WO2013035180A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2013035180A1 WO2013035180A1 PCT/JP2011/070477 JP2011070477W WO2013035180A1 WO 2013035180 A1 WO2013035180 A1 WO 2013035180A1 JP 2011070477 W JP2011070477 W JP 2011070477W WO 2013035180 A1 WO2013035180 A1 WO 2013035180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal combustion
- combustion engine
- engine
- throttle valve
- driving force
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/13—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/40—Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2260/00—Operating Modes
- B60L2260/20—Drive modes; Transition between modes
- B60L2260/26—Transition between different drive modes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0605—Throttle position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the present invention relates to a control device that is applied to an internal combustion engine mounted on a hybrid vehicle as a driving power source together with an electric motor and cranks the internal combustion engine with the electric motor when the internal combustion engine is started.
- Patent Document 1 does not disclose switching between a starting method for opening a throttle valve or the like and a starting method for holding the throttle valve or the like in a fully closed state in accordance with the driving force required for the vehicle.
- an object of the present invention is to provide a control device for an internal combustion engine that can start the internal combustion engine by an appropriate starting method in accordance with the driving force required for the vehicle.
- a control device for an internal combustion engine of the present invention includes a cylinder provided with an intake valve and an exhaust valve, an intake passage connected to the cylinder, and a throttle valve provided in the intake passage, and is a hybrid together with an electric motor.
- a control device applied to an internal combustion engine mounted as a driving power source in a vehicle when a predetermined stop condition for stopping the internal combustion engine is satisfied, the throttle valve is fully closed, and the intake valve and A stop means for closing at least one of the exhaust valves, and the internal combustion engine and the electric motor are connected so as to transmit power when a predetermined start condition for starting the internal combustion engine is satisfied, and the electric motor Starting means for cranking the internal combustion engine and starting the internal combustion engine, and the start means is required for the hybrid vehicle when the start condition is satisfied.
- a control means for controlling an opening degree of the throttle valve at the time of cranking of the internal combustion engine in response to the driving force is.
- the opening degree of the throttle valve at the time of cranking is controlled according to the driving force required for the vehicle, so that it can be started with an appropriate starting method according to the driving force required for the vehicle.
- the internal combustion engine can be started.
- the control means is configured to crank the internal combustion engine when the driving force required for the hybrid vehicle when the start condition is satisfied is equal to or greater than a predetermined determination driving force.
- the throttle valve may be opened earlier and the throttle valve may be kept open when cranking the internal combustion engine.
- cranking is performed with the throttle valve opened in such a case, so that intake air can be quickly introduced into the cylinder. Therefore, the internal combustion engine can be started quickly.
- the cranking time can be shortened, the power consumed by the motor at the time of starting can be reduced.
- the control means may crank the internal combustion engine when the driving force required for the hybrid vehicle when the start condition is satisfied is less than a predetermined determination driving force.
- the throttle valve may be kept fully closed. When the driving force required for the vehicle is small, the internal combustion engine may not be started quickly. In this configuration, in such a case, the throttle valve is maintained in the fully closed state, so that noise and vibration can be suppressed. Therefore, drivability can be improved.
- the figure which showed roughly the internal combustion engine in which the control apparatus which concerns on one form of this invention was integrated.
- the figure which shows roughly the vehicle carrying the internal combustion engine of FIG. The flowchart which shows the engine stop control routine which a vehicle control apparatus performs.
- FIG. 1 schematically shows an internal combustion engine in which a control device according to one embodiment of the present invention is incorporated.
- FIG. 2 schematically shows a vehicle 1 in which the internal combustion engine (hereinafter sometimes referred to as an engine) 10 is mounted as a driving power source.
- a motor generator (hereinafter abbreviated as MG) 2 as an electric motor 2 is mounted on the vehicle 1 as a driving power source. That is, the vehicle 1 is a hybrid vehicle.
- a battery 3 is electrically connected to MG2.
- the vehicle 1 includes a transmission 4.
- the transmission 4 is a known device that has a plurality of transmission ratios and can switch between them.
- the engine 10 is connected to the input shaft 4 a of the transmission 4 via the clutch 5.
- the MG2 is also connected to the input shaft 4a.
- the clutch 5 is a known clutch that can be switched between a disengaged state where power transmission is blocked and an engaged state where power transmission is allowed.
- An output gear 7 is provided on the output shaft 4 b of the transmission 4.
- the output gear 7 meshes with the ring gear 8 a of the differential mechanism 8.
- the differential mechanism 8 is a well-known mechanism that distributes input power to the left and right drive wheels 9.
- the engine 10 includes a plurality of cylinders 11.
- FIG. 1 shows one of them.
- An intake passage 12 and an exhaust passage 13 are connected to each cylinder 11.
- the intake passage 12 is provided with an intake manifold 12 a for distributing intake air to the cylinders 11.
- the intake passage 12 is opened and closed by an intake valve 14, and the exhaust passage 13 is opened and closed by an exhaust valve 15.
