WO2013035357A1 - Continuity inspection apparatus and continuity inspection method - Google Patents

Continuity inspection apparatus and continuity inspection method Download PDF

Info

Publication number
WO2013035357A1
WO2013035357A1 PCT/JP2012/055068 JP2012055068W WO2013035357A1 WO 2013035357 A1 WO2013035357 A1 WO 2013035357A1 JP 2012055068 W JP2012055068 W JP 2012055068W WO 2013035357 A1 WO2013035357 A1 WO 2013035357A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
value
inductance
inductance value
continuity
Prior art date
Application number
PCT/JP2012/055068
Other languages
French (fr)
Japanese (ja)
Inventor
高野 祥司
松田 文彦
Original Assignee
日本メクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メクトロン株式会社 filed Critical 日本メクトロン株式会社
Priority to CN201280002956.4A priority Critical patent/CN103097901B/en
Publication of WO2013035357A1 publication Critical patent/WO2013035357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2805Bare printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints

Definitions

  • the present invention relates to a continuity inspection apparatus and a continuity inspection method, and more particularly, to a continuity inspection apparatus and a continuity inspection method of a multiple wiring pattern provided on a printed wiring board.
  • Patent Document 1 It is known that there are mainly a pin contact method and a non-contact method as a method of continuity check of a wiring pattern provided on a printed wiring board (Patent Document 1).
  • probe pins are brought into direct contact with both ends of a wiring pattern of a printed wiring board to be inspected, and a current is supplied to one of the probe pins. Then, the continuity check of the wiring pattern is performed by obtaining the DC resistance value of the wiring pattern from the voltage value detected by the other probe pin (see paragraphs [0002] and [0003] of Patent Document 1).
  • the probe pin is brought into direct contact with one end of the wiring pattern of the printed wiring board to be inspected to apply an inspection signal including an AC component, and the other end is non-contact Conductivity inspection of the wiring pattern is performed by detecting a signal (see paragraph [0004] of Patent Document 1).
  • the multiple wiring pattern refers to a wiring pattern having a first terminal and a second terminal, and having a plurality of wirings electrically connecting the first and second terminals.
  • the multiple wiring pattern is used, for example, for the purpose of reducing the impedance of a circuit, or for the purpose of dispersing a large current into a plurality of wires to reduce the current flowing through one wire.
  • FIG. 7 shows a configuration example of the multiple wiring pattern.
  • FIG. 7A is a top view of the double-sided printed wiring board 51 provided with the multiple wiring pattern
  • FIG. 7B is a cross-sectional view taken along the line A-A 'of FIG. 7A.
  • Conductor patterns 53A and 53B are formed on the front and back surfaces of the insulating substrate 52, respectively. As shown in FIG. 7A, the conductor pattern 53B is formed thicker than the conductor pattern 53A.
  • the conductor pattern 53A has a wire 54, and terminals 55 and 56 at both ends of the wire 54.
  • the conductor pattern 53 ⁇ / b> B has a wire 57 and terminals 58 and 59 at both ends of the wire 57.
  • the terminal 55 and the terminal 58 are electrically connected by the through via 60
  • the terminal 56 and the terminal 59 are electrically connected by the through via 61.
  • the double-sided printed wiring board 51 is provided with a multiplex wiring pattern having two wires.
  • a first wiring and a second wiring which have a terminal 55 as a first terminal and a terminal 56 as a second terminal and which electrically connect the first terminal and the second terminal are used.
  • the first wiring is the wiring 54
  • the second wiring is composed of the conductor pattern 53B, the through via 60, and the through via 61.
  • the resistance of the second wiring is larger than the resistance of the first wiring because the resistance due to the through vias 60 and 61 is present in addition to the conductive pattern 53B being thinner than the conductive pattern 53A. For this reason, when the continuity test is performed by the pin contact method, it may not be possible to detect that the first wire having a resistance value lower than that of the second wire is broken due to the dimensional variation of each element constituting the wire. There is.
  • the present invention has been made based on the above recognition, and it is an object of the present invention to provide a continuity inspection apparatus and a continuity inspection method capable of reliably and inexpensively detecting the occurrence of disconnection in a multiple wiring pattern. To aim.
  • a continuity test is performed on a multiple wiring pattern having a first terminal and a second terminal, and having a plurality of wires electrically connecting the first and second terminals.
  • an inductance measurement unit for measuring an inductance value between the first terminal and the second terminal is compared with the inductance value and a threshold for conduction determination, and the inductance value is determined as the conduction.
  • a continuity determining unit that determines that disconnection is occurring in the multiple wiring pattern if the threshold value is larger than the threshold value, and determines that no disconnection occurs otherwise.
  • a continuity test is performed on a multiple wiring pattern having a first terminal and a second terminal and having a plurality of wires electrically connecting the first and second terminals.
  • an inductance value between the first terminal and the second terminal is measured, the inductance value is compared with a threshold for conduction determination, and the inductance value is higher than the threshold for conduction determination. If the value is larger, it is determined that the disconnection occurs in the multiple wiring pattern, and if not, it is determined that the disconnection does not occur.
  • occurrence of disconnection in the multiple wiring pattern can be detected reliably and inexpensively.
  • FIG. 1 is a block diagram showing a schematic configuration of a continuity inspection device according to a first embodiment of the present invention. It is a figure which shows the structure of the inductance measurement part by a 4 terminal pair method. It is a graph which shows the range of the inductance value of a multiplex wiring pattern when the dimensional variation of wiring is considered. It is a figure which shows the measurement result of the inductance value of a multiple wiring pattern. It is a block diagram which shows schematic structure of the continuity test apparatus which concerns on the 2nd Embodiment of this invention. It is a flow chart which shows the continuity inspection method concerning a 2nd embodiment.
  • (A) is a top view which shows the structural example of the multiple wiring pattern provided in the double-sided printed wiring board
  • (b) is sectional drawing which follows the A-A 'line
  • FIG. 1 is a block diagram showing a schematic configuration of the continuity inspection device 100 according to the first embodiment.
  • the continuity inspection apparatus 100 includes an inductance measurement unit 110, a continuity determination unit 120, a storage unit 130, and a display unit 140.
  • the inductance measuring unit 110 measures an inductance value between the first terminal and the second terminal of the multiple wiring pattern.
  • a measuring method a two-terminal method or a four-terminal method may be mentioned, but a four-terminal pair method capable of reducing the influence of the magnetic flux generated by the measuring current is preferable. The measurement of the inductance value by the four-terminal pair method will be described later with reference to FIG.
  • the conduction determination unit 120 compares the inductance value measured by the inductance measurement unit 110 with a predetermined determination threshold (threshold for conduction determination). As a result, if the inductance value is larger than the conduction determination threshold value, the conduction determination unit 120 determines that a disconnection occurs in the multiple wiring pattern, and otherwise determines that a disconnection does not occur.
  • a predetermined determination threshold threshold for conduction determination
  • the threshold value for conduction determination is smaller than the inductance value (disconnected inductance value) between the first terminal and the second terminal when disconnection occurs in the multiple wiring pattern, and when disconnection does not occur.
  • a value larger than the inductance value (non-breaking inductance value) between the first terminal and the second terminal is used.
  • the disconnection inductance value is the lower limit of the range in which the inductance value at the time of disconnection can be taken due to the dimensional variation of the multiple wiring pattern
  • the non-breaking inductance value is the inductance at the non-disconnection due to the dimensional variation of the multiple wiring pattern. This is the upper limit of the range of values that can be taken.
  • the storage unit 130 is, for example, a non-volatile memory such as a hard disk (HDD) or a flash memory, and stores the above-described threshold for conduction determination and the like.
  • the conduction determination unit 120 reads the conduction determination threshold from the storage unit 130, and compares the inductance value measured by the inductance measurement unit 110 (or the resistance value measured by the resistance measurement unit 150 described later) with the conduction determination threshold. Do.
  • the display unit 140 is, for example, a liquid crystal display or a printer, and displays the determination result by the conduction determination unit 120.
  • FIG. 2 shows an inductance meter 16 constituting the inductance measurement unit 110, Kelvin probes 12 and 13, coaxial cables 21 to 24, and a double-sided printed wiring board 1 to be inspected.
  • Conductor patterns 3A and 3B are formed on the front and back surfaces of the insulating substrate 2, respectively.
  • the conductor pattern 3A has a wire 4 and terminals 5 and 6 at both ends of the wire 4.
  • the conductor pattern 3B has a wire 7 and terminals 8 and 9 at both ends of the wire 7.
  • the terminals 5 and 8 are electrically connected by the through vias 10, and similarly, the terminals 6 and 9 are electrically connected by the through vias 11.
  • the double-sided printed wiring board 1 has the terminal 5 as the first terminal and the terminal 6 as the second terminal, and electrically connects the first terminal and the second terminal. It has two wires (a first wire and a second wire).
  • the first wiring is the wiring 4
  • the second wiring is the wiring composed of the conductor pattern 3 B, the through via 10, and the through via 11.
  • the number of wires of the multiplex wiring pattern to be inspected in the present invention is not limited to two, and may be three or more. Further, the plurality of wires constituting the multiple wiring pattern may be branched not only in the case of branching in the vertical direction (thickness direction) of the printed wiring board as shown in FIG. 2, but may be branched in the horizontal direction It is optional.
  • the inductance meter 16 comprises an alternating current signal source 17 for passing an alternating current for measurement to the terminal 5 of the multiple wiring pattern, an alternating current ammeter 18 for measuring the alternating current flowing out from the terminal 6, and a voltage between the terminal 5 and the terminal 6 And an AC voltmeter 19 for measuring
  • the Kelvin probe 12 when measuring the inductance, the Kelvin probe 12 is brought into contact with the terminal 5 and the Kelvin probe 13 is brought into contact with the terminal 6.
  • the Kelvin probe 12 has probe pins 12a and 12b, and the Kelvin probe 13 has probe pins 13a and 13b.
  • the inductance meter 16 has four terminals Hc, Hp, Lc and Lp.
  • the Hc terminal is electrically connected to the terminal 5 via the coaxial cable 21 and the probe pin 12 a of the Kelvin probe 12.
  • the Hp terminal is electrically connected to the terminal 5 via the coaxial cable 23 and the probe pin 12 b of the Kelvin probe 12.
  • the Lc terminal is electrically connected to the terminal 6 via the coaxial cable 22 and the probe pin 13 b of the Kelvin probe 13.
  • the Lp terminal is electrically connected to the terminal 6 via the coaxial cable 24 and the probe pin 13 a of the Kelvin probe 13.
  • the outer conductors 21 b to 24 b of the coaxial cables 21 to 24 are electrically connected to each other by a conductor 25.
  • the coaxial cable 21 has a center conductor 21 a electrically connected to the output terminal of the AC signal source 17 and an outer conductor 21 b electrically connected to the input terminal of the AC signal source 17.
  • the coaxial cable 22 has a center conductor 22 a electrically connected to the input terminal of the alternating current ammeter 18 and an outer conductor 22 b electrically connected to the output terminal of the alternating current ammeter 18.
  • the coaxial cable 23 has a center conductor 23 a electrically connected to one terminal of the AC voltmeter 19 and an outer conductor 23 b electrically connected to the outer conductor 21 b of the coaxial cable 21.
  • the coaxial cable 24 has a central conductor 24a electrically connected to the other terminal of the AC voltmeter 19, and an outer conductor 24b electrically connected to the outer conductor 22b of the coaxial cable 22 and the outer conductor 23b of the coaxial cable 23. And.
  • the probe pin 12 a is electrically connected to the center conductor 21 a of the coaxial cable 21.
  • the probe pin 12 b is electrically connected to the central conductor 23 a of the coaxial cable 23.
  • the probe pin 13 a is electrically connected to the center conductor 24 a of the coaxial cable 24.
  • the probe pin 13 b is electrically connected to the central conductor 22 a of the coaxial cable 22.
  • the Hc terminal is connected to the AC signal source 17, and applies an AC signal to the terminal 5 through the probe pin 12a.
  • the alternating current signal applied to the terminal 5 passes through the multiple wiring pattern, and is input to the alternating current ammeter 18 from the terminal 6 through the probe pin 13 b and the Lc terminal.
