WO2013035274A1 - Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery - Google Patents

Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery Download PDF

Info

Publication number
WO2013035274A1
WO2013035274A1 PCT/JP2012/005432 JP2012005432W WO2013035274A1 WO 2013035274 A1 WO2013035274 A1 WO 2013035274A1 JP 2012005432 W JP2012005432 W JP 2012005432W WO 2013035274 A1 WO2013035274 A1 WO 2013035274A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
positive electrode
secondary battery
aqueous electrolyte
carrier
Prior art date
Application number
PCT/JP2012/005432
Other languages
French (fr)
Japanese (ja)
Inventor
正孝 仲西
淳一 丹羽
一仁 川澄
中川 敏
友哉 佐藤
晶 小島
琢寛 幸
境 哲男
Original Assignee
株式会社豊田自動織機
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 独立行政法人産業技術総合研究所 filed Critical 株式会社豊田自動織機
Publication of WO2013035274A1 publication Critical patent/WO2013035274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention comprises a method for producing a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material, a positive electrode for a non-aqueous electrolyte secondary battery produced by this method, and a positive electrode for the non-aqueous electrolyte secondary battery.
  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • a technology using sulfur as a positive electrode active material for a non-aqueous electrolyte secondary battery is known.
  • As a positive electrode active material of a lithium ion secondary battery although what contains rare metals, such as cobalt and nickel, is common, these metals have a small amount of circulation, and are expensive. Compared to these rare metals, the current sulfur flow is large. For this reason, sulfur as a positive electrode active material attracts attention. Moreover, when using sulfur as a positive electrode active material of a lithium ion secondary battery, the non-aqueous electrolyte secondary battery with large charging / discharging capacity can be obtained.
  • the charge and discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is about 6 times the charge and discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material which is a general positive electrode material is there.
  • a compound of sulfur and lithium is formed during discharge.
  • the compound of sulfur and lithium is soluble in the non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of the lithium ion secondary battery.
  • a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that when charge and discharge are repeated, the elution of the sulfur into the electrolytic solution gradually deteriorates and the battery capacity decreases.
  • cycle characteristics the characteristics of the lithium ion secondary battery in which the charge and discharge capacity decreases with repetition of charge and discharge are referred to as “cycle characteristics”.
  • the lithium ion secondary battery having a small charge / discharge capacity decrease is a lithium ion secondary battery excellent in cycle characteristics, and the lithium ion secondary battery having a large charge / discharge capacity decrease is a lithium ion secondary battery having poor cycle characteristics.
  • a positive electrode active material (hereinafter referred to as a sulfur-based positive electrode active material) obtained by heat treatment of a mixture of a carrier and sulfur has been proposed.
  • carrier refers to a substance capable of fixing sulfur chemically or physically. That is, the carrier may be chemically bonded to sulfur or may physically hold sulfur.
  • the fixed strength of sulfur by the carrier is not particularly limited.
  • Patent Document 1 discloses a technique using polysulfide carbon containing carbon and sulfur as main components as a sulfur-based positive electrode active material.
  • the polysulfide carbon is a carrier, that is, one in which sulfur is added to a linear unsaturated polymer.
  • this sulfur-based positive electrode active material is considered to be able to suppress the decrease in charge / discharge capacity of a lithium ion secondary battery accompanying repetition of charge / discharge.
  • cycle characteristics the characteristics of the lithium ion secondary battery in which the charge and discharge capacity decreases with repetition of charge and discharge are referred to as “cycle characteristics”.
  • the lithium ion secondary battery having a small charge / discharge capacity decrease is a lithium ion secondary battery excellent in cycle characteristics, and the lithium ion secondary battery having a large charge / discharge capacity decrease is a lithium ion secondary battery having poor cycle characteristics.
  • the inventors of the present invention invented a sulfur-based positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile (hereinafter abbreviated as PAN if necessary) and sulfur. ).
  • PAN polyacrylonitrile
  • the charge and discharge capacity of a lithium ion secondary battery using this positive electrode active material as a positive electrode is large, and a lithium ion secondary battery using this positive electrode active material as a positive electrode is excellent in cycle characteristics.
  • this positive electrode active material can also be used as a positive electrode active material such as a sodium secondary battery.
  • the step of obtaining a sulfur-based positive electrode active material by heat treatment of a carrier such as PAN and sulfur to obtain a sulfur-based positive electrode active material (referred to as a heat treatment step) is relatively high temperature and requires a relatively long time. For this reason, there has been a demand for a manufacturing method capable of more easily manufacturing a sulfur-based positive electrode active material.
  • the present invention has been made in view of the above-mentioned circumstances, and a manufacturing method by which a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material can be easily manufactured, and a positive electrode manufactured by this manufacturing method
  • An object of the present invention is to provide a water electrolyte secondary battery.
  • the method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention includes a heat treatment step of heating a mixed material containing sulfur (S), a carrier and a compounding material,
  • the compounding material is characterized by comprising at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention which solves the above problems, is produced by the method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention,
  • a sulfur-based positive electrode active material containing sulfur (S); It is characterized by including at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element.
  • the non-aqueous electrolyte secondary battery of the present invention for solving the above problems is characterized by including the positive electrode for a non-aqueous electrolyte secondary battery of the present invention as a positive electrode.
  • the production method of the present invention it is possible to produce a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material in a relatively short time and at a relatively low temperature. Further, the non-aqueous electrolyte secondary battery provided with the positive electrode for a non-aqueous electrolyte secondary battery obtained by the production method of the present invention has a large capacity even if the positive electrode is produced under the condition that the reaction hardly occurs. And it is excellent in battery characteristics.
  • 15 is a graph showing the discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 3.
  • 15 is a graph showing the discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 4.
  • FIG. 18 is a graph showing the results of X-ray diffraction of the sulfur-based positive electrode active material-blender composite used for the positive electrode of Example 3.
  • FIG. 18 is a graph showing the results of X-ray diffraction of the sulfur-based positive electrode active material-blender composite used for the positive electrode of Example 4.
  • FIG. It is a graph showing the result of having carried out the X-ray diffraction of the sulfur system positive electrode active material used for the positive electrode of comparative example 1.
  • the method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention includes a heat treatment step of heating a mixed raw material containing sulfur, a carrier and a compounding material.
  • the production method of the present invention produces a positive electrode containing at least a sulfur-based positive electrode active material.
  • the positive electrode (the positive electrode for a non-aqueous electrolyte secondary battery of the present invention, hereinafter abbreviated as the positive electrode of the present invention) produced by the production method of the present invention may or may not contain a compounding material. That is, in the production method of the present invention, the compounding material may be removed after obtaining the sulfur-based positive electrode active material.
  • the non-aqueous electrolyte secondary battery of the present invention is a battery using the positive electrode of the present invention.
  • the sulfur-based positive electrode active material is, for example, those disclosed in the above-mentioned Patent Document 1 (using polysulfide carbon as a carrier) and those disclosed in Patent Document 2 (using PAN as a carrier) Or any other carrier may be used.
  • a carrier a pitch-based carrier, which will be described later, a polycyclic aromatic hydrocarbon formed by condensation of three or more six-membered rings (hereinafter abbreviated as PAH if necessary), a plant-based carrier or the like is used. It is good.
  • the sulfur-based positive electrode active material using PAN as a carrier is hereinafter referred to as sulfur-modified PAN.
  • a sulfur-based positive electrode active material using a pitch-based carrier as a carrier is called a sulfur-modified pitch.
  • the sulfur-based positive electrode active material using PAH as a carrier is called sulfur-modified PAH.
  • the method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention can improve the speed of the reaction for fixing sulfur to a carrier by using a compounding material. Also, sulfur can be fixed to the support even under conditions that are not suitable for chemical reactions, such as at relatively low temperatures.
  • a compounding material at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element can be used. These metals or metal compounds promote any chemical reaction in fixing sulfur to the carrier. That is, in the production method of the present invention, the compounding material is considered to function as a catalyst for the reaction in which sulfur is fixed to the carrier.
  • a compounding material may be any of the above-described various metals or compounds thereof (oxides, chlorides, etc.), and may be sulfides or non-sulfurized. That is, even in the case of a sulfide compounding material, it is only necessary to accelerate the reaction in which sulfur is fixed to the carrier. In addition, after the unsulfided compounding material reacts with sulfur to become sulfide, it may promote the reaction in which the sulfur is fixed to the carrier.
  • the sulfur-based positive electrode active material obtained by the production method of the present invention may or may not contain a compounding material.
  • a sulfur-based material containing no compounding material The positive electrode active material can be manufactured.
  • the fourth period metal, the fifth period metal, and the sixth period metal in the present specification are according to the periodic table.
  • the fourth period metal refers to a metal included in the fourth period element in the periodic table. More specifically, Ti, Fe, La, Ce, Pr, Nd, Sm, V, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, In, Sn, Sb, Ta, W, Pb, And at least one selected from the group consisting of compounds of these metals (excluding sulfides).
  • the compounding ratio of the carrier to the compounding material is preferably 10: 0.05 to 10: 5 in mass ratio, and more preferably 10: 1 to 10: 3. If the compounding amount of the compounding material is too large, the amount of the positive electrode active material with respect to the whole of the positive electrode will be too small.
  • the compounding material in order to remove the compounding material after the reaction of sulfur and the carrier, the compounding material is preferably not in the form of powder but in the form of an aggregate such as plate or net.
  • the compounding material in order to disperse the compounding material substantially uniformly in the sulfur-based positive electrode active material, the compounding material is preferably in the form of powder.
  • the compounding material preferably has a particle diameter of 0.01 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and still more preferably 0.1 to 20 ⁇ m, as measured using an electron microscope or the like.
  • sulfur-based positive electrode active material in a state of being bonded to PAN in which ring closure has progressed.
  • sulfur-modified PAN has a carbon skeleton derived from PAN.
  • PAN used as a carrier is preferably in the form of powder, and the mass average molecular weight is preferably about 10 4 to 3 ⁇ 10 5 .
  • the particle diameter of PAN is preferably about 0.5 to 50 ⁇ m, more preferably about 1 to 10 ⁇ m, as observed by an electron microscope. If the molecular weight and the particle size of PAN are within these ranges, the contact area between PAN and sulfur can be increased, and PAN and sulfur can be reacted with high reliability. Therefore, the elution of sulfur into the electrolyte can be suppressed more reliably.
  • the sulfur used for the sulfur-based positive electrode active material is also preferably in the form of powder.
  • the particle size of sulfur is not particularly limited, but when it is classified using a sieve, one having a size which does not pass through a sieve with a sieve opening of 40 ⁇ m and which passes through a 150 ⁇ m sieve is preferable. It is more preferable not to pass through a sieve with a sieve opening of 40 ⁇ m and in the size range of passing through a 100 ⁇ m sieve.
  • the compounding ratio of the PAN powder to the sulfur powder used for the sulfur-based positive electrode active material is not particularly limited, but it is preferably 1: 0.5 to 1:10 in mass ratio, 1: 0.5 to 1: It is more preferably 7 and even more preferably 1: 2 to 1: 5.
  • Sulfur-modified PAN contains carbon, nitrogen, and sulfur as a result of elemental analysis, and may further contain small amounts of oxygen and hydrogen.
  • FIG. 1 As a result of X-ray diffraction of sulfur-modified PAN with CuK ⁇ rays, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2 ⁇ ) range of 20 ° to 30 °.
  • the for reference X-ray diffraction measurement was performed using a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE) using a CuK ⁇ ray. The measurement conditions were: voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 measurement range: diffraction angle (2 ⁇ ) 10 ° to 60 °.
  • the mass loss by thermogravimetric analysis at the time of heating sulfur-modified PAN from a room temperature to 900 ° C. at a temperature rising rate of 20 ° C./min is 10% or less at 400 ° C.
  • a mass loss is recognized from around 120 ° C., and at 200 ° C. or more, a large mass loss due to the disappearance of sulfur is recognized. That is, in sulfur-modified PAN, it is considered that sulfur is not present as a simple substance, but is present in a state of being bound to a ring-closed PAN.
  • FIG. 2 An example of a Raman spectrum of sulfur-modified PAN is shown in FIG.
  • the Raman spectrum shown in FIG. 2 there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ⁇ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, A peak is present around 317 cm -1 .
  • the peak of the above-mentioned Raman shift is observed at the same position even when the ratio of elemental sulfur to PAN is changed. Therefore, these peaks are characteristic of sulfur-modified PAN.
  • Each peak mentioned above exists in the range of about ⁇ 8 cm ⁇ 1 around the peak position mentioned above.
  • a "main peak” refers to the peak which peak height becomes the largest among all the peaks which appeared in the Raman spectrum.
  • the peaks of the Raman spectrum may change in number or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when the Raman spectrum of the positive electrode of the present invention using sulfur-modified PAN as the positive electrode active material is measured, the same peak as the above peak or a peak slightly different in number or peak top position from the above peak is confirmed Ru. ⁇ pitch ⁇
  • a pitch-based carrier is a solid or semi-solid obtained by distillation of various tars, petroleum and coals, and a synthetic material having the same structure and / or composition as these materials. Refers to the whole.
  • Specific examples of the pitch-based carrier include organic materials obtained by polycondensation of coal pitch, petroleum pitch, mesophase pitch (anisotropic pitch), asphalt, coal tar, coal tar pitch, and condensed polycyclic aromatic hydrocarbon compounds.
  • Synthetic pitch or organic synthetic pitch obtained by polycondensation of a heteroatom-containing fused polycyclic aromatic hydrocarbon compound may, for example, be mentioned. These are known as carbon materials containing fused polycyclic aromatics.
  • Coal tar which is a type of pitch-based carrier, is a black viscous oily liquid obtained by high temperature dry distillation (coal dry distillation) of coal.
  • Coal pitch can be obtained by refining and heat treating (polymerizing) coal tar.
  • Asphalt is a black-brown to black solid or semi-solid plastic material. Asphalt is roughly classified into those obtained as bottoms when vacuum distillation of petroleum (crude oil) is carried out and those which exist naturally. Asphalt is soluble in toluene, carbon disulfide and the like.
  • Petroleum pitch can be obtained by refining and heat treating (polymerizing) asphalt. The pitch is usually amorphous and optically isotropic (isotropic pitch).
  • anisotropic pitch mesophase pitch
  • Pitch is partially soluble in organic solvents such as benzene, toluene, carbon disulfide and the like.
  • the pitch-based carrier is a mixture of various compounds and comprises fused polycyclic aromatics as described above.
  • the fused polycyclic aromatic group contained in the pitch-based carrier may be a single species or a plurality of species.
  • the main component of coal pitch which is a type of pitch-based carrier, is condensed polycyclic aromatics.
  • the fused polycyclic aromatic ring may contain nitrogen and sulfur in addition to carbon and hydrogen in the ring. Therefore, the main component of coal pitch is considered to be a mixture of a condensed polycyclic aromatic hydrocarbon consisting of only carbon and hydrogen and a heteroaromatic compound containing nitrogen, sulfur and the like in the condensed ring.
  • the particle size of the pitch-based carrier is not particularly limited. Further, when a pitch-based carrier is used as the carrier, the particle size of sulfur is also not particularly limited.
  • the mixing ratio of the pitch-based carrier to the sulfur is also not particularly limited, but the mixing ratio of the pitch-based carrier to the sulfur in the mixed raw material is preferably 1: 0.5 to 1:10 by mass ratio, It is more preferably 1: 1 to 1: 7, particularly preferably 1: 2 to 1: 5.
  • Sulfur-modified pitch contains multiple types of polycyclic aromatic hydrocarbons.
  • the polycyclic aromatic hydrocarbon (PAH) referred to in the present specification is selected from the group consisting of the various pitch-based carriers described above and the various polycyclic aromatic hydrocarbons contained in the various pitch-based carriers described above. Refers to at least one carbon material.
  • the diffraction conditions are the same as the sulfur-modified PAN described above.
  • the main peak of single sulfur was present near 22 °, and the main peak of single coal pitch was present near 26 °.
  • the peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur was 1: 1 was a single peak and was present around 26 °.
  • the main peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur is 1: 5 and the main peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur is 1:10 was present at around 22 °.
  • Sulfur-modified pitch is excellent in heat stability.
  • the mass loss by thermogravimetric analysis when the sulfur-modified pitch is heated from room temperature to 550 ° C. at a heating rate of 10 ° C./min is about 25% at 550 ° C.
  • the mass loss of the coal pitch is about 30% at 550 ° C.
  • elemental sulfur the mass decreases gradually from around 170 ° C., and decreases sharply above 200 ° C.
  • Coal pitch also tends not to decrease in mass, and in the vicinity of 250 ° C. to 450 ° C., coal pitch tends to be less likely to decrease in weight than sulfur-modified pitch.
  • the sulfur-modified pitch tends to be less likely to lose mass than coal pitch.
  • FIG. 1 An example of a Raman spectrum of sulfur-modified pitch is shown in FIG.
  • this Raman spectrum is measured under the same conditions as the Raman spectrum of the sulfur-modified PAN described above.
  • the main peak is present near 1557cm -1 of Raman shift, and, 1371cm -1 in the range of 200cm -1 ⁇ 1800cm -1, 1049cm -1 , 994cm -1, 842cm -1 , 612cm -1, 412cm -1, 354cm -1, the peak respectively is present in the vicinity of 314 cm -1.
  • These peaks are observed at similar positions even when the ratio of elemental sulfur to pitch-based carrier is changed, and are peaks characterizing sulfur-modified pitch.
  • the sulfur-modified pitch contains at least one of nitrogen, oxygen, and a sulfur compound as an impurity.
  • a polycyclic aromatic hydrocarbon (PAH) other than the pitch-based carrier described above may be used as a compounding material.
  • the above-described sulfur-modified PAH has a carbon skeleton derived from at least one kind of polycyclic aromatic hydrocarbon (PAH) formed by condensation of three or more six-membered rings.
  • PAH is a generic term for hydrocarbons in which a hetero ring or a substituted aromatic ring is fused, and includes four-, five-, six-, and seven-membered rings.
  • As a compounding material composed of PAH other than the carrier acenes having a structure in which a six-membered ring having a benzene ring structure is linked in three or more straight chains, and a six-membered ring having three or more rings are not straight chains It is preferable to use at least one of sulfur and a compound having a bent structure.
  • polycyclic aromatic hydrocarbons having a structure in which three or more six-membered rings are not linear but bent, there are phenanthrene, benzopyrene, chrysene, pyrene, pyrene, picene, perylene, triphenylene, coronene, and more rings than these rings. Some of the above aromatic rings are linked, and at least one selected from these groups can be used. Sulfur-modified PAH can be produced in the same manner as sulfur-modified pitch.
  • the heat treatment step PAH and sulfur are reacted.
  • the amount of sulfur be excessive relative to the amount of PAH to make a positive electrode active material containing sulfur at a high concentration.
  • the temperature of this heat treatment step be performed under the condition that at least a part of PAH and at least a part of sulfur become liquid.
  • the mixing ratio of PAH to sulfur in the mixed raw material is preferably 1: 0.5 to 1:10, more preferably 1: 1 to 1: 7, in terms of mass ratio, PAH: sulfur. Particular preference is given to 1: 2 to 1: 5.
  • the compounding quantity of sulfur with respect to PAH is made excessive, a sufficient amount of sulfur can be easily taken in to PAH in a heat treatment process. And, even if sulfur is mixed with PAH in a necessary amount or more, the adverse effect due to the above-mentioned simple substance sulfur can be suppressed by performing the simple substance sulfur removing process for removing excess simple substance sulfur from the object after the heat treatment process. Specifically, when the compounding ratio of PAH to sulfur in the mixed raw material is 1: 2 to 1:10 in mass ratio, the object to be treated after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing pressure.
  • the object to be treated may be used as the sulfur-modified PAH as it is.
  • the target after the single sulfur removing step may be used as the sulfur-modified PAH.
  • the sulfur-modified PAH is considered to have a structure similar to hexathiapentacene, for example, when pentacene is selected as the starting material PAH, but the structure is not clear.
  • the sulfur positive electrode active material using anthracene as PAH has peaks respectively at around 1056 cm -1 and 840 cm -1 in the FT-IR spectrum, which is completely different from the FT-IR spectrum of anthracene Therefore, it is possible to identify in FT-IR spectrum.
  • Elemental analysis of the sulfur-modified PAH shows that sulfur (S) and carbon (C) account for the majority, and small amounts of oxygen and hydrogen are detected.
  • the composition ratio of sulfur (S) to carbon (C) is desirably contained in the range of 1/5 or more in atomic ratio (S / C). When the amount of sulfur is less than this range, the charge and discharge characteristics may be deteriorated when used for a positive electrode for a non-aqueous electrolyte secondary battery.
  • the sulfur-modified PAH preferably further includes a second sulfur-based positive electrode active material (sulfur-modified PAN).
  • a second sulfur-based positive electrode active material sulfur-modified PAN
  • the heat treatment step in the case where the mixed raw material further contains PAN powder can be performed in the same manner as the method for producing sulfur-modified PAN described above.
  • the mixing amount of the second sulfur-based positive electrode active material is not particularly limited, but from the viewpoint of cost, it is preferably about 0 to 80% by mass, and about 5 to 60% by mass based on the whole positive electrode active material. It is more preferable that the content be about 10 to 40% by mass. [Other carriers]
  • linear unsaturated polymers as disclosed in the above-mentioned Patent Document 1, plant-based carriers such as coffee beans and seaweed, and sulfur are thermally treated, Or these complexes etc. can be mentioned.
  • the carrier In the production method of the present invention, the carrier only needs to be capable of fixing sulfur, and does not necessarily contain carbon (C).
  • the production method of the present invention comprises a heat treatment step of heating a mixed material obtained by mixing the above-described carrier, sulfur and a compounding material.
  • the mixed material may be mixed by a general mixing device such as a mortar or a ball mill.
  • a general mixing device such as a mortar or a ball mill.
  • the mixed raw material one obtained by simply mixing sulfur, a carrier and a compounding material may be used, but for example, the mixed raw material may be formed into a pellet and used.
  • the heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, the closed system is preferable.
  • the heat treatment step is not particularly limited as to which atmosphere to carry out, but it is preferable to carry out in an atmosphere which does not prevent the fixation of sulfur on the carrier (for example, an atmosphere containing no hydrogen or a nonoxidizing atmosphere).
  • an atmosphere which does not prevent the fixation of sulfur on the carrier for example, an atmosphere containing no hydrogen or a nonoxidizing atmosphere.
  • hydrogen when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, which may result in loss of sulfur in the reaction system.
  • the non-oxidative atmosphere referred to here includes a reduced pressure state where the oxygen concentration is low to such an extent that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen and argon, a sulfur gas atmosphere and the like.
  • the mixed raw material is put in a container in which the sealing property is maintained to the extent that the sulfur vapor does not dissipate, and the pressure in the container is reduced.
  • heating may be performed in an inert gas atmosphere.
  • you may heat in the state vacuum-packed with the material (for example, aluminum laminate film etc.) which is hard to react with a sulfur raw material.
  • the packaged raw material is placed in a pressure container such as an autoclave containing water and heated so that the packaging material is not damaged by the generated sulfur vapor, and the generated steam is added from the outside of the packaging material It is preferable to press.
  • the sulfur vapor prevents the packaging material from being blown and broken.
  • the heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited.
  • the above-mentioned preferable heating temperature may be a temperature at which the reaction between sulfur and the carrier proceeds and the compounding material does not deteriorate.
  • the heating temperature is preferably 250 ° C. to 500 ° C., more preferably 250 ° C. to 400 ° C., and still more preferably 300 ° C. to 400 ° C. .
  • the heating temperature is preferably 200 ° C. or more and 600 ° C. or less, more preferably 300 ° C. or more and 500 ° C. or less, and preferably 350 ° C. or more and 500 ° C. or less More preferable.
  • a pitch-based carrier is used as the carrier, at least a portion of the pitch-based carrier and at least a portion of the sulfur become liquid in the heat treatment step.
  • the contact area of the pitch-based carrier and sulfur in the heat treatment step is large, the pitch-based carrier and sulfur are sufficiently bonded, and desorption of sulfur from the sulfur-based positive electrode active material is suppressed.
  • sulfur is preferably refluxed.
  • the mixed material may be heated so that a part of the mixed material becomes a gas and a part becomes a liquid.
  • the temperature of the mixed raw material may be a temperature higher than the temperature at which sulfur is vaporized.
  • vaporization refers to phase change of sulfur from liquid or solid to gas, which may be boiling, evaporation or sublimation.
  • the melting point of alpha sulfur is 112.8 ° C
  • the melting point of beta sulfur is 119.6 ° C
  • gamma sulfur monoclinic sulfur
  • the melting point of is 106.8 ° C.
  • the boiling point of sulfur is 444.7.degree.
  • the object to be treated may be used as it is as a sulfur-based positive electrode active material.
  • the target after the single sulfur removing step may be used as the sulfur-based positive electrode active material.
  • the positive electrode of the present invention is manufactured by the manufacturing method of the present invention including the above-described heat treatment step, and contains a sulfur-based positive electrode active material and a compounding material.
  • the Raman spectrum of the positive electrode is derived from the aforementioned sulfur-modified PAN-derived peak or sulfur-modified pitch Peaks are observed with other peaks.
  • the positive electrode can have the same structure as a general positive electrode for a non-aqueous electrolyte secondary battery, except for the positive electrode active material (and the compounding material in some cases).
  • the positive electrode of the present invention can be obtained by using a positive electrode material in which a mixture of a sulfur-based positive electrode active material and a compounding material (that is, an object to be treated obtained by the heat treatment step), a conductive additive, a binder, and a solvent is mixed. It can be produced by applying to Alternatively, the mixed raw material in which the sulfur powder, the carrier powder and the compounding material powder are mixed can be filled in the current collector for the positive electrode and then heated (performing a heat treatment step).
  • a mixture of the sulfur-based positive electrode active material and the compounding material can be manufactured, and at the same time, the mixture and the current collector can be integrated without using a binder. If a binder is not used, the amount of positive electrode active material per positive electrode mass can be increased, and the capacity per positive electrode mass can be improved.
  • the positive electrode may contain ingredients.
  • the content ratio of the sulfur-based positive electrode active material to the compounding material in the positive electrode is preferably 10: 0.01 to 10: 5, and more preferably 10: 0.1 to 10: 2, in mass ratio .
  • vapor grown carbon fiber As a conductive support agent, vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, positive electrode such as aluminum or titanium
  • VGCF vapor grown carbon fiber
  • CB carbon black
  • AB acetylene black
  • KB ketjen black
  • positive electrode such as aluminum or titanium
  • fine powders of metals stable at potentials are exemplified.
  • conductive aid depending on the kind of compounding material, there is also one that functions as a conductive aid. For this reason, it may not be necessary to blend the conductive aid.
  • polyvinylidene fluoride PolyVinylidene DiFluoride: PVDF
  • PVDF polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamidoimide
  • CMC carboxymethylcellulose
  • PVC vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP) and the like.
  • the solvent examples include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like.
  • These conductive aids, binders and solvents may be used in combination of two or more.
  • the compounding amount of these materials is not particularly limited, for example, it is preferable to mix about 20 to 100 parts by mass of the conductive aid and about 10 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-based positive electrode active material.
  • a mixture of the sulfur-based positive electrode active material of the present invention and the above-mentioned conductive additive and binder is kneaded with a mortar or press and made into a film, and the film-like mixture is collected with a press or the like.
  • the positive electrode for a non-aqueous electrolyte secondary battery of the present invention can also be produced by pressure bonding to a current collector.
  • What is generally used for the positive electrode for nonaqueous electrolyte secondary batteries may be used as a collector.
  • a current collector aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh , A punched copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon non-woven fabric, a carbon woven fabric and the like.
  • a carbon nonwoven fabric / woven fabric current collector made of carbon having a high degree of graphitization is suitable as a current collector for a sulfur-based positive electrode active material because it does not contain hydrogen and has low reactivity with sulfur.
  • Non-aqueous electrolyte secondary battery As a raw material of carbon fiber having a high degree of graphitization, various kinds of pitch (that is, by-products such as petroleum, coal, coal tar, etc.), PAN fiber, etc. can be used as a material of carbon fiber.
  • pitch that is, by-products such as petroleum, coal, coal tar, etc.
  • PAN fiber, etc. can be used as a material of carbon fiber.
  • the negative electrode active material it is possible to use a known metal-based material such as metal lithium and graphite, and an element capable of inserting and extracting lithium and capable of alloying with lithium and / or a compound containing the element.
  • the charge carrier is lithium
  • the non-aqueous electrolyte secondary battery of the present invention is a lithium secondary battery, or a lithium ion secondary battery, or a lithium polymer secondary battery.
  • metallic sodium an element capable of storing and releasing sodium ions and capable of alloying with sodium, and / or a compound containing the element can also be used.
  • the charge carrier is sodium
  • the non-aqueous electrolyte secondary battery of the present invention is a sodium secondary battery, or a sodium ion secondary battery, or a sodium polymer secondary battery.
  • the above-mentioned elements capable of alloying reaction with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, It is preferably at least one selected from the group consisting of Ge, Sn, Pb, Sb, and Bi.
  • silicon (Si) or tin (Sn) is particularly preferable.
  • the elemental compound having an element capable of alloying reaction with lithium described above is preferably a silicon compound or a tin compound.
  • the silicon compound is preferably SiO x (0.5 ⁇ x ⁇ 1.5). Since silicon has a large theoretical capacity and a large volume change at the time of charge and discharge, it is possible to reduce the volume change by using it in the compound state (that is, SiO x ).
  • tin compound for example, a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.), a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.), etc. are preferably used.
  • silicon-based materials such as silicon thin films, and alloy-based materials such as copper-tin and cobalt-tin can be preferably used.
  • the charge carrier is sodium, hard carbon or soft carbon or a tin compound is preferably used as the negative electrode active material.
  • the negative electrode active material When using a material not containing lithium, for example, a carbon-based material, a silicon-based material, an alloy-based material or the like among the above-described negative electrode materials as the negative electrode active material, it is difficult to cause a short circuit between positive and negative electrodes Is advantageous.
  • a material involved in charge and discharge by ionizing and moving between the positive electrode and the negative electrode such as Li and Na.
  • charge carriers are not included in either the positive electrode or the negative electrode. For this reason, it is necessary to pre-dope the charge carrier in advance into one or both of the negative electrode and the positive electrode.
  • the charge carrier pre-doping method may be a known method.
  • lithium which is a type of charge carrier
  • an electrolytic doping method in which metal lithium is used as a counter electrode to form a half cell and lithium is doped to the negative electrode electrochemically.
  • a bonding pre-doping method in which a lithium metal foil attached to an electrode is left in an electrolytic solution and lithium diffusion is used to dope lithium into the negative electrode.
  • the above-described electrolytic doping method can be used also in the case of pre-doping lithium to the positive electrode. The same is true for sodium.
  • a negative electrode material not containing lithium particularly, a silicon-based material which is a high capacity negative electrode material is preferable, and among them, thin film silicon which has a thin electrode thickness and which is advantageous in capacity per volume is more preferable.
  • an electrolyte used for a non-aqueous electrolyte secondary battery what melt
  • the organic solvent it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, gamma-butyrolactone and acetonitrile.
  • the charge carrier is lithium, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the supporting electrolyte.
  • the concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l.
  • the electrolyte is not limited to liquid.
  • the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery
  • the electrolyte is in a solid state (for example, in the form of a polymer gel).
  • the charge carrier is Na
  • sodium salts such as NaPF 6 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaI, NaClO 4 can be used as the electrolyte.
  • the non-aqueous electrolyte secondary battery may include members such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte.
  • the separator is interposed between the positive electrode and the negative electrode, allows movement of ions between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a closed type, the separator is also required to have a function of holding the electrolytic solution.
  • the separator it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like.
  • the shape of the non-aqueous electrolyte secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be used.
  • Example 1 [1] Mixed raw materials
  • a sulfur powder having a particle size of 50 ⁇ m or less was prepared when classified using a sieve.
  • a PAN powder one having a particle diameter in the range of 0.2 ⁇ m to 2 ⁇ m as prepared by an electron microscope was prepared.
  • a compounding material Fe 2 O 3 having a particle size of 50 ⁇ m or less when classified using a sieve was prepared.
  • 0.4 g of sulfur powder, 0.1 g of PAN powder and 0.01 g of compounding material powder were mixed and crushed in a mortar to obtain a mixed material.
  • the reactor 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective pipe 40, two alumina pipes (a gas introduction pipe 5 and a gas discharge pipe 6), an inert gas pipe 50, It has a gas tank 51 containing an inert gas, a trap pipe 60, a trap tank 62 containing an aqueous sodium hydroxide solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
  • reaction vessel 2 a bottomed cylindrical glass tube (made of quartz glass) was used.
  • the mixed raw material 9 was accommodated in the reaction container 2 in the heat treatment process mentioned later.
  • the opening of the reaction vessel 2 was closed by a glass lid 3 having three through holes.
  • An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) containing a thermocouple 4 was attached to one of the through holes.
  • a gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the other one of the through holes.
  • a gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the remaining one of the through holes.
  • the reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm.
  • the alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm.
  • the gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (in the reaction vessel 2). The length of this exposed portion was 3 mm.
  • the tips of the gas introduction pipe 5 and the gas discharge pipe 6 become almost 100 ° C. or less in the heat treatment step described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out from the gas introduction pipe 5 and the gas discharge pipe 6 and is returned (refluxed) to the reaction vessel 2.
  • thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2.
  • the temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
  • An inert gas pipe 50 was connected to the gas introduction pipe 5.
  • the inert gas pipe 50 was connected to a gas tank 51 containing an inert gas.
  • One end of a trap pipe 60 was connected to the gas discharge pipe 6.
  • the other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62.
  • the trap pipe 60 and the trap tank 62 are traps of hydrogen sulfide gas generated in a heat treatment process described later.
  • the reaction vessel 2 containing the mixed raw material 9 was housed in an electric furnace 7 (crucible furnace, opening width ⁇ 80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction pipe 5. The flow rate of the inert gas at this time was 100 ml / min. Ten minutes after the start of introduction of the inert gas, heating of the mixed material 9 in the reaction vessel 2 was started while continuing the introduction of the inert gas. The temperature rising rate at this time was 5 ° C./min. When the mixed material 9 reached about 200 ° C., gas was generated. The heating was stopped when the mixed raw material 9 reached 300 ° C. Thereafter, the temperature of the mixed raw material 9 was maintained at 300 ° C. for 3 hours.
  • the mixed raw material 9 was heated to 300 degreeC in this heat treatment process. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2.
  • the product that is, the object to be treated after the heat treatment step
  • the following steps were carried out.
  • a mixture of 3 mg of a sulfur-based positive electrode active material-compounding material composite, 2.7 mg of acetylene black and 0.3 mg of polytetrafluoroethylene (PTFE) is kneaded in an agate mortar until it becomes a film while adding an appropriate amount of ethanol. , A film-like positive electrode material was obtained. The whole amount of the positive electrode material was pressure-bonded to an aluminum mesh (mesh roughness # 100) punched into a circle having a diameter of 14 mm, and vacuum dried at 120 ° C. for 5 hours. In this step, the positive electrode for a lithium ion secondary battery of Example 1 was obtained.
  • PTFE polytetrafluoroethylene
  • the compounding material in this positive electrode was Fe 2 O 3 , and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 100: 6.
  • Negative Electrode As a negative electrode, metal lithium foil (disk-shaped 14 mm in diameter and 500 ⁇ m thick, made of Honjo Metal) was used.
  • Electrolyte As a negative electrode, metal lithium foil (disk-shaped 14 mm in diameter and 500 ⁇ m thick, made of Honjo Metal) was used.
  • the coin battery was produced using the positive electrode and negative electrode which were obtained by [1] and [2]. More specifically, in a dry room, a separator (Celgard 2400, 25 ⁇ m thick polypropylene microporous membrane) and a glass non-woven filter (440 ⁇ m thick, ADVANTEC, GA 100) between the positive electrode and the negative electrode in a dry room
  • the electrode battery was used as an electrode battery.
  • the electrode battery was housed in a battery case (CR2032 type coin battery member manufactured by Takasen Co., Ltd.) consisting of a stainless steel container.
  • the electrolytic solution obtained in [3] was injected into the battery case.
  • the battery case was sealed with a caulking machine to obtain the lithium ion secondary battery of Example 1. (Example 2)
  • the compounding material in the positive electrode of Example 2 was FeCl, and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 100: 6.
  • the lithium ion secondary battery of Example 2 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 2 is used. (Example 3)
  • the method of manufacturing the positive electrode of Example 3 uses a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of compounding material powder as a mixed raw material, and Example 1 except for the heating temperature and heating time in the heat treatment step.
  • the mass ratio of PAN to the compounding material in the mixed raw material was 1: 0.1.
  • the compounding material in the positive electrode of Example 3 was Ti, and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 10: 0.6.
  • the heating was stopped when the mixed raw material reached 330 ° C. After heating was stopped, the temperature of the mixed raw material rose to 350 ° C.
  • Example 3 The lithium ion secondary battery of Example 3 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 3 is used. (Comparative example 1)
  • the manufacturing method of the positive electrode of the comparative example is the same as the manufacturing method of the positive electrode of Example 1 except that the compounding material is not used.
  • the positive electrode of the comparative example is the same as the positive electrode of Example 1 except that it does not contain any compounding material.
  • the lithium ion secondary battery of the comparative example is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of the comparative example was used. (Example 4)
  • the positive electrode of Example 4 was manufactured by using TiS 2 as a compounding material and using a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of compounding material powder as a mixed raw material. Is the same as the manufacturing method of In the manufacturing method of Example 4, the mass ratio of PAN to the compounding material in the mixed raw material was 1: 0.1. Further, the content ratio (mass ratio) of the sulfur-based positive electrode active material to the additive (TiS 2 ) in the positive electrode of Example 4 was 10: 0.6.
  • the lithium ion secondary battery of Example 4 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 4 is used. [Battery characteristics]
  • Example 3 and Example 4 were measured. Specifically, the current value per 1 g of the positive electrode active material is changed to 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C,. Did. The cutoff voltage at this time was 3.0 V to 1.0 V. The temperature was 25-30 ° C. The results of the discharge rate characteristic test are shown in FIGS.
  • the discharge capacities of the lithium ion secondary battery of Example 1 containing the compounding material and the lithium ion secondary battery of Example 2 are the lithium ion secondary batteries of the comparative example not containing the compounding material. It was larger than the battery. This fact indicates that, by performing the heat treatment step in the presence of the compounding material, the reaction between sulfur and PAN proceeds even at a relatively low heating temperature of 300 ° C. (that is, a temperature at which the reaction hardly progresses). I support you. [Analysis of sulfur-based positive electrode active material by X-ray diffraction]
  • X-ray diffraction analysis was performed on the sulfur-based positive electrode active material-compounding material composite of Example 3, the sulfur-based positive electrode active material of Comparative Example 1, and the sulfur-based positive electrode active material-additive complex of Example 4. .
  • a powder X-ray diffractometer (M06XCE manufactured by MAC Science) was used. Measurement conditions were: CuK ⁇ ray, voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 time, diffraction angle (2 ⁇ ): 10 ° to 60 ° .
  • the diffraction patterns obtained by X-ray diffraction are shown in FIGS.
  • the main diffraction peak positions of Ti by ASTM card are 35.1, 38.4, 40.2, 53.0 ° and so on.
  • the main diffraction peak positions of TiS 2 are 15.5, 34.2, 44.1, 53.9 ° and so on.
  • the diffraction angle (2 ⁇ ) is broad at around 25 ° in the range of 20 to 30 °. A single peak is observed.
  • a peak derived from the compounding material appears. For example, as shown in FIG.
  • Ti when Ti is used as a compounding material, a Ti peak appears in the vicinity of 35.1, 38.4, 40.2, and 53.0 °. From this peak, it can be confirmed that Ti was used as a compounding material. As shown in FIG. 11, when TiS 2 was used as the compounding material, the peak of Ti could not be confirmed even when X-ray diffraction was performed on the sulfur-based positive electrode active material-compounding material complex. Furthermore, although not shown, even when TiO 2 is used as a compounding material, its presence can not be confirmed by X-ray diffraction. However, since Ti can be detected by using other analysis methods such as ICP elemental analysis and fluorescent X-ray analysis, it is presumed that TiO 2 etc. is blended as a compounding material even when no peak is confirmed by X-ray diffraction. it can.
  • ICP elemental analysis and fluorescent X-ray analysis it is presumed that TiO 2 etc. is blended as a compounding material even when no peak is confirmed by X-ray
  • the sulfur-based positive electrode active material obtained by the production method of the present invention optionally contains a compounding material.
  • the metal such as iron oxide used as the compounding material is considered to function as a catalyst in at least a part of the reaction in which sulfur is fixed to PAN.
  • the peak of Ti is confirmed in the diffraction pattern of the sulfur-based positive electrode active material-compounding material composite of Example 3, while the sulfur-based material of Example 4 is shown as shown in FIG.
  • Example 3 The peak of Ti is not confirmed in the diffraction pattern of the positive electrode active material-compounding material composite. For this reason, it is considered that in the production method of Example 3 and the production method of Example 4, the compounding materials that substantially function as a catalyst are different. However, as shown in FIGS. 8 and 9, the lithium ion secondary battery of Example 3 and the lithium ion secondary battery of Example 4 exhibit comparable capacity and cycle characteristics.
  • Reactor 2 Reaction container 3: Lid 4: Thermocouple 5: Gas inlet pipe 6: Gas outlet pipe 7: Electric furnace