- a piston 16 is inserted into each cylinder 11 so as to be able to reciprocate.
- the piston 16 is connected to the crankshaft 10a (see FIG. 2) via a connecting rod 17.
- Each cylinder 11 is provided with a spark plug (not shown).
- the intake passage 12 is provided with an electronically controlled throttle valve 18, an intake pressure sensor 19, and an injector 20.
- the throttle valve 18 is a known valve that opens and closes the intake passage 12.
- the intake pressure sensor 19 outputs a signal corresponding to the pressure inside the intake manifold 12a (hereinafter sometimes referred to as intake pressure).
- the injector 20 is provided to supply fuel into the intake passage 12.
- the engine 10 is provided with a valve operating device 21 for opening and closing the intake valve 14 and the exhaust valve 15.
- the valve gear 21 is configured to be able to close at least one of the intake valve 14 and the exhaust valve 15 when the engine 1 is stopped.
- the operation of the engine 10 is controlled by the vehicle control device 30.
- the vehicle control device 30 is a computer unit including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation.
- the vehicle control device 30 controls the engine 1, the MG 2, the clutch 5, the transmission 4, and the like according to a predetermined control program to control the vehicle 1 to a target state. Further, the vehicle control device 30 controls the engine 10 to a target operating state by controlling the spark plug, the injector 20, the throttle valve 18, the valve gear 21 and the like according to a predetermined control program.
- various sensors such as a crank angle sensor 31, an accelerator opening sensor 32, and an SOC (charge state) sensor 33 are connected to the vehicle control device 30.
- the crank angle sensor 31 outputs a signal corresponding to the crank angle of the engine 10.
- the accelerator opening sensor 32 outputs a signal corresponding to the accelerator opening.
- the SOC sensor 33 outputs a signal corresponding to the state of charge of the battery 3.
- an intake pressure sensor 19 is connected to the vehicle control device 30.
- FIG. 3 shows an engine stop control routine executed by the vehicle control device 30 to control the stop of the engine 10 in this way.
- the vehicle control device 30 repeatedly executes this control routine at a predetermined interval regardless of the traveling state of the vehicle 1. By executing this control routine, the vehicle control device 30 functions as the stopping means of the present invention.
- the vehicle control device 30 first determines in step S11 whether or not the stop condition described above is satisfied. If it is determined that the stop condition is not satisfied, the current control routine is terminated. On the other hand, if it is determined that the stop condition is satisfied, the process proceeds to step S12, and the vehicle control device 30 releases the clutch 5. As a result, the engine 10 is disconnected from the transmission 4. In subsequent step S13, the vehicle control device 30 fully closes the throttle valve 18. In the next step S ⁇ b> 14, the vehicle control device 30 stops the fuel supply to each cylinder 11. As a result, the rotational speed of the engine 10 begins to decrease. In the next step S15, the vehicle control device 30 performs intake passage closing control.
- the negative pressure in the present invention is a pressure lower than the reference atmospheric pressure.
- the atmospheric pressure changes depending on the weather and altitude, and becomes higher than the standard atmospheric pressure, that is, 1 atm. Therefore, the concept of negative pressure in the present invention includes a pressure higher than the standard atmospheric pressure.
- the vehicle control device 30 maintains the throttle valve 18 in a fully closed state while the engine 10 is stopped even after this control routine is completed, and closes at least one of the intake valve 14 and the exhaust valve 15. Keep it up.
- the vehicle control device 30 starts the engine 10 when a predetermined start condition is satisfied when the engine 10 is stopped. It is determined that the predetermined start condition is satisfied, for example, when the remaining amount of the battery 3 is less than the determination value.
- FIG. 4 shows an engine start control routine that the vehicle control device 30 executes to start the engine 10. The vehicle control device 30 repeatedly executes this control routine at a predetermined interval regardless of the traveling state of the vehicle 1. This control routine is executed in parallel with other routines executed by the vehicle control device 30. By executing this control routine, the vehicle control device 30 functions as the starting means of the present invention.
- the vehicle control device 30 first determines whether or not the start condition described above is satisfied in step S21. If it is determined that the start condition is not established, the current control routine is terminated. On the other hand, if it is determined that the start condition is satisfied, the process proceeds to step S22, and the vehicle control device 30 determines whether or not the driving force required for the vehicle 1 is less than a predetermined determination driving force. In this process, for example, when the vehicle 1 is operated at a low vehicle speed, when the accelerator opening is small, or when the engine 10 is required to operate at a low speed, the required driving force is obtained. It is determined that the driving force is less than the determination driving force.
- step S23 the vehicle control device 30 starts cranking of the engine 10.
- the clutch 5 is switched to the engaged state.
- cranking of the engine 10 is performed by the MG2.
- step S24 the vehicle control device 30 determines whether or not the intake pressure is equal to or lower than a predetermined target pressure.
- a pressure lower than atmospheric pressure is set as the target pressure.
