WO2013033994A1 - 起重机定量位移液压控制系统及起重机 - Google Patents

起重机定量位移液压控制系统及起重机 Download PDF

Info

Publication number
WO2013033994A1
WO2013033994A1 PCT/CN2012/074219 CN2012074219W WO2013033994A1 WO 2013033994 A1 WO2013033994 A1 WO 2013033994A1 CN 2012074219 W CN2012074219 W CN 2012074219W WO 2013033994 A1 WO2013033994 A1 WO 2013033994A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
valve
crane
reversing valve
control system
Prior art date
Application number
PCT/CN2012/074219
Other languages
English (en)
French (fr)
Inventor
陈林
张铁军
王涛
Original Assignee
湖南三一智能控制设备有限公司
三一汽车起重机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一汽车起重机械有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013033994A1 publication Critical patent/WO2013033994A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/044Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
    • F15B13/0442Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors with proportional solenoid allowing stable intermediate positions

Definitions

  • the invention relates to the technical field of cranes, and in particular to a hydraulic displacement control system for crane quantitative displacement.
  • the invention also relates to a crane having the above-described crane quantitative displacement hydraulic control system.
  • the truck crane is a widely used construction machine, which can walk at a relatively fast speed, has good maneuverability, is adaptable, does not need to be equipped with power supply, can work in the field, and is flexible in operating the cylinder. Therefore, in transportation, Urban construction, fire protection, large material yards, infrastructure, first aid and other fields have been widely used.
  • the boom of the truck crane performs the lifting and lowering action of the variable-speed cylinder, and rotates in the horizontal direction under the action of the swing mechanism.
  • the hook on the boom is retracted by the action of the main and auxiliary winches, usually adopted.
  • the hydraulic control system controls the variable amplitude cylinder, the slewing mechanism and the main and auxiliary winches to perform corresponding actions.
  • the hydraulic control system of the truck crane has low control precision and cannot accurately perform quantitative displacement of the hoisting weight.
  • the truck crane When lifting a heavy object, the truck crane usually needs to rely on the installer to cooperate with the crane operator to perform the repeated trial hoisting. Hoisting work requires very good operator skill and is less efficient.
  • a first object of the present invention is to provide a hydraulic displacement control system for a crane, which can accurately control the quantitative displacement of the hoist and accurately complete the hoisting operation with a precise displacement hydraulic control system.
  • a second object of the present invention is to provide a crane having the above-described crane quantitative displacement hydraulic control system.
  • the present invention provides a crane quantitative displacement hydraulic control system, including a metering cylinder, a first reversing valve, a safety valve, and an inlet port of the first reversing valve.
  • Communicating with the hydraulic oil source the first oil outlet and the second oil outlet of the first directional control valve are respectively connected with the rod chamber and the rodless chamber of the metering cylinder, and the oil return port of the first directional valve Communicating with the fuel tank; the rod cavity of the metering cylinder communicates with the cavity of the luffing cylinder through the safety valve.
  • a third reversing valve is disposed on the oil passage between the second oil outlet of the first reversing valve and the rod chamber of the metering cylinder, and the second oil of the first reversing valve
  • the port communicates with the rod chamber of the metering cylinder through the third reversing valve, and the rod chamber of the metering cylinder communicates with the safety valve through the third reversing valve.
  • the third reversing valve is a two-position three-way electromagnetic reversing valve.
  • the first oil outlet of the first directional control valve is in communication with the main and auxiliary hoist control oil passages through the on-off valve.
  • the first reversing valve is an electromagnetic proportional valve.
  • the electromagnetic proportional valve adopts a 0-type neutral function.
  • a second reversing valve is further disposed on the oil passage between the oil inlet of the first reversing valve and the hydraulic oil source, and the oil inlet of the second reversing valve is connected to the hydraulic oil source.
  • the first oil outlet and the second oil outlet of the second directional control valve are respectively connected to the oil inlet and the rotary control oil passage of the first directional control valve.
  • the oil passage between the first reversing valve and the second reversing valve is in communication with the oil tank through the overflow valve.
  • the safety valve is a threaded electromagnetic switch valve.
  • the crane quantitative displacement hydraulic control system comprises a metering cylinder, a first reversing valve and a safety valve, wherein the oil inlet of the first reversing valve is in communication with a hydraulic oil source, and the first reversing valve is first
  • the oil outlet and the second oil outlet are respectively connected with the rod chamber and the rodless chamber of the metering cylinder, and the oil return port of the first switching valve is in communication with the oil tank; the rod chamber of the metering cylinder passes the safety The valve is in communication with the cavity of the luffing cylinder.
  • the oil inlet of the first reversing valve When lifting the heavy object, the oil inlet of the first reversing valve is connected with the first oil outlet, the safety valve is opened, and the hydraulic oil of the hydraulic oil source enters the rodless cavity of the measuring cylinder to realize the variable amplitude action;