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed are: a method of manufacture whereby a non-aqueous electrolyte storage battery containing a sulphur-based positive electrode active substance can easily be manufactured; and a positive electrode and non-aqueous electrolyte storage battery manufactured by this method. In the method of manufacture of the non-aqueous electrolyte storage battery positive electrode, there is provided a step of heat processing in which a mixed raw material containing sulphur (S), a carrier and a blending agent is heated. As the blending agent, there may be employed material containing at least one type of metal selected from the group consisting of 4th period metals, 5th period of metals, 6th period metals and rare earth elements, and metallic compounds.

Description

非水電解質二次電池用正極の製造方法、非水電解質二次電池用正極ならびに非水電解質二次電池Method of manufacturing positive electrode for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
 本発明は、硫黄系正極活物質を含む非水電解質二次電池用正極の製造方法、およびこの方法で製造した非水電解質二次電池用正極、ならびにこの非水電解質二次電池用正極を備える非水電解質二次電池に関する。 The present invention comprises a method for producing a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material, a positive electrode for a non-aqueous electrolyte secondary battery produced by this method, and a positive electrode for the non-aqueous electrolyte secondary battery. The present invention relates to a non-aqueous electrolyte secondary battery.
 非水電解質二次電池用の正極活物質として、硫黄を用いる技術が知られている。リチウムイオン二次電池の正極活物質としては、コバルトやニッケル等のレアメタルを含有するものが一般的であるが、これらの金属は流通量が少なく高価である。これらのレアメタルに比べて、現在の硫黄の流通量は多い。このため、正極活物質としての硫黄は注目されている。また、リチウムイオン二次電池の正極活物質として硫黄を用いる場合には、充放電容量の大きな非水電解質二次電池を得ることができる。例えば、硫黄を正極活物質として用いたリチウムイオン二次電池の充放電容量は、一般的な正極材料であるコバルト酸リチウム正極材料を用いたリチウムイオン二次電池の充放電容量の約6倍である。 A technology using sulfur as a positive electrode active material for a non-aqueous electrolyte secondary battery is known. As a positive electrode active material of a lithium ion secondary battery, although what contains rare metals, such as cobalt and nickel, is common, these metals have a small amount of circulation, and are expensive. Compared to these rare metals, the current sulfur flow is large. For this reason, sulfur as a positive electrode active material attracts attention. Moreover, when using sulfur as a positive electrode active material of a lithium ion secondary battery, the non-aqueous electrolyte secondary battery with large charging / discharging capacity can be obtained. For example, the charge and discharge capacity of a lithium ion secondary battery using sulfur as a positive electrode active material is about 6 times the charge and discharge capacity of a lithium ion secondary battery using a lithium cobaltate positive electrode material which is a general positive electrode material is there.
 しかし、正極活物質として単体硫黄を用いたリチウムイオン二次電池においては、放電時に硫黄とリチウムとの化合物が生成する。この硫黄とリチウムとの化合物は、リチウムイオン二次電池の非水系電解液(例えば、エチレンカーボネートやジメチルカーボネート等)に可溶である。このため、正極活物質として硫黄を用いたリチウムイオン二次電池は、充放電を繰り返すと、硫黄の電解液への溶出により次第に劣化し、電池容量が低下する問題がある。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。 However, in a lithium ion secondary battery using elemental sulfur as a positive electrode active material, a compound of sulfur and lithium is formed during discharge. The compound of sulfur and lithium is soluble in the non-aqueous electrolyte solution (for example, ethylene carbonate, dimethyl carbonate, etc.) of the lithium ion secondary battery. For this reason, a lithium ion secondary battery using sulfur as a positive electrode active material has a problem that when charge and discharge are repeated, the elution of the sulfur into the electrolytic solution gradually deteriorates and the battery capacity decreases. Hereinafter, the characteristics of the lithium ion secondary battery in which the charge and discharge capacity decreases with repetition of charge and discharge are referred to as “cycle characteristics”. The lithium ion secondary battery having a small charge / discharge capacity decrease is a lithium ion secondary battery excellent in cycle characteristics, and the lithium ion secondary battery having a large charge / discharge capacity decrease is a lithium ion secondary battery having poor cycle characteristics.
 硫黄の電解液への溶出を抑制するために、担体と硫黄との混合物を熱処理して得られる正極活物質(以下、硫黄系正極活物質と呼ぶ)が提案されている。なお、本明細書でいう担体とは、硫黄を化学的または物理的に固定可能な物質を指す。つまり担体は、硫黄と化学的に結合しても良いし、硫黄を物理的に保持しても良い。担体による硫黄の固定強度は特に限定しない。 In order to suppress the elution of sulfur into the electrolytic solution, a positive electrode active material (hereinafter referred to as a sulfur-based positive electrode active material) obtained by heat treatment of a mixture of a carrier and sulfur has been proposed. The term "carrier" as used herein refers to a substance capable of fixing sulfur chemically or physically. That is, the carrier may be chemically bonded to sulfur or may physically hold sulfur. The fixed strength of sulfur by the carrier is not particularly limited.
 特許文献1には、硫黄系正極活物質として、炭素と硫黄とを主な構成要素とするポリ硫化カーボンを用いる技術が紹介されている。このポリ硫化カーボンは、担体、すなわち直鎖状不飽和ポリマーに硫黄が付加されたものである。特許文献1によると、この硫黄系正極活物質は、充放電の繰り返しに伴うリチウムイオン二次電池の充放電容量低下を抑制できるとされている。以下、充放電の繰り返しに伴って充放電容量が低下するリチウムイオン二次電池の特性を「サイクル特性」と呼ぶ。この充放電容量低下の小さいリチウムイオン二次電池はサイクル特性に優れるリチウムイオン二次電池であり、この充放電容量低下の大きなリチウムイオン二次電池はサイクル特性に劣るリチウムイオン二次電池である。 Patent Document 1 discloses a technique using polysulfide carbon containing carbon and sulfur as main components as a sulfur-based positive electrode active material. The polysulfide carbon is a carrier, that is, one in which sulfur is added to a linear unsaturated polymer. According to Patent Document 1, this sulfur-based positive electrode active material is considered to be able to suppress the decrease in charge / discharge capacity of a lithium ion secondary battery accompanying repetition of charge / discharge. Hereinafter, the characteristics of the lithium ion secondary battery in which the charge and discharge capacity decreases with repetition of charge and discharge are referred to as “cycle characteristics”. The lithium ion secondary battery having a small charge / discharge capacity decrease is a lithium ion secondary battery excellent in cycle characteristics, and the lithium ion secondary battery having a large charge / discharge capacity decrease is a lithium ion secondary battery having poor cycle characteristics.
 また、本発明の発明者らは、ポリアクリロニトリル(以下、必要に応じてPANと略する)と硫黄との混合物を熱処理して得られる硫黄系正極活物質を発明した(例えば、特許文献2参照)。この正極活物質を正極に用いたリチウムイオン二次電池の充放電容量は大きく、かつ、この正極活物質を正極に用いたリチウムイオン二次電池はサイクル特性に優れる。また、この正極活物質はナトリウム二次電池等の正極活物質としても使用できる。 In addition, the inventors of the present invention invented a sulfur-based positive electrode active material obtained by heat-treating a mixture of polyacrylonitrile (hereinafter abbreviated as PAN if necessary) and sulfur. ). The charge and discharge capacity of a lithium ion secondary battery using this positive electrode active material as a positive electrode is large, and a lithium ion secondary battery using this positive electrode active material as a positive electrode is excellent in cycle characteristics. Moreover, this positive electrode active material can also be used as a positive electrode active material such as a sodium secondary battery.
 しかしその一方で、PAN等の担体と硫黄とを熱処理して硫黄系正極活物質を得る工程(熱処理工程と呼ぶ)は比較的高温であり、かつ、比較的長い時間を要する。このため、硫黄系正極活物質をより容易に製造できる製造方法が望まれていた。 However, on the other hand, the step of obtaining a sulfur-based positive electrode active material by heat treatment of a carrier such as PAN and sulfur to obtain a sulfur-based positive electrode active material (referred to as a heat treatment step) is relatively high temperature and requires a relatively long time. For this reason, there has been a demand for a manufacturing method capable of more easily manufacturing a sulfur-based positive electrode active material.
特開2002-154815号公報Japanese Patent Application Laid-Open No. 2002-154815 国際公開第2010/044437号WO 2010/044437
 本発明は上記事情に鑑みてなされたものであり、硫黄系正極活物質を含有する非水電解質二次電池用正極を容易に製造できる製造方法、およびこの製造方法で製造されてなる正極および非水電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and a manufacturing method by which a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material can be easily manufactured, and a positive electrode manufactured by this manufacturing method An object of the present invention is to provide a water electrolyte secondary battery.
 上記課題を解決する本発明の非水電解質二次電池用正極の製造方法は、硫黄(S)、担体および配合材を含有する混合原料を加熱する熱処理工程を含み、
 該配合材は、第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物からなることを特徴とする。
 また、上記課題を解決する本発明の非水電解質二次電池用正極は、本発明の非水電解質二次電池用正極の製造方法で製造され、
 硫黄(S)を含有する硫黄系正極活物質と、
 第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物と、を含むことを特徴とする。
 また、上記課題を解決する本発明の非水電解質二次電池は、本発明の非水電解質二次電池用正極を正極として含むことを特徴とする。
The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to the present invention, which solves the above problems, includes a heat treatment step of heating a mixed material containing sulfur (S), a carrier and a compounding material,
The compounding material is characterized by comprising at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element.
Further, the positive electrode for a non-aqueous electrolyte secondary battery of the present invention, which solves the above problems, is produced by the method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention,
A sulfur-based positive electrode active material containing sulfur (S);
It is characterized by including at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element.
Further, the non-aqueous electrolyte secondary battery of the present invention for solving the above problems is characterized by including the positive electrode for a non-aqueous electrolyte secondary battery of the present invention as a positive electrode.
 本発明の製造方法によると、硫黄系正極活物質を含む非水電解質二次電池用正極を比較的短時間かつ比較的低温で製造できる。また本発明の製造方法で得られた非水電解質二次電池用正極を備える非水電解質二次電池は、比較的反応の生じ難い条件で正極を製造したものであっても、大容量でありかつ電池特性に優れる。 According to the production method of the present invention, it is possible to produce a positive electrode for a non-aqueous electrolyte secondary battery containing a sulfur-based positive electrode active material in a relatively short time and at a relatively low temperature. Further, the non-aqueous electrolyte secondary battery provided with the positive electrode for a non-aqueous electrolyte secondary battery obtained by the production method of the present invention has a large capacity even if the positive electrode is produced under the condition that the reaction hardly occurs. And it is excellent in battery characteristics.
硫黄変性ポリアクリロニトリルをX線回折した結果を表すグラフである。It is a graph showing the result of X-ray diffraction of sulfur modified polyacrylonitrile. 硫黄変性ポリアクリロニトリルをラマンスペクトル分析した結果を表すグラフである。It is a graph showing the result of having carried out the Raman spectrum analysis of sulfur modified polyacrylonitrile. 硫黄変性ピッチをX線回折した結果を表すグラフである。It is a graph showing the result of X-ray diffraction of sulfur-modified pitch. 硫黄変性ピッチをラマンスペクトル分析した結果を表すグラフである。It is a graph showing the result of having carried out Raman spectrum analysis of sulfur denaturation pitch. 実施例の正極の製造方法で用いた反応装置を模式的に表す説明図である。It is explanatory drawing which represents typically the reaction apparatus used by the manufacturing method of the positive electrode of an Example. 実施例1、実施例2および比較例1のリチウムイオン二次電池の放電曲線を表すグラフである。3 is a graph showing discharge curves of lithium ion secondary batteries of Example 1 and Example 2 and Comparative Example 1; 実施例3のリチウムイオン二次電池の放電レート特性(充放電曲線)を表すグラフである。15 is a graph showing the discharge rate characteristics (charge-discharge curve) of the lithium ion secondary battery of Example 3. 実施例3のリチウムイオン二次電池の放電レート特性(サイクル特性)を表すグラフである。15 is a graph showing the discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 3. 実施例4のリチウムイオン二次電池の放電レート特性(サイクル特性)を表すグラフである。15 is a graph showing the discharge rate characteristics (cycle characteristics) of the lithium ion secondary battery of Example 4. 実施例3の正極に用いた硫黄系正極活物質-配合材複合体をX線回折した結果を表すグラフである。FIG. 18 is a graph showing the results of X-ray diffraction of the sulfur-based positive electrode active material-blender composite used for the positive electrode of Example 3. FIG. 実施例4の正極に用いた硫黄系正極活物質-配合材複合体をX線回折した結果を表すグラフである。FIG. 18 is a graph showing the results of X-ray diffraction of the sulfur-based positive electrode active material-blender composite used for the positive electrode of Example 4. FIG. 比較例1の正極に用いた硫黄系正極活物質をX線回折した結果を表すグラフである。It is a graph showing the result of having carried out the X-ray diffraction of the sulfur system positive electrode active material used for the positive electrode of comparative example 1.
 本発明の非水電解質二次電池用正極の製造方法(以下、本発明の製造方法と呼ぶ)は、硫黄、担体、および、配合材を含有する混合原料を加熱する熱処理工程を含む。本発明の製造方法は、少なくとも硫黄系正極活物質を含有する正極を製造する。なお、本発明の製造方法で製造された正極(本発明の非水電解質二次電池用正極、以下本発明の正極と略する)は配合材を含んでいても良いし含まなくても良い。つまり、本発明の製造方法においては、硫黄系正極活物質を得た後に配合材を除去しても良い。本発明の非水電解質二次電池は、本発明の正極を用いた電池である。 The method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter referred to as the production method of the present invention) includes a heat treatment step of heating a mixed raw material containing sulfur, a carrier and a compounding material. The production method of the present invention produces a positive electrode containing at least a sulfur-based positive electrode active material. The positive electrode (the positive electrode for a non-aqueous electrolyte secondary battery of the present invention, hereinafter abbreviated as the positive electrode of the present invention) produced by the production method of the present invention may or may not contain a compounding material. That is, in the production method of the present invention, the compounding material may be removed after obtaining the sulfur-based positive electrode active material. The non-aqueous electrolyte secondary battery of the present invention is a battery using the positive electrode of the present invention.
 硫黄系正極活物質は、例えば、上記の特許文献1に開示されているもの(担体としてポリ硫化カーボンを用いたもの)や特許文献2に開示されているもの(担体としてPANを用いたもの)であっても良いし、その他の担体を用いたものであっても良い。例えば、担体としては、後述するピッチ系担体や、3環以上の六員環が縮合してなる多環芳香族炭化水素(以下、必要に応じてPAHと略する)、植物系担体等を用いても良い。以下、担体としてPANを用いた硫黄系正極活物質を硫黄変性PANと呼ぶ。担体としてピッチ系担体を用いた硫黄系正極活物質を硫黄変性ピッチと呼ぶ。担体としてPAHを用いた硫黄系正極活物質を硫黄変性PAHと呼ぶ。 The sulfur-based positive electrode active material is, for example, those disclosed in the above-mentioned Patent Document 1 (using polysulfide carbon as a carrier) and those disclosed in Patent Document 2 (using PAN as a carrier) Or any other carrier may be used. For example, as a carrier, a pitch-based carrier, which will be described later, a polycyclic aromatic hydrocarbon formed by condensation of three or more six-membered rings (hereinafter abbreviated as PAH if necessary), a plant-based carrier or the like is used. It is good. The sulfur-based positive electrode active material using PAN as a carrier is hereinafter referred to as sulfur-modified PAN. A sulfur-based positive electrode active material using a pitch-based carrier as a carrier is called a sulfur-modified pitch. The sulfur-based positive electrode active material using PAH as a carrier is called sulfur-modified PAH.
 本発明の非水電解質二次電池用正極の製造方法(以下、本発明の製造方法と略する)は、配合材を用いることで、硫黄を担体に固定する反応の速度を向上させ得る。また、例えば比較的低温である等、化学反応に適さない条件下においても担体に硫黄を固定させ得る。
 (非水電解質二次電池正極の製造方法)
  <配合材>
The method for producing a positive electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter abbreviated as the production method of the present invention) can improve the speed of the reaction for fixing sulfur to a carrier by using a compounding material. Also, sulfur can be fixed to the support even under conditions that are not suitable for chemical reactions, such as at relatively low temperatures.
(Method of manufacturing non-aqueous electrolyte secondary battery positive electrode)
<Compounding material>
 配合材としては、第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物を使用できる。これらの金属または金属化合物は、担体に硫黄を固定する際の何らかの化学反応を促進する。つまり、本発明の製造方法において、配合材は担体に硫黄が固定される反応の触媒として機能すると考えられる。このような配合材は上記の各種金属またはその化合物(酸化物、塩化物等)であれば良く、硫化物であっても良いし、未硫化であっても良い。すなわち、硫化物の配合材であっても、硫黄が担体に固定される反応を促進できれば良い。また、未硫化物である配合材が硫黄と反応して硫化物となった後に、硫黄が担体に固定される反応を促進する場合もある。 As a compounding material, at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element can be used. These metals or metal compounds promote any chemical reaction in fixing sulfur to the carrier. That is, in the production method of the present invention, the compounding material is considered to function as a catalyst for the reaction in which sulfur is fixed to the carrier. Such a compounding material may be any of the above-described various metals or compounds thereof (oxides, chlorides, etc.), and may be sulfides or non-sulfurized. That is, even in the case of a sulfide compounding material, it is only necessary to accelerate the reaction in which sulfur is fixed to the carrier. In addition, after the unsulfided compounding material reacts with sulfur to become sulfide, it may promote the reaction in which the sulfur is fixed to the carrier.
本発明の製造方法においては、担体に硫黄が固定される反応を促進するために配合材を配合する。このため、本発明の製造方法で得られた硫黄系正極活物質は、配合材を含んでも良いし、含まなくても良い。例えば、本発明の製造方法において、板状や網状等の除去し易い集合体状の配合材を用い、単体と硫黄とが反応した後に配合材を除去することで、配合材を含まない硫黄系正極活物質を製造できる。 In the production method of the present invention, a compounding material is blended to accelerate the reaction in which sulfur is fixed to the carrier. For this reason, the sulfur-based positive electrode active material obtained by the production method of the present invention may or may not contain a compounding material. For example, in the production method of the present invention, using a plate-like or net-like easily removable aggregate-like compounding material, removing the compounding material after the simple substance reacts with sulfur, a sulfur-based material containing no compounding material The positive electrode active material can be manufactured.
 なお、本明細書でいう第4周期金属、第5周期金属および第6周期金属とは、周期律表によるものである。例えば第4周期金属とは、周期律表における第4周期元素に含まれる金属を指す。より具体的には、Ti、Fe、La、Ce、Pr、Nd、Sm、V、Mn、Fe、Ni、Cu、Zn、Mo、Ag、Cd、In、Sn、Sb、Ta、W、Pb、およびこれらの金属の化合物(硫化物を除く)からなる群から選ばれる少なくとも一種であるのが好ましい。 The fourth period metal, the fifth period metal, and the sixth period metal in the present specification are according to the periodic table. For example, the fourth period metal refers to a metal included in the fourth period element in the periodic table. More specifically, Ti, Fe, La, Ce, Pr, Nd, Sm, V, Mn, Fe, Ni, Cu, Zn, Mo, Ag, Cd, In, Sn, Sb, Ta, W, Pb, And at least one selected from the group consisting of compounds of these metals (excluding sulfides).