  • the return current output from the AC ammeter 18 passes through the outer conductors (shield portions) 21b to 24b of the coaxial cables 21 to 24 and returns to the AC signal source 17.
  • an AC voltmeter 19 is connected to the Hp terminal and the Lp terminal of the inductance meter 16 and measures the voltage between the terminal 5 and the terminal 6.
  • the above connection method is called four-terminal pair method.
  • the alternating current output from the alternating current signal source 17 flows through the center conductors 21 a and 22 a of the coaxial cables 21 and 22.
  • the return current flows through the outer conductors 21b to 24b of the coaxial cables 21 to 24 and returns to the AC signal source 17. Since the measurement current and the return current flow in opposite directions in this manner, the magnetic fields generated by these currents are canceled out and no magnetic field is generated outside. Therefore, the self-inductance and the mutual inductance do not occur on the coaxial cables 21 to 24, and the inductance measuring unit 110 can measure a minute inductance. Therefore, it is possible to measure a slight difference between the inductance when one of the wiring 4 and the wiring 7 is broken and the inductance when both the wiring 4 and the wiring 7 are not broken.
  • the inductance measuring unit 110 obtains an inductance value between the terminal 5 and the terminal 6 by calculating a ratio of the AC voltage measured by the AC voltmeter 19 to the AC current measured by the AC ammeter 18.
  • the above inductance measurement method is also referred to as the IV method, and can be realized with an inexpensive configuration as compared with other measurement methods, and can stably perform measurement in a relatively low frequency band (for example, 1 kHz to 10 MHz) be able to.
  • a relatively low frequency band for example, 1 kHz to 10 MHz
  • the broken line in FIG. 2 indicates the path of the alternating current for measurement when no disconnection occurs. If a break occurs in the first wire, alternating current passes through the second wire. On the other hand, when disconnection occurs in the second wiring, alternating current passes through the first wiring.
  • the inductance of the first wiring is L1, and the inductance of the second wiring is L2.
  • L1_2 be a combined inductance of the first wiring and the second wiring.
  • the combined inductance L1_2 is (L1 ⁇ L2) / (L1 + L2).
  • the combined inductance is L1 or L2.
  • the inductance L of the conductor pattern provided on the printed wiring board can be approximately calculated using equation (1) (http://www.zuken.co.jp/clubZ/z/analog/006/ See ana / ana_110120_1.html).
  • l wiring length (mm)
  • W wiring width (mm)
  • T wiring thickness (mm).
  • the inductance value (L1) of the first wiring and the inductance value (L2) of the second wiring are determined using Equation (1).
  • the sizes (length, width, thickness) of the conductor pattern 3A and the conductor pattern 3B are the same, and the through vias 10 and 11 are ignored for the second wiring, and only the conductor pattern 3B is Consider.
  • the values of the inductances L1 and L2 are 71.5 nH from the equation (1).
  • the inductance value is a value when only one of the first wiring and the second wiring is disconnected.
  • the combined inductance L1_2 is 35.7 nH when neither of the first wiring and the second wiring is disconnected.
  • the mutual inductance disappears and only the self-inductance of the non-disconnected wiring becomes, so the inductance value becomes large.
  • the inductance value becomes large.
  • the wiring width W and the wiring thickness T of the actually manufactured wiring have a certain dimensional variation. Therefore, in order to conduct the continuity inspection of the multiple wiring pattern more reliably, it is desirable to consider the dimensional variation of the wiring.
  • the variation of the wiring width W can be estimated to, for example, ⁇ 10%, and in this case, the range of possible values of the wiring width W is 100 ⁇ 10 ⁇ m.
  • the variation of the wiring thickness can be estimated to be, for example, ⁇ 50%, and in this case, the range of possible values of the wiring thickness T is 30 ⁇ m ⁇ 15 ⁇ m.
  • the reason that the dimensional variation in the thickness direction is relatively larger than that in the width direction is because it is assumed that the conductor patterns 3A and 3B are formed by copper plating.
  • FIG. 3 shows the calculation result, and the inductance value of the multiple wiring pattern at the time of non-breaking is 34.9 to 36.8 nH, and the inductance value of the multiple wiring pattern at the time of one-side disconnection is 69.7 to It is 73.6 nH.
  • One-end disconnection can be detected from the measured inductance value.
  • the inductance value of the multiple wiring pattern was measured by the four-terminal pair method described with reference to FIG. 2 using the frequency of the alternating current output from the alternating signal source 17 as a parameter.
  • the configuration of the measured multiple wiring pattern is different from the configuration of the multiple wiring pattern used in the calculation of FIG.
  • the frequencies used for the measurement were five types of 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz, and the inductance was measured three times for each frequency.
  • FIG. 4 (a) shows the measurement result
  • FIG. 4 (b) shows the average value, the maximum value and the minimum value of the inductance calculated based on the measurement result.
  • the maximum value and the minimum value the deviation from the average value is shown in parentheses as a change rate.
  • the change rate of the inductance value obtained by the above measurement was 4% at maximum.
  • the rate of change (maximum 4%) of the inductance value by repeated measurement is sufficiently lower than the difference ⁇ of the inductance value. Therefore, even if the measurement error is taken into consideration, it is possible to detect the one-side disconnection from the measured inductance value.
  • the present embodiment it is possible to detect the disconnection of the multiple wiring pattern even at the measurement frequency of 1 kHz at which the change rate of the inductance value is the largest among the measurement frequencies of 1 kHz to 10 MHz. Since the inductance meter 16 tends to be more expensive as the measurement frequency is higher, the measurement at a relatively low frequency can reduce the cost of continuity check of multiple wiring patterns.
  • the inductance value at the time of disconnection and the inductance value at the time of non-disconnection are measured for multiple wiring patterns of which dimensions are known (preferably, multiple wiring patterns fabricated according to the designed dimensions).
  • the dimensional variation is added to the inductance value to obtain the possible range of the inductance value at the time of disconnection and the possible range of the inductance value at the time of non-disconnection. Then, a value smaller than the lower limit value of the inductance at the time of disconnection and larger than the upper limit value of the inductance at the time of non-disconnection is taken as a threshold value for conduction determination.
  • the average value of the inductance value at the time of disconnection and the inductance value at the time of non-disconnection may be used as the threshold value for conduction determination without considering the dimensional variation.
  • the present invention can be applied even if the number of wires forming the multiple wiring pattern is three or more.
  • the number of wires electrically connecting the first terminal and the second terminal is n
  • the inductance value of each wire is the same (L).
  • the combined inductance when all the wires are not disconnected is L / n
  • the combined inductance when one wire is disconnected is L / (n-1). Therefore, a value larger than L / n and smaller than L / (n-1) may be used as the threshold for conduction determination.
  • the average value of these combined inductances, ⁇ (2 n -1) / 2 n (n-1) ⁇ L, is used as the threshold for conduction determination.
  • the inductance value of the multiple wiring pattern is measured using a four-terminal pair method at a measurement frequency of 1 kHz to 10 MHz, and the measured inductance value is compared with a predetermined conduction determination threshold. .
  • disconnection of the multiple wiring pattern can be reliably detected even in consideration of variations in wiring width and thickness and measurement errors.
  • the sensitivity to changes in wire length is generally higher for inductance than for DC resistance. For this reason, according to this embodiment, it is possible to detect the disconnection with high accuracy as compared with the pin contact method.
  • the inductance measurement unit (inductance meter) can be manufactured at low cost compared to a TDR oscilloscope or the like. As a result, it is possible to reduce the cost of the continuity inspection of the multiple wiring pattern.
  • a continuity inspection device 100A according to a second embodiment will be described using FIG.
  • the continuity inspection device 100A includes the resistance measurement unit 150.
  • the differences from the first embodiment will be mainly described below.
  • the continuity inspection apparatus 100A includes a resistance measuring unit 150 that measures a resistance value between the terminal 5 and the terminal 6.
  • resistance measuring unit 150 includes a DC current source for causing DC current (I) to flow in a multiple wiring pattern, and a DC voltmeter for measuring a voltage (V) generated between terminals 5 and 6. By calculating the ratio of the current to the current (V / I), the DC resistance between terminals of the multiple wiring pattern can be obtained.
  • the conduction determination unit 120 compares the resistance value measured by the resistance measurement unit 150 with a predetermined determination threshold (the open determination threshold).
  • the open determination threshold is set to a sufficiently large value of about several M ⁇ . As a result, if the resistance value is larger than the threshold value for open determination, it is determined that all the wires forming the multiple wiring pattern are disconnected. In this case, the continuity test using the inductance value described above is not performed, and the printed wiring board to be tested is determined to be a defective product. On the other hand, if the resistance value is smaller than the open determination threshold value, the continuity test using the inductance value described in the first embodiment is performed.
  • the conduction determination unit 120 may determine the presence or absence of the short circuit. That is, the resistance value measured by the resistance measurement unit 150 is compared with a predetermined determination threshold (short determination threshold).
  • the short determination threshold is set to a sufficiently small value of about several ohms. If the resistance value is smaller than the short determination threshold value, it may be determined that a short circuit has occurred in the multiple wiring pattern (such as a portion other than the first and second wires).
  • the resistance measuring unit 150 measures the resistance value between the terminals 5 and 6 of the multiple wiring pattern as described above (step S11).
  • the conduction determining unit 120 compares the resistance value with the threshold for open determination, and determines whether all the wires forming the multiple wiring pattern are disconnected (step S12). If it is determined that all the wirings are disconnected, it is determined that the printed wiring board to be inspected is a defective product (step S13). If not, the process proceeds to step S14.
  • the inductance measuring unit 110 measures an inductance value between the terminals 5 and 6 of the multiple wiring pattern using the four-terminal pair method or the like (step S14).
  • the continuity determining unit 120 compares the inductance value with the threshold for continuity determination, and determines whether or not a disconnection occurs in the multiple wiring pattern (step S15). If it is determined that disconnection does not occur in the multiple wiring pattern, the printed wiring board to be inspected is determined to be a normal product (step S16), and otherwise determined to be a defective product ( Step S13).
  • the resistance value is measured, and it is determined whether or not all the wires forming the multiple wiring pattern are disconnected. Determine As a result, the number of times of inductance measurement that requires relatively high accuracy threshold setting can be reduced, and the continuity inspection of the multiple wiring pattern can be performed more efficiently.
  • the measurement of the resistance value and the measurement of the inductance value may be performed in parallel. For example, when it is determined that the resistance value is measured for a certain multiple wiring pattern and it is determined to be normal and the inductance value is measured, the resistance value of the other multiple wiring pattern is measured before the measurement of the inductance value is completed. You may go.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a continuity inspection apparatus and a continuity inspection method whereby an occurrence of disconnection in a multiple wiring pattern can be reliably detected at low cost. [Solution] A continuity inspection apparatus (100) has a first terminal, a second terminal, and a plurality of wiring lines that electrically connect the first and the second terminals to each other, and performs continuity inspection of a multiple wiring pattern. The continuity inspection apparatus is provided with: an inductance measuring unit (110), which measures an inductance value between the first terminal and the second terminal; a continuity determining unit (120), which compares the inductance value and a predetermined continuity determining threshold value with each other, and on the basis of the results, which determines that disconnection occurred in the multiple wiring pattern if the inductance value is larger than the continuity determining threshold value, and determines that there is no disconnection occurred if the inductance value is not larger than the continuity determining threshold value; a storage unit (130) that stores the continuity determining threshold value; and a display unit (140) that displays results determined by means of the continuity determining unit (120).