  • the oil inlet of the reversing valve is connected with the second oil outlet, the safety valve is closed, and the hydraulic oil of the hydraulic oil source enters the rod cavity of the metering cylinder to realize the retraction position of the metering cylinder;
  • the oil inlet of the first reversing valve and The second oil outlet is connected, the safety valve is opened, and the hydraulic oil of the rodless chamber of the variable amplitude cylinder enters the metering cylinder.
  • the crane can first detect the required lifting or falling displacement of the lifting weight to determine the hydraulic oil required for the variable amplitude cylinder.
  • the metering function of the measuring cylinder provides the required hydraulic oil to the variable amplitude cylinder more accurately. , or more accurately discharge the hydraulic oil that needs to be discharged in the variable amplitude cylinder, thereby accurately controlling the quantitative displacement of the hoisting weight, so that the lifting operation can be easily and accurately completed.
  • the present invention also provides a crane comprising a luffing cylinder, a slewing mechanism, and a main and auxiliary hoisting, the crane controlling the locating displacement by the above-described crane quantitative displacement hydraulic control system. Since the above-mentioned crane quantitative displacement hydraulic control system has the above technical effects, the crane having the crane quantitative displacement hydraulic control system should also have corresponding technical effects.
  • FIG. 1 is a schematic diagram of a specific embodiment of a crane quantitative displacement control system provided by the present invention
  • On-off valve 1 first reversing valve 2, relief valve 3, check valve 4, second reversing valve 5, safety valve 6, third reversing valve 7, metering cylinder 8.
  • FIG. 1 is a schematic diagram showing the principle of a specific embodiment of a crane quantitative displacement control system according to the present invention.
  • the crane quantitative displacement hydraulic control system comprises a metering cylinder 8 , a first reversing valve 2 , a safety valve 6 , and the oil inlet of the first reversing valve 2 is connected with a hydraulic oil source.
  • the first oil outlet and the second oil outlet of the first directional control valve 2 are respectively connected with the rod chamber and the rodless chamber of the metering cylinder 8, and the oil return port and the oil tank of the first directional control valve 2 Connected; the rod cavity of the metering cylinder 8 communicates with the cavity of the luffing cylinder through the safety valve 6 .
  • the rod chamber of the metering cylinder 8 is in communication with the rodless chamber of the range cylinder via the safety valve 6.
  • the oil return port of the first directional control valve 2 can communicate with the oil tank through the one-way valve 4 to prevent backflow of the hydraulic oil in the oil tank.
  • the oil inlet of the first reversing valve 2 is in communication with the first oil outlet, the safety valve 6 is opened, and the hydraulic oil of the hydraulic oil source enters the no-dry chamber of the measuring cylinder 8 to realize the variable width.
  • the oil inlet of the first reversing valve 2 is in communication with the second oil outlet, the safety valve 6 is closed, and the hydraulic oil of the hydraulic oil source enters the rod cavity of the metering cylinder 8 to realize the retraction position of the metering cylinder 8;
  • the oil inlet of the reversing valve 2 is in communication with the second oil outlet, the safety valve 6 is opened, the hydraulic oil of the rodless chamber of the variable amplitude cylinder enters the rod chamber of the metering cylinder 8, and the hydraulic oil in the rodless chamber of the metering cylinder 8 passes.
  • the oil return port of the first reversing valve 2 flows back to the oil tank to realize the variable amplitude movement action; the oil inlet port of the first reversing valve 2 is in communication with the first oil outlet port, the safety valve 6 is closed, and the hydraulic oil of the hydraulic oil source enters The rodless chamber of the metering cylinder 8 is filled, and the hydraulic oil in the rod chamber of the metering cylinder 8 flows back to the tank through the oil return port of the first switching valve 2, so that the metering cylinder 8 is retracted.
  • the crane When lifting the heavy object, the crane can first detect the required lifting or falling displacement of the lifting weight to determine the hydraulic oil required for the variable amplitude cylinder, and the metering function of the measuring cylinder 8 can more accurately provide the required capacity to the variable amplitude cylinder.
  • the hydraulic oil or more accurately discharges the hydraulic oil that needs to be discharged in the variable amplitude cylinder, thereby accurately controlling the quantitative displacement of the hoisting weight, so that the lifting operation can be easily and accurately completed.
  • the safety valve 6 can be screwed into the electromagnetic switch valve 1 , and the threaded electromagnetic switch valve 1 can be directly mounted on the cylinder of the variable amplitude cylinder, and no additional between the safety valve 6 and the variable amplitude cylinder can be used.
  • the hydraulic pipeline prevents the hydraulic pipeline from bursting due to excessive pressure and improves safety performance.
  • a third reversing valve 7 is disposed on an oil passage between the second oil outlet of the first reversing valve 2 and the rod chamber of the metering cylinder 8, and the first reversing valve
  • the second oil outlet of 2 is communicated with the rod chamber of the metering cylinder 8 through the third reversing valve 7 , and the rod chamber of the metering cylinder 8 passes through the third reversing valve 7 and the safety
