上であり、xは0.00以上1.00以下の数であり、yは0.00以上1.00以下の数である。)、チタン酸リチウム(LiTiO、xは0.50以上2.00以下の数であり、yは2.00以上3.00以下の数である。)、リン酸金属リチウム(LiMPO、MはFe、Mn、Co、又はNiである。)等を挙げることができる。 The positive electrode active material is not limited as long as it is a material used as a positive electrode active material of a lithium secondary battery. Specifically, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 (x is −0.05 or more and 0.50 or less. Lithium manganate (LiMn 2 O 4 ), Li 1 + x Mn 1-xy M y O 4 (M is one selected from Al, Mg, Co, Fe, Ni, and Zn) X is a number from 0.00 to 1.00, y is a number from 0.00 to 1.00), lithium titanate (Li x TiO y , x is 0.50) The number is from 2.00 to 2.00, and y is a number from 2.00 to 3.00.), Lithium metal phosphate (LiMPO 4 , M is Fe, Mn, Co, or Ni), etc. Can be mentioned.

負極活物質としては、グラファイト、ハードカーボン等の炭素材料の他;Si、Si合金等を使用することができる。   As the negative electrode active material, other than carbon materials such as graphite and hard carbon; Si, Si alloy and the like can be used.

バインダーとしては、例えば、ブチレンゴム(BR)、ポリフッ化ビニリデン(PVdF)、スチレン−ブタジエンゴム(SBR)等を使用することができる。   As the binder, for example, butylene rubber (BR), polyvinylidene fluoride (PVdF), styrene-butadiene rubber (SBR), or the like can be used.

導電助剤としては、例えば、カーボンナノファイバー(CNF)、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)等を使用することができる。上記CNFの市販品としては、例えば、昭和電工(株)製のVGCF等が好適である。   As the conductive assistant, for example, carbon nanofiber (CNF), acetylene black (AB), ketjen black (KB), carbon nanotube (CNT) and the like can be used. As a commercial item of the CNF, for example, VGCF manufactured by Showa Denko KK is suitable.

上記の方法において使用される固体電解質スラリーは、固体電解質及び溶媒を含み、好ましくは更にバインダーを含む。   The solid electrolyte slurry used in the above method contains a solid electrolyte and a solvent, and preferably further contains a binder.

上記固体電解質としては、酸化物系非晶質固体電解質、硫化物系非晶質固体電解質、ハロゲン系固体電解質、結晶質酸化物又は酸窒化物系固体電解質、ガラスセラミックス系固体電解質、硫化物系結晶質固体電解質等が使用できる。   Examples of the solid electrolyte include oxide-based amorphous solid electrolyte, sulfide-based amorphous solid electrolyte, halogen-based solid electrolyte, crystalline oxide or oxynitride-based solid electrolyte, glass ceramic-based solid electrolyte, and sulfide-based electrolyte A crystalline solid electrolyte or the like can be used.

これらの具体例は以下のとおりである:
酸化物系非晶質固体電解質として、例えば、LiO−B−P、LiO−SiO等を;
硫化物系非晶質固体電解質として、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiS−P、LiI−LiPO−P、LiS−P等を;
ハロゲン系固体電解質として、例えば、LiI等を;
結晶質酸化物又は酸窒化物系固体電解質として、例えば、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、Li−PO(4−(3/2)w)(wは0を超え1未満の数である。)、Li3.6Si0.60.4等を;
ガラスセラミックス系固体電解質として、例えば、Li7P3S11、Li3.250.75等を;
硫化物系結晶質固体電解質として、例えば、Li3.240.24Ge0.76等を;
それぞれ挙げることができる。
Specific examples of these are as follows:
Examples of the oxide-based amorphous solid electrolyte include LiO 2 —B 2 O 3 —P 2 O 5 and Li 2 O—SiO 2 ;
Examples of sulfide-based amorphous solid electrolytes include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—Li 2 S—P 2 O 5 , LiI-Li 3 PO 4 and -P 2 S 5, Li 2 S -P 2 O 5 and the like;
Examples of the halogen-based solid electrolyte include LiI and the like;
Examples of the crystalline oxide or oxynitride solid electrolyte include Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , and Li 3 —PO. (4- (3/2) w) N w (w is a number greater than 0 and less than 1), Li 3.6 Si 0.6 P 0.4 O 4 and the like;
As a glass ceramic-based solid electrolyte, for example, the Li7P3S11, Li 3.25 P 0.75 S 4, and the like;
Examples of sulfide-based crystalline solid electrolytes include Li 3.24 P 0.24 Ge 0.76 S 4 ;
Each can be mentioned.

