WO2013033961A1 - Prame、wt1双价肿瘤dna疫苗 - Google Patents

Prame、wt1双价肿瘤dna疫苗 Download PDF

Info

Publication number
WO2013033961A1
WO2013033961A1 PCT/CN2011/084048 CN2011084048W WO2013033961A1 WO 2013033961 A1 WO2013033961 A1 WO 2013033961A1 CN 2011084048 W CN2011084048 W CN 2011084048W WO 2013033961 A1 WO2013033961 A1 WO 2013033961A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
prame
vaccine
group
cells
Prior art date
Application number
PCT/CN2011/084048
Other languages
English (en)
French (fr)
Inventor
朱义
Original Assignee
四川百利药业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川百利药业有限责任公司 filed Critical 四川百利药业有限责任公司
Publication of WO2013033961A1 publication Critical patent/WO2013033961A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention relates to a PRAME, WT1 bivalent tumor sputum vaccine.
  • Tumor immunology is the use of immunology theory and method to study the antigenicity of tumors, the immune function of the body and the relationship between tumorigenesis and development, the body's immune response to tumors and its anti-tumor immunity mechanism, tumors.
  • Tumor immunology has advanced by leaps and bounds over the past decade.
  • LAK or TIL tumor-specific effector cells
  • the mechanism of action of such vaccines is to use a method that enhances the immunogenicity of tumor-specific antigens, induces an anti-tumor immune response, and achieves the goal of reducing and eliminating tumors.
  • the current tumor vaccines used in clinical trials come in many forms, including cell types (dendritic cells, inactivated tumor cells), cell homogenization, and synthetic biomacromolecules (polypeptides, proteins, DNA/RNA). And viral vector type.
  • DNA vaccine has many advantages. First, it induces an immune response with long-term immune memory. Second, the DNA does not contain antigenic components that induce an antibody response, and these anti-vaccine antibodies impair the vaccine's potency. Third, the production and preparation costs are low, and the process is simple. Despite the obvious advantages of DNA vaccines, the clinical effects are not satisfactory due to their low expression efficiency in humans. Summary of the invention
  • the DNA vaccine is well thought out and has a high expression rate in the human body and is suitable for a wide range of people.
  • PRAME WT1 bivalent tumor DNA vaccine
  • the base sequence of the vaccine is shown in SEQ ID NO: 1.
  • the amino acid sequence corresponding to the base sequence is shown in SEQ ID NO: 2.
  • the above PRAME, WT1 bivalent tumor DNA vaccine is used in the preparation of a medicament or vaccine for tumor therapy.
  • the tumor is a WT1 positive tumor and/or a PRAME positive tumor.
  • the tumor includes: pancreatic cancer, ovarian cancer, melanoma, renal cancer, prostate cancer, intestinal cancer, endometrial cancer, cervical cancer, testicular cancer, squamous cell carcinoma, small cell lung cancer, mesothelioma, breast cancer, Esophageal cancer, gastric cancer, neuroendocrine cancer, liver cancer, biliary cancer, bone cancer, soft tissue cancer, esophageal cancer, lymphoma, etc.
  • the above PRAME, WT1 tumor DNA vaccine can be obtained by the following main steps: antigen gene synthesis according to the nucleic acid sequence shown in SEQ ID NO: 1, the sequence includes: multi-segment PRAME and WT1 gene fragment, fragment ligation sequence, H ind III, EcoR I restriction endonuclease recognition Sequence and KozaK translation initiation sequence.
  • the antigen gene and the pVAX1 plasmid were then separately cleaved by Hindl ll and EcoR I restriction enzymes to expose the sticky ends.
  • the antigen gene and the pVAX1 plasmid were ligated to the recombinant end using DNA ligase to form a recombinant plasmid.
  • the recombinant plasmid was transfected into E. coli and allowed to replicate and amplify in E. coli cells. After plasmid extraction and purification, the PRAME and WT1 bivalent tumor DNA vaccines satisfying the requirements were obtained.
  • a plurality of PRAME and WT-1 gene fragment sequences are selected, and these fragments are ligated in a beaded manner, and a restriction endonuclease and a Kozak translation initiation sequence are used for whole gene synthesis, and ligated to the commercial vector pVAXl (Invi trogen) ) to complete the vaccine construction.