- atmospheric pressure may be higher than standard atmospheric pressure. Therefore, the target pressure may be set to a pressure lower than the standard atmospheric pressure, or may be set to a pressure higher than the standard atmospheric pressure.
- This target pressure is appropriately set so that the amount of fuel to be supplied to the cylinder 11 when the engine 10 is started is reduced.
- a target pressure may be set based on the number of revolutions of the engine 10 and the required torque.
- step S26 if it is determined that the requested driving force is greater than or equal to the determination driving force, the process proceeds to step S26, and the vehicle control device 30 opens the throttle valve 18.
- the throttle valve 18 is opened to an opening that allows the engine 10 to maintain idling operation.
- step S27 the vehicle control device 30 determines whether or not the intake pressure is equal to or higher than the atmospheric pressure. When the intake pressure is less than the atmospheric pressure, this process is repeatedly executed until the intake pressure becomes equal to or higher than the atmospheric pressure. When it is determined that the intake pressure is equal to or higher than the atmospheric pressure, the process proceeds to step S28, and the vehicle control device 30 starts cranking of the engine 10. In this process, the same control as step S23 described above is performed.
- step S29 the vehicle control device 30 determines whether or not the cylinder discrimination is completed. If the cylinder discrimination is not completed, this process is repeatedly executed until the cylinder discrimination is completed. When it is determined that the cylinder discrimination is completed, the process proceeds to step S30, and the vehicle control device 30 starts firing of the engine 10. In this process, first, fuel is injected from the injector 20. Subsequently, ignition of the fuel mixture is started. As a result, the engine 10 is started. Thereafter, the current control routine is terminated.
- FIG. 5 and 6 show an example of the change over time of the rotational speed of the engine 10, the throttle opening degree, and the pressure in the intake manifold 12 a when the engine 10 is stopped and started.
- FIG. 5 and FIG. 6 show, as a comparative example, an example of a change over time in the rotational speed of the engine 10, the throttle opening, and the pressure in the intake manifold 12a when the throttle valve is opened when the engine 10 is stopped. .
- FIG. 5 shows the change over time when the driving force required for the vehicle 1 when the engine 10 is started is less than the determination driving force.
- time t1 in FIG. 5 is a point in time when the stop condition is satisfied.
- Time t2 is a time point when the stop of the engine 10 is completed.
- Time t3 is the time when the starting condition is satisfied.
- Time t4 is a point in time when the start of the engine 10 is completed.
- Time t4 ' is the time point when the engine 10 has been started in the comparative example.
- the pressure in the intake manifold 12a is maintained below atmospheric pressure while the engine 10 is stopped. However, since a small amount of air leaks, the pressure in the intake manifold 12a gradually increases.
- the engine 10 when the driving force required for the vehicle 1 is less than the determination driving force, the engine 10 is cranked while the throttle valve 18 is kept in the fully closed state. Therefore, the pressure in the intake manifold 12a, that is, the intake pressure quickly becomes equal to or lower than the target pressure. Therefore, as shown in this figure, the engine 10 can be started more quickly than the comparative example. As shown in this figure, the starting time can be shortened by a period between time t4 and time t4 'as compared with the comparative example. Moreover, since the pressure in the intake manifold 12a is a negative pressure at the time of starting, the vibration and noise of the engine 10 can be suppressed.
- FIG. 6 shows a change over time when the driving force required for the vehicle 1 when the engine 10 is started is equal to or greater than the determination driving force.
- time t11 in FIG. 6 is a point in time when the stop condition is satisfied.
- Time t12 is a time point when the stop of the engine 10 is completed.
- Time t13 is the time when the start condition is satisfied.
- Time t14 is a point in time when the start of the engine 10 is completed.
- the starting method is switched according to the driving force required for the vehicle 1 when the engine 10 is started. Therefore, the engine 10 can be started by an appropriate starting method according to the driving force required for the vehicle 1.
- the throttle valve 18 is opened and cranking is performed. Therefore, intake air can be quickly introduced into each cylinder 11. Therefore, the engine 10 can be started quickly. Further, since the cranking time can be shortened, the power consumed when the engine 10 is started can be reduced.
- the cylinder 11 has a negative pressure at the start. Therefore, the amount of air in the cylinder 11 is smaller than when the cylinder 11 is at atmospheric pressure.
- the amount of fuel supplied from the injector 20 is set so as not to be excessive or insufficient with respect to the amount of air in the cylinder 11. Therefore, in this case, the amount of fuel to be supplied from the injector 20 at the time of starting is smaller than when the inside of the cylinder 11 is at atmospheric pressure. Therefore, the amount of fuel used at the start can be reduced.
- the throttle valve 18 is kept fully closed and at least one of the intake valve 14 and the exhaust valve 15 is closed. Therefore, the pressure in the intake manifold 12a can be maintained below atmospheric pressure until the engine 10 is started. Therefore, the engine 10 can be started more quickly than when the throttle valve 18 is opened when the engine 10 is stopped.
- the vehicle control device 30 functions as the control means of the present invention by executing steps S22 to S30 in FIG.