Description

導通検査装置および導通検査方法Continuity inspection device and continuity inspection method
 本発明は、導通検査装置および導通検査方法、より詳しくは、プリント配線板に設けられた多重配線パターンの導通検査装置および導通検査方法に関する。 The present invention relates to a continuity inspection apparatus and a continuity inspection method, and more particularly, to a continuity inspection apparatus and a continuity inspection method of a multiple wiring pattern provided on a printed wiring board.
 プリント配線板に設けられた配線パターンの導通検査の方式には、主として、ピンコンタクト方式および非接触方式があることが知られている(特許文献1)。 It is known that there are mainly a pin contact method and a non-contact method as a method of continuity check of a wiring pattern provided on a printed wiring board (Patent Document 1).
 ピンコンタクト方式では、検査対象となるプリント配線板の配線パターンの両端にプローブピンを直接接触させ、一方のプローブピンに電流を流す。そして、他方のプローブピンで検出された電圧値から、配線パターンの直流抵抗値を求めることにより、配線パターンの導通検査を行う(特許文献1の段落[0002],[0003]参照)。 In the pin contact method, probe pins are brought into direct contact with both ends of a wiring pattern of a printed wiring board to be inspected, and a current is supplied to one of the probe pins. Then, the continuity check of the wiring pattern is performed by obtaining the DC resistance value of the wiring pattern from the voltage value detected by the other probe pin (see paragraphs [0002] and [0003] of Patent Document 1).
 一方、非接触方式では、検査対象となるプリント配線板の配線パターンの一端にプローブピンを直接接触させて交流成分を含む検査信号を印加し、他端において非接触の容量結合を介して当該検査信号を検出することで、配線パターンの導通検査を行う(特許文献1の段落[0004]参照)。 On the other hand, in the non-contact method, the probe pin is brought into direct contact with one end of the wiring pattern of the printed wiring board to be inspected to apply an inspection signal including an AC component, and the other end is non-contact Conductivity inspection of the wiring pattern is performed by detecting a signal (see paragraph [0004] of Patent Document 1).
特許第3311698号Patent No. 3311698 特開2002-148290号公報JP 2002-148290 A
 しかしながら、上記いずれの検査方法を用いても、多重配線パターンの導通検査を行うことは困難である。多重配線パターンとは、第1の端子と第2の端子を有し、第1および第2の端子を電気的に接続する配線を複数有する配線パターンをいう。多重配線パターンは、例えば、回路のインピーダンスを低下させる用途や、大電流を複数の配線に分散させて1本の配線に流れる電流を低下させる用途などに用いられる。 However, it is difficult to conduct a continuity test of the multiple wiring pattern by using any of the above inspection methods. The multiple wiring pattern refers to a wiring pattern having a first terminal and a second terminal, and having a plurality of wirings electrically connecting the first and second terminals. The multiple wiring pattern is used, for example, for the purpose of reducing the impedance of a circuit, or for the purpose of dispersing a large current into a plurality of wires to reduce the current flowing through one wire.
 図7は、多重配線パターンの構成例を示している。図7(a)は、多重配線パターンが設けられた両面プリント配線板51の上面図であり、図7(b)は、図7(a)のA-A’線に沿う断面図である。絶縁基板52の表面および裏面にはそれぞれ、導体パターン53Aおよび導体パターン53Bが形成されている。なお、図7(a)に示すように、導体パターン53Bは導体パターン53Aよりも太く形成されている。 FIG. 7 shows a configuration example of the multiple wiring pattern. FIG. 7A is a top view of the double-sided printed wiring board 51 provided with the multiple wiring pattern, and FIG. 7B is a cross-sectional view taken along the line A-A 'of FIG. 7A. Conductor patterns 53A and 53B are formed on the front and back surfaces of the insulating substrate 52, respectively. As shown in FIG. 7A, the conductor pattern 53B is formed thicker than the conductor pattern 53A.
 導体パターン53Aは、配線54と、配線54の両端に端子55および端子56とを有する。同様に、導体パターン53Bは、配線57と、配線57の両端に端子58および端子59とを有する。そして、図7(b)に示すように、端子55および端子58は貫通ビア60により電気的に接続され、同様に、端子56および端子59は貫通ビア61により電気的に接続されている。このように、両面プリント配線板51には、2つの配線を有する多重配線パターンが設けられている。 The conductor pattern 53A has a wire 54, and terminals 55 and 56 at both ends of the wire 54. Similarly, the conductor pattern 53 </ b> B has a wire 57 and terminals 58 and 59 at both ends of the wire 57. Then, as shown in FIG. 7B, the terminal 55 and the terminal 58 are electrically connected by the through via 60, and similarly, the terminal 56 and the terminal 59 are electrically connected by the through via 61. Thus, the double-sided printed wiring board 51 is provided with a multiplex wiring pattern having two wires.
 即ち、第1の端子としての端子55と、第2の端子としての端子56とを有するとともに、第1の端子および第2の端子を電気的に接続する第1の配線および第2の配線を有する。第1の配線は配線54であり、第2の配線は、導体パターン53B、貫通ビア60および貫通ビア61から構成される。 That is, a first wiring and a second wiring which have a terminal 55 as a first terminal and a terminal 56 as a second terminal and which electrically connect the first terminal and the second terminal are used. Have. The first wiring is the wiring 54, and the second wiring is composed of the conductor pattern 53B, the through via 60, and the through via 61.
 第2の配線の抵抗は、導体パターン53Bが導体パターン53Aよりも細く形成されているのに加えて貫通ビア60および61による抵抗が存在するため、第1の配線の抵抗よりも大きい。このため、ピンコンタクト方式により導通検査を行った場合、配線を構成する各要素の寸法ばらつきによっては、第2の配線よりも抵抗値の低い第1の配線が断線していることを検出できないおそれがある。 The resistance of the second wiring is larger than the resistance of the first wiring because the resistance due to the through vias 60 and 61 is present in addition to the conductive pattern 53B being thinner than the conductive pattern 53A. For this reason, when the continuity test is performed by the pin contact method, it may not be possible to detect that the first wire having a resistance value lower than that of the second wire is broken due to the dimensional variation of each element constituting the wire. There is.
 非接触方式により導通検査を行った場合には、第1の配線および第2の配線のうちいずれか一方が断線したとき、断線していない配線から検査信号が検出される。このため、非接触方式では、第1の配線および第2の配線のいずれか一方が断線していることを検出することは原理的に不可能である。 When the continuity test is performed by the non-contact method, when any one of the first wiring and the second wiring is broken, the inspection signal is detected from the wiring which is not broken. Therefore, in the non-contact method, it is impossible in principle to detect that any one of the first wiring and the second wiring is broken.
 このように、ピンコンタクト方式および非接触方式では、多重配線パターンを構成する複数の配線のうち一部の配線が断線していることを確実に検出することができない。 As described above, in the pin contact method and the non-contact method, it is not possible to reliably detect that a part of the plurality of wires constituting the multiple wiring pattern is broken.
 なお、多重配線パターンの断線を検出する方法としては、TDR(タイム・ドメイン・リフレクトメリ)オシロスコープを用いる方法が挙げられる(特許文献2参照)。TDRオシロスコープを用いれば、原理的には、多重配線パターンの一部が断線していることも検出できる。しかし、TDRオシロスコープ装置は高価であることから、検査費用が増大するという問題がある。 In addition, as a method of detecting the disconnection of the multiple wiring pattern, a method using a TDR (time domain reflectometer) oscilloscope may be mentioned (see Patent Document 2). Using the TDR oscilloscope, in principle, it can also be detected that a part of the multiple wiring pattern is broken. However, since the TDR oscilloscope apparatus is expensive, there is a problem that the inspection cost increases.
 本発明は、上述の認識に基づいてなされたものであり、多重配線パターンに断線が発生していることを確実かつ安価に検出することが可能な導通検査装置および導通検査方法を提供することを目的とする。 The present invention has been made based on the above recognition, and it is an object of the present invention to provide a continuity inspection apparatus and a continuity inspection method capable of reliably and inexpensively detecting the occurrence of disconnection in a multiple wiring pattern. To aim.
 本発明の一態様によれば、第1の端子と第2の端子を有し、かつ前記第1および第2の端子を電気的に接続する複数の配線を有する多重配線パターンの導通検査を行う導通検査装置であって、前記第1の端子と前記第2の端子間のインダクタンス値を測定するインダクタンス測定部と、前記インダクタンス値と導通判定用閾値とを比較し、前記インダクタンス値が前記導通判定用閾値よりも大きければ前記多重配線パターンに断線が発生していると判定し、そうでなければ断線が発生していないと判定する導通判定部と、を備えることを特徴とする導通検査装置が提供される。 According to one aspect of the present invention, a continuity test is performed on a multiple wiring pattern having a first terminal and a second terminal, and having a plurality of wires electrically connecting the first and second terminals. In the continuity inspection apparatus, an inductance measurement unit for measuring an inductance value between the first terminal and the second terminal is compared with the inductance value and a threshold for conduction determination, and the inductance value is determined as the conduction. And a continuity determining unit that determines that disconnection is occurring in the multiple wiring pattern if the threshold value is larger than the threshold value, and determines that no disconnection occurs otherwise. Provided.
 本発明の別態様によれば、第1の端子と第2の端子を有し、かつ前記第1および第2の端子を電気的に接続する複数の配線を有する多重配線パターンの導通検査を行う導通検査方法であって、前記第1の端子と前記第2の端子間のインダクタンス値を測定し、前記インダクタンス値と導通判定用閾値とを比較し、前記インダクタンス値が前記導通判定用閾値よりも大きければ前記多重配線パターンに断線が発生していると判定し、そうでなければ断線が発生していないと判定することを特徴とする導通検査方法が提供される。 According to another aspect of the present invention, a continuity test is performed on a multiple wiring pattern having a first terminal and a second terminal and having a plurality of wires electrically connecting the first and second terminals. In the continuity inspection method, an inductance value between the first terminal and the second terminal is measured, the inductance value is compared with a threshold for conduction determination, and the inductance value is higher than the threshold for conduction determination. If the value is larger, it is determined that the disconnection occurs in the multiple wiring pattern, and if not, it is determined that the disconnection does not occur.
 本発明によれば、多重配線パターンに断線が発生していることを確実かつ安価に検出することができる。 According to the present invention, occurrence of disconnection in the multiple wiring pattern can be detected reliably and inexpensively.
本発明の第1の実施形態に係る導通検査装置の概略的な構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a continuity inspection device according to a first embodiment of the present invention. 四端子対法によるインダクタンス測定部の構成を示す図である。It is a figure which shows the structure of the inductance measurement part by a 4 terminal pair method. 配線の寸法ばらつきを考慮した場合における、多重配線パターンのインダクタンス値の範囲を示すグラフである。It is a graph which shows the range of the inductance value of a multiplex wiring pattern when the dimensional variation of wiring is considered. 多重配線パターンのインダクタンス値の測定結果を示す図である。It is a figure which shows the measurement result of the inductance value of a multiple wiring pattern. 本発明の第2の実施形態に係る導通検査装置の概略的な構成を示すブロック図である。It is a block diagram which shows schematic structure of the continuity test apparatus which concerns on the 2nd Embodiment of this invention. 第2の実施形態に係る導通検査方法を示すフローチャートである。It is a flow chart which shows the continuity inspection method concerning a 2nd embodiment. (a)は両面プリント配線板に設けられた多重配線パターンの構成例を示す上面図であり、(b)は(a)のA-A’線に沿う断面図である。(A) is a top view which shows the structural example of the multiple wiring pattern provided in the double-sided printed wiring board, (b) is sectional drawing which follows the A-A 'line | wire of (a).
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、各図において同等の機能を有する構成要素には同一の符号を付し、同一符号の構成要素の詳しい説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the component which has an equivalent function in each figure, and the detailed description of the component of the same code is not repeated.
(第1の実施形態)
 図1は、第1の実施形態に係る導通検査装置100の概略的な構成を示すブロック図である。導通検査装置100は、インダクタンス測定部110と、導通判定部120と、記憶部130と、表示部140とを備える。
First Embodiment
FIG. 1 is a block diagram showing a schematic configuration of the continuity inspection device 100 according to the first embodiment. The continuity inspection apparatus 100 includes an inductance measurement unit 110, a continuity determination unit 120, a storage unit 130, and a display unit 140.