 担体と配合材との配合比は、質量比で、10:0.05~10:5であるのが好ましく、10:1~10:3であるのがより好ましい。配合材の配合量が過大であれば、正極全体に対する正極活物質の量が過小になるためである。上述したように硫黄と担体との反応後に配合材を取り除くためには、配合材は粉末状でなく板状や網状等の集合体状であるのが好ましい。一方、配合材を硫黄系正極活物質中に略均一に分散させるためには、配合材は粉末状であるのが好ましい。配合材は、電子顕微鏡などを用いて測定した粒径が0.01~100μmであるのが好ましく、0.1~50μmであるのがより好ましく、0.1~20μmであるのがさらに好ましい。
  <担体>
   〔PAN〕
The compounding ratio of the carrier to the compounding material is preferably 10: 0.05 to 10: 5 in mass ratio, and more preferably 10: 1 to 10: 3. If the compounding amount of the compounding material is too large, the amount of the positive electrode active material with respect to the whole of the positive electrode will be too small. As described above, in order to remove the compounding material after the reaction of sulfur and the carrier, the compounding material is preferably not in the form of powder but in the form of an aggregate such as plate or net. On the other hand, in order to disperse the compounding material substantially uniformly in the sulfur-based positive electrode active material, the compounding material is preferably in the form of powder. The compounding material preferably has a particle diameter of 0.01 to 100 μm, more preferably 0.1 to 50 μm, and still more preferably 0.1 to 20 μm, as measured using an electron microscope or the like.
<Carrier>
[PAN]
 担体としてPANを用いる場合、硫黄が本来有する高容量を維持でき、かつ、硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄系正極活物質中で硫黄が単体として存在するのでなく、PANと結合等して固定された安定な状態で存在するためだと考えられる。特許文献2に開示されている硫黄系正極活物質の製造方法において、硫黄はPANとともに加熱処理されている。PANを加熱すると、PANが3次元的に架橋して縮合環(主として6員環)を形成しつつ閉環すると考えられる。このため硫黄は、閉環の進行したPANと結合した状態で硫黄系正極活物質中に存在していると考えられる。このため、硫黄変性PANは、PANに由来する炭素骨格を持つ。PANと硫黄とが結合することで、硫黄の電解液への溶出を抑制でき、サイクル特性を向上させ得る。 When PAN is used as the carrier, the high capacity inherent to sulfur can be maintained, and the elution of sulfur into the electrolytic solution can be suppressed, whereby the cycle characteristics are greatly improved. This is considered to be due to the fact that sulfur is not present as a single substance in the sulfur-based positive electrode active material but is present in a stable state fixed by bonding with PAN or the like. In the method of producing a sulfur-based positive electrode active material disclosed in Patent Document 2, sulfur is heat-treated together with PAN. When PAN is heated, it is believed that PAN bridges three-dimensionally and forms a condensed ring (mainly a six-membered ring) while closing the ring. Therefore, it is considered that sulfur is present in the sulfur-based positive electrode active material in a state of being bonded to PAN in which ring closure has progressed. For this reason, sulfur-modified PAN has a carbon skeleton derived from PAN. By combining PAN with sulfur, elution of sulfur into the electrolyte can be suppressed, and cycle characteristics can be improved.
 担体として用いるPANは、粉末状であるのが好ましく、質量平均分子量が10~3×10程度であるのが好ましい。また、PANの粒径は、電子顕微鏡によって観察した際に、0.5~50μm程度であるのが好ましく、1~10μm程度であるのがより好ましい。PANの分子量および粒径がこれらの範囲内であれば、PANと硫黄との接触面積を大きくでき、PANと硫黄とを信頼性高く反応させ得る。このため、電解液への硫黄の溶出をより信頼性高く抑制できる。 PAN used as a carrier is preferably in the form of powder, and the mass average molecular weight is preferably about 10 4 to 3 × 10 5 . In addition, the particle diameter of PAN is preferably about 0.5 to 50 μm, more preferably about 1 to 10 μm, as observed by an electron microscope. If the molecular weight and the particle size of PAN are within these ranges, the contact area between PAN and sulfur can be increased, and PAN and sulfur can be reacted with high reliability. Therefore, the elution of sulfur into the electrolyte can be suppressed more reliably.
 硫黄系正極活物質に用いられる硫黄もまた、粉末状であるのが好ましい。硫黄の粒径については特に限定しないが、篩いを用いて分級した際に、篩目開き40μmの篩を通過せず、かつ、150μmの篩を通過する大きさの範囲内にあるものが好ましい。篩目開き40μmの篩を通過せず、かつ、100μmの篩を通過する大きさの範囲内にあるものがより好ましい。 The sulfur used for the sulfur-based positive electrode active material is also preferably in the form of powder. The particle size of sulfur is not particularly limited, but when it is classified using a sieve, one having a size which does not pass through a sieve with a sieve opening of 40 μm and which passes through a 150 μm sieve is preferable. It is more preferable not to pass through a sieve with a sieve opening of 40 μm and in the size range of passing through a 100 μm sieve.
 硫黄系正極活物質に用いるPAN粉末と硫黄粉末との配合比については特に限定しないが、質量比で、1:0.5~1:10であるのが好ましく、1:0.5~1:7であるのがより好ましく、1:2~1:5であるのがさらに好ましい。 The compounding ratio of the PAN powder to the sulfur powder used for the sulfur-based positive electrode active material is not particularly limited, but it is preferably 1: 0.5 to 1:10 in mass ratio, 1: 0.5 to 1: It is more preferably 7 and even more preferably 1: 2 to 1: 5.
 硫黄変性PANは、元素分析の結果、炭素、窒素、及び硫黄を含み、更に、少量の酸素及び水素を含む場合もある。また、図1に示すように、硫黄変性PANをCuKα線によりX線回折した結果、回折角(2θ)20~30°の範囲では、25°付近にピーク位置を有するブロードなピークのみが確認された。参考までに、X線回折は、粉末X線回折装置(MAC Science社製、型番:M06XCE)により、CuKα線を用いてX線回折測定を行なった。測定条件は、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、測定範囲:回折角(2θ)10°~60°であった。 Sulfur-modified PAN contains carbon, nitrogen, and sulfur as a result of elemental analysis, and may further contain small amounts of oxygen and hydrogen. In addition, as shown in FIG. 1, as a result of X-ray diffraction of sulfur-modified PAN with CuKα rays, only a broad peak having a peak position near 25 ° was confirmed in the diffraction angle (2θ) range of 20 ° to 30 °. The For reference, X-ray diffraction measurement was performed using a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE) using a CuKα ray. The measurement conditions were: voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 measurement range: diffraction angle (2θ) 10 ° to 60 °.
 さらに硫黄変性PANを、室温から900℃まで20℃/分の昇温速度で加熱した際の熱重量分析による質量減は400℃時点で10%以下である。これに対して、硫黄粉末とPAN粉末の混合物を同様の条件で加熱すると120℃付近から質量減少が認められ、200℃以上になると急激に硫黄の消失に基づく大きな質量減が認められる。
 すなわち、硫黄変性PANにおいて、硫黄は単体としては存在せず、閉環の進行したPANと結合した状態で存在していると考えられる。
Furthermore, the mass loss by thermogravimetric analysis at the time of heating sulfur-modified PAN from a room temperature to 900 ° C. at a temperature rising rate of 20 ° C./min is 10% or less at 400 ° C. On the other hand, when a mixture of sulfur powder and PAN powder is heated under the same conditions, a mass loss is recognized from around 120 ° C., and at 200 ° C. or more, a large mass loss due to the disappearance of sulfur is recognized.
That is, in sulfur-modified PAN, it is considered that sulfur is not present as a simple substance, but is present in a state of being bound to a ring-closed PAN.
 硫黄変性PANのラマンスペクトルの一例を図2に示す。図2に示すラマンスペクトルにおいて、ラマンシフトの1331cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲で1548cm-1、939cm-1、479cm-1、381cm-1、317cm-1付近にピークが存在する。上記したラマンシフトのピークは、PANに対する単体硫黄の比率を変更した場合にも同様の位置に観測される。このためこれらのピークは硫黄変性PANを特徴づけるものである。上記した各ピークは、上記したピーク位置を中心としては、ほぼ±8cm-1の範囲内に存在する。なお、本明細書において、「主ピーク」とは、ラマンスペクトルで現れた全てのピークのなかでピーク高さが最大となるピークを指す。 An example of a Raman spectrum of sulfur-modified PAN is shown in FIG. In the Raman spectrum shown in FIG. 2, there are major peak near 1331cm -1 of Raman shift, and, 1548cm -1 in the range of 200cm -1 ~ 1800cm -1, 939cm -1 , 479cm -1, 381cm -1, A peak is present around 317 cm -1 . The peak of the above-mentioned Raman shift is observed at the same position even when the ratio of elemental sulfur to PAN is changed. Therefore, these peaks are characteristic of sulfur-modified PAN. Each peak mentioned above exists in the range of about ± 8 cm −1 around the peak position mentioned above. In addition, in this specification, a "main peak" refers to the peak which peak height becomes the largest among all the peaks which appeared in the Raman spectrum.
 参考までに、上記したラマンシフトは、日本分光社製 RMP-320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)で測定したものである。なお、ラマンスペクトルのピークは、入射光の波長や分解能の違いなどにより、数が変化したり、ピークトップの位置がずれたりすることがある。したがって正極活物質として硫黄変性PANを用いた本発明の正極のラマンスペクトルを測定すると、上記のピークと同じピーク、または、上記のピークとは数やピークトップの位置が僅かに異なるピークが確認される。
   〔ピッチ〕
For reference, the above-mentioned Raman shift is measured by RMP-320 (excitation wavelength λ = 532 nm, grating: 1800 gr / mm, resolution: 3 cm −1 ) manufactured by JASCO Corporation. Note that the peaks of the Raman spectrum may change in number or the position of the peak top may be shifted depending on the wavelength of incident light or the difference in resolution. Therefore, when the Raman spectrum of the positive electrode of the present invention using sulfur-modified PAN as the positive electrode active material is measured, the same peak as the above peak or a peak slightly different in number or peak top position from the above peak is confirmed Ru.
〔pitch〕
 本明細書において、ピッチ系担体とは、種々のタール、石油および石炭類を蒸留することにより得られる固形物または半固形物、更にはこれらの材料と同様の構造および/または組成をもつ合成材料全般を指す。ピッチ系担体としては、具体的には、石炭ピッチ、石油ピッチ、メソフェーズピッチ(異方性ピッチ)、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、またはヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。これらは縮合多環芳香族を含む炭素材料として知られている。 In the present specification, a pitch-based carrier is a solid or semi-solid obtained by distillation of various tars, petroleum and coals, and a synthetic material having the same structure and / or composition as these materials. Refers to the whole. Specific examples of the pitch-based carrier include organic materials obtained by polycondensation of coal pitch, petroleum pitch, mesophase pitch (anisotropic pitch), asphalt, coal tar, coal tar pitch, and condensed polycyclic aromatic hydrocarbon compounds. Synthetic pitch or organic synthetic pitch obtained by polycondensation of a heteroatom-containing fused polycyclic aromatic hydrocarbon compound may, for example, be mentioned. These are known as carbon materials containing fused polycyclic aromatics.
 ピッチ系担体の一種であるコールタールは、石炭を高温乾留(石炭乾留)して得られる黒い粘稠な油状液体である。コールタールを精製・熱処理(重合)することで、石炭ピッチを得ることができる。アスファルトは、黒褐色ないし黒色の固体あるいは半固体の可塑性物質である。アスファルトは、石油(原油)を減圧蒸留したときに釜残として得られるものと、天然に存在するものとに大別される。アスファルトはトルエン、二硫化炭素等に可溶である。アスファルトを精製・熱処理(重合)することで、石油ピッチを得ることができる。ピッチは、通常、無定形であり光学的に等方性である(等方性ピッチ)。等方性ピッチを不活性雰囲気中で熱処理することで、光学的に異方性のピッチ(異方性ピッチ、メソフェーズピッチ)を得ることができる。ピッチは、ベンゼン、トルエン、二硫化炭素等の有機溶剤に部分的に可溶である。 Coal tar, which is a type of pitch-based carrier, is a black viscous oily liquid obtained by high temperature dry distillation (coal dry distillation) of coal. Coal pitch can be obtained by refining and heat treating (polymerizing) coal tar. Asphalt is a black-brown to black solid or semi-solid plastic material. Asphalt is roughly classified into those obtained as bottoms when vacuum distillation of petroleum (crude oil) is carried out and those which exist naturally. Asphalt is soluble in toluene, carbon disulfide and the like. Petroleum pitch can be obtained by refining and heat treating (polymerizing) asphalt. The pitch is usually amorphous and optically isotropic (isotropic pitch). By thermally processing the isotropic pitch in an inert atmosphere, it is possible to obtain an optically anisotropic pitch (anisotropic pitch, mesophase pitch). Pitch is partially soluble in organic solvents such as benzene, toluene, carbon disulfide and the like.
 ピッチ系担体は様々な化合物の混合物であり、上述したように縮合多環芳香族を含む。ピッチ系担体に含まれる縮合多環芳香族は、単一種であっても良いし、複数種であっても良い。例えば、ピッチ系担体の一種である石炭ピッチの主成分は、縮合多環芳香族である。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含み得る。このため、石炭ピッチの主成分は、炭素と水素のみから成る縮合多環芳香族炭化水素と縮合環に窒素や硫黄等を含む複素芳香族化合物との混合物と考えられる。 The pitch-based carrier is a mixture of various compounds and comprises fused polycyclic aromatics as described above. The fused polycyclic aromatic group contained in the pitch-based carrier may be a single species or a plurality of species. For example, the main component of coal pitch, which is a type of pitch-based carrier, is condensed polycyclic aromatics. The fused polycyclic aromatic ring may contain nitrogen and sulfur in addition to carbon and hydrogen in the ring. Therefore, the main component of coal pitch is considered to be a mixture of a condensed polycyclic aromatic hydrocarbon consisting of only carbon and hydrogen and a heteroaromatic compound containing nitrogen, sulfur and the like in the condensed ring.
 担体としてピッチ系担体を用いる場合にも、担体としてPANを用いる場合と同様に、硫黄が本来有する高容量を維持できかつ硫黄の電解液への溶出が抑制されるため、サイクル特性が大きく向上する。これは、硫黄系正極活物質中で硫黄が単体として存在するのでなく、硫黄がピッチ系担体のグラフェン層間に取り込まれているか、或いは、縮合多環芳香族の環に含まれる水素が硫黄に置換されてC-S結合となっているためだと推測される。 Even when using a pitch-based carrier as the carrier, as in the case of using PAN as the carrier, the high capacity originally possessed by sulfur can be maintained and the elution of sulfur into the electrolytic solution can be suppressed, thereby greatly improving cycle characteristics. . This is because sulfur is not incorporated as a single substance in the sulfur-based positive electrode active material, but sulfur is taken in between graphene layers of the pitch-based carrier, or hydrogen contained in a condensed polycyclic aromatic ring is substituted by sulfur It is guessed that it is because it is CS bond.
 ピッチ系担体の粒径は特に限定しない。また、担体としてピッチ系担体を用いる場合、硫黄の粒径もまた特に限定しない。ピッチ系担体と硫黄との混合割合についてもまた特に限定しないが、混合原料中のピッチ系担体と硫黄との配合比は、質量比で1:0.5~1:10であるのが好ましく、1:1~1:7であるのがより好ましく、1:2~1:5であるのが特に好ましい。 The particle size of the pitch-based carrier is not particularly limited. Further, when a pitch-based carrier is used as the carrier, the particle size of sulfur is also not particularly limited. The mixing ratio of the pitch-based carrier to the sulfur is also not particularly limited, but the mixing ratio of the pitch-based carrier to the sulfur in the mixed raw material is preferably 1: 0.5 to 1:10 by mass ratio, It is more preferably 1: 1 to 1: 7, particularly preferably 1: 2 to 1: 5.
 硫黄変性ピッチは、複数種の多環芳香族炭化水素を含む。本明細書でいう多環芳香族炭化水素(PAH)とは、上述した各種ピッチ系担体自体、および、上述した各種ピッチ系担体に含まれる各種多環芳香族炭化水素、からなる群から選ばれる少なくとも一種の炭素材料を指す。 Sulfur-modified pitch contains multiple types of polycyclic aromatic hydrocarbons. The polycyclic aromatic hydrocarbon (PAH) referred to in the present specification is selected from the group consisting of the various pitch-based carriers described above and the various polycyclic aromatic hydrocarbons contained in the various pitch-based carriers described above. Refers to at least one carbon material.
 また、硫黄変性ピッチ(石炭ピッチ:硫黄=1:1、1:5、1:10)、単体石炭ピッチおよび単体硫黄をCuKα線によりX線回折した。回折条件は上記の硫黄変性PANと同じである。 In addition, sulfur-modified pitch (coal pitch: sulfur = 1: 1, 1: 5, 1:10), single coal pitch and single sulfur were subjected to X-ray diffraction with CuKα ray. The diffraction conditions are the same as the sulfur-modified PAN described above.
 図3に示すように、回折角(2θ)10~60°の範囲では、単体硫黄の主ピークは22°付近に存在し、単体石炭ピッチの主ピークは26°付近に存在した。石炭ピッチと硫黄との配合比が1:1である硫黄変性ピッチのピークは単一ピークであり、26°付近に存在した。石炭ピッチと硫黄との配合比が1:5である硫黄変性ピッチ、および石炭ピッチと硫黄との配合比が1:10である硫黄変性ピッチの主ピークは、22°付近に存在した。 As shown in FIG. 3, in the diffraction angle (2θ) range of 10 ° to 60 °, the main peak of single sulfur was present near 22 °, and the main peak of single coal pitch was present near 26 °. The peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur was 1: 1 was a single peak and was present around 26 °. The main peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur is 1: 5 and the main peak of the sulfur-modified pitch in which the blending ratio of coal pitch to sulfur is 1:10 was present at around 22 °.
 硫黄変性ピッチは熱安定性に優れる。硫黄変性ピッチを、室温から550℃まで10℃/分の昇温速度で加熱した際の熱重量分析による質量減少は550℃時点で25%程度である。参考までに、石炭ピッチの質量減少は550℃時点で約30%程度である。単体硫黄の場合、170℃付近から徐々に質量減少し、200℃を超すと急激に減少する。石炭ピッチもまた質量減少し難く、250℃~450℃付近では石炭ピッチの方が硫黄変性ピッチより質量減少し難い傾向がある。450℃以上では石炭ピッチよりも硫黄変性ピッチの方が質量減少し難い傾向がある。 Sulfur-modified pitch is excellent in heat stability. The mass loss by thermogravimetric analysis when the sulfur-modified pitch is heated from room temperature to 550 ° C. at a heating rate of 10 ° C./min is about 25% at 550 ° C. For reference, the mass loss of the coal pitch is about 30% at 550 ° C. In the case of elemental sulfur, the mass decreases gradually from around 170 ° C., and decreases sharply above 200 ° C. Coal pitch also tends not to decrease in mass, and in the vicinity of 250 ° C. to 450 ° C., coal pitch tends to be less likely to decrease in weight than sulfur-modified pitch. At 450 ° C. or higher, the sulfur-modified pitch tends to be less likely to lose mass than coal pitch.
 硫黄変性ピッチのラマンスペクトルの一例を図4に示す。参考までに、このラマンスペクトルは、上述した硫黄変性PANのラマンスペクトルと同じ条件で測定したものである。 An example of a Raman spectrum of sulfur-modified pitch is shown in FIG. For reference, this Raman spectrum is measured under the same conditions as the Raman spectrum of the sulfur-modified PAN described above.
 図4に示すラマンスペクトルにおいて、ラマンシフトの1557cm-1付近に主ピークが存在し、かつ、200cm-1~1800cm-1の範囲内で1371cm-1、1049cm-1、994cm-1、842cm-1、612cm-1、412cm-1、354cm-1、314cm-1付近にそれぞれピークが存在する。これらのピークは、ピッチ系担体に対する単体硫黄の比率を変更した場合にも同様の位置に観測され、硫黄変性ピッチを特徴付けるピークである。正極活物質として硫黄変性ピッチを用いた本発明の正極のラマンスペクトルを測定すると、これらのピークと同じ、または、数やピークトップの位置が僅かに異なるピークが確認される。なお、硫黄変性ピッチのラマンスペクトルは、硫黄変性PANのラマンスペクトルとは異なる。 In the Raman spectrum shown in FIG. 4, the main peak is present near 1557cm -1 of Raman shift, and, 1371cm -1 in the range of 200cm -1 ~ 1800cm -1, 1049cm -1 , 994cm -1, 842cm -1 , 612cm -1, 412cm -1, 354cm -1, the peak respectively is present in the vicinity of 314 cm -1. These peaks are observed at similar positions even when the ratio of elemental sulfur to pitch-based carrier is changed, and are peaks characterizing sulfur-modified pitch. When the Raman spectrum of the positive electrode of the present invention using sulfur-modified pitch as the positive electrode active material is measured, a peak having the same or slightly different number or peak top position from these peaks is confirmed. The Raman spectrum of the sulfur-modified pitch is different from the Raman spectrum of the sulfur-modified PAN.
 硫黄変性ピッチを元素分析した結果、炭素、窒素、および硫黄が検出された。また、場合によっては、少量の酸素および水素が検出された。したがって、硫黄変性ピッチは、C、S以外に、窒素、酸素、硫黄化合物等の少なくとも一種を不純物として含有する。
  〔PAH〕
As a result of elemental analysis of the sulfur-modified pitch, carbon, nitrogen and sulfur were detected. Also, in some cases small amounts of oxygen and hydrogen were detected. Therefore, in addition to C and S, the sulfur-modified pitch contains at least one of nitrogen, oxygen, and a sulfur compound as an impurity.
[PAH]