  • the valve 6 is in communication and can be swung and reset by the third reversing valve 7.
  • the third reversing valve 7 can adopt a two-position three-way electromagnetic reversing valve, and the third reversing valve 7 can be controlled by an electric control signal to require commutation.
  • the first oil outlet of the first directional control valve 2 passes through the switch valve 1 and the primary and secondary coils. Yang controls the oil passage.
  • the oil inlet of the first directional control valve 2 is in communication with the first oil outlet, the opening and closing valve 1 is opened, the safety valve 6 is closed, and the hydraulic oil of the hydraulic oil source can pass the first reversing direction.
  • Valve 2 the on-off valve 1 enters the main and auxiliary winch hydraulic oil circuit to provide power thereto, and the luffing cylinder stops operating.
  • the switch valve 1 is closed, and the main and auxiliary winch stops.
  • the main and auxiliary hoisting mechanism and the variable amplitude cylinder can be powered by a hydraulic oil source, so that the crane quantitative displacement hydraulic control system can realize the control of the variable amplitude cylinder and the control of the main and auxiliary winch mechanisms.
  • the first reversing valve 2 may adopt an electromagnetic proportional valve, and the hydraulic pressure proportional valve controls the hydraulic pressure entering the main sub-winding control oil passage. The flow of oil.
  • the electromagnetic proportional valve can adopt a 0-type neutral function, which can reduce the leakage amount of hydraulic oil in the system.
  • the second reversing valve 5 is further disposed on the oil passage between the oil inlet of the first reversing valve 2 and the hydraulic oil source.
  • the second reversing valve 5 can be electromagnetically exchanged. To the valve, the oil inlet of the second directional control valve 5 is in communication with the hydraulic oil source, and the first oil outlet and the second oil outlet of the second directional control valve 5 are respectively replaced with the first oil outlet The oil inlet to the valve 2 is rotated to control the oil passage.
  • the hydraulic oil of the hydraulic oil source supplies hydraulic oil to the first switching valve 2, and the variable oil cylinder or the main and auxiliary hoisting mechanism can work;
  • the hydraulic oil of the hydraulic oil source flows to the swing control oil passage, and the swing mechanism operates.
  • the main auxiliary hoisting mechanism or the variable amplitude cylinder and the slewing mechanism can be powered by a hydraulic oil source, so that the crane quantitative displacement hydraulic control system can realize the control of the variable amplitude cylinder or the main and auxiliary hoisting mechanism, and Realize the control of the swing mechanism.
  • the oil passage between the first directional control valve 2 and the second directional control valve 5 communicates with the oil tank through the overflow valve 3, when the first directional control valve 2 and the second directional control valve 5 When the pressure of the hydraulic oil in the oil passage is too large, it can flow back to the oil tank through the relief valve 3, which can protect the oil passage.
  • Main and auxiliary winch control process The hydraulic oil P, DT1, Yl, DT2 provided by the hydraulic oil source is energized, and the second reversing valve 5, the first reversing valve 2, the switching valve 1 are supplied to the main and auxiliary windings. Control the fuel supply flow by controlling the current of Y1.
  • the control process of the variable amplitude After the hydraulic oil passes through the second reversing valve 5, the telescopic direction of the metering cylinder 8 is controlled by Y1 and ⁇ 2, and the third reversing valve 7 controls the luffing action and the resetting action.
  • Rotary control process The hydraulic oil source supplies oil directly to the swing control oil passage through the second reversing valve 5, and the action of the variable amplitude cylinder does not affect the normal operation of the swing mechanism.
  • the main auxiliary winch control oil passage, the swing mechanism control oil passage and the variable amplitude cylinder adopt the same hydraulic oil source, and the present invention is not limited thereto, and the main auxiliary winch control oil passage and the swing mechanism control oil passage. It is possible to use an additional independent hydraulic circuit for control, and such a solution should also be within the scope of the present invention.
  • the third reversing valve 7 is a two-position three-way electromagnetic reversing valve, and the present invention is not limited thereto.
  • the third reversing valve 7 can also be a three-position four-way electromagnetic reversing valve or the like.
  • the invention also provides a crane comprising a variable amplitude cylinder, a slewing mechanism, a main auxiliary hoist, and the crane controls the positioning displacement of the hoist by the above-mentioned crane quantitative displacement hydraulic control system.
  • the above-mentioned crane quantitative displacement hydraulic control system can be integrated into the hydraulic system of the crane whole vehicle as a function module.
  • the hydraulic oil source of the crane quantitative displacement hydraulic control system can adopt an independent hydraulic oil source, and can also adopt the hydraulic pressure of the crane whole vehicle.
  • the hydraulic oil source of the system should be within the scope of the present invention.
  • the crane having the crane quantitative displacement hydraulic control system should also have corresponding technical effects.
  • the crane can be a truck crane or a crawler crane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