  • the coding region is simultaneously ligated to the E. coli expression plasmid for the preparation of a small amount of protein polypeptide as a reagent for evaluating vaccine titer.
  • the present invention prevents tumors from evading immune attack due to antigen loss.
  • the inventors have designed a bivalent vaccine including two different tumor antigens after repeated trials and trials, PRAME (Melamoma antigen preferentially expressed in tumors) ) ⁇ WT-1 (Wilms tumor protein ). These two antigens play different roles in the proliferation, metastasis and spread of cancer cells.
  • PRAME is involved in signal transduction associated with retinoic acid receptors and is thought to be involved in the growth and anti-apoptotic functions of tumor cells.
  • WT-1 is considered to be a transcription factor involved in various biological functions of tumor cells.
  • the expression rates of these two antigens in pancreatic cancer specimens are relatively high (> 75%), and their expression rates in other solid tumors and blood cancers are also quite high.
  • the invention recombines the tumor-associated antigen PRAME and the WT1 partial fragment gene sequence and other related sequences, and constructs into the eukaryotic expression DNA plasmid vector, and uses the plasmid as a main component to prepare an injection medicine for treating various malignant tumors.
  • the principle is as follows: After being injected into the human body, the vaccine can enter human cells and express recombinant antigen protein, thereby stimulating the specific immune response of the human against PRAME and WT1 antigen. The resulting specific humoral and cellular immunity will kill PRAME and WT1 antigen-positive tumors for cancer treatment purposes.
  • the tumor DNA vaccine of the present invention is ingeniously designed, has a high expression rate in the human body, and is suitable for a wide population.
  • PRAME and WT1 antigen-positive tumors are killed to achieve a variety of cancer treatments.
  • PRAME and WT1 are specifically and highly expressed in tumor cells of various cancers and are not expressed in normal human cells, the DNA tumor vaccine can be used to treat a variety of cancers.
  • FIG. 1 is a diagram showing the results of evaluation of humoral immune titer of Example 1 of the present invention
  • FIG. 2 is a graph showing the results of evaluation of cellular immune titer of Example 1 of the present invention
  • the results of the evaluation of the titer of the immune cell killing tumor cells in the first embodiment of the present invention are shown in Fig. 4
  • Fig. 4 is a graph showing the results of the evaluation of the tumor cell killing experiment in vivo according to Example 1 of the present invention.
  • Example 1 Experimental study on the detection of specific immune response intensity and anti-tumor cell effect in immunogenic transgenic mice The experimental protocol is as follows:
  • HLA-A2.1 transgenic mice were randomly divided into two large groups, each of which was divided into three groups, each of which was labeled as
  • mice 1-1 and 1-2 were taken from the orbital venous plexus of mice 1-1 and 1-2, respectively, as a negative control for subsequent ELISA experiments.
  • Lymph node injection The experimental group and the control group were exposed to the inguinal lymph nodes under aseptic conditions, and the test substance plasmid was injected into the lymph node with a microinjector for 4 times for the first, fourth, fifteenth and 18th days, respectively.
  • the injection method for each group of animals is as follows:
  • Risk group 1-1, 2_1 (injection of 25uL, 0.4mg/mL recombinant plasmid)
  • Control group 1-2, 2-2 (25uL injection, 0.4mg/mL empty plasmid)
  • mice in groups 1-1, 1-2, and 1-3 were sacrificed and peripheral blood and spleen cells were harvested for evaluation of immune response.
  • ELISA method The purpose of the evaluation is to determine whether there is specific antibody production and antibody titer in peripheral blood.
