WO2013034482A1 - Spectromètre laser - Google Patents
Spectromètre laser Download PDFInfo
- Publication number
- WO2013034482A1 WO2013034482A1 PCT/EP2012/066849 EP2012066849W WO2013034482A1 WO 2013034482 A1 WO2013034482 A1 WO 2013034482A1 EP 2012066849 W EP2012066849 W EP 2012066849W WO 2013034482 A1 WO2013034482 A1 WO 2013034482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- laser diode
- collimator lens
- gas
- mirror
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 20
- 230000033001 locomotion Effects 0.000 claims abstract description 10
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims abstract description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 230000031700 light absorption Effects 0.000 claims description 2
- 239000002699 waste material Substances 0.000 claims 1
- 230000001629 suppression Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 49
- 230000003287 optical effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 238000004868 gas analysis Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/08—Beam switching arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/10—Arrangements of light sources specially adapted for spectrometry or colorimetry
- G01J2003/102—Plural sources
- G01J2003/106—Plural sources the two sources being alternating or selectable, e.g. in two ranges or line:continuum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0297—Constructional arrangements for removing other types of optical noise or for performing calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
- G01N2021/396—Type of laser source
- G01N2021/399—Diode laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N2021/8578—Gaseous flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/063—Illuminating optical parts
- G01N2201/0636—Reflectors
Definitions
- Laser spectrometer The invention relates to a laser spectrometer, having a WEL lenin micrbaren laser diode and a collimator lens that shapes the divergent light from the laser diode to a paralle ⁇ len light beam in order to irradiate a sample gas, then to detect the light intensity and the con- centration of interest Determine gas component of the sample gas by reducing the light intensity by the absorption of light at the location of a selected absorption line of the gas component.
- Laser spectrometers are used in particular for the optical analysis gas ⁇ in the process measurement. In this case, a laser diode generates light, z. B.
- the process gas to be measured sample gas
- the wavelength of the light is tuned to a specific absorption line of the respectively to be measured Gaskom ⁇ component of the process gas, wherein the laser diode scans the absorption line periodically. From the detected absorption at the location of the absorption line, the concentration of the gas component of interest can be determined. This measurement can be referenced or normalized by further measurements on a reference or zero gas.
- US 4934816 A is proposed, in a move to one of the mirrors in translational oscillations or vibrations, the measurement gas ent ⁇ holding multi-reflection cell with two superimposed over ⁇ mirrors.
- Such an arrangement is very complicated, especially since the sample gas contained ⁇ tend cell should be sealed gas-tight against the environment.
- the invention is therefore based on the object to achieve the suppression of interference patterns with structurally simple and precise working means.
- the object is achieved in that the laser spectrometer of the type specified in a MEMS (Micro Electro Mechanical System) mirror is present, which directs the light of the laser diode to the collimator lens, and that a control device is provided, which The MEMS mirror excites oscillatory tilting movements, so that the light reflected by the MEMS mirror strikes different areas of the collimator lens.
- MEMS Micro Electro Mechanical System
- MEMS mirrors the one with high accuracy or sauk ⁇ can be tilted-dimensionally, are generally known and FIN for example, in DLP (Digital Light Processing) Projek ⁇ tors or microscanners use. They can be controlled with high accuracy and very low energy consumption .
- the MEMS mirror directs the light of the laser diode on different ⁇ Liche areas of the collimator lens, the position of the molded from their parallel beam of light varies. Therefore, a variation of the optical also takes place between further optical surfaces in the light path behind the collimator lens
- the measuring range of the laser spectrometer that is to say the number of detectable gas components of interest, can be easily increased by using the existing MEMS mirror by arranging and arranging at least one further wavelength-tunable laser diode with a different tuning range than that of the one laser diode. in that the MEMS mirror directs the light of the further laser diode onto the collimator lens, wherein the light reflected by the oscillating MEMS mirror likewise impinges on different areas of the collimator lens.