公开了一种起重机定量位移液压控制系统,包括计量油缸(8)、第一换向阀(2)、安全阀(6),所述第一换向阀(2)的进油口与液压油源连通,所述第一换向阀(2)的第一出油口、第二出油口分别与计量油缸(8)的有杆腔、无杆腔连通,所述第一换向阀(2)的回油口与油箱连通;所述计量油缸(8)的有杆腔通过所述安全阀(6)与变幅油缸的腔体连通。起重机在起吊重物时,可先检测吊重所需起或落的位移以确定变幅油缸所需的液压油,通过计量油缸的计量功能准确地向变幅油缸提供其所需的液压油,或准确地排出变幅油缸内需要排出的液压油,进而准确控制吊重的定量位移,从而可轻易精确地完成吊装作业。还公开了一种具有上述起重机定量位移液压控制系统的起重机。

Description

起重机定量位移 ί½控制系统 ^重机 本申请要求于 2011 年 09 月 07 日提交中国专利局、 申请号为 201110263949.7、 发明名称为 "起重机定量位移液压控制系统及起重机"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及起重机技术领域, 尤其涉及一种起重机定量位移液压控制 系统。本发明还涉及一种具有上述起重机定量位移液压控制系统的起重机。
背景技术
汽车起重机是一种使用广泛的工程机械, 其能以较快速度行走, 机动 性好、 适应性强、 自备动力不需要配备电源、 能在野外作业、 操作筒便灵 活, 因此在交通运输、 城建、 消防、 大型物料场、 基建、 急救等领域得到 了广泛的使用。
汽车起重机的吊臂在变幅油缸的作用进行起、 落动作, 在回转机构的 作用下在水平方向进行回转, 吊臂上的吊钩在主副卷扬的作用下进行收放 动作, 通常采用液压控制系统控制变幅油缸、 回转机构及主副卷扬进行相 应的动作。
现有技术, 汽车起重机的液压控制系统控制精度较低, 无法精准地进 行吊重的定量位移, 汽车起重机在起吊重物时, 通常需要依靠安装人员同 吊车操作人员相配合经过反复试吊来完成吊装作业, 对操作人员的技能要 求非常好, 而且工作效率较低。
因此, 如何精准地控制吊重的定量位移、 轻易精确地完成吊装作业, 成为本领域技术人员亟待解决的技术难题。
发明内容
本发明的第一个目的是提供一种起重机定量位移液压控制系统, 该起 重机定量位移液压控制系统可精准地控制吊重的定量位移, 较轻易精确地 完成吊装作业。 本发明的第二个目的是提供一种具有上述起重机定量位移 液压控制系统的起重机。
为了实现上述第一个目的, 本发明提供了一种起重机定量位移液压控 制系统, 包括计量油缸、 第一换向阀、 安全阀, 所述第一换向阀的进油口 与液压油源连通, 所述第一换向阀的第一出油口、 第二出油口分别与计量 油缸的有杆腔、 无杆腔连通, 所述第一换向阀的回油口与油箱连通; 所述 计量油缸的有杆腔通过所述安全阀与变幅油缸的腔体连通。
优选的, 所述第一换向阀的第二出油口与所述计量油缸的有杆腔之间 的油路上设有第三换向阀, 所述第一换向阀的第二出油口通过所述第三换 向阀与所述计量油缸的有杆腔连通, 所述计量油缸的有杆腔通过所述第三 换向阀与所述安全阀连通。
优选的, 所述第三换向阀为二位三通电磁换向阀。
优选的, 所述第一换向阀的第一出油口通过开关阀与主副卷扬控制油 路连通。
优选的, 所述第一换向阀为电磁比例阀。
优选的, 所述电磁比例阀采用 0型中位机能。
优选的, 所述第一换向阀的进油口与液压油源之间的油路上还设有第 二换向阀, 所述第二换向阀的进油口与所述液压油源连通, 所述第二换向 阀的第一出油口、 第二出油口分别与所述第一换向阀的进油口、 回转控制 油路。
优选的, 所述第一换向阀与所述第二换向阀之间的油路通过溢流阀与 油箱连通。
优选的, 所述安全阀为螺纹插装电磁开关阀。