 インダクタンス測定部110は、多重配線パターンの第1の端子と第2の端子間のインダクタンス値を測定する。測定方法としては2端子法や4端子法が挙げられるが、測定電流により生じる磁束の影響を軽減可能な4端子対法が好ましい。4端子対法によるインダクタンス値の測定については、後で図2を用いて説明する。 The inductance measuring unit 110 measures an inductance value between the first terminal and the second terminal of the multiple wiring pattern. As a measuring method, a two-terminal method or a four-terminal method may be mentioned, but a four-terminal pair method capable of reducing the influence of the magnetic flux generated by the measuring current is preferable. The measurement of the inductance value by the four-terminal pair method will be described later with reference to FIG.
 導通判定部120は、インダクタンス測定部110により測定されたインダクタンス値と、所定の判定閾値(導通判定用閾値)とを比較する。その結果、インダクタンス値が導通判定用閾値よりも大きければ、導通判定部120は、多重配線パターンに断線が発生していると判定し、そうでなければ断線は発生していないと判定する。 The conduction determination unit 120 compares the inductance value measured by the inductance measurement unit 110 with a predetermined determination threshold (threshold for conduction determination). As a result, if the inductance value is larger than the conduction determination threshold value, the conduction determination unit 120 determines that a disconnection occurs in the multiple wiring pattern, and otherwise determines that a disconnection does not occur.
 この導通判定用閾値は、多重配線パターンに断線が発生しているときの第1の端子と第2の端子間のインダクタンス値(断線インダクタンス値)よりも小さく、かつ、断線が発生していないときの第1の端子と前記第2の端子間のインダクタンス値(非断線インダクタンス値)よりも大きい値が用いられる。なお、好ましくは、断線インダクタンス値は、多重配線パターンの寸法ばらつきによって断線時のインダクタンス値がとり得る範囲の下限値であり、非断線インダクタンス値は、多重配線パターンの寸法ばらつきによって非断線時のインダクタンス値がとり得る範囲の上限値である。 The threshold value for conduction determination is smaller than the inductance value (disconnected inductance value) between the first terminal and the second terminal when disconnection occurs in the multiple wiring pattern, and when disconnection does not occur. A value larger than the inductance value (non-breaking inductance value) between the first terminal and the second terminal is used. Preferably, the disconnection inductance value is the lower limit of the range in which the inductance value at the time of disconnection can be taken due to the dimensional variation of the multiple wiring pattern, and the non-breaking inductance value is the inductance at the non-disconnection due to the dimensional variation of the multiple wiring pattern. This is the upper limit of the range of values that can be taken.
 記憶部130は、例えばハードディスク(HDD)、又はフラッシュメモリなどの不揮発性のメモリであり、上記の導通判定用閾値などを記憶する。導通判定部120は、記憶部130から導通判定用閾値を読み出し、インダクタンス測定部110により測定されたインダクタンス値(又は、後述の抵抗測定部150により測定された抵抗値)と導通判定用閾値を比較する。 The storage unit 130 is, for example, a non-volatile memory such as a hard disk (HDD) or a flash memory, and stores the above-described threshold for conduction determination and the like. The conduction determination unit 120 reads the conduction determination threshold from the storage unit 130, and compares the inductance value measured by the inductance measurement unit 110 (or the resistance value measured by the resistance measurement unit 150 described later) with the conduction determination threshold. Do.
 表示部140は、例えば液晶ディスプレイまたはプリンタであり、導通判定部120による判定結果を表示する。 The display unit 140 is, for example, a liquid crystal display or a printer, and displays the determination result by the conduction determination unit 120.
 次に、4端子対法を採った場合のインダクタンス測定部110の構成について説明する。図2は、インダクタンス測定部110を構成するインダクタンス・メータ16、ケルビンプローブ12,13および同軸ケーブル21~24と、検査対象の両面プリント配線板1とを示している。 Next, the configuration of the inductance measuring unit 110 in the case of adopting the four-terminal pair method will be described. FIG. 2 shows an inductance meter 16 constituting the inductance measurement unit 110, Kelvin probes 12 and 13, coaxial cables 21 to 24, and a double-sided printed wiring board 1 to be inspected.
 まず、両面プリント配線板1の構成について説明する。絶縁基板2の表面および裏面にはそれぞれ、導体パターン3Aおよび導体パターン3Bが形成されている。導体パターン3Aは、配線4と、配線4の両端に端子5および端子6とを有する。同様に、導体パターン3Bは、配線7と、配線7の両端に端子8および端子9とを有する。 First, the configuration of the double-sided printed wiring board 1 will be described. Conductor patterns 3A and 3B are formed on the front and back surfaces of the insulating substrate 2, respectively. The conductor pattern 3A has a wire 4 and terminals 5 and 6 at both ends of the wire 4. Similarly, the conductor pattern 3B has a wire 7 and terminals 8 and 9 at both ends of the wire 7.
 図2に示すように、端子5および端子8は貫通ビア10により電気的に接続され、同様に、端子6および端子9は貫通ビア11により電気的に接続されている。このように、両面プリント配線板1には、第1の端子としての端子5と、第2の端子としての端子6とを有するとともに、第1の端子および第2の端子を電気的に接続する2本の配線(第1の配線および第2の配線)を有する。第1の配線は配線4であり、第2の配線は、導体パターン3B、貫通ビア10および貫通ビア11から構成される配線である。 As shown in FIG. 2, the terminals 5 and 8 are electrically connected by the through vias 10, and similarly, the terminals 6 and 9 are electrically connected by the through vias 11. Thus, the double-sided printed wiring board 1 has the terminal 5 as the first terminal and the terminal 6 as the second terminal, and electrically connects the first terminal and the second terminal. It has two wires (a first wire and a second wire). The first wiring is the wiring 4, and the second wiring is the wiring composed of the conductor pattern 3 B, the through via 10, and the through via 11.
 なお、本発明が検査対象とする多重配線パターンの配線数は2本に限らず、3本以上でもよい。また、多重配線パターンを構成する複数の配線は、図2のようにプリント配線板の垂直方向(厚さ方向)に分岐する場合に限らず、水平方向に分岐してもよいし、分岐方向は任意である。 The number of wires of the multiplex wiring pattern to be inspected in the present invention is not limited to two, and may be three or more. Further, the plurality of wires constituting the multiple wiring pattern may be branched not only in the case of branching in the vertical direction (thickness direction) of the printed wiring board as shown in FIG. 2, but may be branched in the horizontal direction It is optional.
 次に、インダクタンス測定部110を構成するインダクタンス・メータ16、ケルビンプローブ10,11および同軸ケーブル21~24について説明する。 Next, the inductance meter 16, the Kelvin probes 10 and 11, and the coaxial cables 21 to 24 constituting the inductance measurement unit 110 will be described.
 インダクタンス・メータ16は、多重配線パターンの端子5に測定用の交流電流を流す交流信号源17と、端子6から流れ出た交流電流を測定する交流電流計18と、端子5および端子6間の電圧を測定する交流電圧計19とを有する。 The inductance meter 16 comprises an alternating current signal source 17 for passing an alternating current for measurement to the terminal 5 of the multiple wiring pattern, an alternating current ammeter 18 for measuring the alternating current flowing out from the terminal 6, and a voltage between the terminal 5 and the terminal 6 And an AC voltmeter 19 for measuring
 図2に示すように、インダクタンスを測定する際、ケルビンプローブ12を端子5に接触させ、ケルビンプローブ13を端子6に接触させる。 As shown in FIG. 2, when measuring the inductance, the Kelvin probe 12 is brought into contact with the terminal 5 and the Kelvin probe 13 is brought into contact with the terminal 6.
 ケルビンプローブ12はプローブピン12aおよび12bを有し、ケルビンプローブ13はプローブピン13aおよび13bを有する。 The Kelvin probe 12 has probe pins 12a and 12b, and the Kelvin probe 13 has probe pins 13a and 13b.
 また、インダクタンス・メータ16は、Hc、Hp、LcおよびLpの4つの端子を有する。Hc端子は、同軸ケーブル21およびケルビンプローブ12のプローブピン12aを介して端子5と電気的に接続される。Hp端子は、同軸ケーブル23およびケルビンプローブ12のプローブピン12bを介して端子5と電気的に接続される。Lc端子は、同軸ケーブル22およびケルビンプローブ13のプローブピン13bを介して端子6と電気的に接続される。Lp端子は、同軸ケーブル24およびケルビンプローブ13のプローブピン13aを介して端子6と電気的に接続される。 Also, the inductance meter 16 has four terminals Hc, Hp, Lc and Lp. The Hc terminal is electrically connected to the terminal 5 via the coaxial cable 21 and the probe pin 12 a of the Kelvin probe 12. The Hp terminal is electrically connected to the terminal 5 via the coaxial cable 23 and the probe pin 12 b of the Kelvin probe 12. The Lc terminal is electrically connected to the terminal 6 via the coaxial cable 22 and the probe pin 13 b of the Kelvin probe 13. The Lp terminal is electrically connected to the terminal 6 via the coaxial cable 24 and the probe pin 13 a of the Kelvin probe 13.
 図2に示すように、同軸ケーブル21~24の外部導体21b~24bは互いに導体25により電気的に接続されている。 As shown in FIG. 2, the outer conductors 21 b to 24 b of the coaxial cables 21 to 24 are electrically connected to each other by a conductor 25.
 同軸ケーブル21は、交流信号源17の出力端子と電気的に接続された中心導体21a、および交流信号源17の入力端子と電気的に接続された外部導体21bを有する。同軸ケーブル22は、交流電流計18の入力端子と電気的に接続された中心導体22a、および交流電流計18の出力端子と電気的に接続された外部導体22bを有する。同軸ケーブル23は、交流電圧計19の一方の端子と電気的に接続された中心導体23aと、同軸ケーブル21の外部導体21bと電気的に接続された外部導体23bとを有する。同軸ケーブル24は、交流電圧計19の他方の端子と電気的に接続された中心導体24aと、同軸ケーブル22の外部導体22bおよび同軸ケーブル23の外部導体23bと電気的に接続された外部導体24bとを有する。 The coaxial cable 21 has a center conductor 21 a electrically connected to the output terminal of the AC signal source 17 and an outer conductor 21 b electrically connected to the input terminal of the AC signal source 17. The coaxial cable 22 has a center conductor 22 a electrically connected to the input terminal of the alternating current ammeter 18 and an outer conductor 22 b electrically connected to the output terminal of the alternating current ammeter 18. The coaxial cable 23 has a center conductor 23 a electrically connected to one terminal of the AC voltmeter 19 and an outer conductor 23 b electrically connected to the outer conductor 21 b of the coaxial cable 21. The coaxial cable 24 has a central conductor 24a electrically connected to the other terminal of the AC voltmeter 19, and an outer conductor 24b electrically connected to the outer conductor 22b of the coaxial cable 22 and the outer conductor 23b of the coaxial cable 23. And.
 プローブピン12aは、同軸ケーブル21の中心導体21aと電気的に接続されている。プローブピン12bは、同軸ケーブル23の中心導体23aと電気的に接続されている。プローブピン13aは、同軸ケーブル24の中心導体24aと電気的に接続されている。プローブピン13bは、同軸ケーブル22の中心導体22aと電気的に接続されている。 The probe pin 12 a is electrically connected to the center conductor 21 a of the coaxial cable 21. The probe pin 12 b is electrically connected to the central conductor 23 a of the coaxial cable 23. The probe pin 13 a is electrically connected to the center conductor 24 a of the coaxial cable 24. The probe pin 13 b is electrically connected to the central conductor 22 a of the coaxial cable 22.
 Hc端子は、交流信号源17と接続され、プローブピン12aを介して端子5に交流信号を印加する。端子5に印加された交流信号は、多重配線パターンを通り、端子6からプローブピン13b、そしてLc端子を通り、交流電流計18に入力される。交流電流計18から出力されたリターン電流は、同軸ケーブル21~24の外部導体(シールド部)21b~24bを通り、交流信号源17に戻る。 The Hc terminal is connected to the AC signal source 17, and applies an AC signal to the terminal 5 through the probe pin 12a. The alternating current signal applied to the terminal 5 passes through the multiple wiring pattern, and is input to the alternating current ammeter 18 from the terminal 6 through the probe pin 13 b and the Lc terminal. The return current output from the AC ammeter 18 passes through the outer conductors (shield portions) 21b to 24b of the coaxial cables 21 to 24 and returns to the AC signal source 17.
 また交流電圧計19は、インダクタンス・メータ16のHp端子およびLp端子に接続されており、端子5および端子6間の電圧を測定する。 Further, an AC voltmeter 19 is connected to the Hp terminal and the Lp terminal of the inductance meter 16 and measures the voltage between the terminal 5 and the terminal 6.
 上記の接続方法は4端子対法と呼ばれる。交流信号源17から出力された交流電流は同軸ケーブル21,22の中心導体21a,22aを流れる。一方、リターン電流は同軸ケーブル21~24の外部導体21b~24bを流れて交流信号源17に戻る。このように測定電流とリターン電流が逆方向に流れるため、これらの電流により発生する磁界が打ち消され、外部に磁界を発生しない。このため、同軸ケーブル21~24上に自己インダクタンスおよび相互インダクタンスが発生せず、インダクタンス測定部110は微小なインダクタンスを測定することができる。よって、配線4および配線7のいずれか一方が断線しているときのインダクタンスと、配線4および配線7の両方とも非断線のときのインダクタンスとの間のわずかな差を測定できる。 The above connection method is called four-terminal pair method. The alternating current output from the alternating current signal source 17 flows through the center conductors 21 a and 22 a of the coaxial cables 21 and 22. On the other hand, the return current flows through the outer conductors 21b to 24b of the coaxial cables 21 to 24 and returns to the AC signal source 17. Since the measurement current and the return current flow in opposite directions in this manner, the magnetic fields generated by these currents are canceled out and no magnetic field is generated outside. Therefore, the self-inductance and the mutual inductance do not occur on the coaxial cables 21 to 24, and the inductance measuring unit 110 can measure a minute inductance. Therefore, it is possible to measure a slight difference between the inductance when one of the wiring 4 and the wiring 7 is broken and the inductance when both the wiring 4 and the wiring 7 are not broken.