- a reflector and a monitor detector are present and the control device is designed to tilt the MEMS mirror such that the light reflected from the MEMS mirror of the laser diode, the further laser diode or an additional laser diode on the reflector and is reflected by this on the monitor detector.
- the monitor detector With the monitor detector, the intensity of the light generated by the laser diode and / or further laser diode can be measured in a known manner, for. B. intensity reductions due to aging of the laser diode or dirt to detect.
- the reflector is attached to the collimator lens or a holder of the collimator lens, wherein it is designed as a single reflector, preferably as the collimator lens surrounding ring reflector, or of several, z. B. three individual reflectors, which are arranged distributed over the circumference of the collimator lens.
- This makes it possible to detect and subsequently compensate the relative position and orientation of the laser diode, MEMS mirror and collimator lens or changes in position and orientation.
- This compensation is preferably carried out by an evaluation device arranged downstream of the monitor detector, which detects the position and orientation of the collimator lens and generates a control signal for the control device controlling the MEMS mirror in order to set a tilt and / or translatory offset for the MEMS mirror.
- a mirror, a reference gas cell filled with a reference gas cell and a reference detector can be provided, wherein the control device is designed to tilt the MEMS mirror such that the light reflected from the MEMS mirror of the laser diode or the further laser diode is directed through the mirror through the reference gas cell to the reference detector.
- the reference detector By means of the reference detector, the measurement result of the gas analysis can be referenced in a known manner.
- the reference gas cell can be arranged to ⁇ together with at least one parallel thereto measuring gas cell in the light path behind the collimator lens.
- the control device is then designed to tilt the MEMS mirror in such a way that the light reflected by it impinges only on different regions of the collimator lens in front of one of the gas cuvettes lying behind it.
- the gas cuvettes can thus be irradiated alternately one after the other with the light from the laser diode in successive measurements. With such a laser spectrometer, therefore, two or more different measuring gases can be analyzed in parallel.
- Figure 1 is a schematic illustration of a conventional laser spectrometer for in-situ Pro ⁇ zessgasanalysis
- FIGS 2 to 6 also in schematic illustration under ⁇ different examples of the laser spectrometer according to the invention, wherein only the essential parts in relation to the invention are shown.
- FIG. 1 shows a process gas line or an exhaust pipe 1 through which a measurement gas (process or exhaust gas) 2 flows.
- a measurement gas process or exhaust gas
- the laser diode 4 and the detector 5 are arranged in two different under ⁇ handy measuring heads 6 and 7, which are mounted at diametrically opposite locations by means of flange 8 and 9 on the process gas line.
- Each of the substantially identical measuring heads 6 and 7 has a longitudinal chamber 10 and 11, which opens at one end in the Prozeßgaslei ⁇ device 1 and at the other end of the laser diode 4 and the detector 5 contains.
- the light of the laser diode 4 can also be radiated into the longitudinal chamber 10 via an optical fiber, not shown here, so that then the laser diode 4 can be arranged at a location other than that shown here.
- the slightly divergent light 2 of the laser diode 4 is formed by means of a Kolli ⁇ matorlinse 12 to a parallel light beam 13 which is focused by irradiating the sample gas 2 by means of a focusing lens 14 on the detector 5.
- the longitudinal chambers are closed 10 and 11 to the process gas line 1 side with windows. 15 and 16
- the areas between the laser diode 4 or the detector 5 and the windows 15 and 16 can be flushed with an optically inactive inert gas.
- FIG. 2 shows a first exemplary embodiment of the laser spectrometer according to the invention with the laser diode 4 and its divergent light 3 in the parallel light beam 13 - the collimator lens 12.
- the representation is made schematically and not true to scale.
- the divergent light 3 of the laser Diode 4 is directed by means of a MEMS mirror 17 on the Kollima ⁇ torlinse 12.