本发明提供的起重机定量位移液压控制系统包括计量油缸、 第一换向 阀、 安全阀, 所述第一换向阀的进油口与液压油源连通, 所述第一换向阀 的第一出油口、 第二出油口分别与计量油缸的有杆腔、 无杆腔连通, 所述 第一换向阀的回油口与油箱连通; 所述计量油缸的有杆腔通过所述安全阀 与变幅油缸的腔体连通。
起重机在起吊重物时, 第一换向阀的进油口与第一出油口连通, 安全 阀开启, 液压油源的液压油进入计量油缸的无杆腔, 实现变幅起动作; 第 一换向阀的进油口与第二出油口连通, 安全阀关闭, 液压油源的液压油进 入计量油缸的有杆腔, 实现计量油缸缩回复位; 第一换向阀的进油口与第 二出油口连通, 安全阀开启, 变幅油缸无杆腔的液压油进入计量油缸的有 杆腔, 计量油缸无杆腔内的液压油经过第一换向阀的回油口流回油箱, 实 现变幅落动作; 第一换向阀的进油口与第一出油口连通, 安全阀关闭, 液 压油源的液压油进入计量油缸的无杆腔, 计量油缸的有杆腔内的液压油通 过第一换向阀的回油口流回油箱, 实现计量油缸缩回复位。
起重机在起吊重物时, 可先检测吊重所需起或落的位移以确定变幅油 缸所需的液压油, 通过计量油缸的计量功能较准确地向变幅油缸提供其所 需的液压油, 或较准确地排出变幅油缸内需要排出的液压油, 进而准确控 制吊重的定量位移, 从而可轻易精确地完成吊装作业。
为了实现上述第二个目的, 本发明还提供了一种起重机, 包括变幅油 缸、 回转机构、 主副卷扬, 该起重机通过上述的起重机定量位移液压控制 系统控制吊重的定位位移。 由于上述的起重机定量位移液压控制系统具有 上述的技术效果, 具有该起重机定量位移液压控制系统的起重机也应具备 相应的技术效果。
附图说明
图 1为本发明所提供的起重机定量位移控制系统的一种具体实施方式 的原理示意图;
其中, 图 1中:
开关阀 1、 第一换向阀 2、 溢流阀 3、 单向阀 4、 第二换向阀 5、 安全 阀 6、 第三换向阀 7、 计量油缸 8。
具体实施方式
为了使本领域的技术人员更好的理解本发明的技术方案, 下面结合附 图和具体实施方式对本发明作进一步的详细说明。
请参看图 1 , 图 1为本发明所提供的起重机定量位移控制系统的一种 具体实施方式的原理示意图。
如图 1所示, 本发明提供的起重机定量位移液压控制系统, 包括计量 油缸 8、 第一换向阀 2、 安全阀 6, 所述第一换向阀 2的进油口与液压油源 连通, 所述第一换向阀 2的第一出油口、 第二出油口分别与计量油缸 8的 有杆腔、 无杆腔连通, 所述第一换向阀 2的回油口与油箱连通; 所述计量 油缸 8的有杆腔通过所述安全阀 6与变幅油缸的腔体连通,具体的方案中, 所述计量油缸 8的有杆腔通过所述安全阀 6与变幅油缸的无杆腔连通。 优选方案中, 第一换向阀 2的回油口可通过单向阀 4与油箱连通, 以 防止油箱中液压油出现回流现象。
起重机在起吊重物时, 第一换向阀 2的进油口与第一出油口连通, 安 全阀 6开启, 液压油源的液压油进入计量油缸 8的无 4干腔, 实现变幅起动 作; 第一换向阀 2的进油口与第二出油口连通, 安全阀 6关闭, 液压油源 的液压油进入计量油缸 8的有杆腔, 实现计量油缸 8缩回复位; 第一换向 阀 2的进油口与第二出油口连通, 安全阀 6开启, 变幅油缸无杆腔的液压 油进入计量油缸 8的有杆腔, 计量油缸 8无杆腔内的液压油经过第一换向 阀 2的回油口流回油箱, 实现变幅落动作; 第一换向阀 2的进油口与第一 出油口连通,安全阀 6关闭, 液压油源的液压油进入计量油缸 8的无杆腔, 计量油缸 8的有杆腔内的液压油通过第一换向阀 2的回油口流回油箱, 实 现计量油缸 8缩回复位。