固体電解質スラリーに含有できるバインダーについては、活物質スラリーにおけるバインダーとして上記したところと同様である。   The binder that can be contained in the solid electrolyte slurry is the same as that described above as the binder in the active material slurry.

[固体電池]
本実施形態による固体電池は、上記の方法によって所定領域の活物質層のみが選択的に完全除去された電極要素を用いる他は、公知の方法又はこれに当業者による適宜の変更を加えた方法により、製造することができる。このような本実施形態の固体電池は、短絡の危険が抑制され、且つエネルギー密度が高いものである。
[Solid battery]
The solid state battery according to the present embodiment is a known method or a method in which appropriate changes are made by those skilled in the art, except that the electrode element in which only the active material layer in a predetermined region is selectively removed by the above method is used. Can be manufactured. Such a solid battery of this embodiment has a high energy density with reduced risk of short circuit.

<正極積層体の作製>
ポリプロピレン製の容器中に、酪酸ブチル、ポリフッ化ビニリデン系バインダーの5質量%酪酸ブチル溶液、正極活物質としてLiNi1/1/1/3(平均粒径4μm)、固体電解質としてLiIを含むLiS−P系ガラスセラミックス(平均粒径0.8μm)、及び導電助剤としてVGCF(商品名、昭和電工(株)製のカーボンナノファイバー)を仕込み、(株)エスエムテー製の超音波分散装置「UH−50」を用いて30秒間攪拌した。次いで、容器を、柴田科学(株)製の振とう機「TTM−1」を用いて3分間浸透した後、上記の超音波分散装置により更に30秒間撹拌して、正極合剤を調製した。
<Preparation of positive electrode laminate>
In a polypropylene container, butyl butyrate, a 5% by weight butyl butyrate solution of a polyvinylidene fluoride binder, LiNi 1/1/1/3 O 2 (average particle size 4 μm) as a positive electrode active material, and LiI as a solid electrolyte Li 2 S—P 2 S 5 series glass ceramics (average particle size 0.8 μm) and VGCF (trade name, carbon nanofibers manufactured by Showa Denko KK) as a conductive additive were prepared, and manufactured by SMT Co., Ltd. The mixture was stirred for 30 seconds using an ultrasonic dispersion apparatus “UH-50”. Next, the container was infiltrated for 3 minutes using a shaker “TTM-1” manufactured by Shibata Kagaku Co., Ltd., and then stirred for 30 seconds with the above-described ultrasonic dispersion device to prepare a positive electrode mixture.

上記の正極合剤を振とう機で3分間振とうした後、剥離シート(アルミニウム箔)上に、アプリケーターを使用してブレード法により該正極合剤を塗工し、100℃のホットプレート上で30分間乾燥させることにより、剥離シート上に正極活物質層を有する正極積層体を作製した。   After shaking the positive electrode mixture for 3 minutes with a shaker, the positive electrode mixture is applied onto a release sheet (aluminum foil) by a blade method using an applicator and heated on a 100 ° C. hot plate. By drying for 30 minutes, a positive electrode laminate having a positive electrode active material layer on a release sheet was produced.