- the present invention can be implemented in various forms without being limited to the above-described forms.
- the internal combustion engine to which the present invention is applied is not limited to a port injection type internal combustion engine that injects fuel into the intake passage.
- the present invention may be applied to a direct injection internal combustion engine that directly injects fuel into a cylinder.
- the present invention may be applied to a diesel internal combustion engine.
- the hybrid vehicle equipped with the internal combustion engine to which the present invention is applied is not limited to the vehicle shown in the above-described form.
- the present invention may be applied to an internal combustion engine mounted on a parallel hybrid vehicle.
- the present invention may be applied to an internal combustion engine mounted on a power split type hybrid vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
MG(2)とともにハイブリッド車両(1)に走行用動力源として搭載された内燃機関(10)に適用される制御装置において、所定の停止条件が成立した場合に、スロットル弁(18)が全閉され、かつ吸気弁(14)及び排気弁(15)の少なくともいずれか一方が閉じられる。所定の始動条件が成立した場合には、MG(2)で内燃機関(10)をクランキングして内燃機関(10)の始動が行われる。また、始動条件の成立時にハイブリッド車両(1)に要求されている駆動力に応じて内燃機関(10)のクランキング時におけるスロットル弁(18)の開度が制御される。
Description
本発明は、電動機とともに走行用動力源としてハイブリッド車両に搭載された内燃機関に適用され、内燃機関の始動時にその電動機で内燃機関をクランキングする制御装置に関する。
電動機と内燃機関とが走行用動力源として搭載され、所定の始動条件が成立した場合に電動機でクランキングして内燃機関を始動するハイブリッド車両が知られている。このような車両の内燃機関に適用される始動方法として、内燃機関の停止時にスロットル弁、アイドルスピードコントロールバルブ、及び吸排気弁を全閉にし、内燃機関の再始動時に所定時間だけこれらの弁を全閉状態に保持したままクランキングを行い、その後これらの弁を開ける始動方法が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2~4が存在する。
スロットル弁等を全閉状態に保持したままクランキングを行った場合、ポンピング損失が低減されるためクランキングを行うために必要なトルクが低減される。また、騒音及び振動を抑制できる。しかしながら、この始動方法ではスロットル弁等を全閉に保持している間は気筒内で燃料を燃焼させることができない。そのため、内燃機関の始動に時間がかかる。また、クランキングを行う時間が長くなるため、内燃機関の始動時に消費される電力が増加する可能性がある。これに対してスロットル弁等を開けた場合には速やかに燃焼を開始できるので、始動時間を短縮できる。内燃機関が停止しているときに車両に対して大きい駆動力が要求された場合には内燃機関を速やかに始動する必要がある。そのため、この場合にはスロットル弁を開けてクランキングを行った方が良い。特許文献1には、車両に要求される駆動力に応じてスロットル弁等を開ける始動方法とスロットル弁等を全閉状態に保持する始動方法とを切り替えることは開示されていない。
そこで、本発明は、車両に要求される駆動力に応じて適切な始動方法で内燃機関を始動可能な内燃機関の制御装置を提供することを目的とする。
本発明の内燃機関の制御装置は、吸気弁及び排気弁が設けられた気筒と、前記気筒に接続された吸気通路と、前記吸気通路に設けられたスロットル弁と、を備え、かつ電動機とともにハイブリッド車両に走行用動力源として搭載された内燃機関に適用される制御装置において、前記内燃機関を停止すべき所定の停止条件が成立した場合に、前記スロットル弁を全閉にし、かつ前記吸気弁及び前記排気弁の少なくともいずれか一方の弁を閉じる停止手段と、前記内燃機関を始動すべき所定の始動条件が成立した場合に、前記内燃機関と前記電動機とを動力伝達可能に接続し、前記電動機で前記内燃機関をクランキングして前記内燃機関を始動する始動手段と、を備え、前記始動手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力に応じて前記内燃機関のクランキング時における前記スロットル弁の開度を制御する制御手段を備えている。
本発明の制御装置によれば、車両に要求されている駆動力に応じてクランキング時のスロットル弁の開度が制御されるので、車両に要求される駆動力に応じて適切な始動方法で内燃機関を始動できる。
本発明の制御装置の一形態において、前記制御手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力が予め設定した判定駆動力以上の場合には、前記内燃機関のクランキングより前に前記スロットル弁を開け、前記内燃機関のクランキング時に前記スロットル弁を開けた状態に維持してもよい。車両に要求されている駆動力が大きい場合には速やかに内燃機関を始動する必要がある。この形態では、このような場合にはスロットル弁を開けた状態でクランキングを行うので、気筒内に速やかに吸気を導入できる。そのため、内燃機関を速やかに始動できる。また、クランキングの時間を短縮できるので、始動時に電動機で消費される電力を低減できる。