  • the method is to dilute the target antigen protein to a protein content of 5 g / ml, and the enzyme plate is added with 100 ul per well at 4 ° C overnight; with 0.15 M PH7 4 After washing with PBS, add 200 ul of 1% BSA/PBS to non-specifically bind to the plate for 60 min at room temperature to block the plate. After washing, add 100 ⁇ l of diluted peripheral serum and antigen for 60 min at room temperature for cleaning. After the antibody was not bound, add OOul of the appropriate anti-mouse secondary antibody to the enzyme antibody for 60 min at room temperature. After washing, add 100 ul of the appropriate concentration of the substrate and mark the color for 30 min at room temperature. Measure the 0D value and dilute with serum. Titers express the density of antibody production.
  • the aim was to evaluate whether specific CTL (cytotoxic T lymphocytes) were produced.
  • the method was as follows: The spleen was isolated from the sacrificed animals, mononuclear cells were isolated after density gradient centrifugation, and resuspended in HL-1 medium for use.
  • the enzyme-labeled anti-IFN- ⁇ antibody was diluted at 4 °C overnight, washed, and then added with 200 ul of blocking solution, incubated for 2 h at room temperature; mouse spleen cells ( 4 ⁇ 10 5 per well) And l OuL 100ug/ml target antigen protein at 37 ° C, 5% CO 2 and 100% humidity After incubation with the microplate for 36h, the IFN- ⁇ produced by the specific T cells against the target antigen was immobilized on the microtiter plate by the antibody; after washing the cells, the anti-IFN- ⁇ detection of the mouse diluted with 10 Oul was added.
  • the antibody was incubated for 2 h at room temperature, and then the substrate was added for color development for 30 min; the plate was dried in the dark for 2 h, and the spot was analyzed by ELI SP0T enzyme-linked speckle analysis system to detect the CTL response in the immunized animal;
  • mice 2 ⁇ 10 6 /well
  • PRAME/WT1 antigen-positive, HLA-A2.1 leukocyte phenotype tumor cells 10 5 /well
  • the substrate was incubated for 30 min after centrifugation, and the effect of killing tumor cells was evaluated by LDH method.
  • Immunization lymph nodes after injection day 28
  • the number of cells PRAME (107 pieces) 5uM CFSE labeled 2-1 the number of cells PRAME (107 pieces) 5uM CFSE labeled 2-1
  • a transgenic mouse tail intravenous injection group 2-2 a WT1 antigen-positive, HLA-A2 1 leukocyte phenotype of tumor cells and 0. 5uM antigen-negative, HLA-A2.1 white blood cell phenotype of tumor cells, 18 hours later, peripheral blood was measured by flow cytometry (FACS) to detect the content of two labeled cells .
  • FACS flow cytometry
  • the total number of tumor cells in the 2-1 group, the PRAME/WT1 antigen-positive, and the HLA-A2.1 white blood cell phenotype is much lower than the negative antigen with 0. 5uM antigen.
  • the two cells in the 2-2 group were almost identical in content.
  • the results show that group 2-1 A large number of CTLs against the PRAME/WT1 antigen-positive, HLA-A2.1 white blood cell phenotype were produced in mice.
  • Example 2 Human peripheral blood test for detecting specific immune response intensity and anti-tumor cell effect The experimental experiment aims to simulate antigen expression presentation, immune response and killing effect on tumor cells in vitro.
  • PBMCs Peripheral blood mononuclear cells
  • DCs Dendritic cells
  • CTLs were isolated by CD8+ magnetic beads.
  • ELI SP0T experiment was performed to detect the specific CTL production and titer, and the killing titer of tumor cells in vitro was also detected.
  • the enzyme label is coated with an antibody of I FN- ⁇ , and the CTL and the antigen protein are incubated with the microplate.
  • the IFN- ⁇ produced by the antigen-specific CTL is immobilized on the microplate by the antibody, and after washing the cell, The antibody against human I FN- ⁇ was subjected to labeling and color development, and the spots were analyzed by an EL I SPOT enzyme-linked speckle analysis system to obtain a result;
  • Immunocyte killing tumor cells CTL was co-incubated with PRAME, WT1 antigen-positive, HLA-A2.1 leukocyte phenotype tumor cells, and the effect of killing tumor cells was evaluated by LDH method.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明公开了PRAME和WT1的双价肿瘤DNA疫苗,该疫苗的核苷酸序列如SEQ ID ΝΟ:1所示。所述疫苗通过增强机体针对PRAME和WT1抗原蛋白的特异性体液和细胞免疫反应,对PRAME和WT1抗原阳性肿瘤进行杀伤。