 本発明の製造方法においては、上述したピッチ系担体以外の多環芳香族炭化水素(Polycyclic aromatic hydrocarbon、PAH)を配合材として用いても良い。 In the production method of the present invention, a polycyclic aromatic hydrocarbon (PAH) other than the pitch-based carrier described above may be used as a compounding material.
 上述した硫黄変性PAHは、3環以上の六員環が縮合してなる多環芳香族炭化水素(PAH)の少なくとも一種に由来する炭素骨格を持つ。PAHは、ヘテロ原子や置換基を含まない芳香環が縮合した炭化水素の総称であり、四員環、五員環、六員環、そして七員環からなるものがあるが、このうち、ピッチ系担体以外のPAHからなる配合材としては、ベンゼン環の構造である六員環が直鎖に3環以上連なった構造をもつアセン類、及び、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ化合物などのうち少なくとも一種と硫黄とを用いることが好ましい。 The above-described sulfur-modified PAH has a carbon skeleton derived from at least one kind of polycyclic aromatic hydrocarbon (PAH) formed by condensation of three or more six-membered rings. PAH is a generic term for hydrocarbons in which a hetero ring or a substituted aromatic ring is fused, and includes four-, five-, six-, and seven-membered rings. As a compounding material composed of PAH other than the carrier, acenes having a structure in which a six-membered ring having a benzene ring structure is linked in three or more straight chains, and a six-membered ring having three or more rings are not straight chains It is preferable to use at least one of sulfur and a compound having a bent structure.
複数の芳香環が辺を共有しながら直鎖状に連なった多環芳香族炭化水素であるアセン類としては、2環のナフタレン、3環のアントラセン、4環のテトラセン、5環のペンタセン、6環のヘキサセン、7環のヘプタセン、8環のオクタセン、9環のノナセン、及び10環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。中でも安定性が高い3環~6環のものが望ましい。 Examples of acenes which are polycyclic aromatic hydrocarbons in which a plurality of aromatic rings are linked in a straight chain while sharing a side include naphthalene of 2 rings, anthracene of 3 rings, tetracene of 4 rings, pentacene of 5 rings, 6 There are a hexacene ring, a 7-ring heptacene, an 8-ring octacene, a 9-ring nonacene, and 10 or more aromatic rings linked, and at least one selected from these groups can be used. Among them, those having 3 to 6 rings having high stability are desirable.
 また、3環以上の六員環が直鎖でなく折れ曲がった構造をもつ多環芳香族炭化水素としては、フェナントレン、ベンゾピレン、クリセン、ピレン、ピセン、ペリレン、トリフェニレン、コロネン、及びこれらより多くの環以上の芳香環が連なったものがあり、これらの群から選ばれる少なくとも一種を用いることができる。硫黄変性PAHは、硫黄変性ピッチと同様の方法で製造できる。 In addition, as polycyclic aromatic hydrocarbons having a structure in which three or more six-membered rings are not linear but bent, there are phenanthrene, benzopyrene, chrysene, pyrene, pyrene, picene, perylene, triphenylene, coronene, and more rings than these rings. Some of the above aromatic rings are linked, and at least one selected from these groups can be used. Sulfur-modified PAH can be produced in the same manner as sulfur-modified pitch.
 熱処理工程では、PAHと硫黄とを反応させる。この反応は、PAHの量に対して硫黄の量を過大として反応させ、硫黄を高濃度で含む正極活物質とすることが望ましい。この熱処理工程の温度は、PAHの少なくとも一部と硫黄の少なくとも一部とが液体となる条件で行うことが望ましい。このようにすることで、PAHと硫黄との接触面積を充分に大きくでき、硫黄を充分に含みかつ硫黄の脱離が抑制された硫黄変性PAHを得ることができる。 In the heat treatment step, PAH and sulfur are reacted. In this reaction, it is desirable that the amount of sulfur be excessive relative to the amount of PAH to make a positive electrode active material containing sulfur at a high concentration. It is desirable that the temperature of this heat treatment step be performed under the condition that at least a part of PAH and at least a part of sulfur become liquid. By doing so, the contact area between PAH and sulfur can be made sufficiently large, and it is possible to obtain a sulfur-modified PAH which contains sulfur sufficiently and whose desorption of sulfur is suppressed.
 混合原料中のPAHと硫黄との配合比にも好ましい範囲が存在する。PAHに対する硫黄の配合量が過小であるとPAHに充分量の硫黄を取り込めず、PAHに対する硫黄の配合量が過大であると、硫黄変性PAH中に遊離の硫黄(単体硫黄)が多く残存して、非水電解質二次電池内の特に電解液を汚染するためである。混合原料中のPAHと硫黄との配合比は、質量比で、PAH:硫黄が1:0.5~1:10であるのが好ましく、1:1~1:7であるのがより好ましく、1:2~1:5であるのが特に好ましい。 There is also a preferable range of the compounding ratio of PAH to sulfur in the mixed material. If the blending amount of sulfur to PAH is too small, sufficient amount of sulfur can not be taken into PAH, and if the blending amount of sulfur to PAH is too large, a large amount of free sulfur (single sulfur) remains in the sulfur modified PAH The reason is to contaminate particularly the electrolyte in the non-aqueous electrolyte secondary battery. The mixing ratio of PAH to sulfur in the mixed raw material is preferably 1: 0.5 to 1:10, more preferably 1: 1 to 1: 7, in terms of mass ratio, PAH: sulfur. Particular preference is given to 1: 2 to 1: 5.
 なお、PAHに対する硫黄の配合量を過大とすれば、熱処理工程においてPAHに充分な量の硫黄を容易に取り込むことができる。そしてPAHに対して硫黄を必要以上の量で配合したとしても、熱処理工程後の被処理体から過剰の単体硫黄を除去する単体硫黄除去工程を行うことで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中のPAHと硫黄との配合比を、質量比で1:2~1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃~250℃で加熱する(単体硫黄除去工程)ことで、PAHに充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄変性PAHとして用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄変性PAHとして用いれば良い。 In addition, if the compounding quantity of sulfur with respect to PAH is made excessive, a sufficient amount of sulfur can be easily taken in to PAH in a heat treatment process. And, even if sulfur is mixed with PAH in a necessary amount or more, the adverse effect due to the above-mentioned simple substance sulfur can be suppressed by performing the simple substance sulfur removing process for removing excess simple substance sulfur from the object after the heat treatment process. . Specifically, when the compounding ratio of PAH to sulfur in the mixed raw material is 1: 2 to 1:10 in mass ratio, the object to be treated after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing pressure. By the (single sulfur removing step), it is possible to suppress an adverse effect due to the remaining single sulfur while incorporating a sufficient amount of sulfur into PAH. When the single sulfur removing step is not performed on the object to be treated after the heat treatment step, the object to be treated may be used as the sulfur-modified PAH as it is. When the single sulfur removing step is performed on the target after the heat treatment step, the target after the single sulfur removing step may be used as the sulfur-modified PAH.
 硫黄変性PAHは、例えば、出発物質であるPAHとしてペンタセンを選択した場合には、ヘキサチアペンタセン類似の構造となっていると考えられるが、その構造は明らかではない。また、PAHとしてアントラセンを用いた硫黄正極活物質は、FT-IRスペクトルにおいて、1056cm-1付近と、840cm-1付近と、にそれぞれピークが存在し、アントラセンのFT-IRスペクトルとは全く異なっているので、FT-IRスペクトルで同定することが可能である。 The sulfur-modified PAH is considered to have a structure similar to hexathiapentacene, for example, when pentacene is selected as the starting material PAH, but the structure is not clear. Moreover, the sulfur positive electrode active material using anthracene as PAH has peaks respectively at around 1056 cm -1 and 840 cm -1 in the FT-IR spectrum, which is completely different from the FT-IR spectrum of anthracene Therefore, it is possible to identify in FT-IR spectrum.
 硫黄変性PAHを元素分析すると、硫黄(S)と炭素(C)とが大部分を占め、少量の酸素及び水素が検出される。硫黄(S)と炭素(C)の組成比は、原子比(S/C)で1/5以上の範囲で含まれていることが望ましい。この範囲より硫黄が少ないと、非水電解質二次電池用正極に用いた時に充放電特性が低下する場合がある。 Elemental analysis of the sulfur-modified PAH shows that sulfur (S) and carbon (C) account for the majority, and small amounts of oxygen and hydrogen are detected. The composition ratio of sulfur (S) to carbon (C) is desirably contained in the range of 1/5 or more in atomic ratio (S / C). When the amount of sulfur is less than this range, the charge and discharge characteristics may be deteriorated when used for a positive electrode for a non-aqueous electrolyte secondary battery.
 硫黄変性PAHは、第2の硫黄系正極活物質(硫黄変性PAN)をさらに含むことが望ましい。これは、上述した硫黄変性ピッチに関しても同様である。混合原料中にさらにPAN粉末を含む場合の熱処理工程は、前述した硫黄変性PANの製造方法と同様に行うことができる。第2の硫黄系正極活物質の混合量は特に限定的ではないが、コストの観点からは、正極活物質全体に0~80質量%程度とすることが好ましく、5~60質量%程度とすることがより好ましく、10~40質量%程度とすることが更に好ましい。
   〔その他の担体〕
The sulfur-modified PAH preferably further includes a second sulfur-based positive electrode active material (sulfur-modified PAN). The same applies to the sulfur-modified pitch described above. The heat treatment step in the case where the mixed raw material further contains PAN powder can be performed in the same manner as the method for producing sulfur-modified PAN described above. The mixing amount of the second sulfur-based positive electrode active material is not particularly limited, but from the viewpoint of cost, it is preferably about 0 to 80% by mass, and about 5 to 60% by mass based on the whole positive electrode active material. It is more preferable that the content be about 10 to 40% by mass.
[Other carriers]
 本発明の製造方法に好ましく用いられるその他の担体としては、上述した特許文献1に開示されているような直鎖状不飽和ポリマー、コーヒー豆や海草等の植物系担体と硫黄を熱処理したもの、またはこれらの複合体等を挙げることができる。なお、本発明の製造方法において、担体は硫黄を固定できれば良く、必ずしも炭素(C)を含んでいる必要はない。 As other carriers preferably used in the production method of the present invention, linear unsaturated polymers as disclosed in the above-mentioned Patent Document 1, plant-based carriers such as coffee beans and seaweed, and sulfur are thermally treated, Or these complexes etc. can be mentioned. In the production method of the present invention, the carrier only needs to be capable of fixing sulfur, and does not necessarily contain carbon (C).
 非水電解質二次電池のサイクル特性や容量を考慮すると、担体としてPANを用いるのがより好ましい。また、コストを考慮するとピッチ系担体を用いるのがより好ましい。さらに、担体として上記の複数種を併用しても良い。
 (熱処理工程)
In view of the cycle characteristics and capacity of the non-aqueous electrolyte secondary battery, it is more preferable to use PAN as a carrier. Further, in consideration of the cost, it is more preferable to use a pitch-based carrier. Furthermore, multiple types of the above may be used in combination as a carrier.
(Heat treatment process)
 本発明の製造方法は、上述した担体と硫黄と配合材とを混合した混合原料を加熱する熱処理工程を備える。混合原料は、乳鉢やボールミル等の一般的な混合装置で混合すれば良い。混合原料としては、硫黄と担体と配合材とを単に混合したものを用いても良いが、例えば、混合原料をペレット状に成形して用いても良い。 The production method of the present invention comprises a heat treatment step of heating a mixed material obtained by mixing the above-described carrier, sulfur and a compounding material. The mixed material may be mixed by a general mixing device such as a mortar or a ball mill. As the mixed raw material, one obtained by simply mixing sulfur, a carrier and a compounding material may be used, but for example, the mixed raw material may be formed into a pellet and used.
 熱処理工程において混合原料を加熱することで、混合原料に含まれる担体と硫黄とが反応する。この反応は配合材により促進される。熱処理工程は、密閉系でおこなっても良いし開放系でおこなっても良いが、硫黄蒸気の散逸を抑制するためには、密閉系で行うのが好ましい。また、熱処理工程を如何なる雰囲気で行うかについては特に問わないが、担体への硫黄の固定を妨げない雰囲気(例えば、水素を含有しない雰囲気、非酸化性雰囲気)下で行うのが好ましい。例えば、雰囲気中に水素が存在すると、反応系中の硫黄が水素と反応して硫化水素となるため、反応系中の硫黄が失われる場合がある。また、特に担体としてPANを用いる場合には、非酸化性雰囲気下で熱処理することで、PANの閉環反応と同時に、蒸気状態の硫黄がPANに固定されてPANを担体とする硫黄系正極活物質が得られると考えられる。ここでいう非酸化性雰囲気とは、酸化反応が進行しない程度の低酸素濃度とした減圧状態、窒素やアルゴン等の不活性ガス雰囲気、硫黄ガス雰囲気等を含む。 By heating the mixed raw material in the heat treatment step, the carrier contained in the mixed raw material reacts with sulfur. This reaction is facilitated by the formulation. The heat treatment step may be performed in a closed system or an open system, but in order to suppress the dissipation of sulfur vapor, the closed system is preferable. The heat treatment step is not particularly limited as to which atmosphere to carry out, but it is preferable to carry out in an atmosphere which does not prevent the fixation of sulfur on the carrier (for example, an atmosphere containing no hydrogen or a nonoxidizing atmosphere). For example, when hydrogen is present in the atmosphere, sulfur in the reaction system reacts with hydrogen to form hydrogen sulfide, which may result in loss of sulfur in the reaction system. In addition, when PAN is used as a carrier, a sulfur-based positive electrode active material in which sulfur in a vapor state is fixed to PAN and PAN is used as a carrier simultaneously with the ring closure reaction of PAN by heat treatment under a nonoxidizing atmosphere. Is considered to be obtained. The non-oxidative atmosphere referred to here includes a reduced pressure state where the oxygen concentration is low to such an extent that the oxidation reaction does not proceed, an inert gas atmosphere such as nitrogen and argon, a sulfur gas atmosphere and the like.
 密閉状態の非酸化性雰囲気とするための具体的な方法については特に限定はなく、例えば、硫黄蒸気が散逸しない程度の密閉性が保たれる容器中に混合原料を入れて、容器内を減圧または不活性ガス雰囲気にして加熱すれば良い。その他、混合原料を硫黄蒸気と反応し難い材料(例えばアルミニウムラミネートフィルム等)で真空包装した状態で加熱しても良い。この場合、発生した硫黄蒸気によって包装材料が破損しないように、例えば、水を入れたオートクレーブ等の耐圧容器中に、包装された原料を入れて加熱し、発生した水蒸気で包装材の外部から加圧することが好ましい。この方法によれば、包装材料の外部から水蒸気によって加圧されるので、硫黄蒸気によって包装材料が膨れて破損することが防止される。 There is no particular limitation on a specific method for making a non-oxidative atmosphere in a sealed state, for example, the mixed raw material is put in a container in which the sealing property is maintained to the extent that the sulfur vapor does not dissipate, and the pressure in the container is reduced. Alternatively, heating may be performed in an inert gas atmosphere. In addition, you may heat in the state vacuum-packed with the material (for example, aluminum laminate film etc.) which is hard to react with a sulfur raw material. In this case, for example, the packaged raw material is placed in a pressure container such as an autoclave containing water and heated so that the packaging material is not damaged by the generated sulfur vapor, and the generated steam is added from the outside of the packaging material It is preferable to press. According to this method, since the steam is pressurized by steam from the outside of the packaging material, the sulfur vapor prevents the packaging material from being blown and broken.
 熱処理工程における混合原料の加熱時間は、加熱温度に応じて適宜設定すれば良く、特に限定しない。上述した好ましい加熱温度は、硫黄と担体との反応が進行し、かつ、配合材が変質しないような温度であれば良い。 The heating time of the mixed raw material in the heat treatment step may be appropriately set according to the heating temperature, and is not particularly limited. The above-mentioned preferable heating temperature may be a temperature at which the reaction between sulfur and the carrier proceeds and the compounding material does not deteriorate.
 例えば、担体としてPANを用いる場合、加熱温度は、250℃以上500℃以下とすることが好ましく、250℃以上400℃以下とすることがより好ましく、300℃以上400℃以下とすることがさらに好ましい。また、担体としてピッチ系担体を用いる場合、加熱温度は、200℃以上600℃以下であるのが好ましく、300℃以上500℃以下であるのがより好ましく、350℃以上500℃以下であるのがさらに好ましい。担体としてピッチ系担体を用いる場合には、熱処理工程においてピッチ系担体の少なくとも一部と硫黄の少なくとも一部とが液体となる。換言すると、熱処理工程において、ピッチ系担体の少なくとも一部と硫黄の少なくとも一部とは、液状で接触する。このため、熱処理工程におけるピッチ系担体と硫黄との接触面積は大きく、ピッチ系担体と硫黄とが充分に結合し、かつ硫黄系正極活物質からの硫黄の脱離が抑制される。 For example, when PAN is used as the carrier, the heating temperature is preferably 250 ° C. to 500 ° C., more preferably 250 ° C. to 400 ° C., and still more preferably 300 ° C. to 400 ° C. . When a pitch-based carrier is used as the carrier, the heating temperature is preferably 200 ° C. or more and 600 ° C. or less, more preferably 300 ° C. or more and 500 ° C. or less, and preferably 350 ° C. or more and 500 ° C. or less More preferable. When a pitch-based carrier is used as the carrier, at least a portion of the pitch-based carrier and at least a portion of the sulfur become liquid in the heat treatment step. In other words, in the heat treatment step, at least a portion of the pitch-based carrier and at least a portion of the sulfur contact in a liquid state. For this reason, the contact area of the pitch-based carrier and sulfur in the heat treatment step is large, the pitch-based carrier and sulfur are sufficiently bonded, and desorption of sulfur from the sulfur-based positive electrode active material is suppressed.
 熱処理工程においては、硫黄を還流するのが好ましい。この場合、混合原料の一部が気体となり、一部が液体となるように混合原料を加熱すれば良い。換言すると、混合原料の温度は、硫黄が気化する温度以上の温度であれば良い。ここで言う気化とは、硫黄が液体または固体から気体に相変化することを指し、沸騰、蒸発、昇華の何れによっても良い。参考までに、α硫黄(斜方硫黄、常温付近で最も安定な構造である)の融点は112.8℃、β硫黄(単斜硫黄)の融点は119.6℃、γ硫黄(単斜硫黄)の融点は106.8℃である。硫黄の沸点は444.7℃である。ところで、硫黄の蒸気圧は高いため、混合原料の温度が150℃以上になると、硫黄の蒸気の発生が目視でも確認できる。したがって、混合原料の温度が150℃以上であれば硫黄の還流は可能である。なお、熱処理工程において硫黄を還流する場合には、既知構造の還流装置を用いて硫黄を還流すれば良い。 In the heat treatment step, sulfur is preferably refluxed. In this case, the mixed material may be heated so that a part of the mixed material becomes a gas and a part becomes a liquid. In other words, the temperature of the mixed raw material may be a temperature higher than the temperature at which sulfur is vaporized. The term "vaporization" as used herein refers to phase change of sulfur from liquid or solid to gas, which may be boiling, evaporation or sublimation. For reference, the melting point of alpha sulfur (orthogonal sulfur, which is the most stable structure around normal temperature) is 112.8 ° C, the melting point of beta sulfur (monoclinic sulfur) is 119.6 ° C, gamma sulfur (monoclinic sulfur) The melting point of) is 106.8 ° C. The boiling point of sulfur is 444.7.degree. By the way, since the vapor pressure of sulfur is high, when the temperature of the mixed raw material reaches 150 ° C. or more, the generation of sulfur vapor can be visually confirmed. Therefore, if the temperature of the mixed raw material is 150 ° C. or more, sulfur reflux is possible. In addition, what is necessary is just to reflux sulfur using the reflux apparatus of known structure, when refluxing sulfur in a heat treatment process.
 なお、混合原料中の硫黄の配合量が過大である場合にも、熱処理工程において担体に充分な量の硫黄を取り込むことができる。このため、担体に対して硫黄を過大に配合する場合には、熱処理工程後の被処理体(硫黄系正極活物質-担体複合体)から単体硫黄を除去することで、上述した単体硫黄による悪影響を抑制できる。詳しくは、混合原料中の担体と硫黄との配合比を、質量比で1:2~1:10とする場合、熱処理工程後の被処理体を、減圧しつつ200℃~250℃で加熱する(単体硫黄除去工程)ことで、担体に充分な量の硫黄を取り込みつつ、残存する単体硫黄による悪影響を抑制できる。熱処理工程後の被処理体に単体硫黄除去工程を施さない場合には、この被処理体をそのまま硫黄系正極活物質として用いれば良い。また、熱処理工程後の被処理体に単体硫黄除去工程を施す場合には、単体硫黄除去工程後の被処理体を硫黄系正極活物質として用いれば良い。
 (正極)
Even when the blending amount of sulfur in the mixed raw material is excessive, a sufficient amount of sulfur can be taken into the carrier in the heat treatment step. For this reason, when the sulfur is excessively compounded to the carrier, the above-described adverse effect of the single sulfur is caused by removing the single sulfur from the object to be treated (sulfur-based positive electrode active material-carrier complex) after the heat treatment step. Can be suppressed. Specifically, when the compounding ratio of the carrier to sulfur in the mixed raw material is 1: 2 to 1:10 in mass ratio, the object to be treated after the heat treatment step is heated at 200 ° C. to 250 ° C. while reducing pressure. By the (single sulfur removing step), it is possible to suppress an adverse effect due to the remaining single sulfur while capturing a sufficient amount of sulfur in the carrier. When the single sulfur removing step is not performed on the object to be treated after the heat treatment step, the object to be treated may be used as it is as a sulfur-based positive electrode active material. When the single sulfur removing step is performed on the target after the heat treatment step, the target after the single sulfur removing step may be used as the sulfur-based positive electrode active material.