起重机在起吊重物时, 可先检测吊重所需的起或落的位移以确定变幅 油缸所需的液压油, 通过计量油缸 8的计量功能较准确地向变幅油缸提供 其所需的液压油, 或较准确地排出变幅油缸内需要排出的液压油, 进而准 确控制吊重的定量位移, 从而可轻易精确地完成吊装作业。
优选的方案中, 安全阀 6可采用螺纹插装电磁开关阀 1 , 螺纹插装电 磁开关阀 1可直接安装在变幅油缸的缸体上, 安全阀 6与变幅油缸之间可 不用采用额外的液压管路, 可防止液压管路因压力过大出现爆管现象, 提 高了安全性能。
具体的方案中, 所述第一换向阀 2的第二出油口与所述计量油缸 8的 有杆腔之间的油路上设有第三换向阀 7 , 所述第一换向阀 2的第二出油口 通过所述第三换向阀 7与所述计量油缸 8的有杆腔连通, 所述计量油缸 8 的有杆腔通过所述第三换向阀 7与所述安全阀 6连通, 可通过第三换向阀 7变幅动作和复位动作。
优选的方案中, 第三换向阀 7可采用两位三通电磁换向阀, 可通过电 控信号控制第三换向阀 7是否需要换向。
优选方案中, 所述第一换向阀 2的第一出油口通过开关阀 1与主副卷 扬控制油路连通。 起重机的主副卷扬需要动作时, 第一换向阀 2的进油口 与第一出油口连通, 开关阀 1开启, 安全阀 6关闭, 液压油源的液压油可 通过第一换向阀 2、 开关阀 1进入主副卷扬液压油路, 为其提供动力, 此 时变幅油缸停止动作; 变幅油缸需要动作时, 关闭开关阀 1 , 主副卷扬停 止动作。 这种方案中, 主副卷扬机构、 变幅油缸可通过一个液压油源提供 动力, 使得这种起重机定量位移液压控制系统既可实现变幅油缸的控制, 又可实现主副卷扬机构的控制。
更优的方案中,为了精确控制进入主副卷扬控制油路的液压油的流量, 第一换向阀 2可采用电磁比例阀, 由电磁比例阀控制进入主副卷扬控制油 路的液压油的流量。
优选的方案中, 所述电磁比例阀可采用 0型中位机能, 可减小系统中 液压油的泄漏量。
优选方案中, 所述第一换向阀 2的进油口与液压油源之间的油路上还 设有第二换向阀 5, 具体的方案中, 第二换向阀 5可采用电磁换向阀, 所 述第二换向阀 5的进油口与所述液压油源连通, 所述第二换向阀 5的第一 出油口、 第二出油口分别与所述第一换向阀 2的进油口、 回转控制油路。
第二换向阀 5的进油口与第一出油口连通时, 液压油源的液压油向第 一换向阀 2提供液压油, 变幅油缸或主副卷扬机构可进行工作; 第二换向 阀 5的进油口与第二出油口连通时,液压油源的液压油流向回转控制油路, 回转机构工作。 这种方案中, 主副卷扬机构或变幅油缸与回转机构可通过 一个液压油源提供动力, 使得这种起重机定量位移液压控制系统即可实现 变幅油缸或主副卷扬机构的控制, 又可实现回转机构的控制。
优选的方案中, 所述第一换向阀 2与所述第二换向阀 5之间的油路通 过溢流阀 3与油箱连通, 当第一换向阀 2与第二换向阀 5之间油路中液压 油的压力过大时, 可通过溢流阀 3流回油箱, 可起到保护油路的作用。
上述起重机定量位移液压控制系统的工作原理如下。
主副卷扬控制过程: 通过液压油源提供的液压油 P, DT1、 Yl、 DT2 得电, 经过第二换向阀 5、 第一换向阀 2、 开关阀 1向主副卷扬供油, 通过 控制 Y1的电流大小, 控制供油流量。 变幅的控制过程: 液压油通过第二换向阀 5后, 由 Yl、 Υ2控制计量 油缸 8的伸缩方向,第三换向阀 7控制变幅动作和复位动作。 当变幅起时, DT1、 Yl、 DT4得电; 当计量油缸 8缩回复位时, DT1、 Y2、 DT3得电; 当变幅落时, DT4、 Y2得电; 当计量油缸 8伸出复位时, DT1、 Yl、 DT3 得电。
回转的控制过程: 液压油源经过第二换向阀 5直接向回转控制油路供 油, 变幅油缸的动作不影响回转机构的正常动作。