<負極積層体の作製>
ポリプロピレン製の容器中に、酪酸ブチル、ポリフッ化ビニリデン系バインダーの5質量%酪酸ブチル溶液、負極活物質として天然黒鉛系カーボン(三菱化学(株)製、平均粒径10μm)、及び固体電解質としてLiIを含むLiS−P系ガラスセラミックス(平均粒径1.5μm)を仕込み、(株)エスエムテー製の超音波分散装置「UH−50」を用いて30秒間攪拌した。次いで、容器を、柴田科学(株)製の振とう機「TTM−1」を用いて3分間浸透した後、上記の超音波分散装置により更に30分間撹拌して、負極合剤を調製した。
<Preparation of negative electrode laminate>
In a polypropylene container, butyl butyrate, a 5% by weight butyl butyrate solution of polyvinylidene fluoride binder, natural graphite carbon (Mitsubishi Chemical Corporation, average particle size 10 μm) as the negative electrode active material, and LiI as the solid electrolyte Li 2 S—P 2 S 5 -based glass ceramics (average particle size 1.5 μm) was prepared, and stirred for 30 seconds using an ultrasonic dispersion device “UH-50” manufactured by SMT Co., Ltd. Next, the container was infiltrated for 3 minutes using a shaker “TTM-1” manufactured by Shibata Kagaku Co., Ltd., and then stirred for 30 minutes with the above ultrasonic dispersing device to prepare a negative electrode mixture.

負極集電体としての銅箔上に、アプリケーターを使用してブレード法により上記負極合剤を塗工し、100℃のホットプレート上で30分間乾燥させた。銅箔の反対面にも上記負極合剤を同様に塗工及び乾燥することにより、負極集電体層上に負極活物質層を有する負極積層体を作製した。   On the copper foil as a negative electrode collector, the said negative mix was apply | coated by the blade method using the applicator, and it was made to dry for 30 minutes on a 100 degreeC hotplate. The negative electrode mixture having the negative electrode active material layer on the negative electrode current collector layer was prepared by similarly coating and drying the negative electrode mixture on the opposite surface of the copper foil.

<固体電解質層の形成>
ポリプロピレン製の容器中に、酪酸ブチル、ポリフッ化ビニリデン系バインダーの5質量%酪酸ブチル溶液、及び固体電解質としてLiIを含むLiS−P系ガラスセラミックス(平均粒径2.0μm)を仕込み、(株)エスエムテー製の超音波分散装置「UH−50」を用いて30秒間攪拌した。次いで、容器を、柴田科学(株)製の振とう機「TTM−1」を用いて30分間浸透して、固体電解質ペーストを調製した。
<Formation of solid electrolyte layer>
In a polypropylene container, butyl butyrate, a 5 mass% butyl butyrate solution of a polyvinylidene fluoride binder, and Li 2 S—P 2 S 5 glass ceramics (average particle size 2.0 μm) containing LiI as a solid electrolyte. The mixture was stirred for 30 seconds using an ultrasonic dispersion apparatus “UH-50” manufactured by SMT Co., Ltd. Subsequently, the container was infiltrated for 30 minutes using a shaker “TTM-1” manufactured by Shibata Kagaku Co., Ltd. to prepare a solid electrolyte paste.

剥離シート(アルミニウム箔)上に、アプリケーターを使用してブレード法により上記の固体電解質ペーストを塗工し、100℃のホットプレート上で30分間乾燥させることにより、剥離シート上に固体電解質層を有する積層体(固体電解質積層体)を作製した。   On the release sheet (aluminum foil), the above-mentioned solid electrolyte paste is applied by a blade method using an applicator and dried on a hot plate at 100 ° C. for 30 minutes to have a solid electrolyte layer on the release sheet. A laminate (solid electrolyte laminate) was produced.

<電極要素の製造>
上記で得た負極積層体の両面に、上記の固体電解質積層体の固体電解質層面をそれぞれ接触させて積層し、400MPaの圧力にてプレスした(図4(a))。その後、固体電解質層上の剥離シートを剥離して、固体電解質層、負極活物質層、負極集電体層、負極活物質層、及び固体電解質層がこの順に積層された5層積層体を得た。
<Manufacture of electrode elements>
The solid electrolyte layer surface of the solid electrolyte laminate was laminated on both sides of the negative electrode laminate obtained above, and pressed at a pressure of 400 MPa (FIG. 4A). Thereafter, the release sheet on the solid electrolyte layer is peeled off to obtain a five-layer laminate in which the solid electrolyte layer, the negative electrode active material layer, the negative electrode current collector layer, the negative electrode active material layer, and the solid electrolyte layer are laminated in this order. It was.