(Positive electrode)
 本発明の正極は、上述した熱処理工程を備える本発明の製造方法で製造され、硫黄系正極活物質および配合材を含有する。なお、本発明の正極が、硫黄変性PANおよび/または硫黄変性ピッチを硫黄系正極活物質として含む場合、正極のラマンスペクトルには、上述した硫黄変性PANに由来するピークや硫黄変性ピッチに由来するピークが他のピークとともに認められる。 The positive electrode of the present invention is manufactured by the manufacturing method of the present invention including the above-described heat treatment step, and contains a sulfur-based positive electrode active material and a compounding material. In the case where the positive electrode of the present invention contains sulfur-modified PAN and / or sulfur-modified pitch as a sulfur-based positive electrode active material, the Raman spectrum of the positive electrode is derived from the aforementioned sulfur-modified PAN-derived peak or sulfur-modified pitch Peaks are observed with other peaks.
 正極は、正極活物質(および、場合によっては配合材)以外は、一般的な非水電解質二次電池用正極と同様の構造にできる。例えば、本発明の正極は、硫黄系正極活物質と配合材との混合物(すなわち熱処理工程により得られた被処理体)、導電助剤、バインダ、および溶媒を混合した正極材料を、集電体に塗布することによって作製できる。或いは、硫黄粉末、担体粉末および配合材粉末を混合した混合原料を、正極用集電体に充填した後に加熱する(熱処理工程を施す)こともできる。この方法によれば、硫黄系正極活物質と配合材との混合物を製造すると同時に、バインダを用いることなく、この混合物と集電体とを一体化させることができる。バインダを用いなければ、正極質量あたり正極活物質の量を増大させることができ、正極質量当たりの容量を向上させることができる。 The positive electrode can have the same structure as a general positive electrode for a non-aqueous electrolyte secondary battery, except for the positive electrode active material (and the compounding material in some cases). For example, the positive electrode of the present invention can be obtained by using a positive electrode material in which a mixture of a sulfur-based positive electrode active material and a compounding material (that is, an object to be treated obtained by the heat treatment step), a conductive additive, a binder, and a solvent is mixed. It can be produced by applying to Alternatively, the mixed raw material in which the sulfur powder, the carrier powder and the compounding material powder are mixed can be filled in the current collector for the positive electrode and then heated (performing a heat treatment step). According to this method, a mixture of the sulfur-based positive electrode active material and the compounding material can be manufactured, and at the same time, the mixture and the current collector can be integrated without using a binder. If a binder is not used, the amount of positive electrode active material per positive electrode mass can be increased, and the capacity per positive electrode mass can be improved.
 上述したように、正極は配合材を含む場合がある。正極における硫黄系正極活物質と配合材との含有比は、質量比で、10:0.01~10:5であるのが好ましく、10:0.1~10:2であるのがより好ましい。 As mentioned above, the positive electrode may contain ingredients. The content ratio of the sulfur-based positive electrode active material to the compounding material in the positive electrode is preferably 10: 0.01 to 10: 5, and more preferably 10: 0.1 to 10: 2, in mass ratio .
 導電助剤としては、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。なお、配合材の種類によっては導電助剤として機能するものもある。このため、導電助剤を配合しなくても良い場合もある。 As a conductive support agent, vapor grown carbon fiber (VGCF), carbon powder, carbon black (CB), acetylene black (AB), ketjen black (KB), graphite, positive electrode such as aluminum or titanium For example, fine powders of metals stable at potentials are exemplified. In addition, depending on the kind of compounding material, there is also one that functions as a conductive aid. For this reason, it may not be necessary to blend the conductive aid.
 バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。 As a binder, polyvinylidene fluoride (PolyVinylidene DiFluoride: PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamidoimide (PAI), carboxymethylcellulose (CMC), polychlorinated Examples include vinyl (PVC), methacrylic resin (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP) and the like.
 溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、水等が例示される。これら導電助剤、バインダおよび溶媒は、それぞれ複数種を混合して用いても良い。これらの材料の配合量は特に問わないが、例えば、硫黄系正極活物質100質量部に対して、導電助剤20~100質量部程度、バインダ10~20質量部程度を配合するのが好ましい。また、その他の方法として、本発明の硫黄系正極活物質と上述した導電助剤およびバインダとの混合物を乳鉢やプレス機などで混練しかつフィルム状にし、フィルム状の混合物をプレス機等で集電体に圧着することで、本発明の非水電解質二次電池用正極を製造することもできる。 Examples of the solvent include N-methyl-2-pyrrolidone, N, N-dimethylformaldehyde, alcohol, water and the like. These conductive aids, binders and solvents may be used in combination of two or more. Although the compounding amount of these materials is not particularly limited, for example, it is preferable to mix about 20 to 100 parts by mass of the conductive aid and about 10 to 20 parts by mass of the binder with respect to 100 parts by mass of the sulfur-based positive electrode active material. Further, as another method, a mixture of the sulfur-based positive electrode active material of the present invention and the above-mentioned conductive additive and binder is kneaded with a mortar or press and made into a film, and the film-like mixture is collected with a press or the like. The positive electrode for a non-aqueous electrolyte secondary battery of the present invention can also be produced by pressure bonding to a current collector.
 集電体としては、非水電解質二次電池用正極に一般に用いられるものを使用すれば良い。例えば集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等が例示される。このうち黒鉛化度の高いカーボンから成るカーボン不織布/織布集電体は、水素を含まず、硫黄との反応性が低いために、硫黄系正極活物質用の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やPAN繊維等を用いることができる。
 (非水電解質二次電池)
 以下、本発明の非水電解質二次電池の構成について説明する。なお、正極に関しては、上述したとおりである。
  <負極>
What is generally used for the positive electrode for nonaqueous electrolyte secondary batteries may be used as a collector. For example, as a current collector, aluminum foil, aluminum mesh, punching aluminum sheet, aluminum expanded sheet, stainless steel foil, stainless steel mesh, punching stainless steel sheet, stainless steel expanded sheet, foamed nickel, nickel non-woven fabric, copper foil, copper mesh , A punched copper sheet, a copper expanded sheet, a titanium foil, a titanium mesh, a carbon non-woven fabric, a carbon woven fabric and the like. Among them, a carbon nonwoven fabric / woven fabric current collector made of carbon having a high degree of graphitization is suitable as a current collector for a sulfur-based positive electrode active material because it does not contain hydrogen and has low reactivity with sulfur. As a raw material of carbon fiber having a high degree of graphitization, various kinds of pitch (that is, by-products such as petroleum, coal, coal tar, etc.), PAN fiber, etc. can be used as a material of carbon fiber.
(Non-aqueous electrolyte secondary battery)
Hereinafter, the configuration of the non-aqueous electrolyte secondary battery of the present invention will be described. The positive electrode is as described above.
<Negative electrode>
 負極活物質としては、公知の金属リチウム、黒鉛などの炭素系材料、リチウムイオンを吸蔵・放出可能であってリチウムと合金化可能な元素および/または当該元素を含む化合物を用いることができる。この場合、電荷担体はリチウムであり、本発明の非水電解質二次電池はリチウム二次電池、またはリチウムイオン二次電池、またはリチウムポリマー二次電池である。その他の負極活物質として、金属ナトリウム、ナトリウムイオンを吸蔵・放出可能であってナトリウムと合金化可能な元素および/または当該元素を含む化合物を用いることもできる。この場合、電荷担体はナトリウムであり、本発明の非水電解質二次電池はナトリウム二次電池、またはナトリウムイオン二次電池、またはナトリウムポリマー二次電池である。 As the negative electrode active material, it is possible to use a known metal-based material such as metal lithium and graphite, and an element capable of inserting and extracting lithium and capable of alloying with lithium and / or a compound containing the element. In this case, the charge carrier is lithium, and the non-aqueous electrolyte secondary battery of the present invention is a lithium secondary battery, or a lithium ion secondary battery, or a lithium polymer secondary battery. As other negative electrode active materials, metallic sodium, an element capable of storing and releasing sodium ions and capable of alloying with sodium, and / or a compound containing the element can also be used. In this case, the charge carrier is sodium, and the non-aqueous electrolyte secondary battery of the present invention is a sodium secondary battery, or a sodium ion secondary battery, or a sodium polymer secondary battery.
 上述したリチウムと合金化反応可能な元素は、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biからなる群から選ばれる少なくとも1種であるのが好ましい。このうち、ケイ素(Si)またはスズ(Sn)であるのが特に好ましい。上述したリチウムと合金化反応可能な元素を有する元素化合物は、ケイ素化合物またはスズ化合物であるのが好ましい。ケイ素化合物は、SiO(0.5≦x≦1.5)であるのが好ましい。ケイ素は、理論容量が大きい一方で、充放電時の体積変化が大きいため、化合物の状態(つまりSiO)で、用いることで体積変化を少なくすることができる。 The above-mentioned elements capable of alloying reaction with lithium are Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, It is preferably at least one selected from the group consisting of Ge, Sn, Pb, Sb, and Bi. Among these, silicon (Si) or tin (Sn) is particularly preferable. The elemental compound having an element capable of alloying reaction with lithium described above is preferably a silicon compound or a tin compound. The silicon compound is preferably SiO x (0.5 ≦ x ≦ 1.5). Since silicon has a large theoretical capacity and a large volume change at the time of charge and discharge, it is possible to reduce the volume change by using it in the compound state (that is, SiO x ).
 スズ化合物は、例えば、スズ合金(Cu-Sn合金、Co-Sn合金等)、スズ合金(Cu-Sn合金、Co-Sn合金等)などが好ましく用いられる。その他、シリコン薄膜などのシリコン系材料、銅-スズやコバルト-スズなどの合金系材料も好ましく使用できる。電荷担体がナトリウムである場合、負極活物質としてはハードカーボンまたはソフトカーボンまたはスズ化合物を用いるのが好ましい。 As the tin compound, for example, a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.), a tin alloy (Cu-Sn alloy, Co-Sn alloy, etc.), etc. are preferably used. In addition, silicon-based materials such as silicon thin films, and alloy-based materials such as copper-tin and cobalt-tin can be preferably used. When the charge carrier is sodium, hard carbon or soft carbon or a tin compound is preferably used as the negative electrode active material.
 負極活物質として、リチウムを含まない材料、例えば上記した負極材料の内で炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライドの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらの負極活物質を用いた負極を本発明の正極と組み合わせて用いる場合には、Li、Na等の、イオン化して正極と負極との間を移動することで充放電に関与する物質(所謂電荷担体)が、正極および負極の何れにも含まれない。このため、負極および正極の何れか一方、または両方にあらかじめ電荷担体を挿入するプリドープ処理が必要となる。電荷担体のプリドープ法としては公知の方法に従えば良い。例えば電荷担体の一種であるリチウムを負極にドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的に負極にリチウムをドープする電解ドープ法を用いることができる。或いは、電極に金属リチウム箔を貼り付けたものを電解液の中に放置し、リチウムの拡散を利用して負極にリチウムをドープする貼り付けプリドープ法を用いることもできる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することができる。ナトリウムに関しても同様である。 When using a material not containing lithium, for example, a carbon-based material, a silicon-based material, an alloy-based material or the like among the above-described negative electrode materials as the negative electrode active material, it is difficult to cause a short circuit between positive and negative electrodes Is advantageous. However, when using the negative electrode using these negative electrode active materials in combination with the positive electrode of the present invention, a material involved in charge and discharge by ionizing and moving between the positive electrode and the negative electrode, such as Li and Na. (So-called charge carriers) are not included in either the positive electrode or the negative electrode. For this reason, it is necessary to pre-dope the charge carrier in advance into one or both of the negative electrode and the positive electrode. The charge carrier pre-doping method may be a known method. For example, when lithium, which is a type of charge carrier, is doped to the negative electrode, it is possible to use an electrolytic doping method in which metal lithium is used as a counter electrode to form a half cell and lithium is doped to the negative electrode electrochemically. Alternatively, it is also possible to use a bonding pre-doping method in which a lithium metal foil attached to an electrode is left in an electrolytic solution and lithium diffusion is used to dope lithium into the negative electrode. In addition, the above-described electrolytic doping method can be used also in the case of pre-doping lithium to the positive electrode. The same is true for sodium.
 リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。
  <電解質>
As a negative electrode material not containing lithium, particularly, a silicon-based material which is a high capacity negative electrode material is preferable, and among them, thin film silicon which has a thin electrode thickness and which is advantageous in capacity per volume is more preferable.
<Electrolyte>
 非水電解質二次電池に用いる電解質としては、有機溶媒に支持電解質(支持塩)であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、ガンマ-ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電荷担体がリチウムである場合には、支持電解質としては、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiI、LiClO等を用いることができる。電解質の濃度は、0.5mol/l~1.7mol/l程度であれば良い。なお、電解質は液状に限定されない。例えば、非水電解質二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば高分子ゲル状)をなす。また、電荷担体がNaである場合には、NaPF、NaBF、NaAsF、NaCFSO、NaI、NaClO等のナトリウム塩を電解質に用いることができる。
  <その他>
As an electrolyte used for a non-aqueous electrolyte secondary battery, what melt | dissolved the alkali metal salt which is a supporting electrolyte (supporting salt) in an organic solvent can be used. As the organic solvent, it is preferable to use at least one selected from non-aqueous solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethyl ether, gamma-butyrolactone and acetonitrile. When the charge carrier is lithium, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiI, LiClO 4 or the like can be used as the supporting electrolyte. The concentration of the electrolyte may be about 0.5 mol / l to 1.7 mol / l. The electrolyte is not limited to liquid. For example, when the non-aqueous electrolyte secondary battery is a lithium polymer secondary battery, the electrolyte is in a solid state (for example, in the form of a polymer gel). When the charge carrier is Na, sodium salts such as NaPF 6 , NaBF 4 , NaAsF 6 , NaCF 3 SO 3 , NaI, NaClO 4 can be used as the electrolyte.
<Others>
 非水電解質二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えても良い。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。非水電解質二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、PAN、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。非水電解質二次電池の形状は特に限定されず、円筒型、積層型、コイン型等、種々の形状にできる。 The non-aqueous electrolyte secondary battery may include members such as a separator in addition to the above-described negative electrode, positive electrode, and electrolyte. The separator is interposed between the positive electrode and the negative electrode, allows movement of ions between the positive electrode and the negative electrode, and prevents an internal short circuit between the positive electrode and the negative electrode. If the non-aqueous electrolyte secondary battery is a closed type, the separator is also required to have a function of holding the electrolytic solution. As the separator, it is preferable to use a thin, microporous or non-woven membrane made of polyethylene, polypropylene, PAN, aramid, polyimide, cellulose, glass or the like. The shape of the non-aqueous electrolyte secondary battery is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be used.
 以下、本発明の製造方法、本発明の正極、および本発明の非水電解質二次電池について具体的に説明する。
 (実施例1)
 〔1〕混合原料
Hereinafter, the manufacturing method of the present invention, the positive electrode of the present invention, and the non-aqueous electrolyte secondary battery of the present invention will be specifically described.
Example 1
[1] Mixed raw materials
 硫黄粉末として、篩いを用いて分級した際に粒径50μm以下となるものを準備した。PAN粉末として、電子顕微鏡で確認した場合に粒径が0.2μm~2μmの範囲にあるものを準備した。配合材として、篩を用いて分級した際に粒径50μm以下であったFeを準備した。
 硫黄粉末0.4gとPAN粉末0.1gと配合材粉末0.01gと、を乳鉢で混合・粉砕して、混合原料を得た。
 〔2〕装置
A sulfur powder having a particle size of 50 μm or less was prepared when classified using a sieve. As a PAN powder, one having a particle diameter in the range of 0.2 μm to 2 μm as prepared by an electron microscope was prepared. As a compounding material, Fe 2 O 3 having a particle size of 50 μm or less when classified using a sieve was prepared.
0.4 g of sulfur powder, 0.1 g of PAN powder and 0.01 g of compounding material powder were mixed and crushed in a mortar to obtain a mixed material.
[2] Device
 図5に示すように、反応装置1は、反応容器2、蓋3、熱電対4、アルミナ保護管40、2つのアルミナ管(ガス導入管5、ガス排出管6)、不活性ガス配管50、不活性ガスを収容したガスタンク51、トラップ配管60、水酸化ナトリウム水溶液61を収容したトラップ槽62、電気炉7、電気炉に接続されている温度コントローラ70を持つ。 As shown in FIG. 5, the reactor 1 includes a reaction vessel 2, a lid 3, a thermocouple 4, an alumina protective pipe 40, two alumina pipes (a gas introduction pipe 5 and a gas discharge pipe 6), an inert gas pipe 50, It has a gas tank 51 containing an inert gas, a trap pipe 60, a trap tank 62 containing an aqueous sodium hydroxide solution 61, an electric furnace 7, and a temperature controller 70 connected to the electric furnace.
 反応容器2としては、有底筒状をなすガラス管(石英ガラス製)を用いた。後述する熱処理工程において、反応容器2には混合原料9を収容した。反応容器2の開口部は、3つの貫通孔を持つガラス製の蓋3で閉じた。貫通孔の1つには、熱電対4を収容したアルミナ保護管40(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の他の1つには、ガス導入管5(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。貫通孔の残りの1つには、ガス排出管6(アルミナSSA-S、株式会社ニッカトー製)を取り付けた。なお、反応容器2は、外径60mm、内径50mm、長さ300mmであった。アルミナ保護管40は、外径4mm、内径2mm、長さ250mmであった。ガス導入管5およびガス排出管6は、外径6mm、内径4mm、長さ150mmであった。ガス導入管5およびガス排出管6の先端は、蓋3の外部(反応容器2内)に露出した。この露出した部分の長さは3mmであった。ガス導入管5およびガス排出管6の先端は、後述する熱処理工程においてほぼ100℃以下となる。このため、熱処理工程において生じる硫黄蒸気は、ガス導入管5およびガス排出管6から流出せず、反応容器2に戻される(還流する)。 As the reaction vessel 2, a bottomed cylindrical glass tube (made of quartz glass) was used. The mixed raw material 9 was accommodated in the reaction container 2 in the heat treatment process mentioned later. The opening of the reaction vessel 2 was closed by a glass lid 3 having three through holes. An alumina protective tube 40 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) containing a thermocouple 4 was attached to one of the through holes. A gas introduction pipe 5 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the other one of the through holes. A gas exhaust pipe 6 (alumina SSA-S, manufactured by Nikkato Co., Ltd.) was attached to the remaining one of the through holes. The reaction vessel 2 had an outer diameter of 60 mm, an inner diameter of 50 mm, and a length of 300 mm. The alumina protective tube 40 had an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 250 mm. The gas introduction pipe 5 and the gas discharge pipe 6 had an outer diameter of 6 mm, an inner diameter of 4 mm, and a length of 150 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 were exposed to the outside of the lid 3 (in the reaction vessel 2). The length of this exposed portion was 3 mm. The tips of the gas introduction pipe 5 and the gas discharge pipe 6 become almost 100 ° C. or less in the heat treatment step described later. For this reason, the sulfur vapor generated in the heat treatment step does not flow out from the gas introduction pipe 5 and the gas discharge pipe 6 and is returned (refluxed) to the reaction vessel 2.