 インダクタンス測定部110は、交流電圧計19により測定された交流電圧と、交流電流計18により測定された交流電流との比を計算することにより、端子5および端子6間のインダクタンス値を得る。 The inductance measuring unit 110 obtains an inductance value between the terminal 5 and the terminal 6 by calculating a ratio of the AC voltage measured by the AC voltmeter 19 to the AC current measured by the AC ammeter 18.
 上記のインダクタンス測定方法はI-V法とも呼ばれ、他の測定方法と比べて、安価な構成で実現でき、また、比較的低い周波数帯域(例えば1kHz~10MHz)での測定を安定的に行うことができる。 The above inductance measurement method is also referred to as the IV method, and can be realized with an inexpensive configuration as compared with other measurement methods, and can stably perform measurement in a relatively low frequency band (for example, 1 kHz to 10 MHz) be able to.
 図2中の破線は、断線が発生していない場合の測定用の交流電流の経路を示している。もし第1の配線において断線が発生している場合、交流電流は第2の配線を通る。反対に、第2の配線において断線が発生している場合、交流電流は第1の配線を通る。 The broken line in FIG. 2 indicates the path of the alternating current for measurement when no disconnection occurs. If a break occurs in the first wire, alternating current passes through the second wire. On the other hand, when disconnection occurs in the second wiring, alternating current passes through the first wiring.
 第1の配線のインダクタンスをL1、第2の配線のインダクタンスをL2とする。そして、第1の配線と第2の配線の合成インダクタンスをL1_2とする。第1の配線および第2の配線がともに断線していない場合、合成インダクタンスL1_2は(L1×L2)/(L1+L2)となる。一方、第1の配線および第2の配線のいずれか一方に断線が発生している場合(即ち、片側断線の場合)、合成インダクタンスはL1またはL2となる。なお、第1の配線および第2の配線の両方に断線が発生している場合、インダクタンス値は0となる。 The inductance of the first wiring is L1, and the inductance of the second wiring is L2. Then, let L1_2 be a combined inductance of the first wiring and the second wiring. When the first wiring and the second wiring are not disconnected, the combined inductance L1_2 is (L1 × L2) / (L1 + L2). On the other hand, when a break occurs in either one of the first wiring and the second wiring (that is, in the case of a one-sided break), the combined inductance is L1 or L2. When disconnection occurs in both the first wiring and the second wiring, the inductance value is zero.
 プリント配線板に設けられた導体パターンのインダクタンスLは、近似的に式(1)を用いて算出することができる(http://www.zuken.co.jp/clubZ/z/analog/006/ana/ana_110120_1.html参照)。
Figure JPOXMLDOC01-appb-M000001
 ここで、l:配線長(mm)、W:配線幅(mm)、T:配線厚(mm)である。
The inductance L of the conductor pattern provided on the printed wiring board can be approximately calculated using equation (1) (http://www.zuken.co.jp/clubZ/z/analog/006/ See ana / ana_110120_1.html).
Figure JPOXMLDOC01-appb-M000001
Here, l: wiring length (mm), W: wiring width (mm), T: wiring thickness (mm).
 式(1)を用いて、第1の配線のインダクタンス値(L1)および第2の配線のインダクタンス値(L2)を求める。ここでは、簡単のため、導体パターン3Aと導体パターン3Bの大きさ(長さ、幅、厚み)は同一とし、第2の配線については、貫通ビア10,11を無視し、導体パターン3Bのみを考慮する。 The inductance value (L1) of the first wiring and the inductance value (L2) of the second wiring are determined using Equation (1). Here, for the sake of simplicity, the sizes (length, width, thickness) of the conductor pattern 3A and the conductor pattern 3B are the same, and the through vias 10 and 11 are ignored for the second wiring, and only the conductor pattern 3B is Consider.
 配線長l=50mm、配線幅W=100μm、配線厚T=30μmとした場合、インダクタンスL1およびL2の値は、式(1)からそれぞれ71.5nHとなる。このインダクタンス値は、第1の配線および第2の配線のいずれか一方のみが断線した場合の値である。また、第1の配線および第2の配線のいずれも非断線の場合の合成インダクタンスL1_2は、35.7nHとなる。 Assuming that the wiring length l = 50 mm, the wiring width W = 100 μm, and the wiring thickness T = 30 μm, the values of the inductances L1 and L2 are 71.5 nH from the equation (1). The inductance value is a value when only one of the first wiring and the second wiring is disconnected. The combined inductance L1_2 is 35.7 nH when neither of the first wiring and the second wiring is disconnected.
 このように、多重配線パターンに片側断線が発生すると、相互インダクタンスが消滅し非断線の配線の自己インダクタンスのみとなることから、インダクタンス値が大きくなる。これを利用することで、第1の配線および第2の配線のうちいずれか一方が断線したことを検出することができる。なお、前述のように、第1の配線および第2の配線の両方に断線が発生している場合には、第1の端子と第2の端子間のインダクタンス値は0となる。よって、インダクタンス値の測定により、第1の配線および第2の配線が両方とも断線していることも検出できる。 As described above, when one-side disconnection occurs in the multiple wiring pattern, the mutual inductance disappears and only the self-inductance of the non-disconnected wiring becomes, so the inductance value becomes large. By utilizing this, it is possible to detect that one of the first wiring and the second wiring is broken. As described above, when disconnection occurs in both the first wiring and the second wiring, the inductance value between the first terminal and the second terminal is zero. Therefore, the measurement of the inductance value can also detect that both the first wiring and the second wiring are disconnected.
 ところで、実際に製造された配線の配線幅Wおよび配線厚Tには、一定の寸法ばらつきがある。よって、多重配線パターンの導通検査をより確実に行うためには、配線の寸法ばらつきを考慮することが望ましい。配線幅Wのばらつきは、例えば±10%と見積もることができ、この場合に配線幅Wのとり得る値の範囲は、100±10μmである。また、配線厚のばらつきは、例えば±50%と見積もることができ、この場合に配線厚Tのとり得る値の範囲は、30μm±15μmである。なお、厚み方向の寸法ばらつきが幅方向に比べて相対的に大きい理由は、導体パターン3A,3Bを銅めっきにより形成することを想定したためである。 By the way, the wiring width W and the wiring thickness T of the actually manufactured wiring have a certain dimensional variation. Therefore, in order to conduct the continuity inspection of the multiple wiring pattern more reliably, it is desirable to consider the dimensional variation of the wiring. The variation of the wiring width W can be estimated to, for example, ± 10%, and in this case, the range of possible values of the wiring width W is 100 ± 10 μm. Further, the variation of the wiring thickness can be estimated to be, for example, ± 50%, and in this case, the range of possible values of the wiring thickness T is 30 μm ± 15 μm. The reason that the dimensional variation in the thickness direction is relatively larger than that in the width direction is because it is assumed that the conductor patterns 3A and 3B are formed by copper plating.
 式(1)を用いて、片側断線および非断線の場合のそれぞれについて、寸法ばらつきを考慮したインダクタンス値の範囲を算出した。図3は、その計算結果を示しており、非断線時における多重配線パターンのインダクタンス値は、34.9~36.8nHであり、片側断線時における多重配線パターンのインダクタンス値は、69.7~73.6nHである。 The range of the inductance value in which the dimensional variation was taken into consideration was calculated using equation (1) for each of the one-sided and non-opened cases. FIG. 3 shows the calculation result, and the inductance value of the multiple wiring pattern at the time of non-breaking is 34.9 to 36.8 nH, and the inductance value of the multiple wiring pattern at the time of one-side disconnection is 69.7 to It is 73.6 nH.
 このように、寸法ばらつきを考慮しても、片側断線時のインダクタンス値と非断線時のインダクタンス値との差分Δは、32.9nH(=69.7-36.8nH)以上確保されており、測定されたインダクタンス値から片側断線を検出することができる。 Thus, even if the dimensional variation is taken into consideration, the difference Δ between the inductance value when one side is broken and the inductance value when not broken is 32.9 nH (= 69.7-36.8 nH) or more. One-end disconnection can be detected from the measured inductance value.
 次に、インダクタンスを繰り返し測定したときの測定値のばらつき(測定誤差)を考慮しても、多重配線パターンに片側断線が発生しているか否かの判定が可能であることを説明する。 Next, it will be described that it is possible to determine whether or not one-side disconnection has occurred in the multiple wiring pattern even in consideration of variations (measurement errors) of measured values when the inductance is repeatedly measured.
 交流信号源17の出力する交流電流の周波数をパラメータとして、図2で説明した4端子対法により多重配線パターンのインダクタンス値を測定した。なお、測定した多重配線パターンの構成は、図3の計算に用いた多重配線パターンの構成とは異なる。測定に用いた周波数は、1kHz、10kHz、100kHz、1MHz、10MHzの5種類であり、各周波数についてインダクタンスを3回測定した。 The inductance value of the multiple wiring pattern was measured by the four-terminal pair method described with reference to FIG. 2 using the frequency of the alternating current output from the alternating signal source 17 as a parameter. The configuration of the measured multiple wiring pattern is different from the configuration of the multiple wiring pattern used in the calculation of FIG. The frequencies used for the measurement were five types of 1 kHz, 10 kHz, 100 kHz, 1 MHz and 10 MHz, and the inductance was measured three times for each frequency.
 図4(a)は測定結果を示しており、図4(b)は測定結果を元に計算された、インダクタンスの平均値、最大値および最小値を示している。また、最大値および最小値については、平均値からのずれを変化率としてかっこ内に示している。図4(b)に示すように、上記測定で得られたインダクタンス値の変化率は、最大でも4%であった。 FIG. 4 (a) shows the measurement result, and FIG. 4 (b) shows the average value, the maximum value and the minimum value of the inductance calculated based on the measurement result. In addition, regarding the maximum value and the minimum value, the deviation from the average value is shown in parentheses as a change rate. As shown in FIG. 4 (b), the change rate of the inductance value obtained by the above measurement was 4% at maximum.
 図3に示す計算例において、片側断線時におけるインダクタンスの下限値と、非断線時におけるインダクタンスの上限値との平均値(53.3nH)を導通判定用閾値とする場合を考える。このとき、片側断線時におけるインダクタンスの下限値と導通判定用閾値との差分(Δ/2)、および非断線時におけるインダクタンスの上限値と導通判定用閾値との差分(Δ/2)は、いずれも約20%以上の変化率に相当する。よって、繰返し測定によるインダクタンス値の変化率(最大4%)は、インダクタンス値の差分Δに比べて十分低いと言える。よって、測定誤差を考慮しても、測定されたインダクタンス値から片側断線を検出することが可能である。 In the calculation example shown in FIG. 3, a case will be considered in which the average value (53.3 nH) of the lower limit value of the inductance at the time of one-side disconnection and the upper limit value of the inductance at the non-disconnection is used as the conduction determination threshold. At this time, the difference (Δ / 2) between the lower limit value of the inductance at the time of one-side disconnection and the threshold value for conduction determination and the difference (Δ / 2) between the upper limit value of the inductance and the threshold value for conduction determination at non-disconnection are either Also corresponds to a change rate of about 20% or more. Therefore, it can be said that the rate of change (maximum 4%) of the inductance value by repeated measurement is sufficiently lower than the difference Δ of the inductance value. Therefore, even if the measurement error is taken into consideration, it is possible to detect the one-side disconnection from the measured inductance value.
 上記のように、本実施形態によれば、測定周波数1kHz~10MHzのうちインダクタンス値の変化率が最も大きくなる測定周波数1kHzにおいても、多重配線パターンの断線を検出することが可能である。インダクタンス・メータ16は測定周波数が高くなるほど高価になる傾向にあるので、比較的低い周波数で測定することにより多重配線パターンの導通検査の費用を下げることができる。 As described above, according to the present embodiment, it is possible to detect the disconnection of the multiple wiring pattern even at the measurement frequency of 1 kHz at which the change rate of the inductance value is the largest among the measurement frequencies of 1 kHz to 10 MHz. Since the inductance meter 16 tends to be more expensive as the measurement frequency is higher, the measurement at a relatively low frequency can reduce the cost of continuity check of multiple wiring patterns.
 次に、導通判定用閾値の決定方法について具体的に説明する。 Next, a method of determining the threshold value for conduction determination will be specifically described.
 まず、寸法が既知の多重配線パターン(好ましくは設計寸法通りに作製された多重配線パターン)について、断線時のインダクタンス値および非断線時のインダクタンス値を測定する。なお、これらのインダクタンス値として、電磁界シミュレーションなどにより得られた計算値を用いてもよい。 First, the inductance value at the time of disconnection and the inductance value at the time of non-disconnection are measured for multiple wiring patterns of which dimensions are known (preferably, multiple wiring patterns fabricated according to the designed dimensions). In addition, you may use the calculated value obtained by electromagnetic field simulation etc. as these inductance values.