Description

PRAME、 WT1双价肿瘤 DNA疫苗
技术领域
本发明涉及 PRAME、 WT1双价肿瘤匪疫苗。
背景技术
手术、 放疗和化疗是癌症治疗的三种常规手段, 近年来, 随着新型化疗药 物的研发上市,手术与放疗技术的不断更新,肿瘤患者的长期存活率有所提高。 然而, 由于肿瘤的早期诊断技术还不尽完善, 相当一部分实体瘤患者在手术时 已有不同程度的转移。 放疗和化疗虽然能在一定程度上预防扩散和转移, 但仍 有相当一部分患者不能免于复发。 其次, 现代科学证明肿瘤干细胞及循环肿瘤 细胞是导致转移与复发的根源, 而三大常规疗法对这两类肿瘤细胞作用很小。
肿瘤免疫学 ( tumor Immunology )是利用免疫学的理论和方法, 研究肿瘤 的抗原性、 机体的免疫功能与肿瘤发生、 发展的相互关系, 机体对肿瘤的免疫 应答及其抗肿瘤免疫的机制、 肿瘤的免疫诊断和免疫防治的科学。
肿瘤免疫学在过去的十多年有突飞猛进的进展。 首先, 现在已证明肿瘤患 者存在对肿瘤的特异性免疫反应, 手术、 化疗、 放疗所治愈的部分肿瘤患者, 并不是因为这些手段能杀死全部肿瘤细胞, 而是由于当肿瘤细胞负荷显著降 低时, 机体的免疫功能有所恢复, 清除了微小残留病灶或抑制残留肿瘤细胞的 增殖。 其次, 过继免疫疗法的临床实验证明, 当患者被注入足够量的肿瘤特异 的效应细胞(LAK或 TIL ) 时, 不但能延长总存活期, 在部分患者中并能观察 到肿块缩小。 结合这两方面的结果, 治疗性肿瘤疫苗受到越来越多的关注。 此 类疫苗的作用机理是运用增强肿瘤特异性抗原的免疫原性的方法,诱发机体的 抗肿瘤免疫应答, 达到缩小和消除肿瘤的目的。 目前在临床试验上用的肿瘤疫苗有多种形式, 有细胞型 (树突状细胞, 灭 活的肿瘤细胞) 、 细胞均浆型、 合成生物大分子型 (多肽、 蛋白、 DNA/RNA ) , 及病毒载体型。 其中, DNA疫苗具有多方面的优越性。 第一, 它能诱导产生具 有长期免疫记忆的免疫应答。 第二, 棵露 DNA不含诱导产生抗体反应的抗原组 份, 而这些抗疫苗的抗体会削弱疫苗的效价。 第三, 生产与制备成本低, 工艺 筒单。 尽管 DNA疫苗的优势明显, 由于其在人体内的表达效率低等原因, 以致 临床效果不甚理想。 发明内容
本发明的目的是提供 PRAME、 WT1双价肿瘤 DNA疫苗。 该 DNA疫苗构思巧 妙, 在人体内的表达率高, 适用人群广。
为实现上述目的, 本发明解决其技术问题所采用的技术方案是:
PRAME、 WT1双价肿瘤 DNA疫苗, 该疫苗的碱基序列如 SEQ ID NO: 1所示。 所述碱基序列对应的氨基酸序列如 SEQ ID NO: 2所示。
上述 PRAME、 WT1双价肿瘤 DNA疫苗在制备用于肿瘤治疗药物或疫苗中的 用途。
所述肿瘤为 WT1阳性肿瘤和 /或 PRAME阳性肿瘤。
所述肿瘤包括: 胰腺癌、 卵巢癌、 黑色素瘤、 肾癌、 前列腺癌、 肠癌、 子 宫内膜癌、 宫颈癌、 睾丸癌、 曱状腺癌、 小细胞肺癌、 间皮瘤、 乳腺癌、 食道 癌、 胃癌、 神经内分泌癌、 肝癌、 胆嚢癌、 骨癌、 软组织癌、 食道癌、 淋巴瘤 等。
上述 PRAME、 WT1肿瘤 DNA疫苗可以通过下述主要步骤的方法得到: 按照 SEQ ID NO: 1所示的核酸序列进行抗原基因合成, 此序列包括: 多段 PRAME和 WT1基因片段, 片段连接序列, H ind I I I、 EcoR I限制性内切酶识别 序列和 KozaK翻译起始序列。 之后通过 Hindl l l和 EcoR I限制性内切酶将抗 原基因和 pVAXl质粒分别进行剪切, 使其暴露粘性末端。 再用 DNA连接酶将抗 原基因和 pVAXl质粒通过粘性末端相连, 成为重组质粒。 将重组质粒转染大肠 杆菌, 使其在大肠杆菌细胞中复制、 扩增。 经质粒的抽提和纯化, 得到满足要 求的 PRAME、 WT1双价肿瘤 DNA疫苗。
本发明选用多段 PRAME和 WT-1基因片段序列, 并将这些片段以串珠方式 连接, 加上限制性内切酶和 Kozak翻译起始序列进行全基因合成, 并连接到商 品用载体 pVAXl ( Invi trogen ) 以完成疫苗构建。 编码区同时连接至大肠杆菌 表达质粒, 用于少量制备蛋白多肽来作为评价疫苗效价的试剂。
本发明为了达到比较好的治疗效果, 防止肿瘤因抗原流失而躱避免疫攻 击, 发明人经过多次反复试验设计了一个双价疫苗包括两种不同的肿瘤抗原, PRAME( Melanoma antigen preferentially expressed in tumors )^WT-1( Wilms tumor protein )。 这两种抗原在癌细胞的增殖、 转移及扩散中起不同的作用。 PRAME参 与视黄酸受体相关的信号转导, 被认为对肿瘤细胞的生长与抗凋亡的功能有 关。 而 WT-1则被认为是一个转录因子, 参与肿瘤细胞的多种生物功能。 这两 种抗原在胰腺癌标本中的表达率都比较高( > 75% ), 除之以外, 它们在其他实 体瘤与血液癌中的表达率也相当高。