- the MEMS mirror 17 is stimulated by a STEU ⁇ er worn 18 to oscillating tilting movements 19 so that the light reflected by the MEMS mirror 18 light 3 incident on different areas of the collimator lens 12th
- the optical path length between the Laserdio ⁇ de 4 and the MEMS mirror 17 and the MEMS mirror 17 and its surface 20 facing the collimator lens 12 va ⁇ riiert.
- the position of the parallel light beam 13 formed by the collimator lens 12 also varies, so that a variation of the optical path length also takes place between further optical surfaces in the light path behind the collimator lens 12. This applies z.
- the rear convex surface 21 of the collimator lens 12 and the subsequent window 15 (FIG.
- oscillation means all kinds of deterministic or stochastic vibrations that are not in synchronous relation to the periodic measurement.
- Figure 3 shows a second embodiment of the laser spectrometer Invention ⁇ invention, which differs from that of Figure 2 in that a further wavelength tunable La ⁇ serdiode than that of the laser diode 4 is provided with a different tuning range 22, wherein the MEMS mirror 17 and the light 23 of the other laser diode 22 to different areas of the collimator lens 12 directs.
- the measurement ⁇ area of the laser spectrometer so the number of detection ⁇ cash interest gas components is increased using the proposed handenen MEMS mirror 17 in a simple manner.
- Figure 4 shows a third embodiment of the laser spectrometer Invention ⁇ proper, in which a reflector 24 and a Monitors detector 25 are present, wherein the control device 18, the MEMS mirror 17 can tilt such that the light reflected from the MEMS mirror 17 3 of the laser diode 4 (and possibly the light 23 of the other laser diode 22) meets the reflector 24 and is reflected by this on the monitor detector 25.
- the monitor detector 25 With the monitor detector 25, the Inten ⁇ intensity of the light generated from the laser diode 4 is controlled.
- the reflector 24 is formed as a single reflector.
- the reflector is attached to a holder (socket) 26 of the collimator lens 12 and formed as a ring reflector around the collimator lens 12.
- a holder (socket) 26 of the collimator lens 12 is attached to a holder (socket) 26 of the collimator lens 12 and formed as a ring reflector around the collimator lens 12.
- z. B. also a plurality of individual reflectors are provided, which are arranged distributed over the circumference of the collimator lens 12.
- the monitor detector 25 is thus able to detect the relative position and orientation of the laser diode 4, MEMS mirror 17 and collimator lens 12 to each other.
- an evaluation device 27 generates a control signal 28 for the control device 18 in order to set an inclination and / or translatory offset 29 in the MEMS mirror 17 around which the oscillatory Tilting movement 19 takes place.
- laser spectrometer is a mirror 30, a column filled with a reference gas reference gas cell 31 is provided and a Refe ⁇ ence detector 32.
- the controller 18 is adapted to the MEMS mirror 17 to tilt such that the of the light reflected from the MEMS mirror 17 of the laser diode 4 is directed via the mirror 30 through the reference gas cell 31 to the reference detector 32.
- the wavelength of the laser diode 4 can be stabilized in a known manner.
- Figure 6 shows an embodiment of to the invention OF INVENTION ⁇ laser spectrometer, in which in the light path behind the collimator lens 12 at least two parallel gas cells 33, 34 are arranged.
- the gas cuvettes may be sample gas cuvettes with different sample gases to be analyzed or at least one such sample gas cuvette and a reference gas cuvette filled with a reference gas.
- the control means 18 is adapted to tilt the MEMS mirror 17 such that the light reflected from the oscillating mirror 17 light MEMS 3 only to different regions of the collimator lens in front of each of the gas cells then ⁇ lying ter 33, 34 exceeds 12 ,
- the gas cuvettes 33, 34 are alternately successively irradiated in successive measurements with the light 3 of the laser diode 4 (and possibly the light 23 of the other laser diode 22), so that z. B. two or more different gases measured in parallel who can ⁇ .