上述实施例中, 主副卷扬控制油路、 回转机构控制油路与变幅油缸采 用同一个液压油源, 本发明并不局限于此, 主副卷扬控制油路、 回转机构 控制油路均可采用额外的独立的液压油路进行控制, 这种方案也应在本发 明的保护范围内。
上述实施例中, 第三换向阀 7采用二位三通电磁换向阀, 本发明并不 局限于此, 第三换向阀 7还可采用三位四通电磁换向阀等。
本发明还提供了一种起重机, 包括变幅油缸、 回转机构、 主副卷扬, 该起重机通过上述的起重机定量位移液压控制系统控制吊重的定位位移。 上述起重机定量位移液压控制系统可作为一个功能模块, 集成到起重机整 车的液压系统中, 该起重机定量位移液压控制系统中液压油源可采用独立 的液压油源, 也可采用起重机整车的液压系统的液压油源, 均应在本发明 的保护范围内。
由于上述的起重机定量位移液压控制系统具有上述的技术效果, 具有 该起重机定量位移液压控制系统的起重机也应具备相应的技术效果。
起重机可以为汽车起重机、 履带式起重机等。
以上所述仅是发明的优选实施方式的描述, 应当指出, 由于文字表达 的有限性, 而在客观上存在无限的具体结构, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种起重机定量位移液压控制系统, 其特征在于, 包括计量油缸、 第一换向阀、 安全阀, 所述第一换向阀的进油口与液压油源连通, 所述第 一换向阀的第一出油口、 第二出油口分别与计量油缸的有杆腔、 无杆腔连 通, 所述第一换向阀的回油口与油箱连通; 所述计量油缸的有杆腔通过所 述安全阀与变幅油缸的腔体连通。
2、根据权利要求 1所述的起重机定量位移液压控制系统,其特征在于, 所述第一换向阀的第二出油口与所述计量油缸的有杆腔之间的油路上设有 第三换向阀, 所述第一换向阀的第二出油口通过所述第三换向阀与所述计 量油缸的有杆腔连通, 所述计量油缸的有杆腔通过所述第三换向阀与所述 安全阀连通。
3、根据权利要求 2所述的起重机定量位移液压控制系统,其特征在于, 所述第三换向阀为二位三通电磁换向阀。
4、根据权利要求 1所述的起重机定量位移液压控制系统,其特征在于, 所述第一换向阀的第一出油口通过开关阀与主副卷扬控制油路连通。
5、根据权利要求 1或 4所述的起重机定量位移液压控制系统,其特征 在于, 所述第一换向阀为电磁比例阀。
6、根据权利要求 5所述的起重机定量位移液压控制系统,其特征在于, 所述电磁比例阀采用 0型中位机能。
7、根据权利要求 1或 4所述的起重机定量位移液压控制系统,其特征 在于, 所述第一换向阀的进油口与液压油源之间的油路上还设有第二换向 阀, 所述第二换向阀的进油口与所述液压油源连通, 所述第二换向阀的第 一出油口、 第二出油口分别与所述第一换向阀的进油口、 回转控制油路连 通。
8、根据权利要求 7所述的起重机定量位移液压控制系统,其特征在于, 所述第一换向阀与所述第二换向阀之间的油路通过溢流阀与油箱连通。
9、根据权利要求 1所述的起重机定量位移液压控制系统,其特征在于, 所述安全阀为螺纹插装电磁开关阀。
10、 一种起重机, 包括变幅油缸、 回转机构、 主副卷扬, 其特征在于, 该起重机通过权利要求 1-9任一项所述的起重机定量位移液压控制系统控 制吊重的定位位移。
PCT/CN2012/074219 2011-09-07 2012-04-17 起重机定量位移液压控制系统及起重机 WO2013033994A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110263949.7 2011-09-07
CN 201110263949 CN102431898B (zh) 2011-09-07 2011-09-07 起重机定量位移液压控制系统及起重机