本发明将肿瘤相关抗原 PRAME和 WT1部分片段基因序列及其他相关序列重 组,并构建到真核表达 DNA质粒载体中,以该质粒为主要成分制成注射剂药物, 用于治疗多种恶性肿瘤。 其原理为: 该疫苗在被注射进入人体后, 可进入人体 细胞并表达重组抗原蛋白,进而激发人体针对 PRAME和 WT1抗原的特异性免疫 反应。 所产生的特异性体液和细胞免疫将杀灭 PRAME和 WT1抗原阳性肿瘤, 达 到癌症治疗目的。 综上所述, 由于采用了上述技术方案, 本发明的有益效果是: 本发明肿瘤 DNA疫苗构思巧妙, 在人体内的表达率高, 适用人群广。 通过 增强机体针对 PRAME和 WT1抗原蛋白的特异性体液和细胞免疫反应, 对 PRAME 和 WT1抗原阳性肿瘤进行杀伤,从而达到治疗多种癌症目的。由于 PRAME和 WT1 在多种癌症的肿瘤细胞中有特异性高量表达, 而在人体正常细胞中不表达, 所 以该 DNA肿瘤疫苗将能够用于治疗多种癌症。 附图说明
本发明将通过例子并参照附图的方式说明, 其中: 图 1是本发明实施例 1体液免疫效价评价结果图; 图 2是本发明实施例 1细胞免疫效价评价结果图; 图 3是本发明实施例 1免疫细胞杀伤肿瘤细胞的效价评价结果图; 图 4是本发明实施例 1体内肿瘤细胞杀伤实验评价结果图。 具体实施方式
本说明书中公开的所有特征, 或公开的所有方法或过程中的步骤, 除了互 相排斥的特征和 I或步骤以外, 均可以以任何方式组合。
本说明书中公开的任一特征, 除非特别叙述, 均可被其他等效或具有类似 目的的替代特征加以替换。 即, 除非特别叙述, 每个特征只是一系列等效或类 似特征中的一个例子而已。
实施例 1 : 免疫转基因小鼠检测特异免疫反应强度和抗肿瘤细胞效果实验 实验方案如下:
1、 受试动物:
1 0-12周龄 HLA-A2. 1转基因雌性小鼠。 2、 受试动物分组:
HLA-A2.1转基因小鼠随机分为两个大组, 每个大组分为三个小组, 每小组分 别标为
1 ) 1-1: 动物体外实验实验组
2) 1-2: 动物体外实验对照组
3) 1-3: 动物体外实验观察组
4) 2-1: 动物体内实验实验组
5 ) 2-2: 动物体内实马全对照组
6 ) 2-3: 动物体内实验观察组
每小组各 15只转基因小鼠, 共 90只。
3、 淋巴结免疫注射(观察组不注射):
方法: 1 )稀释质粒: 分别取 2mg重组质粒和空质粒( pVAXl ), 用 PBS緩沖液 稀释到 0. ½g/mL, 以备后续实验使用。
2)麻醉动物: 使用异氟烷气管吸入麻醉。
3 )进行淋巴结免疫注射前,分别在 1-1和 1-2组小鼠眼眶静脉丛取血 0. lmL, 作为后续 ELISA实验的阴性对照。
4)淋巴结注射: 实验组和对照组在无菌条件下暴露腹股沟淋巴结, 用微注射 器注射受试物质粒到淋巴结内,共注射 4次, 时间分别为第 1、 4、 15和 18天。 对每组动物注射方式如下:
实险组: 1-1, 2_1 (注射 25uL, 0.4mg/mL重组质粒)
对照组: 1-2, 2-2 (注射 25uL, 0.4mg/mL空质粒 )
观察组: 1-3, 2-3 (不注射)
4、 免疫应答评价: 在第 28天分别处死 1-1 , 1-2和 1-3组小鼠并采其外周血和脾脏细胞, 进 行免疫应答的评价。
1) 体液免疫效价评价:
评价目的与方法: ELISA法。评价目的是测定外周血中是否有特异抗体产 生及抗体的效价。 方法是用 0. 05M PH9. 6碳酸盐包被緩沖液将目标抗原蛋白稀 释至蛋白质含量为 5 g/ml , 酶标板每孔加入 l OOul置于 4 °C过夜; 用 0. 15M PH7. 4 PBS清洗后, 加入 200ul 1% BSA/PBS在室温下与酶标板非特异性结合 60min以封闭酶标板, 清洗后加入 l OOul稀释后的外周血清与抗原在室温下孵 育结合 60min, 清洗未结合抗体后, 加入 l OOul适当浓度的的抗小鼠二抗酶联 抗体室温下孵育 60min, 清洗后加入 l OOul适当浓度的底物在室温下标记显色 30min, 测量 0D值, 用血清稀释滴度表述抗体产生密度。
实验结果: 如图 1所示, 1-1 (实验组)显色度远远高于 1-2组(对照组) 及 1-3组(观察组), 表明实验组小鼠血清中抗体含量远远高于对照组和观察 组, 证明 PRAME、 WT1双价 DNA疫苗能够激发转基因小鼠的特异性体液免疫反 应。