 アルミナ保護管40に入れた熱電対4の先端は、間接的に反応容器2中の混合原料9の温度を測定した。熱電対4で測定した温度は、電気炉7の温度コントローラ70にフィードバックした。 The tip of the thermocouple 4 placed in the alumina protective tube 40 indirectly measured the temperature of the mixed raw material 9 in the reaction vessel 2. The temperature measured by the thermocouple 4 was fed back to the temperature controller 70 of the electric furnace 7.
 ガス導入管5には不活性ガス配管50を接続した。不活性ガス配管50は不活性ガスを収容したガスタンク51に接続した。ガス排出管6にはトラップ配管60の一端を接続した。トラップ配管60の他端は、トラップ槽62中の水酸化ナトリウム水溶液61に挿入した。なお、トラップ配管60およびトラップ槽62は、後述する熱処理工程で生じる硫化水素ガスのトラップである。
 〔3〕熱処理工程
An inert gas pipe 50 was connected to the gas introduction pipe 5. The inert gas pipe 50 was connected to a gas tank 51 containing an inert gas. One end of a trap pipe 60 was connected to the gas discharge pipe 6. The other end of the trap pipe 60 was inserted into the sodium hydroxide aqueous solution 61 in the trap tank 62. The trap pipe 60 and the trap tank 62 are traps of hydrogen sulfide gas generated in a heat treatment process described later.
[3] Heat treatment process
 混合原料9を収容した反応容器2を、電気炉7(ルツボ炉、開口幅φ80mm、加熱高さ100mm)に収容した。このとき、ガス導入管5を介して反応容器2の内部にアルゴンを導入した。このときの不活性ガスの流速は100ml/分であった。不活性ガスの導入開始10分後に、不活性ガスの導入を継続しつつ反応容器2中の混合原料9の加熱を開始した。このときの昇温速度は5℃/分であった。混合原料9が約200℃になるとガスが発生した。混合原料9が300℃になった時点で加熱を停止した。その後3時間、混合原料9の温度を300℃で維持した。したがって、この熱処理工程において、混合原料9は300℃にまで加熱された。その後、混合原料9を自然冷却し、混合原料9が室温(約25℃)にまで冷却された時点で反応容器2から生成物(すなわち、熱処理工程後の被処理体)を取り出した。
 〔4〕単体硫黄除去工程
 熱処理工程後の被処理体に残存する単体硫黄(遊離の硫黄)を除去するために、以下の工程をおこなった。
The reaction vessel 2 containing the mixed raw material 9 was housed in an electric furnace 7 (crucible furnace, opening width φ 80 mm, heating height 100 mm). At this time, argon was introduced into the reaction vessel 2 through the gas introduction pipe 5. The flow rate of the inert gas at this time was 100 ml / min. Ten minutes after the start of introduction of the inert gas, heating of the mixed material 9 in the reaction vessel 2 was started while continuing the introduction of the inert gas. The temperature rising rate at this time was 5 ° C./min. When the mixed material 9 reached about 200 ° C., gas was generated. The heating was stopped when the mixed raw material 9 reached 300 ° C. Thereafter, the temperature of the mixed raw material 9 was maintained at 300 ° C. for 3 hours. Therefore, the mixed raw material 9 was heated to 300 degreeC in this heat treatment process. Thereafter, the mixed raw material 9 was naturally cooled, and when the mixed raw material 9 was cooled to room temperature (about 25 ° C.), the product (that is, the object to be treated after the heat treatment step) was taken out from the reaction vessel 2.
[4] Single Sulfur Removal Step In order to remove single sulfur (free sulfur) remaining on the object to be treated after the heat treatment step, the following steps were carried out.
 熱処理工程後の被処理体を乳鉢で粉砕した。粉砕物0.15gをガラスチューブオーブンに入れ、真空吸引しつつ250℃で3時間加熱した。このときの昇温温度は10℃/分であった。この工程により、熱処理工程後の被処理体に残存する単体硫黄が蒸発・除去され、単体硫黄を含まない(または、ほぼ含まない)硫黄系正極活物質-配合材複合体を得た。
 <リチウムイオン二次電池の作製>
 〔1〕正極
The object to be treated after the heat treatment step was crushed in a mortar. 0.15 g of the crushed material was placed in a glass tube oven and heated at 250 ° C. for 3 hours with vacuum suction. The temperature rising temperature at this time was 10 ° C./min. By this step, the single sulfur remaining on the object to be treated after the heat treatment step is evaporated and removed, and a sulfur-based positive electrode active material-compounding material composite containing (or substantially free of) single sulfur is obtained.
<Fabrication of lithium ion secondary battery>
[1] Positive electrode
 硫黄系正極活物質-配合材複合体3mgとアセチレンブラック2.7mgとポリテトラフルオロエチレン(PTFE)0.3mgとの混合物を、エタノールを適量加えつつ、メノウ製乳鉢でフィルム状になるまで混練し、フィルム状の正極材料を得た。この正極材料全量を、直径14mmの円形に打ち抜いたアルミニウムメッシュ(メッシュ粗さ#100)に圧着し、120℃で5時間真空乾燥した。この工程で、実施例1のリチウムイオン二次電池用正極を得た。なお、この正極における配合材はFeであり、硫黄系正極活物質と配合材との含有比(質量比)は100:6であった。
 〔2〕負極
 負極としては、金属リチウム箔(直径14mm、厚さ500μmの円盤状、本城金属製)を用いた。
 〔3〕電解液
A mixture of 3 mg of a sulfur-based positive electrode active material-compounding material composite, 2.7 mg of acetylene black and 0.3 mg of polytetrafluoroethylene (PTFE) is kneaded in an agate mortar until it becomes a film while adding an appropriate amount of ethanol. , A film-like positive electrode material was obtained. The whole amount of the positive electrode material was pressure-bonded to an aluminum mesh (mesh roughness # 100) punched into a circle having a diameter of 14 mm, and vacuum dried at 120 ° C. for 5 hours. In this step, the positive electrode for a lithium ion secondary battery of Example 1 was obtained. The compounding material in this positive electrode was Fe 2 O 3 , and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 100: 6.
[2] Negative Electrode As a negative electrode, metal lithium foil (disk-shaped 14 mm in diameter and 500 μm thick, made of Honjo Metal) was used.
[3] Electrolyte
 電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPFを溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPFの濃度は、1.0mol/lであった。
 〔4〕電池
As the electrolytic solution, a non-aqueous electrolyte in which LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate was used. Ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The concentration of LiPF 6 in the electrolyte was 1.0 mol / l.
[4] Battery
 〔1〕、〔2〕で得られた正極および負極を用いて、コイン電池を作製した。詳しくは、ドライルーム内で、セパレータ(Celgard社製Celgard2400、厚さ25μmのポリプロピレン微孔質膜)と、ガラス不織布フィルタ(厚さ440μm、ADVANTEC社製、GA100)と、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには〔3〕で得られた電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
 (実施例2)
The coin battery was produced using the positive electrode and negative electrode which were obtained by [1] and [2]. More specifically, in a dry room, a separator (Celgard 2400, 25 μm thick polypropylene microporous membrane) and a glass non-woven filter (440 μm thick, ADVANTEC, GA 100) between the positive electrode and the negative electrode in a dry room The electrode battery was used as an electrode battery. The electrode battery was housed in a battery case (CR2032 type coin battery member manufactured by Takasen Co., Ltd.) consisting of a stainless steel container. The electrolytic solution obtained in [3] was injected into the battery case. The battery case was sealed with a caulking machine to obtain the lithium ion secondary battery of Example 1.
(Example 2)
 実施例2の正極の製造方法は、混合原料として、硫黄粉末0.4gとPAN粉末0.1gと配合材粉末0.01gとの混合物を用いたこと以外は、実施例1の正極の製造方法と同じである。実施例2の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例2の正極における配合材はFeClであり、硫黄系正極活物質と配合材との含有比(質量比)は100:6であった。実施例2のリチウムイオン二次電池は、実施例2の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
 (実施例3)
A method of manufacturing the positive electrode of Example 2 except that a mixture of 0.4 g of sulfur powder, 0.1 g of PAN powder, and 0.01 g of compounding material powder was used as a mixed material. Is the same as In the manufacturing method of Example 2, the mass ratio of PAN to the compounding material in the mixed raw material was 1: 0.1. The compounding material in the positive electrode of Example 2 was FeCl, and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 100: 6. The lithium ion secondary battery of Example 2 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 2 is used.
(Example 3)
 実施例3の正極の製造方法は、混合原料として、硫黄粉末5gとPAN粉末1gと配合材粉末0.1gとの混合物を用いたこと、熱処理工程における加熱温度および加熱時間以外は、実施例1の正極の製造方法と同じである。実施例3の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例3の正極における配合材はTiであり、硫黄系正極活物質と配合材との含有比(質量比)は10:0.6であった。実施例3の熱処理工程においては、混合原料が330℃になった時点で加熱を停止した。加熱停止後、混合原料の温度は350℃にまで上昇し、その後低下した。つまり実施例3の熱処理工程においては、混合原料は350℃にまで加熱された。なお、実施例3の製造方法における加熱時間は350℃で約5分であった。実施例3のリチウムイオン二次電池は、実施例3の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
 (比較例1)
The method of manufacturing the positive electrode of Example 3 uses a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of compounding material powder as a mixed raw material, and Example 1 except for the heating temperature and heating time in the heat treatment step. Is the same as the method of manufacturing the positive electrode of In the manufacturing method of Example 3, the mass ratio of PAN to the compounding material in the mixed raw material was 1: 0.1. The compounding material in the positive electrode of Example 3 was Ti, and the content ratio (mass ratio) of the sulfur-based positive electrode active material to the compounding material was 10: 0.6. In the heat treatment step of Example 3, the heating was stopped when the mixed raw material reached 330 ° C. After heating was stopped, the temperature of the mixed raw material rose to 350 ° C. and then dropped. That is, in the heat treatment step of Example 3, the mixed raw material was heated to 350 ° C. In addition, the heating time in the manufacturing method of Example 3 was about 5 minutes at 350 degreeC. The lithium ion secondary battery of Example 3 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 3 is used.
(Comparative example 1)
 比較例の正極の製造方法は、配合材を用いなかったこと以外は実施例1の正極の製造方法と同じである。比較例の正極は配合材を含まないこと以外は実施例1の正極と同じである。また、比較例のリチウムイオン二次電池は、比較例の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
 (実施例4)
The manufacturing method of the positive electrode of the comparative example is the same as the manufacturing method of the positive electrode of Example 1 except that the compounding material is not used. The positive electrode of the comparative example is the same as the positive electrode of Example 1 except that it does not contain any compounding material. Moreover, the lithium ion secondary battery of the comparative example is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of the comparative example was used.
(Example 4)
 実施例4の正極の製造方法は、配合材としてTiSを用い、混合原料として硫黄粉末5gとPAN粉末1gと配合材粉末0.1gとの混合物を用いたこと以外は、実施例3の正極の製造方法と同じである。実施例4の製造方法では、混合原料におけるPANと配合材との質量比は1:0.1であった。また、実施例4の正極における硫黄系正極活物質と配合材(TiS)との含有比(質量比)は10:0.6であった。実施例4のリチウムイオン二次電池は、実施例4の正極を用いたこと以外は実施例1のリチウムイオン二次電池と同じである。
 〔電池特性〕
The positive electrode of Example 4 was manufactured by using TiS 2 as a compounding material and using a mixture of 5 g of sulfur powder, 1 g of PAN powder, and 0.1 g of compounding material powder as a mixed raw material. Is the same as the manufacturing method of In the manufacturing method of Example 4, the mass ratio of PAN to the compounding material in the mixed raw material was 1: 0.1. Further, the content ratio (mass ratio) of the sulfur-based positive electrode active material to the additive (TiS 2 ) in the positive electrode of Example 4 was 10: 0.6. The lithium ion secondary battery of Example 4 is the same as the lithium ion secondary battery of Example 1 except that the positive electrode of Example 4 is used.
[Battery characteristics]
 実施例1、2および比較例1のリチウムイオン二次電池に関し、充放電をおこなった。詳しくは、各リチウムイオン二次電池にカットオフ電圧3.0V~1.0V、25℃で10回繰り返し充放電を行った。2回目の放電曲線を図6に示す。 With respect to the lithium ion secondary batteries of Examples 1 and 2 and Comparative Example 1, charge and discharge were performed. Specifically, each lithium ion secondary battery was repeatedly charged and discharged 10 times at 25 ° C. with a cutoff voltage of 3.0 V to 1.0 V. The second discharge curve is shown in FIG.
 また、実施例3および実施例4のリチウムイオン二次電池の放電レート特性を測定した。詳しくは、各リチウムイオン二次電池に、正極活物質の1gあたりの電流値を、Cレートで0.1C、0.2C、0.5C、1C、2C・・・と変化させ、繰り返し充放電を行った。このときのカットオフ電圧は3.0V~1.0Vであった。温度は25~30℃であった。放電レート特性試験の結果を図7~9に示す。 Further, the discharge rate characteristics of the lithium ion secondary batteries of Example 3 and Example 4 were measured. Specifically, the current value per 1 g of the positive electrode active material is changed to 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C,. Did. The cutoff voltage at this time was 3.0 V to 1.0 V. The temperature was 25-30 ° C. The results of the discharge rate characteristic test are shown in FIGS.
 図6に示すように、配合材を配合した実施例1のリチウムイオン二次電池および実施例2のリチウムイオン二次電池の放電容量は、配合材を配合しなかった比較例のリチウムイオン二次電池に比べて大きかった。この事実は、配合材の存在下で熱処理工程を行うことで、300℃という比較的低温の加熱温度(つまり反応の進行し難い温度)であっても、硫黄とPANとの反応が進行することを裏づけている。
 〔X線回折による硫黄系正極活物質の分析〕
As shown in FIG. 6, the discharge capacities of the lithium ion secondary battery of Example 1 containing the compounding material and the lithium ion secondary battery of Example 2 are the lithium ion secondary batteries of the comparative example not containing the compounding material. It was larger than the battery. This fact indicates that, by performing the heat treatment step in the presence of the compounding material, the reaction between sulfur and PAN proceeds even at a relatively low heating temperature of 300 ° C. (that is, a temperature at which the reaction hardly progresses). I support you.
[Analysis of sulfur-based positive electrode active material by X-ray diffraction]
 実施例3の硫黄系正極活物質-配合材複合体、比較例1の硫黄系正極活物質、および、実施例4の硫黄系正極活物質-添加剤複合体について、X線回折分析を行った。装置として粉末X線回折装置(MAC Science社製、M06XCE)を用いた。測定条件は、CuKα線、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、回折角(2θ):10°~60°であった。X線回折で得られた回折パターンを図10~12に示す。 X-ray diffraction analysis was performed on the sulfur-based positive electrode active material-compounding material composite of Example 3, the sulfur-based positive electrode active material of Comparative Example 1, and the sulfur-based positive electrode active material-additive complex of Example 4. . As a device, a powder X-ray diffractometer (M06XCE manufactured by MAC Science) was used. Measurement conditions were: CuKα ray, voltage: 40 kV, current: 100 mA, scan rate: 4 ° / min, sampling: 0.02 °, number of integrations: 1 time, diffraction angle (2θ): 10 ° to 60 ° . The diffraction patterns obtained by X-ray diffraction are shown in FIGS.
 ASTMカードによるTiの主な回折ピーク位置は、35.1、38.4、40.2、53.0°等である。TiSの主な回折ピーク位置は、15.5、34.2、44.1、53.9°等である。図12に示すように、配合材を配合せず担体としてPANを用いた硫黄系正極活物質(比較例1)では、回折角(2θ)20~30°の範囲で、25°付近にブロードな単一ピークが認められる。これに対して、配合材を配合した硫黄系正極活物質-配合材複合体では、配合材に由来するピークが現れる。例えば、図10に示すように配合材としてTiを用いた場合、35.1、38.4、40.2、53.0°付近にTiのピークが現れる。このピークにより、配合材としてTiを用いたことを確認できる。なお、図11に示すように配合材としてTiSを用いた場合、硫黄系正極活物質-配合材複合体をX線回折してもTiのピークは確認できなかった。さらに、図示しないが配合材としてTiOを用いた場合にも、X線回折ではその存在を確認できない。しかし他の分析方法、例えばICP元素分析や蛍光X線分析などの方法を用いればTiを検出できるため、X線回折でピークが確認されない場合にもTiO等を配合材として配合したことを推測できる。 The main diffraction peak positions of Ti by ASTM card are 35.1, 38.4, 40.2, 53.0 ° and so on. The main diffraction peak positions of TiS 2 are 15.5, 34.2, 44.1, 53.9 ° and so on. As shown in FIG. 12, in the sulfur-based positive electrode active material (comparative example 1) using PAN as a carrier without compounding the compounding material (Comparative Example 1), the diffraction angle (2θ) is broad at around 25 ° in the range of 20 to 30 °. A single peak is observed. In contrast, in the sulfur-based positive electrode active material-compounding material composite in which the compounding material is compounded, a peak derived from the compounding material appears. For example, as shown in FIG. 10, when Ti is used as a compounding material, a Ti peak appears in the vicinity of 35.1, 38.4, 40.2, and 53.0 °. From this peak, it can be confirmed that Ti was used as a compounding material. As shown in FIG. 11, when TiS 2 was used as the compounding material, the peak of Ti could not be confirmed even when X-ray diffraction was performed on the sulfur-based positive electrode active material-compounding material complex. Furthermore, although not shown, even when TiO 2 is used as a compounding material, its presence can not be confirmed by X-ray diffraction. However, since Ti can be detected by using other analysis methods such as ICP elemental analysis and fluorescent X-ray analysis, it is presumed that TiO 2 etc. is blended as a compounding material even when no peak is confirmed by X-ray diffraction. it can.
 以上の結果から、本発明の製造方法によると、非水電解質二次電池の容量を増大させ得る硫黄系正極活物質を製造できることがわかる。本発明の製造方法で得られた硫黄系正極活物質は、場合によっては配合材を含む。配合材として用いた酸化鉄等の金属は、PANに硫黄が固定される反応の少なくとも一部において触媒として機能すると考えられる。なお、図10に示すように、実施例3の硫黄系正極活物質-配合材複合体の回折パターンではTiのピークが確認されるのに対し、図11に示すように実施例4の硫黄系正極活物質-配合材複合体の回折パターンではTiのピークは確認されない。このため、実施例3の製造方法と実施例4の製造方法とでは、実質的に触媒として機能している配合材が異なると考えられる。しかし、図8および図9に示すように、実施例3のリチウムイオン二次電池と実施例4のリチウムイオン二次電池とは同程度の容量およびサイクル特性を示す。 From the above results, it can be seen that according to the production method of the present invention, it is possible to produce a sulfur-based positive electrode active material that can increase the capacity of a non-aqueous electrolyte secondary battery. The sulfur-based positive electrode active material obtained by the production method of the present invention optionally contains a compounding material. The metal such as iron oxide used as the compounding material is considered to function as a catalyst in at least a part of the reaction in which sulfur is fixed to PAN. In addition, as shown in FIG. 10, the peak of Ti is confirmed in the diffraction pattern of the sulfur-based positive electrode active material-compounding material composite of Example 3, while the sulfur-based material of Example 4 is shown as shown in FIG. The peak of Ti is not confirmed in the diffraction pattern of the positive electrode active material-compounding material composite. For this reason, it is considered that in the production method of Example 3 and the production method of Example 4, the compounding materials that substantially function as a catalyst are different. However, as shown in FIGS. 8 and 9, the lithium ion secondary battery of Example 3 and the lithium ion secondary battery of Example 4 exhibit comparable capacity and cycle characteristics.
1:反応装置   2:反応容器   3:蓋   4:熱電対
5:ガス導入管  6:ガス排出管  7:電気炉
1: Reactor 2: Reaction container 3: Lid 4: Thermocouple 5: Gas inlet pipe 6: Gas outlet pipe 7: Electric furnace