上記5層積層体の両面に、更に、固体電解質積層体の固体電解質層面をそれぞれ接触させて積層し、1400MPaの圧力にてプレスした(図4(b))。その後、固体電解質層上の剥離シートを剥離して、固体電解質層(2層体)、負極活物質層、負極集電体層、負極活物質層、及び固体電解質層(2層体)がこの順に積層された7層積層体を得た。   The solid electrolyte layer surface of the solid electrolyte laminate was further brought into contact with both surfaces of the five-layer laminate, and pressed at a pressure of 1400 MPa (FIG. 4B). Thereafter, the release sheet on the solid electrolyte layer is peeled off, and the solid electrolyte layer (two-layer body), the negative electrode active material layer, the negative electrode current collector layer, the negative electrode active material layer, and the solid electrolyte layer (two-layer body) A seven-layer laminate was sequentially laminated.

上記7層積層体の両面に、上記で得た正極積層体の正極活物質層面をそれぞれ接触させて積層し、400MPaの圧力にてプレスした(図4(c))。その後、正極活物質層上の剥離シートを剥離することにより、正極活物質層、固体電解質層(2層体)、負極活物質層、負極集電体層、負極活物質層、固体電解質層(2層体)、及び正極活物質層がこの順に積層された9層積層体である電極要素を製造した(図4(d))。   The positive electrode active material layer surface of the positive electrode laminate obtained above was laminated on both surfaces of the seven-layer laminate, and pressed at a pressure of 400 MPa (FIG. 4C). Thereafter, the release sheet on the positive electrode active material layer is peeled off, whereby a positive electrode active material layer, a solid electrolyte layer (two-layer body), a negative electrode active material layer, a negative electrode current collector layer, a negative electrode active material layer, a solid electrolyte layer ( A two-layer body) and an electrode element that was a nine-layer stack body in which the positive electrode active material layers were stacked in this order were manufactured (FIG. 4D).

<比較例1>
上記の電極要素の正極活物質層面の一部の領域に、照射エネルギー330mJ/mmにてレーザー照射を行った後、レーザー照射領域に物理力としてエアブローを施した。しかし、このレーザー照射によっては、照射領域の正極活物質層と、下層の固体電解質層との間で剥離は生じず、従って物理力印加によっても照射領域の正極活物質層を除去することはできなかった。レーザー照射エネルギーの不足と考えられる。レーザー照射後の斜視3次元レーザー顕微鏡像を図5(a)に示した。
<Comparative Example 1>
Laser irradiation was performed on a part of the positive electrode active material layer surface of the electrode element with an irradiation energy of 330 mJ / mm 2 , and then air blow was applied to the laser irradiation area as a physical force. However, this laser irradiation does not cause separation between the positive electrode active material layer in the irradiation region and the lower solid electrolyte layer, and therefore the positive electrode active material layer in the irradiation region cannot be removed even by applying physical force. There wasn't. It is thought that the laser irradiation energy is insufficient. A perspective three-dimensional laser microscope image after laser irradiation is shown in FIG.

<実施例1〜3、並びに比較例2及び3>
レーザーの照射エネルギーをそれぞれ表1に記載のとおりとした他は上記比較例1と同様にして、正極活物質層の除去操作を行った。試験結果を表1に、試験後の斜視3次元レーザー顕微鏡像を図5(b)〜(f)に、それぞれ示した。
<Examples 1-3 and Comparative Examples 2 and 3>
The positive electrode active material layer was removed in the same manner as in Comparative Example 1 except that the laser irradiation energy was set as shown in Table 1. The test results are shown in Table 1, and the perspective three-dimensional laser microscope images after the test are shown in FIGS.