2) 细胞免疫效价评价:
评价目的与方法:
a. ELISP0T实验。
目的是评价是否有特异性 CTL (细胞毒 T淋巴细胞)产生。 方法如下: 将脾从处死的动物分离, 在密度梯度离心后分离得到单核细胞, 并将其重 悬在 HL-1培养基中备用。 酶标版每孔加 l OOul稀释后的小鼠抗 IFN- γ的抗体 在 4 °C包被过夜,清洗后加入 200ul 封闭液, 室温孵育 2h;将小鼠脾细胞(每 孔 4X105个)和 l OuL 100ug/ml的目标抗原蛋白在 37 °C , 5%C02和 100%湿度下 与酶标板孵育结合 36h,使针对目标抗原的特异性 T细胞产生的 IFN- γ被抗体 固定于酶标板上; 清洗细胞后,加入 l O Oul稀释后的小鼠抗 IFN- γ的检测抗体 在室温下共孵育 2h , 再加入底物显色 30min; 将酶标板避光干燥 2h , 通过 ELI SP0T酶联斑点分析系统对斑点进行分析检测免疫动物中的 CTL应答;
实验结果: 如图 2所示, 用 1-1组(实验组)脾细胞得到的斑点数远远高于
1-2组(对照组)及 1-3组(观察组 ), 表明实验组小鼠体内产生了大量的针对 PRAME、 WT1的 CTL , 而对照组及观察组小鼠体内几乎没有产生了针对 PRAME、 WT1的 CTL。
b. 免疫细胞杀伤肿瘤细胞的效价。 方法如下:
取免疫小鼠的脾脏细胞(2X106个 /孔)与 PRAME/WT1抗原阳性、 HLA-A2. 1白 细胞表型的肿瘤细胞(105个/孔)在 37 °C , 5%C02和 100%湿度下共孵育 4h, 离心后加入底物共孵育 30min, 用 LDH法评价其杀伤肿瘤细胞的效果。
实验结果: 如图 3所示, 1-1组(实验组)显色度远远高于 1-2组(对照 组)及 1-3组(观察组), 表明实验组小鼠体内产生了大量的针对 PRAME、 WT1 的 CTL , 而对照组及观察组小鼠体内几乎没有产生了针对 PRAME、 WT1的 CTL。 5. 体内肿瘤细胞杀伤实验:
淋巴节注射免疫后 (第 28天), 对 2-1 , 2-2组的转基因小鼠尾静脉注射 等细胞数量( 1 07个) 的 5uM CFSE标记的 PRAME、 WT1抗原阳性、 HLA-A2. 1白 细胞表型的肿瘤细胞和 0. 5uM抗原阴性、 HLA-A2. 1白细胞表型的肿瘤细胞, 18 小时后取外周血用流式细胞仪( FACS )检测经标记的两种细胞的含量。
实马全结果: 如图 4所示, 2-1组中, 用 5uM CFSE标记的 PRAME/WT1抗原阳 性、 HLA-A2. 1白细胞表型的肿瘤细胞量远远低于用 0. 5uM抗原阴性、 HLA-A2. 1 白细胞表型的肿瘤细胞。 而 2-2组中两种细胞含量几乎相同。 结果表明 2-1组 小鼠体内产生了大量的针对 PRAME/WT1抗原阳性、 HLA-A2. 1白细胞表型的 CTL。 实施例 2 : 人外周血实验检测特异免疫反应强度和抗肿瘤细胞效果实验 实验目的是在体外模拟人体内抗原表达递呈、免疫应答以及对肿瘤细胞的 杀伤效果。
通过 F i co l l浓度梯度离心的方法从白细胞表型为 HLA-A2. 1的人外周血中 分离外周血单个核细胞(PBMCs)。从 PBMCs中通过 CD14+磁珠分离得到树突状细 胞( DCs ); 通过 CD8+磁珠分离得到 CTL。 将 DCs与一定量的重组质粒共孵育一 定时间后, 再将 DCs与 CTL共孵育一段时间, 进行 ELI SP0T实验以检测特异性 CTL产生情况及效价, 同时检测体外肿瘤细胞杀伤效价。
具体方法: ¾口下:
1. 用 I FN- γ的抗体包被酶标版, 用 CTL和抗原蛋白与酶标板孵育结合, 抗原特异 CTL产生的 IFN- γ被其抗体固定于酶标板上, 清洗细胞后, 用抗人 I FN- γ的抗体进行标记显色,通过 EL I SPOT酶联斑点分析系统对斑点进行分析 得出结果;
实验结果: 实验组有大量的酶联斑点出现, 而用培养基与抗原共孵育的对 照组没有酶联斑点出现, 表明产生了针对 PRAME、 WT1的 CTL。
2. 免疫细胞杀伤肿瘤细胞实验:将 CTL与 PRAME、 WT1抗原阳性、 HLA-A2. 1 白细胞表型的肿瘤细胞共孵育, 用 LDH法评价其杀伤肿瘤细胞的效果。
实验结果: 实验组显色度远远高于对照组, 表面产生了大量的针对 PRAME/WT1的 CTL。
本发明并不局限于前述的具体实施方式。 本发明扩展到任何在本说明书中 披露的新特征或任何新的组合, 以及披露的任一新的方法或过程的步骤或任何 新的组合。