 次に、前述のようにインダクタンス値に寸法ばらつきを加味して、断線時のインダクタンス値のとり得る範囲および非断線時のインダクタンス値のとり得る範囲をそれぞれ求める。そして、断線時のインダクタンスの下限値より小さく、かつ非断線時のインダクタンスの上限値より大きい値を導通判定用閾値とする。なお、寸法ばらつきを考慮せずに、断線時のインダクタンス値と非断線時のインダクタンス値の平均値を導通判定用閾値としてもよい。 Next, as described above, the dimensional variation is added to the inductance value to obtain the possible range of the inductance value at the time of disconnection and the possible range of the inductance value at the time of non-disconnection. Then, a value smaller than the lower limit value of the inductance at the time of disconnection and larger than the upper limit value of the inductance at the time of non-disconnection is taken as a threshold value for conduction determination. The average value of the inductance value at the time of disconnection and the inductance value at the time of non-disconnection may be used as the threshold value for conduction determination without considering the dimensional variation.
 また、多重配線パターンを構成する配線が3本以上であっても、本発明を適用することが可能である。例えば、第1の端子と第2の端子を電気的に接続する配線の数がn本であり、各配線のインダクタンス値が同じ(L)であると仮定する。この場合、全ての配線が非断線のときの合成インダクタンスはL/nであり、1本の配線が断線しているときの合成インダクタンスはL/(n-1)である。よって、L/nより大きく、L/(n-1)より小さい値を導通判定用閾値とすればよい。好ましくは、これらの合成インダクタンスの平均値である{(2n-1)/2n(n-1)}Lを導通判定用閾値とする。 Further, the present invention can be applied even if the number of wires forming the multiple wiring pattern is three or more. For example, it is assumed that the number of wires electrically connecting the first terminal and the second terminal is n, and the inductance value of each wire is the same (L). In this case, the combined inductance when all the wires are not disconnected is L / n, and the combined inductance when one wire is disconnected is L / (n-1). Therefore, a value larger than L / n and smaller than L / (n-1) may be used as the threshold for conduction determination. Preferably, the average value of these combined inductances, {(2 n -1) / 2 n (n-1)} L, is used as the threshold for conduction determination.
 以上説明したように、本実施形態では、1kHz~10MHzの測定周波数で4端子対法を用いて多重配線パターンのインダクタンス値を測定し、測定されたインダクタンス値を所定の導通判定用閾値と比較する。これにより、配線の幅や厚みのばらつき及び測定誤差を考慮しても、多重配線パターンの断線を確実に検出することができる。 As described above, in the present embodiment, the inductance value of the multiple wiring pattern is measured using a four-terminal pair method at a measurement frequency of 1 kHz to 10 MHz, and the measured inductance value is compared with a predetermined conduction determination threshold. . As a result, disconnection of the multiple wiring pattern can be reliably detected even in consideration of variations in wiring width and thickness and measurement errors.
 また、配線長の変化に対する感度は、一般に、直流抵抗よりもインダクタンスの方が高い。このため、本実施形態によれば、ピンコンタクト方式に比べて高い精度で断線を検出することが可能である。 Also, the sensitivity to changes in wire length is generally higher for inductance than for DC resistance. For this reason, according to this embodiment, it is possible to detect the disconnection with high accuracy as compared with the pin contact method.
 さらに、上記のように比較的低い測定周波数を用いることで、インダクタンス測定部(インダクタンス・メータ)をTDRオシロスコープ等に比べて安価に作製できる。その結果、多重配線パターンの導通検査の費用を抑えることができる。 Furthermore, by using a relatively low measurement frequency as described above, the inductance measurement unit (inductance meter) can be manufactured at low cost compared to a TDR oscilloscope or the like. As a result, it is possible to reduce the cost of the continuity inspection of the multiple wiring pattern.
(第2の実施形態)
 次に、第2の実施形態に係る導通検査装置100Aについて、図5を用いて説明する。第2の実施形態と第1の実施形態との相違点の一つは、導通検査装置100Aが抵抗測定部150を備えることである。以下、第1の実施形態と異なる部分を中心に説明する。
Second Embodiment
Next, a continuity inspection device 100A according to a second embodiment will be described using FIG. One of the differences between the second embodiment and the first embodiment is that the continuity inspection device 100A includes the resistance measurement unit 150. The differences from the first embodiment will be mainly described below.
 導通検査装置100Aは、インダクタンス測定部110、導通判定部120、記憶部130および表示部140に加えて、端子5と端子6間の抵抗値を測定する抵抗測定部150を備える。 In addition to the inductance measuring unit 110, the conduction determining unit 120, the storage unit 130, and the display unit 140, the continuity inspection apparatus 100A includes a resistance measuring unit 150 that measures a resistance value between the terminal 5 and the terminal 6.
 より詳しくは、抵抗測定部150は、多重配線パターンに直流電流(I)を流す直流電流源と、端子5および端子6間に発生する電圧(V)を測定する直流電圧計とを有し、電圧と電流の比(V/I)を計算することにより多重配線パターンの端子間の直流抵抗値を得る。 More specifically, resistance measuring unit 150 includes a DC current source for causing DC current (I) to flow in a multiple wiring pattern, and a DC voltmeter for measuring a voltage (V) generated between terminals 5 and 6. By calculating the ratio of the current to the current (V / I), the DC resistance between terminals of the multiple wiring pattern can be obtained.
 導通判定部120は、抵抗測定部150により測定された抵抗値と、所定の判定閾値(オープン判定用閾値)とを比較する。このオープン判定用閾値は、数MΩ程度の十分大きい値に設定される。その結果、抵抗値がオープン判定用閾値よりも大きければ、多重配線パターンを構成する配線が全て断線していると判定する。この場合、前述のインダクタンス値を用いた導通検査は行わず、検査対象のプリント配線板は不良品と判定する。反対に、抵抗値がオープン判定用閾値よりも小さければ、第1の実施形態で説明したインダクタンス値による導通検査を行う。 The conduction determination unit 120 compares the resistance value measured by the resistance measurement unit 150 with a predetermined determination threshold (the open determination threshold). The open determination threshold is set to a sufficiently large value of about several MΩ. As a result, if the resistance value is larger than the threshold value for open determination, it is determined that all the wires forming the multiple wiring pattern are disconnected. In this case, the continuity test using the inductance value described above is not performed, and the printed wiring board to be tested is determined to be a defective product. On the other hand, if the resistance value is smaller than the open determination threshold value, the continuity test using the inductance value described in the first embodiment is performed.
 なお、導通判定部120は、断線の有無の判定に加えて、短絡の有無の判定を行ってもよい。即ち、抵抗測定部150により測定された抵抗値を所定の判定閾値(ショート判定用閾値)と比較する。このショート判定用閾値は、数Ω程度の十分小さい値に設定される。抵抗値がショート判定用閾値よりも小さければ、多重配線パターン(第1および第2の配線以外の部位など)に短絡が発生していると判定してもよい。 In addition to the determination of the presence or absence of the disconnection, the conduction determination unit 120 may determine the presence or absence of the short circuit. That is, the resistance value measured by the resistance measurement unit 150 is compared with a predetermined determination threshold (short determination threshold). The short determination threshold is set to a sufficiently small value of about several ohms. If the resistance value is smaller than the short determination threshold value, it may be determined that a short circuit has occurred in the multiple wiring pattern (such as a portion other than the first and second wires).
 図6のフローチャートを用いて、第2の実施形態に係る導通検査方法について説明する。 The continuity inspection method according to the second embodiment will be described with reference to the flowchart of FIG.
(1)まず、抵抗測定部150は、前述のようにして多重配線パターンの端子5および端子6間の抵抗値を測定する(ステップS11)。 (1) First, the resistance measuring unit 150 measures the resistance value between the terminals 5 and 6 of the multiple wiring pattern as described above (step S11).
(2)導通判定部120は、抵抗値とオープン判定用閾値との比較を行い、多重配線パターンを構成する配線が全て断線しているか否かを判定する(ステップS12)。もし配線が全て断線していると判定した場合には、検査対象のプリント配線板は不良品であると判定し(ステップS13)、そうでなければ、ステップS14に進む。 (2) The conduction determining unit 120 compares the resistance value with the threshold for open determination, and determines whether all the wires forming the multiple wiring pattern are disconnected (step S12). If it is determined that all the wirings are disconnected, it is determined that the printed wiring board to be inspected is a defective product (step S13). If not, the process proceeds to step S14.
(3)インダクタンス測定部110は、4端子対法などを用いて多重配線パターンの端子5および端子6間のインダクタンス値を測定する(ステップS14)。 (3) The inductance measuring unit 110 measures an inductance value between the terminals 5 and 6 of the multiple wiring pattern using the four-terminal pair method or the like (step S14).
(4)導通判定部120は、インダクタンス値と導通判定用閾値との比較を行い、多重配線パターンに断線が発生しているか否かを判定する(ステップS15)。もし多重配線パターンに断線が発生してないと判定した場合には、検査対象のプリント配線板は正常品であると判定し(ステップS16)、そうでなければ、不良品であると判定する(ステップS13)。 (4) The continuity determining unit 120 compares the inductance value with the threshold for continuity determination, and determines whether or not a disconnection occurs in the multiple wiring pattern (step S15). If it is determined that disconnection does not occur in the multiple wiring pattern, the printed wiring board to be inspected is determined to be a normal product (step S16), and otherwise determined to be a defective product ( Step S13).
 このように、第2の実施形態では、第1の実施形態で説明したインダクタンス値による導通検査を行う前に、抵抗値を測定し、多重配線パターンを構成する配線が全て断線しているか否かを判定する。これにより、比較的精度の高い閾値設定が必要なインダクタンス測定の回数を減らし、より効率的に多重配線パターンの導通検査を行うことができる。 As described above, in the second embodiment, before conducting the continuity test based on the inductance value described in the first embodiment, the resistance value is measured, and it is determined whether or not all the wires forming the multiple wiring pattern are disconnected. Determine As a result, the number of times of inductance measurement that requires relatively high accuracy threshold setting can be reduced, and the continuity inspection of the multiple wiring pattern can be performed more efficiently.
 なお、実際の導通検査では複数の多重配線パターンについて検査を行うことから、抵抗値の測定とインダクタンス値の測定とを並行して行ってもよい。例えば、ある多重配線パターンについて抵抗値を測定した結果、正常であると判定されてインダクタンス値を測定する場合、このインダクタンス値の測定が終了する前に、他の多重配線パターンの抵抗値の測定を行ってもよい。 In addition, since a test is performed on a plurality of multiple wiring patterns in the actual continuity test, the measurement of the resistance value and the measurement of the inductance value may be performed in parallel. For example, when it is determined that the resistance value is measured for a certain multiple wiring pattern and it is determined to be normal and the inductance value is measured, the resistance value of the other multiple wiring pattern is measured before the measurement of the inductance value is completed. You may go.
 上記の記載に基づいて、当業者であれば、本発明の追加の効果や種々の変形を想到できるかもしれないが、本発明の態様は、上述した個々の実施形態に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更及び部分的削除が可能である。 Although one skilled in the art may conceive of additional effects and various modifications of the present invention based on the above description, the aspects of the present invention are not limited to the individual embodiments described above. . Various additions, modifications and partial deletions are possible without departing from the conceptual idea and spirit of the present invention derived from the contents defined in the claims and the equivalents thereof.
1,51 両面プリント配線板
2,52 絶縁基板
3A,3B,53A,53B 導体パターン
4,7,54,57 配線
5,6,8,9,55,56,58,59 端子
10,11,60,61 貫通ビア
12、13 ケルビンプローブ
12a,12b,13a,13b プローブピン
16 インダクタンス・メータ
17 交流信号源
18 交流電流計
19 交流電圧計
21,22,23,24 同軸ケーブル
21a,22a,23a,24a 中心導体
21b,22b,23b,24b 外部導体(シールド部)
25 導体
100,100A 導通検査装置
110 インダクタンス測定部
120 導通判定部
130 記憶部
140 表示部
150 抵抗測定部
1, 51 Double-sided Printed Wiring Board 2, 52 Insulating Substrates 3A, 3B, 53A, 53B Conductor Pattern 4, 7, 54, 57 Wiring 5, 6, 8, 9, 5, 55, 56, 59 Terminal 10, 11, 60 , 61 through vias 12, 13 Kelvin probes 12a, 12b, 13a, 13b probe pins 16 inductance meters 17 AC signal sources 18 AC ammeters 19 AC voltmeters 21, 22, 23, 24 coaxial cables 21a, 22a, 23a, 24a Center conductor 21b, 22b, 23b, 24b External conductor (shield part)
25 Conductor 100, 100A Continuity inspection device 110 Inductance measurement unit 120 Conductivity determination unit 130 Storage unit 140 Display unit 150 Resistance measurement unit