Claims (10)

  1.  硫黄(S)、担体および配合材を含有する混合原料を加熱する熱処理工程を含み、
     該配合材は、第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物からなることを特徴とする非水電解質二次電池用正極の製造方法。
    Including a heat treatment step of heating the mixed raw material containing sulfur (S), a carrier and a compounding material,
    The compounding material comprises at least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal, and a rare earth element. A positive electrode for a non-aqueous electrolyte secondary battery Manufacturing method.
  2.  前記担体は炭素(C)を含有する請求項1に記載の非水電解質二次電池の製造方法。 The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the carrier contains carbon (C).
  3.  前記担体はポリアクリロニトリル、ピッチ系担体、アセン類、植物系担体から選ばれる少なくとも一種である請求項2に記載の非水電解質二次電池用正極の製造方法。 The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to claim 2, wherein the carrier is at least one selected from polyacrylonitrile, a pitch carrier, acenes, and a plant carrier.
  4.  前記配合材は未硫化の金属または金属化合物である請求項1~請求項3の何れか一つに記載の非水電解質二次電池用正極の製造方法。 The method for producing a positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the compounding material is an unsulfided metal or metal compound.
  5.  前記配合材は、鉄、チタン、マンガン、バナジウム、白金、パラジウムからなる群から選ばれる少なくとも一種の金属元素を含む請求項1~請求項4の何れか一つに記載の非水電解質二次電池用正極の製造方法。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the compounding material contains at least one metal element selected from the group consisting of iron, titanium, manganese, vanadium, platinum and palladium. Method of manufacturing positive electrode.
  6.  前記配合材は、酸化鉄、塩化鉄、酸化チタン、水酸化鉄からなる群から選ばれる少なくとも一種である請求項1~請求項5の何れか一つに記載の非水電解質二次電池用正極の製造方法。 The positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the compounding material is at least one selected from the group consisting of iron oxide, iron chloride, titanium oxide, and iron hydroxide. Manufacturing method.
  7.  請求項1~請求項6の何れか一つに記載の非水電解質二次電池用正極の製造方法で製造され、
     硫黄(S)を含有する硫黄系正極活物質と、
     第4周期金属、第5周期金属、第6周期金属および希土類元素からなる群から選ばれる少なくとも一種の金属または金属化合物と、を含むことを特徴とする非水電解質二次電池用正極。
    A method of producing a positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6,
    A sulfur-based positive electrode active material containing sulfur (S);
    At least one metal or metal compound selected from the group consisting of a fourth period metal, a fifth period metal, a sixth period metal and a rare earth element; and a positive electrode for a non-aqueous electrolyte secondary battery.
  8.  前記硫黄系正極活物質は炭素(C)を含有する請求項7に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 7, wherein the sulfur-based positive electrode active material contains carbon (C).
  9.  前記金属または金属化合物は未硫化物である請求項7または請求項8に記載の非水電解質二次電池用正極。 The positive electrode for a non-aqueous electrolyte secondary battery according to claim 7, wherein the metal or the metal compound is unsulfided.
  10.  請求項7~請求項9の何れか一つに記載の非水電解質二次電池用正極を正極として含むことを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the positive electrode for a non-aqueous electrolyte secondary battery according to any one of claims 7 to 9 as a positive electrode.
PCT/JP2012/005432 2011-09-05 2012-08-29 Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery WO2013035274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193032A JP5263557B2 (en) 2011-09-05 2011-09-05 Method for producing positive electrode for nonaqueous electrolyte secondary battery, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011-193032 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035274A1 true WO2013035274A1 (en) 2013-03-14