Claims

1、 PRAME、 WTl双价肿瘤 DNA疫苗,其特征在于该疫苗的碱基序列如 SEQ ID NO: 1所示。
2、 根据权利要求 1所述的 PRAME、 WTl双价肿瘤 DNA疫苗, 其特征在于: 所述碱基序列对应的氨基酸序列如 SEQ ID NO: 2所示。
3、 权利要求 1所述的 PRAME、 WTl双价肿瘤 DNA疫苗在制备用于肿瘤治疗 药物或疫苗中的用途。
4、 根据权利要求 3所述的 PRAME、 WTl双价肿瘤 DNA疫苗在制备用于肿瘤 治疗药物或疫苗中的用途, 其特征在于: 所述肿瘤为 WT1阳性肿瘤。
5、 根据权利要求 3所述的 PRAME、 WTl双价肿瘤 DNA疫苗在制备用于肿瘤 治疗药物或疫苗中的用途, 其特征在于: 所述肿瘤为 PRAME阳性肿瘤。
PCT/CN2011/084048 2011-09-06 2011-12-15 Prame、wt1双价肿瘤dna疫苗 WO2013033961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110261931.3A CN102973950B (zh) 2011-09-06 2011-09-06 Prame、wt1双价肿瘤dna疫苗
CN201110261931.3 2011-09-06

Publications (1)

Publication Number Publication Date
WO2013033961A1 true WO2013033961A1 (zh) 2013-03-14