Publications (1)

Publication Number Publication Date
WO2013033994A1 true WO2013033994A1 (zh) 2013-03-14

Family

ID=45980312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074219 WO2013033994A1 (zh) 2011-09-07 2012-04-17 起重机定量位移液压控制系统及起重机

Country Status (2)

Country Link
CN (1) CN102431898B (zh)
WO (1) WO2013033994A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734241B (zh) * 2012-06-27 2014-12-10 三一重工股份有限公司 开闭式液压系统及工程机械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2058913U (zh) * 1989-11-09 1990-07-04 西安冶金建筑学院 一种起重机起升回路液压控制装置
CN2293547Y (zh) * 1997-04-02 1998-10-07 吴一山 便携式集装箱液压升降机
CN2725603Y (zh) * 2004-09-23 2005-09-14 贵州枫阳液压有限责任公司 塔吊液压泵站
JP2005330034A (ja) * 2004-05-18 2005-12-02 Hitachi Constr Mach Co Ltd 把持力制御装置および解体作業機
CN101229902A (zh) * 2008-02-19 2008-07-30 湖南三一起重机械有限公司 起重机液压系统液压油分配控制装置
CN102030266A (zh) * 2011-01-14 2011-04-27 徐州重型机械有限公司 一种起重机及其液压控制系统
JP2011157163A (ja) * 2010-01-29 2011-08-18 Caterpillar Sarl 作業機械の油圧制御装置
CN201942453U (zh) * 2011-01-07 2011-08-24 魏德让 一种液压平衡吊

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569272A (en) * 1982-03-22 1986-02-11 Vickers, Incorporated Power transmission
JPH11229430A (ja) * 1998-02-12 1999-08-24 Yutani Heavy Ind Ltd 作業機械の暖機装置
JP2001247293A (ja) * 2000-03-07 2001-09-11 Hitachi Constr Mach Co Ltd クレーンの油圧ウインチ回路
JP4017812B2 (ja) * 2000-07-18 2007-12-05 日立建機株式会社 カウンタバランス弁を有する油圧回路およびクレーン
CN2743315Y (zh) * 2004-02-11 2005-11-30 徐州工程机械科技股份有限公司徐工研究院 定量液压元件起升变速系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2058913U (zh) * 1989-11-09 1990-07-04 西安冶金建筑学院 一种起重机起升回路液压控制装置
CN2293547Y (zh) * 1997-04-02 1998-10-07 吴一山 便携式集装箱液压升降机
JP2005330034A (ja) * 2004-05-18 2005-12-02 Hitachi Constr Mach Co Ltd 把持力制御装置および解体作業機
CN2725603Y (zh) * 2004-09-23 2005-09-14 贵州枫阳液压有限责任公司 塔吊液压泵站
CN101229902A (zh) * 2008-02-19 2008-07-30 湖南三一起重机械有限公司 起重机液压系统液压油分配控制装置
JP2011157163A (ja) * 2010-01-29 2011-08-18 Caterpillar Sarl 作業機械の油圧制御装置
CN201942453U (zh) * 2011-01-07 2011-08-24 魏德让 一种液压平衡吊
CN102030266A (zh) * 2011-01-14 2011-04-27 徐州重型机械有限公司 一种起重机及其液压控制系统

Also Published As

Publication number Publication date
CN102431898A (zh) 2012-05-02
CN102431898B (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
US20210229962A1 (en) Crane hydraulic system and controlling method of the system
JP2600009B2 (ja) クレーンの旋回制御装置
CN102874697B (zh) 控制臂架变幅的液压系统和起重机
CN107061430B (zh) 负流量液压回路控制的举升系统
CN103613021A (zh) 一种卷扬液压控制系统及工程机械
CN103641023B (zh) 控制阀及卷扬制动器的液压控制系统、起重机
CN203699758U (zh) 卷扬液压系统及工程机械
WO2013086882A1 (zh) 起重机以及起重机用闭式卷扬负功率控制系统
US20090308067A1 (en) Hydraulic Drive
CN104121242B (zh) 伸缩控制系统与工程机械
CN101857174A (zh) 机械操作三联泵液压系统
CN101863421B (zh) 液压操作三联泵液压系统
CN108263971A (zh) 一种蛛形履带式起重机
JP6049386B2 (ja) クレーンの油圧回路
GB2472004A (en) Control arrangement for controlling movement of a differential piston in a hydraulic circuit
WO2013033994A1 (zh) 起重机定量位移液压控制系统及起重机
CN108194457A (zh) 液压顶升系统及塔式起重机
CN104444816A (zh) 一种起重机械的液压控制系统及起重机械
CN101857173B (zh) 机械操作四联泵液压系统
CN203717509U (zh) 随车起重机多路换向装置及直臂随车起重机
JP5511009B2 (ja) 可変容量型油圧モータの制御装置
CN201670659U (zh) 液控操作三联泵液压系统
CN112112867B (zh) 液控式排气阀单元、液控排气式卷扬控制系统和卷扬机
WO2013023366A1 (zh) 制动阀组、具有该制动阀组的液压系统和混凝土布料机
JP7124610B2 (ja) 建設機械の油圧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829779

Country of ref document: EP

Kind code of ref document: A1