Family

ID=47831750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005432 WO2013035274A1 (en) 2011-09-05 2012-08-29 Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery

Country Status (2)

Country Link
JP (1) JP5263557B2 (en)
WO (1) WO2013035274A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662028B (en) * 2014-05-05 2019-06-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN111542948A (en) * 2018-07-16 2020-08-14 株式会社Lg化学 Positive electrode for lithium secondary battery comprising iron oxide and lithium secondary battery comprising the same
WO2022004696A1 (en) * 2020-06-29 2022-01-06 株式会社Adeka Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode
US11302907B2 (en) 2017-11-08 2022-04-12 Lg Energy Solution, Ltd. Positive electrode for lithium-sulfur battery comprising maghemite and lithium-sulfur battery comprising the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2784851T3 (en) * 2013-03-25 2015-12-31 Oxis Energy Ltd A method of charging a lithium-sulphur cell
EP3706215A4 (en) 2017-10-31 2021-08-11 Adeka Corporation Method for producing organo-sulfur electrode active material
JP7225199B2 (en) 2018-03-01 2023-02-20 株式会社Adeka Organic sulfur-based electrode active material
JPWO2019181703A1 (en) 2018-03-23 2021-03-18 株式会社Adeka How to suppress thermal runaway due to internal short circuit
KR102150615B1 (en) * 2019-01-07 2020-09-01 경상대학교산학협력단 Composite sulfide/sulfur electrodes and manufacturing method thereof
KR20220070486A (en) 2019-09-27 2022-05-31 가부시키가이샤 아데카 Sulfur-modified polyacrylonitrile
WO2021060044A1 (en) 2019-09-27 2021-04-01 株式会社Adeka Production method of sulfur-modified polyacrylonitrile
KR20220071224A (en) 2019-09-27 2022-05-31 가부시키가이샤 아데카 Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the electrode
JPWO2022004697A1 (en) 2020-06-29 2022-01-06
CN118302871A (en) 2021-11-26 2024-07-05 株式会社Adeka Electrode for nonaqueous electrolyte secondary battery comprising porous metal-containing current collector and organic sulfur-based active material, nonaqueous electrolyte secondary battery comprising said electrode, and organic sulfur-based active material for producing said electrode
WO2023189850A1 (en) * 2022-03-31 2023-10-05 住友ゴム工業株式会社 Sulfur-based active material, electrode, lithium ion secondary battery and production method
JP2023151614A (en) * 2022-03-31 2023-10-16 住友ゴム工業株式会社 Method for producing sulfur-based active material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511342A (en) * 1996-05-22 2000-08-29 モルテック コーポレイション Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them
JP2004095243A (en) * 2002-08-30 2004-03-25 Shinya Machida Lithium secondary battery using sulfur as positive electrode active material
JP2005005122A (en) * 2003-06-11 2005-01-06 Sony Corp Compound and its manufacturing method, as well as positive electrode and battery using same
JP2007280747A (en) * 2006-04-06 2007-10-25 Fuji Heavy Ind Ltd Electrode material, as well as secondary battery and capacitor using it
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2012150948A (en) * 2011-01-18 2012-08-09 Toyota Industries Corp Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode for lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511342A (en) * 1996-05-22 2000-08-29 モルテック コーポレイション Composite cathodes, chemical cells containing novel composite cathodes, and processes for making them
JP2004095243A (en) * 2002-08-30 2004-03-25 Shinya Machida Lithium secondary battery using sulfur as positive electrode active material
JP2005005122A (en) * 2003-06-11 2005-01-06 Sony Corp Compound and its manufacturing method, as well as positive electrode and battery using same
JP2007280747A (en) * 2006-04-06 2007-10-25 Fuji Heavy Ind Ltd Electrode material, as well as secondary battery and capacitor using it
WO2010044437A1 (en) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2012150948A (en) * 2011-01-18 2012-08-09 Toyota Industries Corp Positive electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode for lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662028B (en) * 2014-05-05 2019-06-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11302907B2 (en) 2017-11-08 2022-04-12 Lg Energy Solution, Ltd. Positive electrode for lithium-sulfur battery comprising maghemite and lithium-sulfur battery comprising the same
CN111542948A (en) * 2018-07-16 2020-08-14 株式会社Lg化学 Positive electrode for lithium secondary battery comprising iron oxide and lithium secondary battery comprising the same
CN111542948B (en) * 2018-07-16 2023-04-28 株式会社Lg新能源 Positive electrode for lithium secondary battery comprising iron oxide and lithium secondary battery comprising same
US11942633B2 (en) 2018-07-16 2024-03-26 Lg Energy Solution, Ltd. Cathode of lithium secondary battery comprising iron oxide, and lithium secondary battery comprising same
WO2022004696A1 (en) * 2020-06-29 2022-01-06 株式会社Adeka Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode

Also Published As

Publication number Publication date
JP5263557B2 (en) 2013-08-14
JP2013054957A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2013035274A1 (en) Method for manufacturing positive electrode for non-aqueous electrolyte storage battery, positive electrode for non-aqueous electrolyte storage battery, and non-aqueous electrolyte storage battery
WO2012098614A1 (en) Positive electrode for lithium ion secondary batteries, lithium ion secondary battery, method of producing a positive electrode for lithium ion secondary batteries, and vehicle
JP5737679B2 (en) Sodium secondary battery
JP5164286B2 (en) Method for producing sulfur-based positive electrode active material, sulfur-based positive electrode active material, and positive electrode for lithium ion secondary battery
JP6441462B2 (en) Organic sulfur material and method for producing the same
JP5618112B2 (en) Sulfur-modified polyacrylonitrile, evaluation method thereof, positive electrode using sulfur-modified polyacrylonitrile, nonaqueous electrolyte secondary battery, and vehicle
JP5142162B2 (en) Method for producing positive electrode active material for lithium ion secondary battery and positive electrode for lithium ion secondary battery
WO2013001693A1 (en) Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
WO2012132173A1 (en) Non-aqueous electrolyte secondary battery and vehicle
JP2012150933A (en) Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery
KR20170133405A (en) Organic sulfur material and method for its production
JP2013191330A (en) Nonaqueous electrolyte secondary battery and vehicle
JP5164295B2 (en) Positive electrode for lithium ion secondary battery and method for producing the same
JP2013110081A (en) Laminated battery, manufacturing method of he same, and vehicle
JP2013089337A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5754598B2 (en) Sulfur-based positive electrode active material and non-aqueous secondary battery
WO2013084445A1 (en) Nonaqueous electrolyte secondary battery
JP5754590B2 (en) Method and apparatus for producing sulfur-based positive electrode active material
JP2013191327A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013191331A (en) Nonaqueous electrolyte secondary battery and vehicle
JP5660730B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP2013191329A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013191328A (en) Nonaqueous electrolyte secondary battery and vehicle
JP2013089339A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830855

Country of ref document: EP

Kind code of ref document: A1