表1及び図5(a)〜(f)から理解されるように、活物質層と固体電解質層との間に剥離を生じさせて当該領域の活物質層を完全除去するために照射するレーザーのエネルギーは、360mJmm以上570mJ/mm以下の範囲が適当であることが検証された。照射エネルギーがこの範囲よりも小さく、例えば330mJ/mmであると、照射領域の活物質層に剥離は生じなかった。一方で、照射エネルギーがこの範囲よりも大きく、例えば600mJ/mm以上である場合には、照射領域の活物質層を完全に除去することはできず、活物質層の一部が残存した。 As can be understood from Table 1 and FIGS. 5A to 5F, the laser is irradiated to cause separation between the active material layer and the solid electrolyte layer to completely remove the active material layer in the region. It was verified that the range of 360 mJmm 2 to 570 mJ / mm 2 is appropriate. When the irradiation energy was smaller than this range, for example, 330 mJ / mm 2 , no peeling occurred in the active material layer in the irradiation region. On the other hand, when the irradiation energy is larger than this range, for example, 600 mJ / mm 2 or more, the active material layer in the irradiation region cannot be completely removed, and a part of the active material layer remains.

以上の結果から、以下のことが理解される。   From the above results, the following can be understood.

レーザー照射を用いる活物質層の除去としては、レーザーアブレーション法が考えらえる。この方法は、レーザー照射領域の活物質層を一気に加熱して気化させることによって除去する方法である。しかしながら、活物質層の除去にこのレーザーアブレーション法を単純にそのまま適用すると、レーザー照射領域の周辺部においては照射エネルギーが弱いため、該周辺部の活物質層は、溶融はするものの気化には至らず、盛り上がった状態で再固化すると思われる。更に、レーザー照射の中心付近の領域においても、気化に至らない活物質層の残滓が残留する。   As the removal of the active material layer using laser irradiation, a laser ablation method can be considered. This method is a method of removing the active material layer in the laser irradiation region by heating it at once and vaporizing it. However, if this laser ablation method is simply applied to the removal of the active material layer as it is, the irradiation energy is weak in the peripheral part of the laser irradiation region, so that the active material layer in the peripheral part melts but does not vaporize. It seems to resolidify in a raised state. Further, a residue of the active material layer that does not evaporate remains in the region near the center of laser irradiation.

上記の状態について、正極活物質層を除去する場合を例として図1に示した。図1(a)はレーザーアブレーション法による活物質層除去後の3次元レーザー顕微鏡像であり、図1(b)は図1(a)A−A線の断面の状態を示す概念図である。   FIG. 1 shows an example in which the positive electrode active material layer is removed in the above state. FIG. 1A is a three-dimensional laser microscope image after removal of the active material layer by the laser ablation method, and FIG. 1B is a conceptual diagram showing a cross-sectional state taken along line AA in FIG.

本発明は、上記のレーザーアブレーション法の単純適用における問題点を解決し、レーザー照射領域における活物質層を、端部の盛り上がりを伴わずに除去する方法を含む、固体電池の製造方法を提供するものである。   The present invention provides a method for manufacturing a solid state battery, including a method for solving the problems in the simple application of the laser ablation method described above, and including a method for removing an active material layer in a laser irradiation region without bulging an end portion. Is.

本発明における上記実施形態の方法によって正極活物質層を除去した後の状態の一例を図2に示した。図2(a)は本実施形態の方法による活物質層除去後の3次元レーザー顕微鏡像であり、図2(b)は図2(a)A−A線の断面の状態を示す概念図である。図2から、本実施形態の方法によって、レーザー照射領域における活物質層を端部の盛り上がりを伴わずに完全に除去し得ることが理解される。   An example of the state after removing the positive electrode active material layer by the method of the above embodiment of the present invention is shown in FIG. FIG. 2A is a three-dimensional laser microscope image after the active material layer is removed by the method of this embodiment, and FIG. 2B is a conceptual diagram showing a cross-sectional state taken along line AA in FIG. is there. From FIG. 2, it is understood that the active material layer in the laser irradiation region can be completely removed without the rise of the end by the method of the present embodiment.