本発明の制御装置の一形態において、前記制御手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力が予め設定した判定駆動力未満の場合には、前記内燃機関のクランキング時に前記スロットル弁を全閉状態に維持してもよい。車両に要求されている駆動力が小さい場合には内燃機関を速やかに始動しなくてもよい。この形態では、このような場合にはスロットル弁が全閉状態に維持されるので、騒音及び振動を抑制することができる。そのため、ドライバビリティを改善できる。
図1は、本発明の一形態に係る制御装置が組み込まれた内燃機関を概略的に示している。図2は、この内燃機関(以下、エンジンと称することがある。)10が走行用動力源として搭載された車両1を概略的に示している。車両1には、エンジン10の他に電動機としてのモータ・ジェネレータ(以下、MGと略称する。)2が走行用動力源として搭載されている。すなわち、車両1はハイブリッド車両である。MG2には、バッテリ3が電気的に接続されている。車両1は、変速装置4を備えている。変速装置4は、複数の変速比を有し、それらを切り替え可能な周知の装置である。エンジン10は、クラッチ5を介して変速装置4の入力軸4aと接続されている。MG2も入力軸4aと接続されている。クラッチ5は、動力伝達が阻止される解放状態と動力伝達が許容される係合状態とに切り替え可能な周知のクラッチである。変速装置4の出力軸4bには、出力ギア7が設けられている。出力ギア7は、デファレンシャル機構8のリングギア8aと噛み合っている。デファレンシャル機構8は、入力された動力を左右の駆動輪9に分配する周知の機構である。
図1に戻ってエンジン10を説明する。エンジン10は複数の気筒11を備えている。なお、図1ではそのうちの1つを示す。各気筒11には、吸気通路12及び排気通路13が接続されている。吸気通路12には、吸気を各気筒11に分配するためのインテークマニホールド12aが設けられている。吸気通路12は吸気弁14により開閉され、排気通路13は排気弁15により開閉される。各気筒11には、ピストン16が往復動可能に挿入されている。ピストン16は、コネクティングロッド17を介してクランク軸10a(図2参照)と連結されている。各気筒11には、不図示の点火プラグが設けられている。吸気通路12には、電子制御式のスロットル弁18と、吸気圧センサ19と、インジェクタ20とが設けられている。スロットル弁18は、吸気通路12を開閉する周知の弁である。吸気圧センサ19は、インテークマニホールド12aの内部の圧力(以降、吸気圧と称することがある。)に対応した信号を出力する。インジェクタ20は、吸気通路12内に燃料を供給するために設けられている。エンジン10には、吸気弁14及び排気弁15を開閉駆動するための動弁装置21が設けられている。動弁装置21は、エンジン1の停止時に吸気弁14及び排気弁15の少なくともいずれか一方を閉弁させることが可能なように構成されている。
エンジン10の動作は、車両制御装置30にて制御される。車両制御装置30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータユニットである。車両制御装置30は、所定の制御プログラムに従ってエンジン10、MG2、クラッチ5及び変速装置4等を制御することにより車両1を目標とする状態に制御する。また、車両制御装置30は、所定の制御プログラムに従って点火プラグ、インジェクタ20、スロットル弁18及び動弁装置21等の制御することによりエンジン10を目標とする運転状態に制御する。車両制御装置30には、車両1及びエンジン10の状態を取得するために例えばクランク角センサ31、アクセル開度センサ32、及びSOC(充電状態)センサ33等の種々のセンサが接続されている。クランク角センサ31は、エンジン10のクランク角に対応した信号を出力する。アクセル開度センサ32は、アクセル開度に対応した信号を出力する。SOCセンサ33は、バッテリ3の充電状態に対応した信号を出力する。この他、車両制御装置30には吸気圧センサ19が接続されている。
図3及び図4を参照して車両制御装置30によるエンジン10の制御の一部を説明する。車両制御装置30は、所定の停止条件が成立した場合にエンジン10を停止する。所定の停止条件は、例えばバッテリ3の残量が判定値以上かつ車両1に要求されている駆動力が小さい場合等に成立したと判定される。図3は、車両制御装置30がこのようにエンジン10の停止を制御するために実行する機関停止制御ルーチンを示している。車両制御装置30は、この制御ルーチンを車両1の走行状態に拘わりなく所定の間隔で繰り返し実行する。この制御ルーチンを実行することにより車両制御装置30が本発明の停止手段として機能する。
図3のルーチンにおいて車両制御装置30は、まずステップS11で上述した停止条件が成立したか否か判定する。停止条件が不成立と判定した場合には、今回の制御ルーチンを終了する。一方、停止条件が成立したと判定した場合にはステップS12に進み、車両制御装置30はクラッチ5を解放する。これによりエンジン10が変速装置4から切り離される。続くステップS13において車両制御装置30はスロットル弁18を全閉にする。次のステップS14において車両制御装置30は、各気筒11への燃料供給を停止する。これによりエンジン10の回転数が低下し始める。次のステップS15において車両制御装置30は、吸気通路閉鎖制御を実行する。この吸気通路閉鎖制御では、クランク軸10aが停止したときに吸気弁14及び排気弁15の少なくともいずれか一方が閉じられるように動弁装置21が制御される。これによりエンジン10が停止したときに少なくともスロットル弁18から吸気弁14までの吸気通路12の圧力が負圧になる。その後、今回の制御ルーチンを終了する。なお、本発明における負圧とは、基準となる大気圧よりも低い圧力のことである。周知のように大気圧は天気及び高度等により変化し、標準気圧すなわち1atmよりも高くなることが知られている。そのため、本発明における負圧の概念には標準気圧以上の圧力も含まれる。