Family

ID=47831471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084048 WO2013033961A1 (zh) 2011-09-06 2011-12-15 Prame、wt1双价肿瘤dna疫苗

Country Status (2)

Country Link
CN (1) CN102973950B (zh)
WO (1) WO2013033961A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112020011443A2 (pt) * 2017-12-13 2020-12-01 Inovio Pharmaceuticals, Inc. molécula de ácido nucleico e seu uso, vetor e seu uso, composição, proteína e vacina

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315536C (zh) * 2002-09-13 2007-05-16 李进 肿瘤抗原疫苗及其制备方法和疫苗组合物
WO2005115447A2 (en) * 2004-05-25 2005-12-08 The Trustees Of The University Of Pennsylvania Human anti-cancer immunotherapy
DE102004035227A1 (de) * 2004-07-21 2006-02-16 Curevac Gmbh mRNA-Gemisch zur Vakzinierung gegen Tumorerkrankungen
BRPI0611795A2 (pt) * 2005-06-17 2010-09-28 Mannkind Corp imunoterapêutica arrastar-e-amplificar multivalente para carcinoma
FR2919804B1 (fr) * 2007-08-08 2010-08-27 Erytech Pharma Composition et vaccin therapeutique anti-tumoral
WO2010037408A1 (en) * 2008-09-30 2010-04-08 Curevac Gmbh Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAISE, C. ET AL.: "DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance.", BLOOD., vol. 112, no. 7, 1 October 2008 (2008-10-01), pages 2956 - 2964 *
GREINER, J. ET AL.: "Simultaneous expression of different immunogenic antigens in acute myeloid leukemia.", EXP HEMATOL., vol. 28, no. 12, December 2000 (2000-12-01), pages 1413 - 22 *
QUINTARELLI, C. ET AL.: "Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia.", BLOOD., vol. 112, no. 5, 1 September 2008 (2008-09-01), pages 1876 - 85 *

Also Published As

Publication number Publication date
CN102973950B (zh) 2015-05-27
CN102973950A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2015106697A1 (zh) 免疫增强的人乳头瘤病毒感染及相关疾病的治疗性疫苗
RU2645085C2 (ru) Мультивалентная вакцина против рака молочной железы
WO2007018199A1 (ja) HLA-A2陽性者用glypican-3(GPC3)由来癌拒絶抗原ペプチド及びこれを含む医薬
Ma et al. Screening and identification of a chicken dendritic cell binding peptide by using a phage display library
CN104853764B (zh) 用于预防和治疗癌症的msi-特异性移码肽(fsp)
Lu et al. Targeted delivery of nanovaccine to dendritic cells via DC-binding peptides induces potent antiviral immunity in vivo
WO2016095812A1 (zh) 人工多抗原融合蛋白及其制备和应用
CN110214144B (zh) 多肽及其应用
CN105175527A (zh) 一种乳腺癌特异性的热休克蛋白复合物及其应用
Chen et al. Induction of HCA587-specific antitumor immunity with HCA587 protein formulated with CpG and ISCOM in mice
CN116970058B (zh) 针对tp53基因r249s突变的肿瘤新抗原多肽及其应用
Groeneveldt et al. Preinduced reovirus-specific T-cell immunity enhances the anticancer efficacy of reovirus therapy
CN109803978B (zh) 多肽及其应用
CN109923121B (zh) 多肽及其应用
WO2018032501A1 (zh) 一种新的肿瘤特异性多肽及其应用
JP4803460B2 (ja) Hla−a24分子結合性扁平上皮癌抗原由来ペプチド
WO2018058489A1 (zh) Cacna1h衍生的肿瘤抗原多肽及其应用
Zhang et al. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation
WO2007018198A1 (ja) Hla-a2陽性者用hsp105由来癌拒絶抗原ペプチド及びこれを含む医薬
WO2013033961A1 (zh) Prame、wt1双价肿瘤dna疫苗
CN110167956B (zh) 多肽及其应用
CN109963862B (zh) 多肽及其应用
Kontani et al. Spontaneous elicitation of potent antitumor immunity and eradication of established tumors by administration of DNA encoding soluble transforming growth factor-β II receptor without active antigen-sensitization
WO2018058490A1 (zh) Col14a1衍生的肿瘤抗原多肽及其应用
CN110072876B (zh) 多肽及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871871

Country of ref document: EP

Kind code of ref document: A1