Claims (1)

正極活物質層、固体電解質層、及び負極活物質層をこの順に有する電池要素の正極活物質層又は負極活物質層である活物質層の表面に、該活物質層が前記固体電解質層との界面で剥離を生ずる強度のレーザーを照射して前記活物質層と前記固体電解質層との界面で剥離を生じさせる工程と、
前記剥離が生した活物質層を除去する工程と
を含むことを特徴とする、固体電池の製造方法。
A battery element having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer in this order on the surface of the active material layer that is a positive electrode active material layer or a negative electrode active material layer. Irradiating a laser having a strength that causes peeling at the interface to cause peeling at the interface between the active material layer and the solid electrolyte layer;
And a step of removing the active material layer from which the peeling has occurred.
JP2016094825A 2016-05-10 2016-05-10 Solid-state battery manufacturing method Active JP6683001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016094825A JP6683001B2 (en) 2016-05-10 2016-05-10 Solid-state battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094825A JP6683001B2 (en) 2016-05-10 2016-05-10 Solid-state battery manufacturing method

Publications (3)

Publication Number Publication Date
JP2017204365A true JP2017204365A (en) 2017-11-16
JP2017204365A5 JP2017204365A5 (en) 2018-07-12
JP6683001B2 JP6683001B2 (en) 2020-04-15

Family

ID=60321470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094825A Active JP6683001B2 (en) 2016-05-10 2016-05-10 Solid-state battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6683001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133764A (en) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 Inspection method of laminate for all-solid battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149911A (en) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd Removal method and device for active material of battery electrode plate
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2011243577A (en) * 2010-05-18 2011-12-01 Robert Bosch Gmbh Manufacturing method of thin film battery and thin film battery
WO2013035519A1 (en) * 2011-09-09 2013-03-14 株式会社 村田製作所 All solid-state battery and method of manufacturing same
JP2016505384A (en) * 2013-11-01 2016-02-25 エルジー・ケム・リミテッド Cathode cutting device using laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149911A (en) * 1998-11-05 2000-05-30 Matsushita Electric Ind Co Ltd Removal method and device for active material of battery electrode plate
JP2001015153A (en) * 1999-06-29 2001-01-19 Kyocera Corp Fully solid secondary battery and its manufacture
JP2011243577A (en) * 2010-05-18 2011-12-01 Robert Bosch Gmbh Manufacturing method of thin film battery and thin film battery
WO2013035519A1 (en) * 2011-09-09 2013-03-14 株式会社 村田製作所 All solid-state battery and method of manufacturing same
JP2016505384A (en) * 2013-11-01 2016-02-25 エルジー・ケム・リミテッド Cathode cutting device using laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019133764A (en) * 2018-01-29 2019-08-08 トヨタ自動車株式会社 Inspection method of laminate for all-solid battery

Also Published As

Publication number Publication date
JP6683001B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6287946B2 (en) Method for producing battery laminate
JP6380254B2 (en) Manufacturing method of all solid state battery
JP6175934B2 (en) Manufacturing method of all solid state battery
JP6233372B2 (en) Manufacturing method of all solid state battery
JP6409794B2 (en) Method for producing positive electrode mixture, method for producing positive electrode, and method for producing all solid lithium ion secondary battery
JP6264350B2 (en) Electrode laminate and method for producing all solid state battery
JP6296030B2 (en) Electrode laminate and method for producing all solid state battery
JP6256742B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2014127417A (en) Method for collecting and reusing negative electrode active material of lithium ion battery
JP2019212590A (en) Laminated battery
JP2012033426A (en) Method of manufacturing electrode
JP7010177B2 (en) Manufacturing method of positive electrode layer
JP2015153647A (en) Method for manufacturing solid battery
JP6683001B2 (en) Solid-state battery manufacturing method
JP7156263B2 (en) ALL-SOLID BATTERY AND METHOD FOR MANUFACTURING ALL-SOLID BATTERY
JP6766596B2 (en) Method for manufacturing electrodes for lithium-ion secondary batteries
JP7070329B2 (en) Manufacturing method of all-solid-state battery
JP6954250B2 (en) Method for producing composite active material particles
JP6958342B2 (en) Manufacturing method of laminated electrode body
JP6904164B2 (en) Manufacturing method of all-solid-state battery
JP2021077591A (en) All-solid battery manufacturing method and all-solid battery
JP6251974B2 (en) Battery manufacturing method
JP5325326B2 (en) Current collector, electrode, secondary battery, and method of manufacturing secondary battery
JP7226359B2 (en) Negative electrode for all-solid-state battery
JP6981378B2 (en) Manufacturing method of all-solid-state battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R151 Written notification of patent or utility model registration

Ref document number: 6683001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151