Claims (20)

  1.  第1の端子と第2の端子を有し、かつ前記第1および第2の端子を電気的に接続する複数の配線を有する多重配線パターンの導通検査を行う導通検査装置であって、
     前記第1の端子と前記第2の端子間のインダクタンス値を測定する、インダクタンス測定部と、
     前記インダクタンス値と導通判定用閾値とを比較し、前記インダクタンス値が前記導通判定用閾値よりも大きければ前記多重配線パターンに断線が発生していると判定し、そうでなければ断線が発生していないと判定する、導通判定部と、
     を備えることを特徴とする導通検査装置。
    A continuity inspection apparatus for conducting continuity inspection of a multiple wiring pattern having a first terminal and a second terminal and having a plurality of wirings electrically connecting the first and second terminals,
    An inductance measurement unit that measures an inductance value between the first terminal and the second terminal;
    The inductance value is compared with the threshold value for continuity determination, and if the inductance value is larger than the threshold value for continuity determination, it is determined that disconnection has occurred in the multiple wiring pattern, otherwise disconnection has occurred. A continuity determination unit that determines that there is no
    A continuity inspection apparatus comprising:
  2.  前記導通判定用閾値は、
     前記多重配線パターンに断線が発生しているときの前記第1の端子と前記第2の端子間のインダクタンス値である断線インダクタンス値よりも小さく、かつ、前記多重配線パターンに断線が発生していないときの前記第1の端子と前記第2の端子間のインダクタンス値である非断線インダクタンス値よりも大きい値であることを特徴とする請求項1に記載の導通検査装置。
    The conduction determination threshold is
    It is smaller than the disconnection inductance value which is an inductance value between the first terminal and the second terminal when disconnection occurs in the multiple wiring pattern, and no disconnection occurs in the multiple wiring pattern. The continuity inspection device according to claim 1, wherein the value is larger than a non-breaking inductance value which is an inductance value between the first terminal and the second terminal at the time.
  3.  前記断線インダクタンス値は、前記多重配線パターンの寸法ばらつきによって断線時のインダクタンス値がとり得る範囲の下限値であり、前記非断線インダクタンス値は、前記多重配線パターンの寸法ばらつきによって非断線時のインダクタンス値がとり得る範囲の上限値であることを特徴とする請求項2に記載の導通検査装置。 The disconnection inductance value is a lower limit value of a range that can be taken by the inductance value at the time of disconnection due to the dimensional variation of the multiple wiring pattern, and the non-discontinuous inductance value is an inductance value at the time of non disconnection due to the dimensional variation of the multiple wiring pattern. The continuity inspection device according to claim 2, wherein the upper limit value of the range which can be taken is.
  4.  前記導通判定用閾値は、前記断線インダクタンス値と非断線インダクタンス値の平均値であることを特徴とする請求項2に記載の導通検査装置。 The continuity check device according to claim 2, wherein the threshold value for continuity determination is an average value of the open circuit inductance value and the non-open circuit inductance value.
  5.  前記第1の端子と前記第2の端子間の抵抗値を測定する、抵抗測定部をさらに備え、
     前記導通判定部は、前記抵抗値とオープン判定用閾値とを比較し、前記抵抗値が前記オープン判定用閾値よりも大きければ、前記複数の配線が全て断線していると判定し、前記インダクタンス値を用いた導通検査を行わないことを特徴とする請求項2に記載の導通検査装置。
    The device further includes a resistance measurement unit that measures a resistance value between the first terminal and the second terminal,
    The conduction determination unit compares the resistance value with the threshold value for open determination, and determines that all the plurality of wires are disconnected if the resistance value is larger than the threshold value for open determination, and the inductance value The continuity inspection device according to claim 2, wherein the continuity inspection using the above is not performed.
  6.  前記導通判定部は、前記抵抗値とショート判定用閾値を比較して、前記抵抗値が前記ショート判定用閾値よりも小さければ、前記多重配線パターンに短絡が発生していると判定することを特徴とする請求項5に記載の導通検査装置。 The conduction determination unit compares the resistance value with a short determination threshold, and determines that a short occurs in the multiple wiring pattern if the resistance value is smaller than the short determination threshold. The continuity inspection device according to claim 5.
  7.  前記インダクタンス測定部は、
     前記多重配線パターンの前記第1の端子に測定用の交流電流を流す交流信号源と、
     前記第2の端子から流れ出た前記交流電流を測定する交流電流計と、
     前記第1の端子および前記第2の端子間の電圧を測定する交流電圧計と、
     を有するインダクタンス・メータを備え、さらに、
     前記交流信号源の出力端子と電気的に接続された中心導体、および前記交流信号源の入力端子と電気的に接続された外部導体を有する第1の同軸ケーブルと、
     前記交流電流計の入力端子と電気的に接続された中心導体、および前記交流電流計の出力端子と電気的に接続された外部導体を有する第2の同軸ケーブルと、
     前記交流電圧計の一方の端子と電気的に接続された中心導体と、前記第1の同軸ケーブルの外部導体と電気的に接続された外部導体とを有する第3の同軸ケーブルと、
     前記交流電圧計の他方の端子と電気的に接続された中心導体と、前記第2の同軸ケーブルの外部導体および前記第3の同軸ケーブルの外部導体と電気的に接続された外部導体とを有する第4の同軸ケーブルと、
     前記第1の同軸ケーブルの中心導体と電気的に接続され、前記第1の端子に接触可能な第1のプローブピンと、
     前記第2の同軸ケーブルの中心導体と電気的に接続され、前記第2の端子に接触可能な第2のプローブピンと、
     前記第3の同軸ケーブルの中心導体と電気的に接続され、前記第1の端子に接触可能な第3のプローブピンと、
     前記第4の同軸ケーブルの中心導体と電気的に接続され、前記第2の端子に接触可能な第4のプローブピンと、
     を備えることを特徴とする請求項1に記載の導通検査装置。
    The inductance measuring unit
    An alternating current signal source that causes an alternating current for measurement to flow through the first terminal of the multiple wiring pattern;
    An alternating current ammeter measuring the alternating current flowing out of the second terminal;
    An alternating current voltmeter measuring a voltage between the first terminal and the second terminal;
    With an inductance meter having
    A first coaxial cable having a central conductor electrically connected to the output terminal of the alternating current signal source, and an external conductor electrically connected to the input terminal of the alternating current signal source;
    A second coaxial cable having a central conductor electrically connected to the input terminal of the alternating current ammeter, and an external conductor electrically connected to the output terminal of the alternating current meter;
    A third coaxial cable having a central conductor electrically connected to one terminal of the AC voltmeter, and an outer conductor electrically connected to an outer conductor of the first coaxial cable;
    It has a center conductor electrically connected to the other terminal of the AC voltmeter, and an outer conductor electrically connected to the outer conductor of the second coaxial cable and the outer conductor of the third coaxial cable. A fourth coaxial cable,
    A first probe pin electrically connected to the central conductor of the first coaxial cable and capable of being in contact with the first terminal;
    A second probe pin electrically connected to the central conductor of the second coaxial cable and capable of being in contact with the second terminal;
    A third probe pin electrically connected to the center conductor of the third coaxial cable and capable of being in contact with the first terminal;
    A fourth probe pin electrically connected to the center conductor of the fourth coaxial cable and capable of being in contact with the second terminal;
    The continuity inspection device according to claim 1, comprising:
  8.  前記交流電流の周波数は、1kHz~10MHzの範囲にあることを特徴とする請求項7に記載の導通検査装置。 The continuity inspection device according to claim 7, wherein the frequency of the alternating current is in the range of 1 kHz to 10 MHz.
  9.  前記第1の端子と前記第2の端子間の抵抗値を測定する、抵抗測定部をさらに備え、
     前記導通判定部は、前記抵抗値とオープン判定用閾値とを比較し、前記抵抗値が前記オープン判定用閾値よりも大きければ、前記複数の配線が全て断線していると判定し、前記インダクタンス値を用いた導通検査を行わないことを特徴とする請求項1に記載の導通検査装置。
    The device further includes a resistance measurement unit that measures a resistance value between the first terminal and the second terminal,
    The conduction determination unit compares the resistance value with the threshold value for open determination, and determines that all the plurality of wires are disconnected if the resistance value is larger than the threshold value for open determination, and the inductance value The continuity inspection apparatus according to claim 1, wherein the continuity inspection using the above is not performed.
  10.  前記導通判定部は、前記抵抗値とショート判定用閾値を比較して、前記抵抗値が前記ショート判定用閾値よりも小さければ、前記多重配線パターンに短絡が発生していると判定することを特徴とする請求項9に記載の導通検査装置。 The conduction determination unit compares the resistance value with a short determination threshold, and determines that a short occurs in the multiple wiring pattern if the resistance value is smaller than the short determination threshold. The continuity inspection device according to claim 9.
  11.  第1の端子と第2の端子を有し、かつ前記第1および第2の端子を電気的に接続する複数の配線を有する多重配線パターンの導通検査を行う導通検査方法であって、
     前記第1の端子と前記第2の端子間のインダクタンス値を測定し、
     前記インダクタンス値と導通判定用閾値とを比較し、前記インダクタンス値が前記導通判定用閾値よりも大きければ前記多重配線パターンに断線が発生していると判定し、そうでなければ断線が発生していないと判定する、
     ことを特徴とする導通検査方法。
    A continuity inspection method for conducting a continuity inspection of a multiple wiring pattern having a first terminal and a second terminal and having a plurality of wirings electrically connecting the first and second terminals,
    Measuring an inductance value between the first terminal and the second terminal;
    The inductance value is compared with the threshold value for continuity determination, and if the inductance value is larger than the threshold value for continuity determination, it is determined that disconnection has occurred in the multiple wiring pattern, otherwise disconnection has occurred. Determined not to,
    A continuity inspection method characterized in that.
  12.  前記多重配線パターンに断線が発生しているときの前記第1の端子と前記第2の端子間のインダクタンス値である断線インダクタンス値よりも小さく、かつ、前記多重配線パターンに断線が発生していないときの前記第1の端子と前記第2の端子間のインダクタンス値である非断線インダクタンス値よりも大きい値を、前記導通判定用閾値として用いることを特徴とする請求項11に記載の導通検査方法。 It is smaller than the disconnection inductance value which is an inductance value between the first terminal and the second terminal when disconnection occurs in the multiple wiring pattern, and no disconnection occurs in the multiple wiring pattern. The continuity inspection method according to claim 11, wherein a value larger than a non-breaking inductance value which is an inductance value between the first terminal and the second terminal at the time of use is used as the threshold value for the conduction determination. .
  13.  前記断線インダクタンス値として、前記多重配線パターンの寸法ばらつきによって断線時のインダクタンス値がとり得る範囲の下限値を用い、前記非断線インダクタンス値として、前記多重配線パターンの寸法ばらつきによって非断線時のインダクタンス値がとり得る範囲の上限値を用いることを特徴とする請求項12に記載の導通検査方法。 The lower limit value of the range which can be taken by the inductance value at the time of disconnection due to the dimensional variation of the multiple wiring pattern is used as the disconnection inductance value, and the inductance value at the time of non disconnection is used as the non-disconnection inductance value. The continuity inspection method according to claim 12, wherein an upper limit value of a range which can be taken is used.
  14.  前記導通判定用閾値として、前記断線インダクタンス値と非断線インダクタンス値の平均値を用いることを特徴とする請求項12に記載の導通検査装置。 The continuity inspection apparatus according to claim 12, wherein an average value of the disconnection inductance value and the non-interconnection inductance value is used as the conduction determination threshold value.
  15.  前記インダクタンス値を測定する前に、前記第1の端子と前記第2の端子間の抵抗値を測定し、前記抵抗値とオープン判定用閾値とを比較し、前記抵抗値が前記オープン判定用閾値よりも大きければ、前記複数の配線が全て断線していると判定し、前記インダクタンス値を用いた導通検査を行わないことを特徴とする請求項12に記載の導通検査方法。 Before measuring the inductance value, the resistance value between the first terminal and the second terminal is measured, the resistance value is compared with the threshold value for open determination, and the resistance value is the threshold value for open determination. 13. The continuity test method according to claim 12, wherein if it is larger, it is determined that all of the plurality of wires are disconnected, and a continuity test using the inductance value is not performed.
  16.  前記抵抗値とショート判定用閾値を比較して、前記抵抗値が前記ショート判定用閾値よりも小さければ、前記多重配線パターンに短絡が発生していると判定することを特徴とする請求項15に記載の導通検査方法。 The method according to claim 15, wherein the resistance value is compared with the short determination threshold, and if the resistance is smaller than the short determination threshold, it is determined that a short occurs in the multiple wiring pattern. Conduction inspection method described.
  17.  前記インダクタンス値の測定は、4端子対法により行うことを特徴とする請求項11に記載の導通検査方法。 The continuity test method according to claim 11, wherein the measurement of the inductance value is performed by a four-terminal pair method.
  18.  前記インダクタンス値の測定に用いる交流電流の周波数は、1kHz~10MHzの範囲にあることを特徴とする請求項17に記載の導通検査方法。 The method according to claim 17, wherein the frequency of the alternating current used for measuring the inductance value is in the range of 1 kHz to 10 MHz.
  19.  前記インダクタンス値を測定する前に、前記第1の端子と前記第2の端子間の抵抗値を測定し、前記抵抗値とオープン判定用閾値とを比較し、前記抵抗値が前記オープン判定用閾値よりも大きければ、前記複数の配線が全て断線していると判定し、前記インダクタンス値を用いた導通検査を行わないことを特徴とする請求項11に記載の導通検査方法。 Before measuring the inductance value, the resistance value between the first terminal and the second terminal is measured, the resistance value is compared with the threshold value for open determination, and the resistance value is the threshold value for open determination. 12. The continuity test method according to claim 11, wherein if it is larger, it is determined that all the plurality of wires are disconnected, and a continuity test using the inductance value is not performed.
  20.  前記抵抗値とショート判定用閾値を比較して、前記抵抗値が前記ショート判定用閾値よりも小さければ、前記多重配線パターンに短絡が発生していると判定することを特徴とする請求項19に記載の導通検査方法。 20. The apparatus according to claim 19, wherein the resistance value is compared with the short determination threshold, and if the resistance is smaller than the short determination threshold, it is determined that a short occurs in the multiple wiring pattern. Conduction inspection method described.
PCT/JP2012/055068 2011-09-08 2012-02-29 Continuity inspection apparatus and continuity inspection method WO2013035357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280002956.4A CN103097901B (en) 2011-09-08 2012-02-29 Continuity inspection apparatus and continuity inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196198 2011-09-08
JP2011196198A JP5797502B2 (en) 2011-09-08 2011-09-08 Continuity inspection device and continuity inspection method