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
L'invention concerne un spectromètre laser comportant une diode laser (4) à longueur d'onde ajustable et une lentille de collimateur (12) mettant la lumière divergente (3) de la diode laser (4) sous forme de faisceau de lumière parallèle (13) pour en irradier un gaz de mesure, détecter l'intensité lumineuse et déterminer la concentration d'un constituant gazeux d'intérêt du gaz de mesure sur la base de la réduction de l'intensité lumineuse due à l'absorption de la lumière (3) à l'endroit d'une ligne d'absorption sélectionnée du constituant gazeux. L'invention vise à supprimer des motifs d'interférence à l'aide de moyens de conception simples et fonctionnant précisément. A cet effet, un miroir MEMS (système micro-électromécanique) (17) guide la lumière (3) de la diode laser (4) sur la lentille de collimateur (12) et un dispositif de commande (18) provoque des mouvements de basculement oscillants (19) de la lumière de telle manière que la lumière (3) réfléchie par le miroir MEMS (12) vient frapper diverses zones de la lentille de collimateur (12).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011082466.9 | 2011-09-09 | ||
DE201110082466 DE102011082466B3 (de) | 2011-09-09 | 2011-09-09 | Laserspektrometer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013034482A1 true WO2013034482A1 (fr) | 2013-03-14 |
Family
ID=46785415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2012/066849 WO2013034482A1 (fr) | 2011-09-09 | 2012-08-30 | Spectromètre laser |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102011082466B3 (fr) |
WO (1) | WO2013034482A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12072281B2 (en) | 2019-10-23 | 2024-08-27 | Battelle Savannah River Alliance, Llc | Multipass optical spectroscopy cell having a single transmission path |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2787332B1 (fr) * | 2013-04-03 | 2019-02-20 | Sick Ag | Spectromètre et son procédé de fonctionnement |
DE102015224064A1 (de) * | 2015-12-02 | 2017-06-08 | Robert Bosch Gmbh | Lichtleitvorrichtung und Verfahren zum Betreiben einer Lichtleitvorrichtung |
EP3211389A1 (fr) | 2016-02-29 | 2017-08-30 | Siemens Aktiengesellschaft | Spectrometre a laser in situ |
DE102017205974A1 (de) * | 2017-04-07 | 2018-10-11 | Robert Bosch Gmbh | Optische Sensorvorrichtung zum Messen einer Fluidkonzentration und Verwendung der optischen Sensorvorrichtung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3602139A1 (de) * | 1986-01-24 | 1987-07-30 | Gruen Optik Wetzlar Gmbh | Vorrichtung zum alternierenden umlenken von strahlenbuendeln |
US4684258A (en) | 1985-07-31 | 1987-08-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for enhancing laser absorption sensitivity |
US4934816A (en) | 1988-05-18 | 1990-06-19 | Southwest Sciences, Incorporated | Laser absorption detection enhancing apparatus and method |
EP1927831A1 (fr) | 2006-11-30 | 2008-06-04 | Siemens Aktiengesellschaft | Procédé et appareil de réduction de l'interférence de frange de la lumière |
EP2136190A1 (fr) | 2008-06-20 | 2009-12-23 | Siemens Aktiengesellschaft | Procédé de réduction de l'interférence de frange de la lumière |
EP2336738A1 (fr) | 2009-12-17 | 2011-06-22 | Siemens Aktiengesellschaft | Appareil pour réduire l'effet d'etalon dans le système optique d'un système de spectroscopie laser |
EP2363928A1 (fr) * | 2010-03-03 | 2011-09-07 | Leister Process Technologies | Montage de diodes laser à bruit réduit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2633278A4 (fr) * | 2010-10-28 | 2014-05-28 | Empire Technology Dev Llc | Capteur photo-acoustique |
-
2011
- 2011-09-09 DE DE201110082466 patent/DE102011082466B3/de not_active Expired - Fee Related