なお、車両制御装置30は、この制御ルーチンを終了してもエンジン10が停止している間はスロットル弁18を全閉に維持するとともに、吸気弁14及び排気弁15の少なくともいずれか一方を閉じたままに維持する。
車両制御装置30は、エンジン10が停止しているときに所定の始動条件が成立した場合にはエンジン10を始動する。所定の始動条件は、例えばバッテリ3の残量が判定値未満の場合等に成立したと判定される。図4は、車両制御装置30がエンジン10を始動するために実行する機関始動制御ルーチンを示している。車両制御装置30は、この制御ルーチンを車両1の走行状態に拘わりなく所定の間隔で繰り返し実行する。なお、この制御ルーチンは、車両制御装置30が実行する他のルーチンと並行に実行される。この制御ルーチンを実行することにより車両制御装置30が本発明の始動手段として機能する。
図4のルーチンにおいて車両制御装置30は、まずステップS21で上述した始動条件が成立したか否か判定する。始動条件が不成立と判定した場合には、今回の制御ルーチンを終了する。一方、始動条件が成立したと判定した場合にはステップS22に進み、車両制御装置30は車両1に要求されている駆動力が予め設定した判定駆動力未満か否か判定する。この処理では、例えば車両1が低車速で運転されている場合、アクセル開度が小さい場合、又はエンジン10に対して低回転での運転が要求されている場合等に要求されている駆動力が判定駆動力未満と判定される。
要求されている駆動力が判定駆動力未満と判定した場合はステップS23に進み、車両制御装置30はエンジン10のクランキングを開始する。この処理では、まずクラッチ5が係合状態に切り替えられる。そして、MG2によってエンジン10のクランキングが行われる。次のステップS24において車両制御装置30は吸気圧が所定の目標圧力以下か否か判定する。目標圧力には大気圧未満の圧力が設定される。上述したように大気圧は標準気圧よりも高くなることがある。そのため、目標圧力には標準気圧より低い圧力が設定される場合もあるし、標準気圧以上の圧力が設定される場合もある。この目標圧力はエンジン10の始動時に気筒11に供給すべき燃料量が低減されるように適宜に設定される。このような目標圧力は、エンジン10の回転数及び要求トルク等に基づいて設定すればよい。吸気圧が目標圧力より高い場合には、吸気圧が目標圧力以下になるまでこの処理が繰り返し実行される。吸気圧が目標圧力以下と判定した場合はステップS25に進み、車両制御装置30はエンジン10のファイアリングを開始する。なお、この処理ではまずスロットル弁18が開けられる。続いてインジェクタ20から燃料が噴射される。その後、点火プラグによる燃料混合気への点火が開始される。これによりエンジン10が始動される。その後、今回の制御ルーチンを終了する。
一方、要求されている駆動力が判定駆動力以上と判定した場合にはステップS26に進み、車両制御装置30はスロットル弁18を開ける。スロットル弁18は、エンジン10がアイドリング運転を維持可能な開度まで開けられる。次のステップS27において車両制御装置30は吸気圧が大気圧以上か否か判定する。吸気圧が大気圧未満の場合には、吸気圧が大気圧以上になるまでこの処理が繰り返し実行される。吸気圧が大気圧以上と判定した場合はステップS28に進み、車両制御装置30はエンジン10のクランキングを開始する。この処理では上述したステップS23と同様の制御が行われる。続くステップS29において車両制御装置30は、気筒判別が完了したか否か判定する。気筒判別が未完了の場合には、気筒判別が完了するまでこの処理が繰り返し実行される。気筒判別が完了と判定した場合にはステップS30に進み、車両制御装置30はエンジン10のファイアリングを開始する。この処理では、まずインジェクタ20から燃料が噴射される。続いて燃料混合気への点火が開始される。これによりエンジン10が始動される。その後、今回の制御ルーチンを終了する。
図5及び図6は、エンジン10の停止時及び始動時のエンジン10の回転数、スロットル開度、及びインテークマニホールド12a内の圧力の時間変化の一例を示している。なお、図5及び図6には、比較例としてエンジン10の停止時にスロットル弁を開けた場合のエンジン10の回転数、スロットル開度、及びインテークマニホールド12a内の圧力の時間変化の一例を示した。
図5は、エンジン10の始動時に車両1に要求されている駆動力が判定駆動力未満の場合の時間変化を示している。なお、図5の時刻t1は、停止条件が成立した時点である。時刻t2は、エンジン10の停止が完了した時点である。時刻t3は、始動条件が成立した時点である。時刻t4は、エンジン10の始動が完了した時点である。時刻t4’は、比較例においてエンジン10の始動が完了した時点である。本発明では、上述したようにエンジン10の停止時にスロットル弁18を閉弁するとともに吸気弁14及び排気弁15の少なくともいずれか一方を閉じる。そのため、エンジン10が停止している間もインテークマニホールド12a内の圧力は大気圧未満に維持される。ただし、少量の空気が漏れ込むため、インテークマニホールド12a内の圧力は徐々に上昇する。そして、本発明では、車両1に要求されている駆動力が判定駆動力未満の場合にはスロットル弁18を全閉状態に維持したままエンジン10のクランキングを行う。そのため、インテークマニホールド12a内の圧力、すなわち吸気圧が速やかに目標圧力以下になる。従って、この図に示したように比較例よりも迅速にエンジン10を始動できる。この図に示したように始動時間を比較例よりも時刻t4と時刻t4’との間の期間分短縮できる。また、始動時にインテークマニホールド12a内の圧力が負圧であるため、エンジン10の振動及び騒音を抑制できる。
図6は、エンジン10の始動時に車両1に要求されている駆動力が判定駆動力以上の場合の時間変化を示している。なお、図6の時刻t11は、停止条件が成立した時点である。時刻t12は、エンジン10の停止が完了した時点である。時刻t13は、始動条件が成立した時点である。時刻t14は、エンジン10の始動が完了した時点である。この図に示したように始動条件が成立した後にスロットル弁18を開弁してもインテークマニホールド12a内の圧力を速やかに大気圧まで上昇させることができる。そのため、比較例とほぼ同じ時間でエンジン10を始動できる。