Publications (1)

Publication Number Publication Date
WO2013035357A1 true WO2013035357A1 (en) 2013-03-14

Family

ID=47831824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055068 WO2013035357A1 (en) 2011-09-08 2012-02-29 Continuity inspection apparatus and continuity inspection method

Country Status (3)

Country Link
JP (1) JP5797502B2 (en)
CN (1) CN103097901B (en)
WO (1) WO2013035357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059162A1 (en) * 2013-09-05 2015-03-05 Nitto Denko Corporation Conductivity inspection method of printed circuit board and manufacturing method of printed circuit board

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358996A (en) * 2013-07-02 2016-02-24 皇家飞利浦有限公司 Problem monitoring in cable system with fuses
JP6541051B2 (en) * 2014-05-29 2019-07-10 日本電産リード株式会社 Substrate inspection device and inspection jig
CN108021122B (en) * 2017-12-12 2020-03-31 中国航发沈阳黎明航空发动机有限责任公司 Vibration test fault diagnosis method for aircraft engine
JP7236848B2 (en) * 2018-11-27 2023-03-10 日本メクトロン株式会社 PROBING DEVICE, ELECTRICAL INSPECTION DEVICE, AND ELECTRICAL INSPECTION METHOD
CN109917219B (en) * 2019-03-18 2021-05-11 芜湖航飞科技股份有限公司 Cable harness detection system and detection method
TWI805017B (en) * 2021-10-07 2023-06-11 祁昌股份有限公司 Test method and test equipment for printed circuit board
CN114167259A (en) * 2021-12-07 2022-03-11 华东光电集成器件研究所 Method for programming and testing on-off of through holes of multi-piece substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919869A (en) * 1982-07-27 1984-02-01 Nippon Kokan Kk <Nkk> Method for measuring mutual inductance
JPH02293674A (en) * 1989-05-09 1990-12-04 Nippon Telegr & Teleph Corp <Ntt> Bare board testing method and testing jig used for it
JP2002014132A (en) * 2000-06-29 2002-01-18 Hioki Ee Corp Device for inspecting circuit board
JP2002202335A (en) * 2000-12-28 2002-07-19 Hioki Ee Corp Circuit board inspecting device
JP2005223227A (en) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd Semiconductor device and evaluating method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538887U (en) * 1991-10-25 1993-05-25 ソニー株式会社 Test pattern for reliability evaluation of semiconductor devices
JP3311698B2 (en) * 1998-11-19 2002-08-05 オー・エイチ・ティー株式会社 Circuit board continuity inspection device, continuity inspection method, continuity inspection jig, and recording medium
JP2001194407A (en) * 2000-01-17 2001-07-19 Nec Ibaraki Ltd Method and apparatus of electrical inspection for pattern wiring board
JP2001221824A (en) * 2000-02-10 2001-08-17 Oht Inc Inspection instrument, method and unit
JP2002148290A (en) * 2000-11-13 2002-05-22 Ibiden Co Ltd Characteristic impedance measuring instrument
JP2006029997A (en) * 2004-07-16 2006-02-02 Nidec-Read Corp Board inspection device and board inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919869A (en) * 1982-07-27 1984-02-01 Nippon Kokan Kk <Nkk> Method for measuring mutual inductance
JPH02293674A (en) * 1989-05-09 1990-12-04 Nippon Telegr & Teleph Corp <Ntt> Bare board testing method and testing jig used for it
JP2002014132A (en) * 2000-06-29 2002-01-18 Hioki Ee Corp Device for inspecting circuit board
JP2002202335A (en) * 2000-12-28 2002-07-19 Hioki Ee Corp Circuit board inspecting device
JP2005223227A (en) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd Semiconductor device and evaluating method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150059162A1 (en) * 2013-09-05 2015-03-05 Nitto Denko Corporation Conductivity inspection method of printed circuit board and manufacturing method of printed circuit board
US10264684B2 (en) * 2013-09-05 2019-04-16 Nitto Denko Corporation Conductivity inspection method of printed circuit board and manufacturing method of printed circuit board

Also Published As

Publication number Publication date
JP2013057597A (en) 2013-03-28
CN103097901B (en) 2015-05-20
JP5797502B2 (en) 2015-10-21
CN103097901A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2013035357A1 (en) Continuity inspection apparatus and continuity inspection method
KR100796171B1 (en) Contact type single side probe and inspection apparatus and method for open/short test of conductive lines used thereof
US9482700B2 (en) Current detector to sense current without being in series with conductor
JP5463714B2 (en) Substrate inspection method and substrate inspection apparatus
CN1920586A (en) Wire short /open circuit test set
JP2017053744A (en) Measurement device and inspection device
JP5538107B2 (en) Circuit board inspection probe unit and circuit board inspection apparatus
CN106950488A (en) A kind of circuit board and detection method
JP6076709B2 (en) Continuity inspection device and continuity inspection method
JP2012132738A (en) Circuit board inspection device
KR101039049B1 (en) Chip scale package for detecting open/short of elcectrode pettern using noncontact inspection method and the inspection apparatus thereof
JP5430500B2 (en) Circuit board inspection equipment
JP5510964B2 (en) Continuity inspection method
KR20130028858A (en) Impedance measurement apparatus
JPH0333665A (en) Inspecting apparatus for defect of conductor of printed wiring board
JP5944121B2 (en) Circuit board inspection apparatus and circuit board inspection method
US20040145385A1 (en) Multipoint plane measurement probe and methods of characterization and manufacturing using same
JP2013061261A (en) Circuit board inspection device and circuit board inspection method
JP3950713B2 (en) Circuit wiring inspection method and apparatus
JP2005300240A (en) Circuit conductors inspection method and its system
JP2000232141A (en) Method for testing conduction of substrate for semiconductor package
JP2006234401A (en) Method and device for inspecting circuit wire
JP2014137231A (en) Inspection jig inspection method
JP2013053998A (en) Device and method for testing circuit board
JPH0339989A (en) Method for inspecting defect of transparent conductive circuit substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280002956.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830471

Country of ref document: EP

Kind code of ref document: A1