-
2012
- 2012-08-30 WO PCT/EP2012/066849 patent/WO2013034482A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4684258A (en) | 1985-07-31 | 1987-08-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method and apparatus for enhancing laser absorption sensitivity |
DE3602139A1 (de) * | 1986-01-24 | 1987-07-30 | Gruen Optik Wetzlar Gmbh | Vorrichtung zum alternierenden umlenken von strahlenbuendeln |
US4934816A (en) | 1988-05-18 | 1990-06-19 | Southwest Sciences, Incorporated | Laser absorption detection enhancing apparatus and method |
EP1927831A1 (fr) | 2006-11-30 | 2008-06-04 | Siemens Aktiengesellschaft | Procédé et appareil de réduction de l'interférence de frange de la lumière |
EP2136190A1 (fr) | 2008-06-20 | 2009-12-23 | Siemens Aktiengesellschaft | Procédé de réduction de l'interférence de frange de la lumière |
EP2336738A1 (fr) | 2009-12-17 | 2011-06-22 | Siemens Aktiengesellschaft | Appareil pour réduire l'effet d'etalon dans le système optique d'un système de spectroscopie laser |
EP2363928A1 (fr) * | 2010-03-03 | 2011-09-07 | Leister Process Technologies | Montage de diodes laser à bruit réduit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12072281B2 (en) | 2019-10-23 | 2024-08-27 | Battelle Savannah River Alliance, Llc | Multipass optical spectroscopy cell having a single transmission path |
Also Published As
Publication number | Publication date |
---|---|
DE102011082466B3 (de) | 2012-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19611290C2 (de) | Gassensor | |
DE4343076C2 (de) | Vorrichtung zum photothermischen Prüfen einer Oberfläche eines insbesondere bewegten Gegenstandes | |
DE69425659T2 (de) | Gerät zur messung abmessungen eines objektes | |
DE102020107632A1 (de) | Gassensorsonde und Detektionsvorrichtung basierend auf einem Spirallichtweg mit Mehrpunktreflexion | |
WO2013034482A1 (fr) | Spectromètre laser | |
DE102018205163A1 (de) | Messvorrichtung zur Messung von Reflexionseigenschaften einer Probe im extremen ultravioletten Spektralbereich | |
CH654914A5 (de) | Optoelektronisches messverfahren und einrichtung zum bestimmen der oberflaechenguete streuend reflektierender oder transparenter oberflaechen. | |
WO2016055048A1 (fr) | Élément de filtrage optique pour moyens de conversion d'informations spectrales en informations de position | |
EP3112844B1 (fr) | Système d'imagerie infrarouge avec référence automatique | |
EP3182062B1 (fr) | Étalonnage d'un interféromètre | |
DE10023363C1 (de) | Plasmonenresonanzsensor | |
AT510631B1 (de) | Spektrometer | |
DE102018210992A1 (de) | Fluidanalysevorrichtung | |
DE102020216337A1 (de) | Messvorrichtung zur Messung von Reflexionseigenschaften einer Probe im extremen ultravioletten Spektralbereich | |
DE60208961T2 (de) | Messplatte zur Verwendung in einem auf dem Prinzip der abgeschwächten Totalreflexion basierenden Sensor | |
DE10041182C2 (de) | Optoelektronische Vorrichtung | |
EP0591758B1 (fr) | Appareil d'analyse pour plusieurs composants | |
DE102014104043B4 (de) | Multireflexionszellenanordnung | |
DE102006038365B3 (de) | Messvorrichtung | |
EP0327499B1 (fr) | Tête de mesure | |
EP3598103B1 (fr) | Analyseur de gaz et procédé d'analyse de gaz | |
EP3614130B1 (fr) | Dispositif pour la détermination de caractéristiques optiques d'échantillons | |
DE102004010311A1 (de) | Vorrichtung und Verfahren zur Messung der Dicke einer transparenten Probe | |
EP2163883B1 (fr) | Appareil de mesure de grandeur de particules | |
EP1992915A2 (fr) | Dispositif de mesure de position |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12753719 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12753719 Country of ref document: EP Kind code of ref document: A1 |