以上説明したように、本発明では、エンジン10の始動時に車両1に要求される駆動力に応じて始動方法が切り替えられる。そのため、車両1に要求される駆動力に応じて適切な始動方法でエンジン10を始動できる。要求される駆動力が判定駆動力以上の場合には、スロットル弁18を開けてクランキングを行う。そのため、速やかに各気筒11に吸気を導入できる。従って、エンジン10を迅速に始動できる。また、クランキングの時間を短縮できるので、エンジン10の始動時に消費される電力を低減できる。
一方、要求される駆動力が判定駆動力未満の場合には、スロットル弁18を閉じたままクランキングを行う。そのため、振動及び騒音を抑制できる。従って、ドライバビリティを改善できる。また、この場合には始動時に気筒11内が負圧になる。そのため、気筒11内が大気圧の場合と比較して気筒11内の空気量が少なくなる。周知のようにインジェクタ20から供給する燃料量は、気筒11内の空気量に対して過剰になったり不足したりしないように設定される。そのため、この場合には気筒11内が大気圧の場合と比較して始動時にインジェクタ20から供給すべき燃料量が少なくなる。従って、始動時に使用する燃料量を低減できる。本発明では、エンジン10が停止している間はスロットル弁18を全閉に維持するとともに吸気弁14及び排気弁15の少なくともいずれか一方を閉じておく。そのため、エンジン10の始動時までインテークマニホールド12a内の圧力を大気圧以下に維持できる。従って、エンジン10の停止時にスロットル弁18を開ける場合よりも本発明の方が速やかにエンジン10を始動できる。なお、車両制御装置30は、図4のステップS22~S30を実行することにより本発明の制御手段として機能する。
本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明が適用される内燃機関は、吸気通路に燃料を噴射するポート噴射式の内燃機関に限定されない。本発明は、気筒内に燃料を直接噴射する直噴式の内燃機関に適用してもよい。また、本発明はディーゼル内燃機関に適用してもよい。
本発明が適用された内燃機関が搭載されるハイブリッド車両は上述した形態で示した車両に限定されない。例えば、本発明は、パラレル式のハイブリッド車両に搭載される内燃機関に適用してもよい。また、本発明は、動力分割式のハイブリッド車両に搭載される内燃機関に適用してもよい。
Claims (3)
- 吸気弁及び排気弁が設けられた気筒と、前記気筒に接続された吸気通路と、前記吸気通路に設けられたスロットル弁と、を備え、かつ電動機とともにハイブリッド車両に走行用動力源として搭載された内燃機関に適用される制御装置において、
前記内燃機関を停止すべき所定の停止条件が成立した場合に、前記スロットル弁を全閉にし、かつ前記吸気弁及び前記排気弁の少なくともいずれか一方の弁を閉じる停止手段と、前記内燃機関を始動すべき所定の始動条件が成立した場合に、前記内燃機関と前記電動機とを動力伝達可能に接続し、前記電動機で前記内燃機関をクランキングして前記内燃機関を始動する始動手段と、を備え、
前記始動手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力に応じて前記内燃機関のクランキング時における前記スロットル弁の開度を制御する制御手段を備えている内燃機関の制御装置。 - 前記制御手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力が予め設定した判定駆動力以上の場合には、前記内燃機関のクランキングより前に前記スロットル弁を開け、前記内燃機関のクランキング時に前記スロットル弁を開けた状態に維持する請求項1に記載の制御装置。
- 前記制御手段は、前記始動条件の成立時に前記ハイブリッド車両に要求されている駆動力が予め設定した判定駆動力未満の場合には、前記内燃機関のクランキング時に前記スロットル弁を全閉状態に維持する請求項1又は2に記載の制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/070477 WO2013035180A1 (ja) | 2011-09-08 | 2011-09-08 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/070477 WO2013035180A1 (ja) | 2011-09-08 | 2011-09-08 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013035180A1 true WO2013035180A1 (ja) | 2013-03-14 |
Family
ID=47831666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/070477 WO2013035180A1 (ja) | 2011-09-08 | 2011-09-08 | 内燃機関の制御装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013035180A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212178A1 (ja) * | 2017-05-16 | 2018-11-22 | いすゞ自動車株式会社 | 制御装置および制御方法 |
US20220307456A1 (en) * | 2021-03-25 | 2022-09-29 | Mazda Motor Corporation | Start controller for engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002266670A (ja) * | 2001-03-09 | 2002-09-18 | Denso Corp | 車両用内燃機関の始動方法 |
JP2006132337A (ja) * | 2004-11-02 | 2006-05-25 | Nissan Motor Co Ltd | ハイブリッド車のエンジン始動制御装置 |
JP2008308138A (ja) * | 2007-06-18 | 2008-12-25 | Toyota Motor Corp | ハイブリッド車の制御装置 |
JP2010507521A (ja) * | 2006-10-23 | 2010-03-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | ハイブリッド駆動装置の制御方法 |
-
2011
- 2011-09-08 WO PCT/JP2011/070477 patent/WO2013035180A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002266670A (ja) * | 2001-03-09 | 2002-09-18 | Denso Corp | 車両用内燃機関の始動方法 |
JP2006132337A (ja) * | 2004-11-02 | 2006-05-25 | Nissan Motor Co Ltd | ハイブリッド車のエンジン始動制御装置 |
JP2010507521A (ja) * | 2006-10-23 | 2010-03-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | ハイブリッド駆動装置の制御方法 |
JP2008308138A (ja) * | 2007-06-18 | 2008-12-25 | Toyota Motor Corp | ハイブリッド車の制御装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018212178A1 (ja) * | 2017-05-16 | 2018-11-22 | いすゞ自動車株式会社 | 制御装置および制御方法 |
JP2018193897A (ja) * | 2017-05-16 | 2018-12-06 | いすゞ自動車株式会社 | 制御装置および制御方法 |
CN110573717A (zh) * | 2017-05-16 | 2019-12-13 | 五十铃自动车株式会社 | 控制装置及控制方法 |
US20220307456A1 (en) * | 2021-03-25 | 2022-09-29 | Mazda Motor Corporation | Start controller for engine |
US11761412B2 (en) * | 2021-03-25 | 2023-09-19 | Mazda Motor Corporation | Start controller for engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4293138B2 (ja) | 内燃機関の制御装置及びその制御装置を備えた自動車 | |
US8246517B2 (en) | Automatic stop/start controller for internal combustion engine | |
US8347855B2 (en) | Control system and method for improving engine stop-start response time | |
US9366217B2 (en) | System and method for controlling engine restart operation to reduce resonance | |
US9022001B2 (en) | Starter control systems and methods for engine rockback | |
US9764733B2 (en) | Methods and system for starting an engine of a hybrid vehicle | |
JP5839006B2 (ja) | 内燃機関の自動停止制御装置 | |
EP1950404B1 (en) | Internal combustion engine controller | |
JP6191552B2 (ja) | 内燃機関の自動停止制御装置 | |
JP4858234B2 (ja) | 内燃機関の停止始動制御装置 | |
EP2295773B1 (en) | Control method, computer program product, control device for engine and engine | |
US8453620B2 (en) | Systems and methods for improved engine start-stop response | |
US10099675B2 (en) | System and method for improving fuel economy and reducing emissions when a vehicle is decelerating | |
JP2013091466A (ja) | ハイブリッド車両の制御装置 | |
JP4799654B2 (ja) | 内燃機関の発電制御装置 | |
WO2013035180A1 (ja) | 内燃機関の制御装置 | |
JP6367497B2 (ja) | 車両制御装置、車両制御システムおよび車両制御装置の制御方法 | |
JP5321147B2 (ja) | 内燃機関の制御装置 | |
JP2009209722A (ja) | エンジンの始動制御装置及び始動制御方法 | |
US11828246B2 (en) | Internal combustion engine system | |
JP2008121587A (ja) | エンジンの制御装置 | |
JP2012136980A (ja) | エンジン回転停止制御装置 | |
JP2023088530A (ja) | ハイブリッド車両の制御装置 | |
JP2023070953A (ja) | ハイブリッド車両の制御装置 | |
JP2023115608A (ja) | ハイブリッド車両の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871896 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871896 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |