WO2013032693A2 - Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses - Google Patents

Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses Download PDF

Info

Publication number
WO2013032693A2
WO2013032693A2 PCT/US2012/050807 US2012050807W WO2013032693A2 WO 2013032693 A2 WO2013032693 A2 WO 2013032693A2 US 2012050807 W US2012050807 W US 2012050807W WO 2013032693 A2 WO2013032693 A2 WO 2013032693A2
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
compound
moiety
burkholderia
carbons
Prior art date
Application number
PCT/US2012/050807
Other languages
French (fr)
Other versions
WO2013032693A3 (en
Inventor
Ratnakar Asolkar
Marja Koivunen
Pamela Marrone
Original Assignee
Marrone Bio Innovations, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014528424A priority Critical patent/JP5961693B2/en
Priority to CA2845732A priority patent/CA2845732C/en
Priority to KR1020167011541A priority patent/KR20160054627A/en
Priority to MX2014002329A priority patent/MX347407B/en
Application filed by Marrone Bio Innovations, Inc. filed Critical Marrone Bio Innovations, Inc.
Priority to BR112014004386A priority patent/BR112014004386A2/en
Priority to IN242MUN2014 priority patent/IN2014MN00242A/en
Priority to EP12827368.7A priority patent/EP2748304A4/en
Priority to KR1020147004669A priority patent/KR101632806B1/en
Priority to NZ620640A priority patent/NZ620640B2/en
Priority to US14/238,467 priority patent/US20140221207A1/en
Priority to AU2012301466A priority patent/AU2012301466B2/en
Publication of WO2013032693A2 publication Critical patent/WO2013032693A2/en
Publication of WO2013032693A3 publication Critical patent/WO2013032693A3/en
Priority to MA36839A priority patent/MA35445B1/en
Priority to US15/481,511 priority patent/US20170208817A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/02Acyclic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • A01N37/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/24Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms
    • A01N43/26Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/761,3-Oxazoles; Hydrogenated 1,3-oxazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/16Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof the nitrogen atom being part of a heterocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/14Nitrogen or oxygen as hetero atom and at least one other diverse hetero ring atom in the same ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/16Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing two or more hetero rings
    • C12P17/162Heterorings having oxygen atoms as the only ring heteroatoms, e.g. Lasalocid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/185Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system
    • C12P17/187Heterocyclic compounds containing sulfur atoms as ring hetero atoms in the condensed system containing two or more directly linked sulfur atoms, e.g. epithiopiperazines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • Burkholderia sp with no known pathogenicity to vertebrates, such as mammals, fish and birds but pesticidal activity against plants, algae, insects, fungi, arachnids, such as mites and nematodes and formulations and compositions comprising said species.
  • natural products, formulations and compositions derived from a culture of said species and methods of controlling algae and arachnids, such as mites, using said Burkholderia and/or said natural products are also provided.
  • Natural products are substances produced by microbes, plants, and other organisms.
  • Microbial natural products offer an abundant source of chemical diversity, and there is a long history of utilizing natural products for pharmaceutical purposes .
  • One such compound is FR901228 isolated from Chromobacterium and has been found to be useful as an antibacterial agent and antitumor agent (see, for example, Ueda et al., US Patent No. 7,396,665).
  • Acaricides are compounds that kill mites (miticides) and ticks (ixodicides).
  • This class of pesticides is large and includes antibiotics, carbamates, formamidine acaricides, pyrethroids, mite growth regulators, and organophosphate acaricides.
  • diatomaceous earth and fatty acids can be used to control mites. They typically work through disruption of the cuticle, which dries out the mite.
  • some essential oils such as peppermint oil, are used to control mites.
  • mites remain a serious problem in agriculture because of the damage they cause to the crops. They can produce several generations during one season, which facilitates rapid development of resistance to the acaricide products used. Hence, new pesticide products with new target sites and novel modes of action are critically needed. Algicides
  • Algae come in many forms. These include: (1) microscopic, one-celled algae, filamentous algae that resemble hair, algae that grow in sheets and macroalgae that look like plants; (2) algae that live inside the outer integument ("skin") or calcium shell of some corals, anemones, and other sessile invertebrates called zooxanthellae; (3) very hard-to-remove little dots of green that sometimes grow on aquarium panels which also are not algae, but diatom or radiolarian colonies (microscopic, one-celled, animals with hard shells) with algae incorporated in their matrix.
  • algae in a small amount of water retained in the container over a significant period of time can be considerable, which is highly undesirable. As a result, algae can cause clogging of filters in water filtration devices , undesirable smells and appearance in pools, exhaustion of dissolved oxygen, and suffocation of fishes and shellfishes to death.
  • algae may also be present in industrial materials which are exposed to the weather and light, such as coatings containing organic film formers on mineral substrates, textile finishes, wood paints and also materials made of plastics.
  • Algae control can be divided into four categories: biological, mechanical, physical and chemical controls. A few pertinent facts hold for all methods of algae control. For example, Turbo and Astrea snails, some blennies, some tangs, among others are good grazers . Snails are the most widely used scavengers, and generally the best choice. Some parts of the country seem to favor the use of sea urchins, dwarf angels. The former die too easily and move the decor about, and the latter can be problematical with eating expensive invertebrates. Other methods include functional protein skimmers, with or without ozone and ultraviolet sterilizers. These physical filters remove and destroy algae on exposure and help oxidize nutrients as the water is circulated. Antibiotics may also be used.
  • the Burkholderia genus ⁇ -subdivision of the proteobacteria, comprises more than 40 species that inhabit diverse ecological niches (Compant et al., 2008).
  • the bacterial species in the genus Burkholderia are ubiquitous organisms in soil and rhizosphere (Coenye and
  • Burkholderia species have been found to have potential as biocontrol products (see for example, Burkhead et al., 1994; Knudsen et al., 1987; Jansiewicz et al., 1988; Gouge et al., US Patent Application No. 2003/0082147; Parke et al., US Patent No. 6,077,505; Casida et al., US Patent No. 6,689,357; Jeddeloh et al., WO2001055398; Zhang et al., US Patent No. 7,141 ,407).
  • Burkholderia species have been effective in bioremediation to decontaminate polluted soil or groundwater (see, for example, Leahy et al. 1996). Further, some Burkholderia species have been found to secrete a variety of extracellular enzymes with proteolytic, lipolytic and hemolytic activities, as well as toxins, antibiotics, and siderophores (see, for example, Ludovic et al., 2007; Nagamatsu, 2001).
  • PCT/US201 1/026016 discloses a Burkholderia species , particularly Burkholderia A396 and compounds derived from said species with no known pathogenicity to vertebrates with activity against plants, insects, fungi and nematodes.
  • Oxazoles, thiazoles and indoles are widely distributed in plants, algae, sponges, and microorganisms.
  • a large number of natural products contain one or more of the five-membered oxazole, thiazole and indole nucleus/moieties. These natural products exhibit a broad spectrum of biological activity of demonstrable therapeutic value.
  • bleomycin A Tomohisa et al
  • a bithiazole moiety effects the oxidative degradation of DNA and uses a bithiazole moiety to bind its target DNA sequences (Vanderwall et al, 1997).
  • Bacitracin (Ming et al, 2002), a thiazoline-containing peptide antibiotic, interdicts bacterial cell wall new biosynthesis by complexation with C55-bactoprenolpyrophosphate.
  • Thiangazole (Kunze et al., 1993) contains a tandem array of one oxazole and three thiazolines and exhibits antiviral activity (Jansen et al, 1992).
  • Yet other oxazole/thiazole-containing natural products such as thiostrepton (Anderson et al, 1970) and GE2270A (Selva et al, 1997) inhibit translation steps in bacterial protein synthesis. More than 1000 alkaloids with the indole skeleton have been reported from microorganisms.
  • One-third of these compounds are peptides with masses beyond 500 Da where the indole is tryptophan derived.
  • the structural variety of the remaining two- thirds is higher, and their biological activity seems to cover a broader range, including antimicrobial, antiviral, cytotoxic, insecticidal, antithrombotic, or enzyme inhibitory activity.
  • a compound having the following properties (a) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (b) ⁇ NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23.
  • HPLC Chromatography
  • a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens;
  • a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygen and 2 nitrogens;
  • (d) is non-pathogenic (non-infectious) to vertebrate animals , such as mammals , birds and fish; (e) is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin , imipenem, and a combination of sulphamethoxazole and trimethoprim and
  • (f) contains the fatty acids 16:0, cyclo 17:0, 16:0 3- OH, 14:0, cyclo 19:0 co8c, 18:0.
  • the strain has the identifying characteristics of a
  • Burkholderia A396 strain (NRRL Accession No. B-50319).
  • the first substance is a supernatant.
  • the supernatant is a cell-free supernatant.
  • compositions or formulation comprising
  • a carrier optionally at least one of a carrier, diluent, surfactant, adjuvant, or chemical or biological pesticide (e.g., algicide, acaricide, herbicide, fungicide, insecticide, nematocide and particularly, algicide or acaricide (e.g., miticide)).
  • a carrier e.g., algicide, acaricide, herbicide, fungicide, insecticide, nematocide and particularly, algicide or acaricide (e.g., miticide)
  • a seed coated with said combination or composition e.g., a seed coated with said combination or composition.
  • composition or formulation may comprise:
  • a first substance selected from the group consisting of a pure culture, cell fraction or supernatant derived from the Burkholderia strain set forth above or extract thereof for use optionally as a pesticide;
  • a pesticide e.g., fungicide, insecticide, algicide, acaricide (e.g., miticide), herbicide, nematocide.
  • the C 1-C7 aliphatic paraben is present in the amount of about 0.01 - 5 %
  • the C2-C 17 alcohol is present in the amount of about 0.00-10 %
  • the detergent is present in the amount of about 0.001-10 % .
  • pesticidal substances derived from the formulation set forth above, combinations comprising said pesticidal subtances and another chemical or biological pesticide and methods for producing these pesticidal substances .
  • these pesticidal substances comprise at least one of the following characteristics:
  • (a) has pesticidal properties and in particular, herbicidal, insecticidal, nematicidal, and fungicidal properties;
  • (b) has a molecular weight of about 210-240 and more particularly, 222 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
  • HPLC High Pressure Liquid Chromatography
  • (h) has UV absorption bands between about 210-450 nm and most particularly at about 248 nm.
  • X is independently -O, -NR, or -S, wherein R is H or C 1 -C 10 alkyl; R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the substance may have the structure
  • X is independently -O, -NR., or -S, wherein R is H or C 1 -C 10 alkyl; R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the compound is butyl parben with the following structur
  • the compound is hexyl parben with the following structure:
  • the compound is octyl parben with the following structure:
  • the pesticidal substance(s) derived from the formulation set forth above may obtained by:
  • a method for modulating proliferation and/or growth of a pest including but not limited to insect, fungi, weeds, nematode, arachnid, algae and particularly, algae, arachnid (e.g., mites, ticks) comprising applying to a location where modulation of proliferation and/or growth of a pest is desired an amount of:
  • isolated compounds which are optionally obtainable or derived from Burkholderia species, or alternatively, organisms capable of producing these compounds that can be used to control various pests, particularly plant phytopathogenic pests, examples of which include but are not limited to insects, nematodes, bacteria, fungi. These compounds may also be used as herbicides, acaricides or algicides.
  • the isolated pesticidal compounds may include but are not limited to: (A) a compound having the following properties: (i) a molecular weight of about 525-
  • HPLC Chromatography
  • (B) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens;
  • (C) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygen and 2 nitrogens;
  • the isolated compounds may include but are not limited to: (A) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one carboxylic ester group, at least 17 carbons, at least 3 oxygens and at least 2 nitrogens; and which has at least one of the following: (i) a molecular weig ht of about 275-435; (ii) 1H NMR ⁇ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08; (iii) 13 C NMR values of ⁇ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7; (iv) an High Pressure Liquid Chromatography (HPLC) retention time of
  • (B) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygens, at least 2 nitrogens; and at least one of the following characteristics: (i) a molecular weight of about 240-290 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (ii) H NMR ⁇ values at about 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93; (iii) 13 C NMR values of ⁇ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 1 15.2, 1 15.2, 41.2, 35.3, 26.7, 21.5, 21.5; (iv) a High Pressure Liquid
  • HPLC Chromatography
  • (C) a non-epoxide compound comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygens and one nitrogen and at least one of the following
  • (D) a compound comprising (i) at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen, (ii) C NMR values of 5174.03, 166.12, 143.63, 137.50, 134.39, 128.70, 126.68, 124.41, 98.09, 80.75, 76.84, 75.23, 69.87, 69.08, 68.69, 68.60, 48.83, 41.07, 35.45, 31.67, 29.19, 27.12, 24.55, 19.20, 18.95, 13.48, 1 1.39, 8.04, (iii) a molecular formula of C 28 H 43 N0 9 and at least one of: (a) !
  • HPLC High Pressure Liquid Chromatography
  • CH 3 CN watenacetonitrile
  • M is 1 , 2, 3 or 4; n is 0, 1 , 2, or 3; p and q are independently 1 or 2; X is O, NH or NR; Rl , R 2 and R 3 are the same or different and independently an amino acid side-chain moiety or an amino acid side-chain derivative and R is a lower chain alkyl, aryl or arylalkyl moiety;
  • X, Y and Z are each independently— O, — NR 1 , or— S, wherein R 1 is — H or Ci-Cio alkyl;
  • R 1 , R 2 and m are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl and "m" may be located anywhere on the oxazole ring;
  • R 1 is— H or C 1 -C 10 alkyl
  • R 2 is an alkyl ester
  • X and Y are each independently—OH, — NR 1 , or— S, wherein R 1 is— H or C 1 -C 10 alkyl; R 1 , R 2 and m, a substituent on the oxazole ring, are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • R 1 is — H or C 1 -C 10 alkyl
  • X, Y and Z are each independently -O, -NR, or -S, wherein R is H or C 1 -C 10 alkyl;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , and R 13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , and R 13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 11 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
  • X, Y and Z are each independently -O, -NR, or -S , wherein R is H or C 1 -C 10 alkyl;
  • R 1 ; R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 11 , R 12 , and R 13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the compounds may include but are not limited to
  • a method for modulating proliferation and/or growth of a pest comprising applying to a location where modulation of proliferation and/or growth of a pest (e.g., algae, arachnid, nematode, insect, fungus) is desired an amount of
  • a method for modulating proliferation and/or growth of algae and/or modulating pest infestation in a plant and/or a method for modulating emergence and/or growth of monocotyledonous , sedge or dicotyledonous weeds comprising applying to a location where modulation of proliferation and/or growth of algae and/or modulation of infestation of an arachnid and/or modulation of emergence and/or growth of said weed is desired an amount of
  • the nematode and/or insect infestation is modulated with templamide A, templamide B , FR901465 and/or FR901228.
  • infestation of insects specifically Oncopeltus sp. (e.g., O.fasciatus) and/or Lygus sp. and/or free living nematodes and/or parasitic nematodes (e.g., M. incognita) are modulated.
  • Figure 1 shows the comparison of the growth rate of Burkholderia A396 to
  • Burkholderia multivorans ATCC 17616 Burkholderia multivorans ATCC 17616.
  • Figure 2 shows the general scheme used to obtain fractions from formulated MBI-206.
  • Figure 3 shows the general scheme used to obtain fractions and compounds from an MBI-206 culture.
  • Figure 4 shows insecticidal (sucking) activities of tested compounds against milkweed bugs (Oncopeltus fasciatus) .
  • Figure 5 shows insecticidal (feeding) activities of pure compounds against Lygus
  • derived from means directly isolated or obtained from a particular source or alternatively having identifying characteristics of a substance or organism isolated or obtained from a particular source.
  • an "isolated compound” is essentially free of other compounds or substances, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by analytical methods, including but not limited to chromatographic methods, electrophoretic methods.
  • alkyl refers to a monovalent straight or branched chain hydrocarbon group having from one to about 12 carbon atoms, including methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, and the like.
  • substituted alkyl refers to alkyl groups further bearing one or more substituents selected from hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, — C(0)H, acyl, oxyacyl, carboxyl, sulfonyl, sulfonamide, sulfuryl, and the like.
  • alkenyl refers to straight or branched chain hydrocarbyl groups having one or more carbon-carbon double bonds, and having in the range of about 2 up to 12 carbon atoms
  • substituted alkenyl refers to alkenyl groups further bearing one or more substituents as set forth above.
  • alkynyl refers to straight or branched chain hydrocarbyl groups having at least one carbon-carbon triple bond, and having in the range of about 2 up to 12 carbon atoms
  • substituted alkynyl refers to alkynyl groups further bearing one or more substituents as set forth above.
  • aryl refers to aromatic groups having in the range of 6 up to 14 carbon atoms and "substituted aryl” refers to aryl groups further bearing one or more substituents as set forth above.
  • heteroaryl refers to aromatic rings containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and "substituted heteroaryl” refers toheteroaryl groups further bearing one or more substituents as set forth above.
  • heteroatoms e.g., N, O, S, or the like
  • alkoxy refers to the moiety— O-alkyl-, wherein alkyl is as defined above, and "substituted alkoxy” refers to alkoxyl groups further bearing one or more substituents as set forth above.
  • thioalkyl refers to the moiety— S-alkyl-, wherein alkyl is as defined above, and "substituted thioalkyl” refers to thioalkyl groups further bearing one or more substituents as set forth above.
  • cycloalkyl refers to ring-containing alkyl groups containing in the range of about 3 up to 8 carbon atoms
  • substituted cycloalkyl refers to cycloalkyl groups further bearing one or more substituents as set forth above.
  • heterocyclic refers to cyclic (i.e., ring-containing) groups containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and "substituted heterocyclic” refers to heterocyclic groups further bearing one or more substituent's as set forth above.
  • heteroatoms e.g., N, O, S, or the like
  • algae refers to any of various chiefly aquatic, eukaryotic,
  • the term may further refer to photosynthetic protists responsible for much of the photosynthesis on Earth.
  • the algae are polyphyletic. Accordingly, the term may refer to any protists considered to be algae from the following groups, alveolates, chloraraachniophytes,
  • cryptomonads euglenids, glaucophytes, haptophytes, red algae such as Rhodophyta, stramenopiles, and viridaeplantae.
  • the term refers to the green, yellow-green, brown, and red algae in the eukaryotes.
  • the term may also refer to the cyanobacteria in the prokaryotes.
  • the term also refers to green algae, blue algae, and red algae.
  • algicide refers to one or more agents, compounds and/or compositions having algaestatic and/or algaecidal activity.
  • algicidal means the killing of algae.
  • algistatic as used herein means inhibiting the growth of algae, which can be reversible under certain conditions.
  • the Burkholderia strain set forth herein is a non-Burkholderia cepacia complex, non- Burkholderia plantari, non-Burkholderia gladioli, Burkholderia sp and non-pathogenic to vertebrates, such as birds, mammals and fish.
  • This strain may be isolated from a soil sample using procedures known in the art and described by Lorch et al., 1995.
  • the Burkholderia strain may be isolated from many different types of soil or growth medium.
  • the sample is then plated on potato dextrose agar (PDA).
  • PDA potato dextrose agar
  • the bacteria are gram negative, and it forms round, opaque cream-colored colonies that change to pink and pinkish-brown in color and mucoid or slimy over time.
  • Colonies are isolated from the potato dextrose agar plates and screened for those that have biological, genetic, biochemical and/or enzymatic characteristics of the Burkholderia strain of the present invention set forth in the Examples below.
  • the Burkholderia strain has a 16S rRNA gene comprising a forward sequence that is at least about 99.5% , more preferably about 99.9% and most preferably about 100% identical to the sequence set forth in SEQ ID NO: 8, 1 1 and 12 and a forward sequence that is at least about 99.5% , more preferably about 99.9% and most preferably about 100% identical to the sequence set forth in SEQ ID NO: 9, 10, 13 , 14 and 15 as determined by clustal analysis.
  • this Burkholderia strain may, as set forth below, have pesticidal activity, particularly, virucidal, herbicidal, germicidal, fungicidal, nematicidal, bactericidal and insecticidal and more particularly, herbicidal, algicidal, acaricidal, insecticidal, fungicidal and nematicidal activity. It is not pathogenic to vertebrate animals, such as mammals, birds, and fish.
  • the Burkholderia strain produces at least the pesticidal compounds set forth in the instant disclosure.
  • the Burkholderia strain is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin , imipenem, and a combination of sulphamethoxazole and trimethoprim and contains the fatty acids 16:0, cyclo 17:0, 16:0 3- OH, 14:0, cyclo 19:0, 18:0.
  • This Burkholderia strain may be obtained by culturing a microorganism having the identifying characteristics of Burkholderia A396 (NRRL Accession No. B-50319) on Potato Dextrose Agar (PDA) or in a fermentation medium containing defined carbon sources such as glucose, maltose, fructose, galactose, and undefined nitrogen sources such as peptone, tryptone, soy tone, and NZ amine.
  • defined carbon sources such as glucose, maltose, fructose, galactose
  • undefined nitrogen sources such as peptone, tryptone, soy tone, and NZ amine.
  • the algicidal and acaricidal compounds disclosed herein may have the following properties: (a) is obtainable from a novel Burkholderia species, e.g., A396; (b) is, in particular, toxic to most common agricultural insect pests; (c) has a molecular weight of about 525-555 and more particularly, 540 as determined by Liquid Chromatography /Mass Spectroscopy (LC/MS) ; (d) has ⁇ NMR values of 6.22 , 5.81 , 5.69 , 5.66 , 5.65 , 4.64 , 4.31 , 3.93 , 3.22 , 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23.
  • LC/MS Liquid Chromatography /Mass Spectroscopy
  • a pesticidally acceptable salt or stereoisomers thereof wherein M is 1 , 2, 3 or 4; n is 0, 1 , 2, or 3; p and q are independently 1 or 2; X is O, NH or NR; Rl , R 2 and R3 are the same or different and independently an amino acid side-chain moiety or an amino acid side-chain derivative and R is a lower chain alkyl, aryl or arylalkyl moiety.
  • the compound has the structure of FR901228:
  • X, Y and Z are each independently— O, — NR 1 , or— S, wherein R 1 is— H or C 1 -C 10 alkyl;
  • R 1 , R 2 and m are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • Family ##STR002## compounds may be the compounds set forth in (vi)-(xix).
  • Natural sources of Family ##STR002## compounds include, but are not limited to, microorganisms, alga, and sponges.
  • microorganisms which include the Family ##STR002## compounds include but are not limited to, or alternatively, Family ##STR002## compounds may be derived from species such as Streptoverticillium waksmanii (compound vi) (Umehara, et al., 1984), Streptomyces pimprina (compound vii) (Naiket al., 2001), Streptoverticillium olivoreticuli (compounds viii, ix, x) (Koyama Y., et al., 1981), Streptomyces sp (compounds xi, xii) (Watabe et al., 1988),
  • Pseudomonas syringae (compounds xiii, xiv) (Pettit et al., 2002).
  • Family ##STR002## compounds may also be derived from algae including but not limited to red alga (compound xv) (N'Diaye, et al., 1996), red alga Martensia fragilis (compound xvi) (Takahashi S . et al., 1998), Diazona chinensis (compounds xvii & xviii) (Lindquist N. et al., 1991), Rhodophycota haraldiophyllum sp (compound xix) (Guella et al., 1994).
  • X and Y are each independently—OH,— NR 1 , or — S, wherein R 1 is — H or C 1 -C 10 alkyl; R 1 , R 2 and m, a substituent on the oxazole ring, are each independently — H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • X and Y are each independently—OH,— NR 1 , or— S, wherein R 1 , R 2 are each independently— H, alkyl (e.g., Ci-Cio alkyl), substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • alkyl e.g., Ci-Cio alkyl
  • substituted alkyl alkenyl, substituted alkenyl, alkyny
  • Family ##STR005 compounds such as compounds from xx-xxiii set forth below may be derived from natural or commercial sources or by chemical synthesis .
  • Natural sources of Family ##STR005## compounds include, but are not limited to plants, corals, microorganisms, and sponges.
  • the microorganisms include, but are not limited to Streptomyces griseus (compound xx) (Hirota et al., 1978), Streptomyces albus (compound xxi) (Werner et al., 1980).
  • Family STR004 compounds may also be derived from algae including but not limited to Haraldiophyllum sp (compound xxii (Guella et al., 2006), and red algae (compound xxiii) (N'Diaye et al., 1994).
  • the compound may be derived from or is obtainable from a microorganism, and in particular from Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons and at least eight oxygen and one nitrogen.
  • the compound further comprises at least one of the following characteristics:
  • HPLC High Pressure Liquid Chromatography
  • retention time of about 7- 12 minutes, more specifically about 10 minutes and even more specifically about 10.98 min on a reversed phase C- 18 HPLC (Phenomenex, Luna 5 ⁇ C I 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH 3 CN) with a gradient solvent system (0-20 min; 90-0 % aqueous CH 3 CN, 20-24 min; 100% CH 3 CN, 24-27 min; 0-90 % aqueous CH 3 CN, 27-30 min; 90% aqueous CH 3 CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
  • X, Y and Z are each independently -O, -NR, or -S, wherein R is H or Ci-Cio alkyl;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R6, R7, Re, R9, R 1 o, R 11 , R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the compound has the structure set forth in ##STR004b##:
  • R 1 , R 2 , R 3 , R 4 , R 5 , R6, R7, Rs, R9, R 1 o, R 11 , R12, and R13 are as previously defined for ##STR004a##.
  • the compound is Templamide A with the following structur
  • R h R 2 , R 3 , R 4 , R 5 , Re, R7, e, and R n are as previously defined for ##STR004a##.
  • Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons and at least 8 oxygen and 1 nitrogen, and pesticide activity.
  • the compound further comprises at least one of the following characteristics:
  • pesticidal properties and in particular, insecticidal, fungicidal, nematocidal, acaricidal, algicidal and herbicidal properties;
  • the compound has the structure ##STR006a##:
  • X, Y and Z are each independently -O, -NR., or -S, wherein R is H or C 1 -C 10 alkyl;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R6, R7, Re, R 11 , R12, and R 13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the compound has the structure:
  • R u R 2 , R 3 , R 4 , R 5 , Re, R7, e, and R n are as previously defined for ##STR006a##.
  • the compound is Templamide B with the following structure:
  • the compound may be derived from Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons and at least 8 oxygen and at least 1 nitrogen.
  • the compound further comprises at least one of the following characteristics:
  • pesticidal properties and in particular, insecticidal, fungicidal, acaricidal, nematicidal, algicidal and herbicidal properties;
  • the compound is a known compound FR901465 which was isolated earlier from culture broth of a bacterium of Pseudomonas sp. No. 2663 (Nakajima et al. 1996) and had been reported to have anticancer activity with the following structure:
  • Family ##STR006a## compounds may be the compounds set forth in xxiv to xxxix. These are from either natural materials or compounds obtained from commercial sources or by chemical synthesis. Natural sources of Family ##STR006a## compounds include, but are not limited to, microorganisms, alga, and sponges. In a more particular embodiment, microorganisms which include the Family
  • (a) has pesticidal properties and in particular, herbicidal, insecticidal, nematicidal, and fungicidal properties;
  • (b) has a molecular weight of about 210-240 and more particularly, 222 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
  • HPLC High Pressure Liquid Chromatography
  • X is independently -O, -NR, or -S, wherein R is H or C 1 -C 10 alkyl; R 1 , R 2 , R 3 , R 4 , R 5 , and R6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
  • the compound is butyl parben with the following structure:
  • the compound is hexyl parben with the following structure:
  • the compound is octyl parben with the following structure:
  • the compound is F7H18, which has a molecular weight of about 1080.
  • a substantially pure culture, cell fraction or supernatant and compounds produced by the Burkholderia strain disclosed herein, all of which are alternatively referred to as "active ingredient(s)", may be formulated into pesticidal compositions.
  • the supernatant may be a cell-free supernatant.
  • the active ingredient(s) set forth above can be formulated in any manner.
  • Non-limiting formulation examples include but are not limited to emulsifiable concentrates (EC) , wettable powders (WP), soluble liquids (SL), aerosols, ultra-low volume concentrate solutions (ULV), soluble powders (SP), microencapsulation, water dispersed granules , flowables (FL), microemulsions (ME), nano-emulsions (NE), dusts, emulsions, liquids, flakes etc.
  • percent of the active ingredient is within a range of 0.01 % to 99.99% .
  • a solid composition can be prepared by suspending a solid carrier in a solution of pesticidal compounds and drying the suspension under mild conditions , such as evaporation at room temperature or vacuum evaporation at 65°C or lower.
  • a solid composition may be derived via spray-drying or freeze-drying.
  • solid compositions When referring to solid compositions , it should be understood by the artisan of ordinary skill that physical forms such as dusts , beads , powders , particulates , pellets , tablets , agglomerates, granules , floating solids and other known solid formulations are included. The artisan of ordinary skill will be able to readily optimize a particular solid formulation for a given application using methods well known to those of ordinary skill in the art.
  • composition may comprise gel-encapsulated compounds derived from the
  • Such gel-encapsulated materials can be prepared by mixing a gel-forming agent (e.g., gelatin, cellulose, or lignin) with a solution of algicidal compounds and inducing gel formation of the agent.
  • a gel-forming agent e.g., gelatin, cellulose, or lignin
  • composition may additionally comprise a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition.
  • a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition.
  • the surfactant is a non-phytotoxic non-ionic surfactant which preferably belongs to EPA List 4B .
  • the nonionic surfactant is polyoxyethylene (20) monolaurate.
  • the concentration of surfactants may range between 0.1-35% of the total formulation, preferred range is 5-25% .
  • the choice of dispersing and emulsifying agents, such as non-ionic, anionic, amphoteric and cationic dispersing and emulsifying agents, and the amount employed is determined by the nature of the composition and the ability of the agent to facilitate the dispersion of these compositions.
  • the carrier or diluent agent in such compositions may be a finely divided solid, an organic liquid, water, a wetting agent, a dispersing agent, humidifying agent, or emulsifying agent, or any suitable combination of these.
  • a conditioning agent comprising one or more surface-active agents or surfactants is present in amounts sufficient to render a given composition containing the active material, the microorganism, dispersible in water or oil.
  • compositions can be applied as a spray utilizing a liquid carrier, it is contemplated that a wide variety of liquid carriers such as, for example, water, organic solvents, decane, dodecane, oils, vegetable oil, mineral oil, alcohol, glycol, polyethylene glycol, agents that result in a differential distribution of pathogenic bacterium in water being treated, combinations thereof and other known to artisan of ordinary skill can be used.
  • liquid carriers such as, for example, water, organic solvents, decane, dodecane, oils, vegetable oil, mineral oil, alcohol, glycol, polyethylene glycol, agents that result in a differential distribution of pathogenic bacterium in water being treated, combinations thereof and other known to artisan of ordinary skill can be used.
  • compositions can also include other substances which are not detrimental to the active ingredient(s) such as adjuvants, surf actants , binders , stabilizers and the like, which are commonly used in algicides , either singly or in combination as needed.
  • adjuvants such as adjuvants, surf actants , binders , stabilizers and the like, which are commonly used in algicides , either singly or in combination as needed.
  • additives or agents that predispose pests susceptible to the active ingredient set forth above are added to enhance its pesticidal action.
  • additive that enhances the pesticidal action of the active ingredient is meant any compound, solvent, reagent, substance, or agent that increases the effect of the active ingredient toward pests and more particularly, mites as compared to the pesticidal effect of the active ingredient in the absence of said additive.
  • these additives will increase the susceptibility of a particular pest to the active ingredient.
  • Additional additives include but are not limited to agents which weaken the biological defenses of susceptible pests.
  • agents can include salts, such as NaCl and CaCl 2 .
  • the composition may further comprise another microorganism and/or pesticide (e.g, nematocide, fungicide, insecticide, herbicide, algicide, aracicide).
  • the microorganism may include but is not limited to an agent derived from Bacillus sp., Pseudomonas sp., Brevabacillus sp., Lecanicillium sp., non- Ampelomyces sp., Pseudozyma sp., Streptomyces sp, Burkholderia sp, Trichoderma sp, Gliocladium sp.
  • the agent may be a natural oil or oil-product having fungicidal, herbicidal, aracidal, algicidal, nematocidal and/or insecticidal activity (e.g., paraffinic oil, tea tree oil, lemongrass oil, clove oil, cinnamon oil, citrus oil, rosemary oil).
  • fungicidal, herbicidal, aracidal, algicidal, nematocidal and/or insecticidal activity e.g., paraffinic oil, tea tree oil, lemongrass oil, clove oil, cinnamon oil, citrus oil, rosemary oil.
  • the composition may further comprise an insecticide.
  • the insecticide may include but is not limited to avermectin, Bacillus thuringiensis , neem oil and azadiractin, spinosads, Chromobacterium subtsugae, eucalyptus extract, entomopathogenic bacterium or fungi such a Beauveria bassiana, and Metarrhizium anisopliae and chemical insecticides including but not limited to organochlorine compounds, organophosphorous compounds, carbamates, pyrethroids, and neonicotinoids .
  • the composition my further comprise a nematocide.
  • the nematocide may include, but is not limited to chemical nematocides such as fenamiphos, aldicarb, oxamyl, carbofuran, natural product neamticide, avermectin, the fungi Paecilomyces lilacinas and Muscodor spp., the bacteria Bacillus firmus and other Bacillus spp. and Pasteuria penetrans.
  • composition may further comprise a biofungicide such as extract of R.
  • fungicides include, but are not limited to, a single site anti-fungal agent which may include but is not limited to benzimidazole, a demethylation inhibitor (DMI) (e.g., imidazole, piperazine, pyrimidine, triazole), morpholine,
  • DMI demethylation inhibitor
  • the antifungal agent is a demethylation inhibitor selected from the group consisting of imidazole (e.g., triflumizole), piperazine, pyrimidine and triazole (e.g., bitertanol, myclobutanil, penconazole, propiconazole, triadimefon, bromuconazole, cyproconazole, diniconazole, fenbuconazole, hexaconazole, tebuconazole, tetraconazole, propiconazole).
  • imidazole e.g., triflumizole
  • piperazine pyrimidine
  • triazole e.g., bitertanol, myclobutanil, penconazole, propiconazole, triadimefon, bromuconazole, cyproconazole, diniconazole, fenbuconazole, hexaconazole, tebuconazo
  • the antimicrobial agent may also be a multi-site non-inorganic, chemical fungicide selected from the group consisting of a nitrile (e.g., chloronitrile or fludioxonil) , quinoxaline, sulphamide, phosphonate, phosphite, dithiocarbamate, chloralkythios, phenylpyridin-amine, cyano-acetamide oxime.
  • a nitrile e.g., chloronitrile or fludioxonil
  • quinoxaline e.g., quinoxaline
  • sulphamide e.g., phosphonate
  • phosphite phosphonate
  • dithiocarbamate e.g., chloralkythios
  • chloralkythios e.g., phenylpyridin-amine
  • cyano-acetamide oxime e.g., cyano-acetamide oxi
  • compositions may be applied using methods known in the art. Specifically, these compositions may be applied to plants or plant parts.
  • Plants are to be understood as meaning in the present context all plants and plant populations such as desired and undesired wild plants or crop plants (including naturally occurring crop plants) .
  • Crop plants can be plants which can be obtained by conventional plant breeding and optimization methods or by biotechnological and genetic engineering methods or by combinations of these methods , including the transgenic plants and including the plant cultivars protectable or not protectable by plant breeders' rights.
  • Plant parts are to be understood as meaning all parts and organs of plants above and below the ground, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stalks, stems, flowers, fruit bodies, fruits, seeds, roots, tubers and rhizomes.
  • the plant parts also include harvested material, and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • Treatment of the plants and plant parts with the compositions set forth above may be carried out directly or by allowing the compositions to act on their surroundings, habitat or storage space by, for example, immersion, spraying, evaporation, fogging, scattering, painting on, injecting.
  • the composition may be applied to the seed as one or more coats prior to planting the seed using one or more coats using methods known in the art.
  • compositions may be herbicidal compositions.
  • the composition may further comprise one or more herbicides. These may include, but are not limited to, a bioherbicide and/or a chemical herbicide.
  • the bioherbicide may be selected from the group consisting of clove oil, cinnamon oil, lemongrass oil, citrus oil, orange peel oil, tentoxin, cornexistin, AAL-toxin, manuka oil, leptospermone, thaxtomin, sarmentine, momilactone B , sorgoleone, ascaulatoxin and ascaulatoxin aglycone.
  • the chemical herbicide may include, but is not limited to, diflufenzopyr and salts thereof, dicamba and salts thereof, topramezone, tembotrione, S-metolachlor, atrazine, mesotrione, primisulfuron-methyl, 2,4- dichlorophenoxy acetic acid, nicosulfuron, thifensulfuron-methyl, asulam, metribuzin, diclofop- methyl, fluazifop, fenoxaprop-p-ethyl, asulam, oxyfluorfen, rimsulfuron, mecoprop, and quinclorac, thiobencarb, clomazone, cyhalofop, propanil, bensulfuron-methyl, penoxsulam, triclopyr, imazethapyr, halosulfuron-methyl, pendimethalin, bispyribac-sodium, carfentrazone ethyl, sodium bent
  • Herbicidal compositions may be applied in liquid or solid form as pre-emergence or post-emergence formulations.
  • the granule size of the carrier is typically 1 -2 mm (diameter) but the granules can be either smaller or larger depending on the required ground coverage.
  • Granules may comprise porous or non-porous particles.
  • the formulation components used may contain smectite clays, attapulgite clays and similar swelling clays, thickeners such as xanthan gums, gum Arabic and other polysaccharide thickeners as well as dispersion stabilizers such as nonionic surfactants (for example polyoxyethylene (20) monolaurate) .
  • the composition may comprise in addition to the active ingredient another microorganism and/or algicide and/or acaricide.
  • the microorganism may include but is not limited to an agent derived from Bacillus sp., Brevibacillus sp., and
  • compositions may also as set forth above, be algicidal compositions which can further comprise other algicides such as copper sulphate, diquat or thaxtomin A.
  • the compositions may be acaricidal compositions which can further comprise other acaricides such as antibiotics, carbamates, formamidine acaricides , pyrethroids , mite growth regulators , organophosphate acaricides and diatomaceous earth.
  • compositions and pesticidal compounds derived from the Burkholderia strain set forth herein may be used as pesticides, particularly as insecticides, nematocides, fungicides, algicides, acaricides and herbicides.
  • nematodes that may be controlled using the method set forth above include but are not limited to parasitic nematodes such as root-knot, ring, sting, lance, cyst, and lesion nematodes, including but not limited to free living nematodes, Meloidogyne, Heterodera and Globodera spp; particularly Meloidogyne incognita (root knot nematodes), as well as
  • Globodera rostochiensis and globodera pallida potato cyst nematodes); Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Oligonychus pratensis (Banks grass mite); Eriophyes cynodoniensis (Bermuda grass mite); Bryobia praetiosa (Clover mite) -and Heterodera avenae (cereal cyst nematode).
  • Phytopathogenic insects controlled by the method of the present invention include, but are not limited to, insects from the order
  • Lepidoptera for example, Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseolafusca, Cadra cautella, Carposina nipponensis, Chilo spp.,
  • Choristoneura spp. Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp.
  • (b) Coleoptera for example, Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp.
  • Orthoptera for example, Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.
  • Isoptera for example, Reticulitermes spp.
  • Psocoptera for example, Liposcelis spp.
  • Anoplura for example, Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp.
  • Lygys spp. and Tniatoma spp. (j) Homoptera,for example, Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., Nephotettix spp., Nilaparvata spp., Paratoria spp., Pemphigus
  • Gastrophilus spp. Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinellafrit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.; (m) Siphonaptera, for example, Ceratophyllus spp.
  • the active ingredients according to the invention may further be used for controlling crucifer flea beetles (Phyllotreta spp.), root maggots (Delia spp.), cabbage seedpod weevil (Ceutorhynchus spp.) and aphids in oil seed crops such as canola (rape), mustard seed, and hybrids thereof, and also rice and maize.
  • the insect may be a member of the Spodoptera, more particularly, Spodoptera exigua, Myzus persicae, Plutella xylostella or Euschistus sp.
  • the substances and compositions may also be used to modulate emergence in either a pre -emergent or post-emergent formulation of monoeotyledonous. including sedges and grasses, or dicotyledonous weeds.
  • the weeds may include, but not be limited to, Chenopodhim sp. (e.g. , album), Abulilon sp. (e.g. A. theophrasti),
  • Helianthus sp. e.g. H. annum
  • Ludwigia sp. e.g. L. hexapetala
  • Ambrosia sp. e.g. A. artemesifolia
  • Amaranthus sp. e.g., ⁇ 4. retrofiexus, A. palmeri
  • Convolvulus sp. e.g. C. arvensis
  • Ipomoeae sp. Brassica sp.
  • Raphanus sp. Taraxacum sp. (e.g. T. officinale)
  • Centaurea sp. e.g. C.
  • Conyza sp. e.g. C. bonariensis
  • Cirsium sp. e.g. C. arvense
  • Lepidium sp.. Gallium sp. Solanum sp. (e.g. S. nigrum)
  • Malva sp. e.g. M. neglecla
  • Cyperus sp. e.g. C. rotundas
  • Oxalls sp. Euphorbia sp.
  • Trifolium sp. Medicago sp.
  • Hydrilla sp. Medicago sp.
  • Azolla sp. Digitaria sp. (e.g. D. sanguinalis), Setaria sp.
  • the Burkholderia strain, compounds and compositions set forth above may also be used as a fungicide.
  • the targeted fungus may be a Fusarium sp., Botrytis sp., Monilinia sp., Colletotrichum sp, Verticillium sp.; Microphomina sp., Phytophtora sp, Mucor sp.,
  • the bacteria are Xanthomonas .
  • the substance or compositions can be used to control, reduce and or eliminate the growth and proliferation of marine and non-marine micro and macro algae including but not limited to unicellular, multicellular and diatom, red-, green- and bluegreen- algae such as
  • the active ingredient(s) and compositions set forth above may be applied to locations containing algae. These include but are not limited to a body of water such as a pond, lake, stream, river, aquarium, water treatment facility, power plant or a solid surface, such as plastic, concrete, wood, fiberglass, pipes made of iron and polyvinyl choride, surfaces covered wih coating materials and/or paints .
  • a body of water such as a pond, lake, stream, river, aquarium, water treatment facility, power plant or a solid surface, such as plastic, concrete, wood, fiberglass, pipes made of iron and polyvinyl choride, surfaces covered wih coating materials and/or paints .
  • the active ingredient(s) and compositions set forth above may be applied to locations containing arachnids, such as mites, including but not limited to,
  • Panonychus sp. such as Panonychus citri (citrus red mite), and Panonychus ulmi (red spider mite), Tetranychus sp. such as Tetranychus kanzawi (Kanzawa spider mite), Tetranychus urticae (2 spotted spider mite) , Tetranychus pacificus ( Pacific spider mite) , Tetranychus turkestanii (Strawberry mite) and Tetranychus cinnabarinus (Carmine spider mite),
  • Oligonychus sp. such as Oligonychus panicae (avacado brown mite), Oligonychus perseae (persea mite), Oligonychus pratensis (Banks grass mite) and Oligonychus coffeae , Aculus sp. such as Aculus cornatus (Peach silver mite), Aculus fockeni (plum rust mite) and Aculus ly coper sici (tomato russet mite) , Eotetranychus sp. such as Eotetranychus wilametti,
  • Eotetranychus yumensis (yuma spider mite) and Eotetranychus sexmaculatis (6-spotted mite), Bryobia rubrioculus (brown mite) , Epitrimerus pyri (pear rust mite) , Phytoptus pyri (Pear leaf blister mite) , Acalitis essigi (red berry mite) , Polyphagotarsonemus latus (Broad mite), Eriophyes sheldoni (citrus bud mite) , Brevipalpus lewisi (citrus flat mite) , Phylocoptruta oleivora (citrus rust mite), Petrobia lateens (Brown wheat mite), Oxyenus maxwelli (olive mite), Rhizoglyphus spp., Tyrophagus spp., Diptacus gigantorhyncus (bigheaded plum mite) and Penthale
  • Such locations may include but are not limited to crops that are infested with such mites or other arachnids (e.g., aphenids).
  • compositions and methods set forth above will be further illustrated in the following, non-limiting Examples.
  • the examples are illustrative of various embodiments only and do not limit the claimed invention regarding the materials, conditions, weight ratios, process parameters and the like recited herein.
  • the microbe is isolated using established techniques know to the art from a soil sample collected under an evergreen tree at the Rinnoji Temple, Nikko, Japan.
  • the isolation is done using potato dextrose agar (PDA) using a procedure described in detail by Lorch et al. , 1995.
  • the soil sample is first diluted in sterile water, after which it is plated in a solid agar medium such as potato dextrose agar (PDA).
  • PDA potato dextrose agar
  • the plates are grown at 25°C for five days, after which individual microbial colonies are isolated into separate PDA plates.
  • the isolated bacterium is gram negative, and it forms round, opaque cream-colored colonies that change to pink and pinkish-brown in color and mucoid or slimy over time.
  • the microbe is identified based on gene sequencing using universal bacterial primers to amplify the 16S rRNA region.
  • the following protocol is used: Burkholderia sp.
  • A396 is cultured on potato-dextrose agar plates . Growth from a 24 hour-old plate is scraped with a sterile loop and re-suspended in DNA extraction buffer. DNA is extracted using the MoBio Ultra Clean Microbial DNA extraction kit. DNA extract is checked for quality /quantity by running 5 ⁇ on a 1 % agarose gel.
  • PCR reactions are set up as follows: 2 ⁇ DNA extract, 5 ⁇ PCR buffer, 1 ⁇ dNTPs (10 mM each), 1.25 ⁇ forward primer (27F; (SEQ ID NO: 1), 1.25 ⁇ reverse primer (907R; (SEQ ID NO:2)) and 0.25 ⁇ Taq enzyme.
  • the reaction volume is made up to 50 ⁇ using sterile nuclease-free water.
  • the PCR reaction includes an initial denaturation step at 95°C for 10 minutes, followed by 30 cycles of 94°C/30 sec, 57°C/20 sec, 72°C/30 sec, and a final extension step at 72°C for 10 minutes.
  • the product's approximate concentration and size is calculated by running a 5 ⁇ volume on a 1 % agarose gel and comparing the product band to a mass ladder.
  • strain A396 The 16S rRNA gene sequence of strain A396 is compared with the available 16S rRNA gene sequences of representatives of the ⁇ -proteobacteria using BLAST.
  • Strain A395 A396 is closely related to members of the Burkholderia cepacia complex, with 99% or higher similarity to several isolates of Burkholderia multivorans , Burkholderia vietnamensis , and Burkholderia cepacia.
  • a BLAST search excluding the B. cepacia complex showed 98% similarity to B. plantarii, B. gladioli and Burkholderia sp. isolates.
  • a distance tree of results using the neighbor joining method showed that A396 is related to Burkholderia multivorans and other Burkholderia cepacia complex isolates .
  • the isolated Burkholderia strain was found to contain the following sequences:
  • Burkholderia multivorans is a known member of the Burkholderia cepacia complex. Efforts are focused on PCR of recA genes, as described by Mahenthiralingam et al., 2000. The following primers are used: (a) BCR1 and BCR2 set forth in Mahenthiralingam et al., 2000 to confirm B. cepacia complex match and (b) BCRBM1 and BCRBM2 set forth Mahenthiralingam et al, 2000 to confirm B. multivorans match. A product-yielding PCR reaction for the first primer set would confirm that the microbe belongs to the B. cepacia complex. A product-yielding PCR reaction for the second primer set would confirm that the microbe is indeed B. multivorans.
  • A396 is a new species of Burkholderia
  • a DNA-DNA hybridization experiment with Burkholderia multivorans (the closest 16SrRNA sequence match) is conducted.
  • Biomass for both A396 and B. multivorans is produced in ISP2 broth, grown over 48 hours at 200 rpm/25°C in Fernbach flasks. The biomass is aseptically harvested by centrifugation. The broth is decanted and the cell pellet is resuspended in a 1 : 1 solution of water: isopropanol.
  • DNA-DNA hybridization experiments are performed by the DSMZ, the German Collection of Microorganisms and Cell Cultures in Germany.
  • DNA is isolated using a French pressure cell (Thermo Spectronic) and is purified by chromatography on hydroxyapatite as described by Cashion et al., 1977.
  • DNA-DNA hybridization is carried out as described by De Ley et al., 1970 under consideration of the modifications described by Huss et al., 1983 using a model Cary 100 Bio UV/VIS-spectrophotometer equipped with a Peltier thermostatted 6x6 multicell changer and a temperature controller with in-situ temperature probe (Varian) .
  • DSMZ reported % DNA-DNA similarly between A396 and Burkholderia multivorans of 37.4% .
  • A396 is grown overnight on Potato Dextrose Agar (PDA).
  • PDA Potato Dextrose Agar
  • the culture is transferred to BUG agar to produce an adequate culture for Biolog experiments as recommended by the manufacturer (Biolog, Hayward, CA).
  • the biochemical profile of the microorganism is determined by inoculating onto a Biolog GN2 plate and reading the plate after a 24-hour incubation using the MicroLog 4- automated microstation system. Identification of the unknown bacteria is attempted by comparing its carbon utilization pattern with the Microlog 4 Gram negative database.
  • a loopful of well-grown cells are harvested and fatty acid methyl esters are prepared, separated and identified using the Sherlock Microbial Identification System (MIDI) as described (see Vandamme et al., 1992).
  • MIDI Sherlock Microbial Identification System
  • the predominant fatty acids present in the Burkholderia A396 are as follows: 16:0 (24.4%), cyclo 17:0 (7.1%), 16:0 3- OH (4.4%), 14:0 (3.6%), 19:0 co8c (2.6%) cyclo, 18:0 (1.0%).
  • Summed feature 8 (comprising 18: 1 co7c) and summed feature 3 (comprising of 16: 1 co7c and 16: 1 co6c) corresponded to 26.2% and 20.2 % of the total peak area, respectively.
  • Summed feature 2 comprising 12:0 ALDE, 16: 1 iso I, and 14:0 3-OH) corresponded to 5.8% of the total peak area while summed feature 5 comprising 18:0 ANTE and 18:2 co6,9c corresponded to 0.4%.
  • Burkholderia A396 is quite different from pathogenic B. cepacia complex strains.
  • Burkholderia A396 is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin, imipenem, and a combination of sulphamethoxazole and trimethoprim.
  • Zhou et al., 2007 tested the susceptibility of 2,621 different strains in B. cepacia complex isolated from cystic fibrosis patients, and found that only 7% and 5% of all strains were susceptible to imipenem or ciprofloxacin, respectively. They also found 85% of all strains to be resistant to
  • the culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium and formulated using methyl 0.1 % and propyl paraben, 0.1 % hexanol 0.67 % and Glycosperse 0-20, 0.67% is extracted with Amberlite XAD-7 resin (Asolkar et al., "Weakly cytotoxic polyketides from a marine-derived Actinomycete of the genus Streptomyces strain CNQ-085.” J. Nat. Prod. 69: 1756- 1759. 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature.
  • the resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts.
  • the resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract (MBI-206-FP-CE).
  • the crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H 2 0/CH 3 OH; gradient 80:20 to 0: 100%) to give 10 fractions (see Figure 1 for schematic). These fractions are then concentrated to dryness using rotary evaporator and the resulting dry residues are screened for biological activity using a whole plant herbicidal assay.
  • the active fractions, fractions 3 , 4, 5 and 6 and indicated as MBI-206-FP-3, MBI-206-FP-4, MBI-206-FP-5 , and MBI-206-FP-6 respectively are then subjected to repeatedly to reversed phase HPLC separation (Spectra System P4000 (Thermo Scientific) to give pure compounds, which are then screened in above- mentioned bioassays to locate/identify the active compounds (see Figure 2).
  • Healthy radish plants with two to three true leaves were selected for testing.
  • the radish plants are 13 days old at treatment.
  • the plants are sorted so that all treatments are equivalent in foliage surface area and plant height.
  • the pots are labeled with treatment number and repetition number. Three repetitions per treatment are tested.
  • Treatments are applied using a nozzle from a 2-ounce spray bottle. Separate spray nozzles were used for each treatment.
  • the plant foliage is sprayed evenly and with a moderate volume (i.e. neither a light misting nor a heavy application that resulted in runoff) .
  • Two milliliters of each treatment are sprayed simultaneously over the three repetitions of each treatment so that each plant is treated with approximately 0.67 milliliters of treatment solution.
  • the plants are allowed to air dry and are then randomized in holding trays . Each tray is labeled with the experiment name and treatment date and placed on the laboratory greenhouse shelves. The laboratory greenhouse maintains a temperature of 70-80°F and a relative humidity of 30-40% . Throughout the bioassay, plants are watered from below by filling the holding trays with an appropriate amount of water so that plant foliage remained dry.
  • Results are taken at 3 , 8, and 14 days after treatment. Symptoms included foliage burning and plant stunting. The following rating scale, shown in Table 4 is used to quantify efficacy. Ratings are determined by observing the following factors relative to the plants of the untreated control: overall plant health, average plant height, and foliage health. Symptoms of affected plants may include discolored/spotted/burnt/bleached foliage, warped/twisted/curled leaves, side branching (due to damaged apical meristem) , plant dieback, or death.
  • the active compound was isolated as a colorless solid, with UV absorption at 248 nm.
  • the (-) ESIMS showed molecular ion at 221 (M-H) corresponding to the molecular weight of 222.
  • the compound exhibited * ⁇ NMR ⁇ singals at 7.90, 6.85, 4.28, 1.76, 1.46, 1.38, 1.37, 0.94 and has 13 C NMR values of 166.84, 162.12, 131.34 (2C), 121.04, 114.83 (2C), 64.32, 31.25 , 28.43 , 25.45 , 22.18. 12.93.
  • the molecular formula of C ⁇ 8 0 3 (5 degrees of unsaturation), was assigned by combination of NMR and ESI mass spectrometry data.
  • This compound was obtained as a colorless solid with UV max at 248 nm.
  • the LCMS analysis in the negative mode showed molecular ion at m/z 193 corresponding to the molecular formula 194.
  • this compound was found to be the analogue of hexyl paraben. The only difference between them was only in the side chain. Thus, the structure of butyl paraben was assigned to this compound with MW 194.
  • a search in the literature suggested that this compound is also known as a synthetic compound.
  • FP-F5H40 obtained from fraction 5 were tested at a concentration of 10 mg/ml.
  • An untreated control (treated with deionized water), the formulation blank (at 3% v/v & 10 % v/v), and a positive control (RoundUp Super Concentrate at a rate of 2.5 fluid ounces per gallon) are included in the test.
  • MMI206-FP-F5H40 were tested in a laboratory assay using a 96-well diet overlay assay with 1 st instar Beet Army worm (Spodoptera exigua) larvae using microtiter plates with 200 ul of solid, artificial Beet Armyworm diet in each well.
  • One hundred (100) microliters of each test sample (containing 40 ug of sample) is pipetted on the top of the diet (one sample in each well), and the sample is let dry under flowing air until the surface is dry.
  • Each sample was tested in six replicates, and water and a commercial Dipel product are used as negative and positive controls, respectively.
  • Trials (Tl) was carried out using M. incognita nematodes and and trail (T2) was carried out using M. hapla nematodes, the samples were dissolved in 100% DMSO.
  • the hexyl paraben (MBI206-FP-F5H40) showed the excellent control with the immobility of 93.75% against M. incognita as compared to butyl paraben with 81.25% immobility.
  • Table 8 Effect of hexyl paraben and butyl paraben on M. incognita and M. hapla.
  • the culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al, 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature.
  • the resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts.
  • the resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract.
  • the crude extract is then fractionated by using reversed-phase C18 vacuum liquid chromatography (H 2 0/CH 3 OH; gradient 90: 10 to 0: 100%) to give 11 fractions.
  • the active fraction 5 is purified further by using HPLC C- 18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 80% aqueous CH 3 CN, 10-25 min; 80 - 65% aqueous CH 3 CN, 25-50 min; 65 - 50 % aqueous CH 3 CN, 50-60 min; 50-70% CH 3 CN, 60-80 min; 70-0% aqueous CH 3 CN, 80-85 min; 0 - 20% aqueous CH 3 CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templazole B, retention time 46.65 min.
  • the other active fraction 7 is also purified using HPLC C-18 column
  • the mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returned to 10% solvent B over 3 min and kept for 3 min.
  • the flow rate is 0.5 mL/min.
  • the injection volume was 10 and the samples are kept at room temperature in an auto sampler.
  • the compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions: The flow rate of the nitrogen gas was fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization was performed with a spray voltage set at 5000 V and a capillary voltage at 35.0 V. The capillary temperature was set at 400°C.
  • the data was analyzed on Xcalibur software.
  • the active compound templazole A has a molecular mass of 298 and showed m/z ion at 297.34 in negative ionization mode.
  • the LC-MS chromatogram for templazole B suggests a molecular mass of 258 and exhibited m/z ion at 257.74 in negative ionization mode.
  • 3 ⁇ 4 13 C and 2D NMR spectra were measured on a Bruker 500 MHz & 600 MHz gradient field spectrometer.
  • the reference is set on the internal standard tetramethylsilane (TMS, 0.00 ppm).
  • the purified compound with a molecular weight 298 is further analyzed using a 500 MHz NMR instrument, and has H NMR ⁇ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08 and has 13 C NMR values of ⁇ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7.
  • Templazole A has UV absorption bands at 226, 275, 327 nm, which suggested the presence of indole and oxazole rings.
  • the molecular formula, C 7H1 8 N2O 3 was determined by
  • the second herbicidally active compound, templazole B, with a molecular weight 258 is further analyzed using a 500 MHz NMR instrument, and has H NMR ⁇ values at 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93 and 13 C NMR values of ⁇ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 115.2, 1 15.2, 41.2, 35.3, 26.7, 21.5, 21.5.
  • the molecular formula is assigned as C15H1 8 N2O2, which is determined by interpretation of 3 ⁇ 4 13 C NMR and mass data.
  • the 13 C NMR spectrum revealed signals for all 15 carbons, including two methyls, two methylene carbons, one aliphatic methine, one amide carbonyl, and nine aromatic carbons.
  • the ⁇ - signal in the isobutyl moiety correlated with the olefinic carbon (C-2, ⁇ 156.3), and the olefinic proton H-4 correlated with (C-5, ⁇ 155.5; C-2, 156.3 & C-l ", 41.2).
  • the methylene signal at ⁇ 3.75 correlated with C-5, C-4 as well as the C-2" of the para-substituted aromatic moiety. All these observed correlations suggested the connectivity among the isobutyl, and the para-substituted benzyl moieties for the skeleton of the structure as shown.
  • the whole cell broth from the fermentation of Burkholderia sp. in an undefined growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al., 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature.
  • the resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts .
  • the resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract.
  • the crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H 2 0/CH 3 OH; gradient 90: 10 to 0: 100%) to give 1 1 fractions.
  • Deca XP Plus electrospray (ESI) instrument using both positive and negative ionization modes in a full scan mode (m/z 100- 1500 Da) on a LCQ DECA XP plus Mass Spectrometer (Thermo Electron Corp., San Jose, CA).
  • Thermo high performance liquid chromatography (HPLC) instrument equipped with Finnigan Surveyor PDA plus detector, autosampler plus, MS pump and a 4.6 mm x 100 mm Luna C 18 5 ⁇ column (Phenomenex) .
  • the solvent system consists of water (solvent A) and acetonitrile (solvent B).
  • the mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returned to 10% solvent B over 3 min and kept for 3 min.
  • the flow rate is 0.5 mL/min.
  • the injection volume is 10 iL and the samples are kept at room temperature in an auto sampler.
  • the compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions: The flow rate of the nitrogen gas is fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization is performed with a spray voltage set at 5000 V and a capillary voltage at 35.0 V. The capillary temperature is set at 400°C. The data is analyzed on Xcalibur software. Based on the LC-MS analysis, the active insecticidal compound from fraction 6 has a molecular mass of 540 in negative ionization mode.
  • the purified insecticidal compound from fraction 6 with molecular weight 540 is further analyzed using a 500 MHz NMR instrument, and has ⁇ NMR values at 6.22, 5.81 , 5.69, 5.66, 5.65, 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23.
  • the NMR data indicates that the compound contains amino, ester, carboxylic acid, aliphatic methyl, ethyl, methylene, oxymethylene, methine, oxymethine and sulfur groups.
  • the detailed ID and 2D NMR analysis confirms the structure for the compound as FR901228 as a known compound.
  • the culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al., 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature.
  • the resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts.
  • the resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract.
  • the crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H 2 0/CH 3 OH; gradient 90: 10 to 0: 100%) to give 1 1 fractions.
  • the active fraction 6 is purified further by using HPLC C- 18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 80 % aqueous CH 3 CN, 10-25 min; 80 - 65 % aqueous CH 3 CN, 25-50 min; 65 - 50 % aqueous CH 3 CN, 50-60 min; 50-70 % aqueous CH 3 CN, 60-80 min; 70 - 0 % aqueous CH 3 CN, 80-85 min; 0 - 20 % aqueous CH 3 CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templamide A, retention time 55.64 min and FR901465 , retention time 63.59 min and
  • the other active fraction 6 is also purified using HPLC C-18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 70-60 % aqueous CH 3 CN, 10-20 min; 60-40 % aqueous CH 3 CN, 20-50 min; 40 - 15 % aqueous CH 3 CN, 50-75 min; 15 - 0 % CH 3 CN, 75-85 min; 0 - 70 % aqueous CH 3 CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templamide B, retention time 38.55 min.
  • the mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returns to 10% solvent B over 3 min and kept for 3 min.
  • the flow rate is 0.5 mL/min.
  • the injection volume is 10 and the samples are kept at room temperature in an auto sampler.
  • the compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions:
  • the flow rate of the nitrogen gas is fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively.
  • Electrospray ionization is performed with a spray voltage set at 5000 V and a capillary voltage at 45.0 V.
  • the capillary temperature is set at
  • the data is analyzed on Xcalibur software.
  • the active compound templamide A has a molecular mass of 555 based on the m/z peak at 556.41 [M + H] + and 578.34 [M + Na] + in positive ionization mode.
  • the LC-MS analysis in positive mode ionization for templamide B suggests a molecular mass of 537 based m/z ions at 538.47 [M + H] + and 560.65 [M + Na] + .
  • the molecular weight for the compounds FR901465 and FR901228 are assigned as 523 and 540 respectively on the basis of LCMS analysis.
  • 3 ⁇ 4 13 C and 2D NMR spectra are measured on a Bruker 600 MHz gradient field spectrometer.
  • the reference is set on the internal standard tetramethylsilane (TMS, 0.00 ppm).
  • the purified compound with molecular weight 555 is further analyzed using a 600 MHz NMR instrument, and has H NMR ⁇ values at 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73, 3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04 and has 13 C NMR values ⁇ ⁇ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41.
  • the 13 C NMR spectrum exhibits 28 discrete carbon signals which are attributed to six methyls , four methylene carbons, and thirteen methines including five sp 2 , four quaternary carbons.
  • the molecular formula, C 28 H 45 NO 10 is determined by interpretation of 3 ⁇ 4 13 C NMR and HRESI MS data.
  • the detailed analysis of COSY, HMBC and HMQC spectral data reveals the following substructures (I - IV) and two isolated methylene & singlet methyl groups. These substructures are connected later using the key HMBC correlations to give the planer structure for the compound, which has been not yet reported in the literature and designated as templamide A.
  • This polyketide molecule contains two tetrahydropyranose rings, and one conjugated amide.
  • Substructures I-IV assigned by analysis of ID & 2D NMR spectroscopic data.
  • the (+) ESIMS analysis for the second herbicidal compound shows m/z ions at 538.47 [M + H] + and 560.65 [M + Na] + corresponding to the molecular weight of 537.
  • the molecular formula of C 28 H 43 N0 9 is determined by interpretation of the ESIMS and NMR data analysis.
  • the H and 13 C NMR of this compound is similar to that of templamide A except that a new isolated -CH 2 - appear instead of the non-coupled methylene group in templamide A.
  • the small germinal coupling constant of 4.3 Hz is characteristic of the presence of an epoxide methylene group.
  • the purified compound from fraction 6 with molecular weight 523 is further analyzed using a 600 MHz NMR instrument, and has ⁇ NMR values at 6.41, 6.40, 6.01, 5.98, 5.68, 5.56, 4.33, 3.77, 3.75, 3.72, 3.65, 3.59, 3.55, 3.50, 2.44, 2.26, 2.04, 1.96, 1.81, 1.75, 1.37, 1.17, 1.04; and has 13 C NMR values of 172.22, 167.55, 144.98, 138.94, 135.84, 130.14, 125.85, 123.37, 99.54, 82.19, 78.28, 76.69, 71.31, 70.13, 69.68, 48.83, 42.52, 36.89, 33.1 1, 30.63, 25.99, 21.20, 20.38, 18.14, 14.93, 12.84.
  • the other compound from fraction 6 has a molecular mass of 540 in negative ionization mode.
  • the purified compound from fraction 5 with molecular weight 540 is further analyzed using a 500 MHz NMR instrument, and has ⁇ NMR values at 6.22 , 5.81 , 5.69 , 5.66 , 5.65 , 4.64 , 4.31 , 3.93 , 3.22 , 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23.
  • the NMR data indicates that the compound contains amino, ester, carboxylic acid, aliphatic methyl, ethyl, methylene, oxymethylene, methine, oxymethine and sulfur groups.
  • the detailed ID and 2D NMR analysis confirm the structure for the compound as FR901228 as a known compound.
  • the molecular weight for the other active compound (F8H17) from Fraction F8 was assigned as 1080 based on the molecular ion peak at 1081.75 (M + H) in positive ESI mode and further confirmed by the negative ESIMS with base peak at 1079.92. This compound showed UV absorption at 234 nm.
  • Burkholderia sp. A396 is grown in an undefined mineral medium for 5 days (25°C, 200 rpm). Cells are separated from the supernatant by centrifugation at 8,000 g, and the cell-free supernatant is used to test the algaicidal activity against a unicellular algal species (P.
  • a specified increasing amount of supernatant is added into wells of a 24-well polystyrene plate that has the specified algae growing in 750 micro liters of Gorham's medium to determine the dose-response curve for the test supernatant on each algae type. Each treatment is done in two replicates, and the blank growth medium is used as a negative control. The plate is closed with a lid and incubated for 48 hours under constant growth light at room temperature.
  • Example 7 Control of Chlamydomonas reinhardtii by crude extract and fractions of Burkholderia sp.
  • Fractions obtained from the fractionation of crude extract of Burkholderia sp. were tested for algaecide activity against Chlamydomonas reinhardtii.
  • An increasing volume of fraction (with concentration of 20 mg/mL in ethanol) was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing.
  • Each treatment was done in two replicates and the solvent (ethanol) used as a negative control.
  • the plate was closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours, the fluorescence (at 680 nm) of the suspension in each well was measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the negative control was converted into percent control of algal growth.
  • Example 8 Algicidal effect of crude extract and various fractions obtained from Burkholderia sp. against P. subcapitata.
  • the crude extract as well as the fractions obtained from Burkholderia sp. was tested for algicidal activity against a unicellular algal species (P. subcapitata).
  • An increasing volume of pure ethanol solution derived by re-dissolving a known amount of material (10 mg/mL concentration) corresponding to each sample was added into wells of a 24-well polystyrene plate that has the specified algae growing in 750 micro liters of Gorham's medium to determine the algicidal effect of sample (extract/fractions) on unicellular algae.
  • Purified compounds from Burkholderia sp. fermentation broth was tested for algaicidal activity against Chlamydomonas reinhardtii.
  • An increasing volume of the purified compounds (20 mg/mL in ethanol) was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing. Each treatment was done in two replicates and the solvent used as a negative control. The plate was closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours the fluorescence (at 680 nm) of the suspension in each well was measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the negative control was converted into percent control of algal growth.
  • Example 10 Control of Scenedesmus quadricauda by heat-treated Burkholderia sp.
  • Burkholderia sp. was grown in a fermentation broth as previously described. The broth was heat treated at the end of the fermentation to inactivate all cells. The cell free supernatant was tested for algaecide activity against Scenedesmus quadricauda. An increasing volume of supernatant was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing. Each treatment is done in two replicates and the blank growth medium used as a negative control.
  • the plate is closed with a lid and incubated for 72 hours under constant light at room temperature After 72 hours the fluorescence (at 680 nm) of the suspension in each well is measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the untreated control is converted into percent control of algal growth. Results presented in Table 13 below shows control of the specified algae. Tests were run in two replicates and % Control was calculated as a reduction of fluorescence at 680 nm compared with the untreated control.
  • Example 11 Control of Oscillatoria tenius by heat kill Burkholderia sp. fermentation supernatant
  • Burkholderia sp. was grown in a fermentation broth as previously described. The broth was heat treated at the end of the fermentation to inactivate all cells. The cell free supernatant was tested for algaecide activity against Oscillatoria tenius. An increasing volume of supernatant was added to a clear 48 well polystyrene plate with 750 of the specified algae growing. Each treatment is done in two replicates and the blank growth medium used as a negative control. The plate is closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours the absorbance at 680 nm is measured in each well using a SpectraMax M2 plate reader, and the reduction in absorbance compared with the untreated control is converted into percent control of algal growth. Results presented in Table 14 below shows control of the specified algae. Tests were run in two replicates and % control was calculated as a reduction of absorbance at 680 nm compared with the untreated control.
  • Example 13 Efficacy of Burkholderia sp. against two-spotted spidermites infesting marigold plants
  • Marigold, Tagetes erecta, grown in 6" containers were infested with two-spotted spidermite, Tetranychus urticae, by placing leaves extracted from host plant (cotton) onto the test plants. Approximately ten (10) leaves with 30-40 spidermites present were placed on various parts of test plants for fourteen (14) days. Test plants were individually caged following infestation to allow spidermite population to build. Host leaves were removed from test plant. No pesticides were applied to test plants prior to study application. Spray application was applied using a Gen3 spray booth calibrated to 100 gpa. Each replicate was individually caged immediately following application. Cage description; a wire tomato cage 30" height x 12" diameter, covered with antivirus insect screening. Test plants received natural lighting for duration of trial.
  • Test plants were soil watered every twenty- four (24) hours as needed. Plants were evaluated prior to application (pre-count), 3, 5 and 7 days after application. Four leaves were randomly selected and harvested from each replicate equaling a 6 cm sq total surface area evaluated. Actual count was recorded on live and dead two-spotted spidermite. Burkholderia sp. showed slight activity against both TSSM nymphs and adults. This activity shows potential for biopesticide formulations against TSSM. The treatments also reduced the number of live mites observed on samples. This is compelling evidence that MBI206 shows potential for biopesticide formulations against TSSM.
  • Example 14 Efficacy of Burkholderia sp. fermentation supernatant against two- spotted spidermites infesting Marigold plants
  • Marigold plants grown in 6" containers were infested with two- spotted spidermite by placing leaves extracted from host plant (cotton) onto the test plants. Eight to ten (8-10) leaves with approximately 30-40 two-spotted spidermite present were placed on various parts of test plants for fourteen (14) days. Test plants were individually caged following infestation to allow mite population to build. Host leaves were removed from test plant. No pesticides were applied to test plants prior to study application. Plants were treated with either 100% supernatant or 10% supernatant (in water) Spray application was applied to full coverage with no run-off using a disposable hand-sprayer. Test plants were placed research greenhouse on a wire-mesh raised bench and arranged in a complete randomized block design.
  • Test plants received natural lighting for duration of trial. Test plants were soil watered every twenty-four (24) hours as needed. Plants were evaluated prior to application (pre-count), 3, 5, 7 and 14 days after application. Evaluations were taken on a 6cm square total area per replicate. Actual count was recorded on live/dead two-spotted spidermite nymph and live/dead two-spotted spidermite adult.
  • Example 14 Efficacy of Burkholderia sp. formulation (MBI 206) for control of two spotted spidermite (TSM) in strawberry - field data.
  • TSM control under field conditions TSM control under field conditions. 'Strawberry Festival' transplants were set in the field in plastic mulched beds, 13 inches high and 27 inches across the top, and with 4 ft bed spacing. Overhead irrigation was applied for 10 days after setting to aid in establishment of the transplants. Trickle irrigation was used for the remainder of the experiment. Each 12.5-ft. plot consisted of 20 plants in two ten-plant rows per bed. Plots were infested from a laboratory colony in four sessions with 10 to 20 motile TSM, per plant. Each session accomplished the infestation of one block of the experiment. The experiment consisted of treatments of various rates and schedules of application of miticides, some combined with an adjuvant, and a non- treated check.
  • Treatments were replicated four times in a RCB design. Savey and Acramite treatments were applied before TSM densities reached threshold levels (6 Jan); the remainder of the treatment programs began 2 wks later. Treatments were applied using a hand-held sprayer with a spray wand outfitted with a nozzle containing a 45 -degree core and a number four disc. The sprayer was pressurized by C0 2 , to 40 psi, and calibrated to deliver 100 gal per acre. Pre- treatment samples were taken on Day 1 and sampling continued weekly through 2 wks after the last application of treatments. Samples consisted of ten randomly selected leaflets per plot and were collected from the middle one-third stratum of the plants.
  • Example 15 Control of citrus rust mites (Phyllocoptruta olewora) on citrus under filed conditions
  • MBI 206 (formulated broth of Burkhoderia sp.) was sprayed on Valencia Sweet Orange at I, 2, and 3 gal/acre in combination with 0.25% v/v/ of LI-700 (surfactant) and delivered in a volume of 100 GPA. A single treatment was delivered and compared to an untreated sample. Mite counts were performed pre-treatment, and then at 1, 7, 10 and 14 days after treatment. Mite counts were an average of 10 fruits per treatment per sampling point. A reduction in the number of mites present in the MBI 206 treatments was observed at 14 days after treatments with 1 and 2 gal/acre MBI 206 (approximately 6-8 mites per count), when compared to the untreated control (approx. 16 mites per count).
  • Example 16 Insecticidal (sucking contact) activity of Templamide, FR901465 and FR901228 against milkweed bugs.
  • the insecticidal activity of the pure compounds templamide B (MBI 206; MW 537), FR 901465 (MBI 206; MW 523) and FR901228 (MBI 206; MW 540) were tested in a laboratory assay using a sucking contact bioassay system.
  • the compounds were dissolved in 100% ethanol to concentrations of lmg/mL.
  • Individual 4 th instar milkweed bugs, penultimate nymph, larvae were placed in 5C Rubbermaid container with 2 sunflower seeds in each tub and 1 water cup (water in contact cup with cotton wick) into each tub.
  • a Hamilton Micropipette was used to apply 1 uL (1 drop) of compound onto abdomen of milkweed bugs (MWB) of each larvae.
  • the insecticidal activity of the four compounds, templamide A, templamide B, FR901465 & FR901228 isolated from Burkholderia were tested in a laboratory assay using a 12 well plate with treated green beans bioassay system.
  • the compound was dissolved in 100% ethanol to concentrations of 1 mg/mL and 500 of this sample was added to 3.5 mL of water to make a total volume of 4 mL containing 0.25 mg/mL concentration of the compound.
  • Green beans were washed earlier in bleach solution and then sat in water to rinse. Beans were dried before using and then were cut with scissors to fit into wells of 12 - well plate.
  • compound FR 901465 was found to be the most potent with mortality of 91.2%, followed by templamide with B 69.2%, and FR901228 with 51.7%.
  • the templamide A was inactive in the Lygus feeding bioassay.
  • the positive control used in this testing was Avid (Avemectin) at the rate of 13 ⁇ /10 mL.
  • FR 901228 The pure sample of FR 901228 was tested using an in vitro 96-well plastic cell- culture plate bioassay. 15-20 nematodes in a 50 ⁇ water solution were exposed to 3 ⁇ of a 20 mg/ml solution of FR 901228 for a 24 hour period at 25C. Once the incubation period was completed, results were recorded based on a visual grading of immobility of the juvenile nematodes (J2's) in each well treated with compounds; each treatment was tested in replicate of 4 wells. Three controls are included in each trial; 1 positive (1% Avid) & 2 negative (DMSO & water). Trials (Tl) was carried out using Free living nematodes (FLN) and trail (T2) was carried out using M.
  • FLN Free living nematodes
  • T2 Trail
  • FR 901228 (MW 540) showed the excellent control with immobility of 75% against free living nematodes as compared to M. incognita with 75% immobility.
  • Rhizobial strategies to enhance symbiotic interaction Rhizobitoxine and 1- aminocyclopropane- 1 -carboxylate deaminase. Microbes Environ. 19: 99- 1 1 1. 2004.
  • Pettit, G. et al. "Isolation of Labradorins 1 and 2 from Pseudomonas syringaeT J. Nat. Prod. 65: 1793- 1797. 2002.
  • Vermis K., et al. "Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex.” J. Med. Microbiol 51 : 937-940. 2002.
  • Watanabe, H. et al. "A new antibiotic SF2583A, 4-chloro-5-(3'indoly)oxazole, produced by Streptomyces.” Meiji Seika Kenkyu Nenpo 27: 55-62. 1988. Wayne et al., "Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics.” Int. J. Syst. Evol. Microbiol. 37: 463-464. 1987.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Catching Or Destruction (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

A species of Burkholderia sp with no known pathogenicity to vertebrates but with pesticidal activity (e.g., plants, algae, arachnids, insects, fungi, weeds and nematodes) as well as methods for controlling algae using said species of Burkholderia. Also provided are natural products derived from a culture of said species and methods of controlling algae and/or arachnids using said natural products.

Description

ISOLATED BACTERIAL STRAIN OF THE GENUS BURKHOLDERIA
AND PESTICIDAL METABOLITES THEREFROM-FORMULATIONS AND USES
TECHNICAL FIELD
Provided herein is a species of Burkholderia sp with no known pathogenicity to vertebrates, such as mammals, fish and birds but pesticidal activity against plants, algae, insects, fungi, arachnids, such as mites and nematodes and formulations and compositions comprising said species. Also provided are natural products, formulations and compositions derived from a culture of said species and methods of controlling algae and arachnids, such as mites, using said Burkholderia and/or said natural products .
BACKGROUND
Natural products are substances produced by microbes, plants, and other organisms.
Microbial natural products offer an abundant source of chemical diversity, and there is a long history of utilizing natural products for pharmaceutical purposes . One such compound is FR901228 isolated from Chromobacterium and has been found to be useful as an antibacterial agent and antitumor agent (see, for example, Ueda et al., US Patent No. 7,396,665).
However, secondary metabolites produced by microbes have also been successfully found to have uses for weed and pest control in agricultural applications (see, for example, Nakajima et al. 1991 ; Duke et al., 2000; Lydon & Duke, 1999; Gerwick et al., US Patent No. 7,393 ,812). Microbial natural products have been also successfully developed into agricultural insecticides (see, for example, Salama et al. 1981 ; Thompson et al., 2000; Krieg et al. 1983). Sometimes, such natural products have been combined with chemical pesticides (see, for example, Gottlieb, US Patent No. 4,808,207).
Acaricides
Acaricides are compounds that kill mites (miticides) and ticks (ixodicides). This class of pesticides is large and includes antibiotics, carbamates, formamidine acaricides, pyrethroids, mite growth regulators, and organophosphate acaricides. Besides chemical pesticides, diatomaceous earth and fatty acids can be used to control mites. They typically work through disruption of the cuticle, which dries out the mite. In addition, some essential oils such as peppermint oil, are used to control mites. In spite of the great variety of known acaricide compounds, mites remain a serious problem in agriculture because of the damage they cause to the crops. They can produce several generations during one season, which facilitates rapid development of resistance to the acaricide products used. Hence, new pesticide products with new target sites and novel modes of action are critically needed. Algicides
Algae come in many forms. These include: (1) microscopic, one-celled algae, filamentous algae that resemble hair, algae that grow in sheets and macroalgae that look like plants; (2) algae that live inside the outer integument ("skin") or calcium shell of some corals, anemones, and other sessile invertebrates called zooxanthellae; (3) very hard-to-remove little dots of green that sometimes grow on aquarium panels which also are not algae, but diatom or radiolarian colonies (microscopic, one-celled, animals with hard shells) with algae incorporated in their matrix.
Growth of algae in a small amount of water retained in the container over a significant period of time can be considerable, which is highly undesirable. As a result, algae can cause clogging of filters in water filtration devices , undesirable smells and appearance in pools, exhaustion of dissolved oxygen, and suffocation of fishes and shellfishes to death. In addition to being present in water, algae may also be present in industrial materials which are exposed to the weather and light, such as coatings containing organic film formers on mineral substrates, textile finishes, wood paints and also materials made of plastics.
Algae control can be divided into four categories: biological, mechanical, physical and chemical controls. A few pertinent facts hold for all methods of algae control. For example, Turbo and Astrea snails, some blennies, some tangs, among others are good grazers . Snails are the most widely used scavengers, and generally the best choice. Some parts of the country seem to favor the use of sea urchins, dwarf angels. The former die too easily and move the decor about, and the latter can be problematical with eating expensive invertebrates. Other methods include functional protein skimmers, with or without ozone and ultraviolet sterilizers. These physical filters remove and destroy algae on exposure and help oxidize nutrients as the water is circulated. Antibiotics may also be used. However, they treat the symptoms only without dealing with the cause(s) of the algae problem. The factors can contribute to water system being out of balance. Copper, usually in the form of copper sulfate solution has been employed as an algicide,, as well as a general epizootic parasite preventative. This metal is useful in treatment and quarantine tanks, dips and fish-only arrangements but it is persistent and toxic to all life, especially non-fish. Burkholderia
The Burkholderia genus, β-subdivision of the proteobacteria, comprises more than 40 species that inhabit diverse ecological niches (Compant et al., 2008). The bacterial species in the genus Burkholderia are ubiquitous organisms in soil and rhizosphere (Coenye and
Vandamme, 2003; Parke and Gurian-Sherman, 2001). Traditionally, they have been known as plant pathogens, B. cepacia being the first one discovered and identified as the pathogen causing disease in onions (Burkholder, 1950). Several Burkholderia species have developed beneficial interactions with their plant hosts (see, for example, Cabballero-Mellado et al., 2004, Chen et al., 2007). Some Burkholderia species have also been found to be opportunistic human pathogens (see, for example, Cheng and Currie, 2005 and Nierman et al., 2004). Additionally, some Burkholderia species have been found to have potential as biocontrol products (see for example, Burkhead et al., 1994; Knudsen et al., 1987; Jansiewicz et al., 1988; Gouge et al., US Patent Application No. 2003/0082147; Parke et al., US Patent No. 6,077,505; Casida et al., US Patent No. 6,689,357; Jeddeloh et al., WO2001055398; Zhang et al., US Patent No. 7,141 ,407). Some species of in this genus have been effective in bioremediation to decontaminate polluted soil or groundwater (see, for example, Leahy et al. 1996). Further, some Burkholderia species have been found to secrete a variety of extracellular enzymes with proteolytic, lipolytic and hemolytic activities, as well as toxins, antibiotics, and siderophores (see, for example, Ludovic et al., 2007; Nagamatsu, 2001).
PCT/US201 1/026016 discloses a Burkholderia species , particularly Burkholderia A396 and compounds derived from said species with no known pathogenicity to vertebrates with activity against plants, insects, fungi and nematodes.
Oxazoles, Thiazoles and Indoles
Oxazoles, thiazoles and indoles are widely distributed in plants, algae, sponges, and microorganisms. A large number of natural products contain one or more of the five-membered oxazole, thiazole and indole nucleus/moieties. These natural products exhibit a broad spectrum of biological activity of demonstrable therapeutic value. For example, bleomycin A (Tomohisa et al), a widely prescribed anticancer drug, effects the oxidative degradation of DNA and uses a bithiazole moiety to bind its target DNA sequences (Vanderwall et al, 1997). Bacitracin (Ming et al, 2002), a thiazoline-containing peptide antibiotic, interdicts bacterial cell wall new biosynthesis by complexation with C55-bactoprenolpyrophosphate. Thiangazole (Kunze et al., 1993) contains a tandem array of one oxazole and three thiazolines and exhibits antiviral activity (Jansen et al, 1992). Yet other oxazole/thiazole-containing natural products such as thiostrepton (Anderson et al, 1970) and GE2270A (Selva et al, 1997) inhibit translation steps in bacterial protein synthesis. More than 1000 alkaloids with the indole skeleton have been reported from microorganisms. One-third of these compounds are peptides with masses beyond 500 Da where the indole is tryptophan derived. The structural variety of the remaining two- thirds is higher, and their biological activity seems to cover a broader range, including antimicrobial, antiviral, cytotoxic, insecticidal, antithrombotic, or enzyme inhibitory activity.
BRIEF SUMMARY
Provided herein is an isolated strain of a non-Burkholderia cepacia, non-Burkholderia plantari, non-Burkholderia gladioli, Burkholderia sp. which has the following characteristics:
(a) Has a 16rRNA gene sequence comprising a forward sequences having at least
99.5% identity to the sequences set forth in SEQ ID NO:8, 1 1 and 12 and a reverse sequence having at least 99.5% identity to SEQ ID NO:9, 10, 13- 15;
(b) Has pesticidal, in particular, herbicidal, algicidal, acaricidal, insecticidal, fungicidal and nematicidal activity;
(c) Produces at least one of the compounds selected from the group consisting of:
(i) a compound having the following properties: (a) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (b)な NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; (c) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and (c) an High Pressure Liquid
Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient;
(ii) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens;
(iii) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygen and 2 nitrogens;
(iv) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons and at least eight oxygen and one nitrogen and
(d) is non-pathogenic (non-infectious) to vertebrate animals , such as mammals , birds and fish; (e) is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin , imipenem, and a combination of sulphamethoxazole and trimethoprim and
(f) contains the fatty acids 16:0, cyclo 17:0, 16:0 3- OH, 14:0, cyclo 19:0 co8c, 18:0. In a particular embodiment, the strain has the identifying characteristics of a
Burkholderia A396 strain (NRRL Accession No. B-50319).
In a particular embodiment, the first substance is a supernatant. In yet even a more particular embodiment, the supernatant is a cell-free supernatant.
Also provided is a combination, particularly a composition or formulation comprising
(a) a first substance selected from the group consisting of a pure culture, cell fraction or supernatant derived from the Burkholderia strain set forth above or extract thereof for use optionally as a pesticide; and
(b) optionally at least one of a carrier, diluent, surfactant, adjuvant, or chemical or biological pesticide (e.g., algicide, acaricide, herbicide, fungicide, insecticide, nematocide and particularly, algicide or acaricide (e.g., miticide)). In a related aspect, provided herein is a seed coated with said combination or composition.
In a particular embodiment, the composition or formulation may comprise:
(a) a first substance selected from the group consisting of a pure culture, cell fraction or supernatant derived from the Burkholderia strain set forth above or extract thereof for use optionally as a pesticide;
(b) fatty acids 16:0, cyclo 17:0, 16:0 3-OH, 14:0, cyclo 19:0 co8c, 18:0, C 1-C7 paraben,
C2-C 17 alcohol and detergent and
(c) optionally another substance wherein said other substance is a pesticide (e.g., fungicide, insecticide, algicide, acaricide (e.g., miticide), herbicide, nematocide).
In a particular embodiment, the C 1-C7 aliphatic paraben is present in the amount of about 0.01 - 5 %, the C2-C 17 alcohol is present in the amount of about 0.00-10 % and the detergent is present in the amount of about 0.001-10 % .
Also provided are the pesticidal substances derived from the formulation set forth above, combinations comprising said pesticidal subtances and another chemical or biological pesticide and methods for producing these pesticidal substances . In a particular embodiment, these pesticidal substances comprise at least one of the following characteristics:
(a) has pesticidal properties and in particular, herbicidal, insecticidal, nematicidal, and fungicidal properties;
(b) has a molecular weight of about 210-240 and more particularly, 222 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(e) has 1H NMR values of δ 7.90, 6.85, 4.28, 1.76, 1.46, 1.38, 1.37, 0.94; (d) has 13C NMR values of δ 166.84, 162.12, 131.34 (2C), 121.04, 1 14.83 (2C), 64.32, 31.25, 28.43, 25.45, 22.18. 12.93;
(e) has an High Pressure Liquid Chromatography (HPLC) retention time of about 15-20 minutes, more specifically about 17 minutes and even more specifically about 17.45 min on a reversed phase C- 18 HPLC (Phenomenex, Luna 5μ C I 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90-0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0 - 90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
(f) The 13C NMR spectrum exhibited 13 discrete carbon signals which were attributed to one methyl, five methylene carbons, four methines, and three quaternary carbons;
(g) has a molecular formula of C13H1803 which was determined by interpretation of the ESIMS and NMR data analysis;
(h) has UV absorption bands between about 210-450 nm and most particularly at about 248 nm.
Also rovided are compounds having the structure shown below:
Figure imgf000007_0001
Wherein
X, is independently -O, -NR, or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, and R6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In particular the substance may have the structure
Figure imgf000007_0002
Wherein X, is independently -O, -NR., or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, and R6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a more particular embodiment, the compound is butyl parben with the following structur
Figure imgf000008_0001
In a more particular embodiment, the compound is hexyl parben with the following structure:
Figure imgf000008_0002
In a more particular embodiment, the compound is octyl parben with the following structure:
Figure imgf000008_0003
The pesticidal substance(s) derived from the formulation set forth above may obtained by
(a) providing the formulation set forth above;
(b) incubating or storing the formulation provided for a sufficient time (e.g., between about 1 day to about 6 months) and at a sufficient temperature ( e.g., between about 3C to about 50 C) to produce the pesticidal substance(s) and
(c) isolating the pesticidal substance.
In a related aspect, disclosed is a method for modulating proliferation and/or growth of a pest including but not limited to insect, fungi, weeds, nematode, arachnid, algae and particularly, algae, arachnid (e.g., mites, ticks) comprising applying to a location where modulation of proliferation and/or growth of a pest is desired an amount of:
(I)(a) at least one or more substances selected from the group consisting of a
substantially pure cell culture, cell fraction, supernatant derived from the Burkholderia strain set forth above or extract thereof and (b) optionally another substance, wherein said substance is a pesticide, or (II) the combination, composition or formulation or pesticidal substances derived from said formulation set forth above, effective to modulate proliferation and/or growth of a pest at said location.
Disclosed herein are isolated compounds which are optionally obtainable or derived from Burkholderia species, or alternatively, organisms capable of producing these compounds that can be used to control various pests, particularly plant phytopathogenic pests, examples of which include but are not limited to insects, nematodes, bacteria, fungi. These compounds may also be used as herbicides, acaricides or algicides.
In particular, the isolated pesticidal compounds may include but are not limited to: (A) a compound having the following properties: (i) a molecular weight of about 525-
555 as determined by Liquid Chromatography/Mas s Spectroscopy (LC/MS); (ii)な NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; (iii) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23, 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and (iv) an High Pressure Liquid
Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient;
(B) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens;
(C) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygen and 2 nitrogens;
(D) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons and at least eight oxygen and one nitrogen and
(E) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen.
In a particular embodiment, the isolated compounds may include but are not limited to: (A) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one carboxylic ester group, at least 17 carbons, at least 3 oxygens and at least 2 nitrogens; and which has at least one of the following: (i) a molecular weig ht of about 275-435; (ii) 1H NMR δ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08; (iii) 13C NMR values of δ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7; (iv) an High Pressure Liquid Chromatography (HPLC) retention time of about 10-20 minutes on a reversed phase C-18 HPLC column using a watenacetonitrile (CH3CN) with a gradient solvent system and UV detection of 210 nm; (v) UV absorption bands at about 226, 275, 327 nm.;
(B) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons and at least 2 oxygens, at least 2 nitrogens; and at least one of the following characteristics: (i) a molecular weight of about 240-290 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (ii) H NMR δ values at about 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93; (iii) 13C NMR values of δ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 1 15.2, 1 15.2, 41.2, 35.3, 26.7, 21.5, 21.5; (iv) a High Pressure Liquid
Chromatography (HPLC) retention time of about 6-15 minutes, on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) gradient and (v) UV absorption bands at about 230, 285, 323 nm;
(C) a non-epoxide compound comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygens and one nitrogen and at least one of the following
characteristics: (i) a molecular weight of about 530-580 as determined by Liquid
Chromatography/Mass Spectroscopy (LC/MS); (ii)な NMR values of δ 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73, 3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04; (iii) 13C NMR values of δ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41 ; (iv) a High Pressure Liquid Chromatography (HPLC) retention time of about 7- 12 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) with a gradient solvent system and UV detection of 210 nm; (v) a molecular formula of C28H45NO10 which was determined by interpretation of the ESIMS and NMR data analysis; (vi) UV absorption bands between about 210-450 nm;
(D) a compound comprising (i) at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen, (ii) C NMR values of 5174.03, 166.12, 143.63, 137.50, 134.39, 128.70, 126.68, 124.41, 98.09, 80.75, 76.84, 75.23, 69.87, 69.08, 68.69, 68.60, 48.83, 41.07, 35.45, 31.67, 29.19, 27.12, 24.55, 19.20, 18.95, 13.48, 1 1.39, 8.04, (iii) a molecular formula of C28H43N09 and at least one of: (a) !H NMR δ values at about 6.41, 6.40, 6.01, 5.97, 5.67, 5.55, 4.33, 3.77, 3.75, 3.72, 3.64, 3.59, 3.54, 3.52, 2.44, 2.34, 2.25, 1.96, 1.81, 1.76, 1.42, 1.38, 1.17, 1.12, 1.04; (b) an High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, on a reversed phase C-18 HPLC column using a watenacetonitrile (CH3CN) gradient; (c) UV absorption band between about 210-450 nm and most particularly at about 234 nm.
In a more particular embodiment, provided are compounds including but not limited to:
(A) a compound having the structure ##STR001##
Figure imgf000011_0001
or a pesticidally acceptable salt or steriosomers thereof, wherein M is 1 , 2, 3 or 4; n is 0, 1 , 2, or 3; p and q are independently 1 or 2; X is O, NH or NR; Rl , R2 and R3 are the same or different and independently an amino acid side-chain moiety or an amino acid side-chain derivative and R is a lower chain alkyl, aryl or arylalkyl moiety;
(B) a compound having the structure ##STR002##
Figure imgf000011_0002
wherein X, Y and Z are each independently— O, — NR1, or— S, wherein R1 is — H or Ci-Cio alkyl; R1, R2 and m are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl and "m" may be located anywhere on the oxazole ring;
(C) a compound having the structure ##STR002a##.
Figure imgf000012_0001
wherein R1 is— H or C1-C10 alkyl; R2 is an alkyl ester;
(D) a compound having the structure ##STR003##
Figure imgf000012_0002
wherein: X and Y are each independently—OH, — NR1, or— S, wherein R1 is— H or C1-C10 alkyl; R1, R2 and m, a substituent on the oxazole ring, are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
(E) a compound having the structure ##STR003a##
Figure imgf000012_0003
wherein R1 is — H or C1-C10 alkyl;
(F) a compound having the structure ##STR004a##
Figure imgf000013_0001
Wherein X, Y and Z are each independently -O, -NR, or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
(G) a compound having the structure ##STR004b##
Figure imgf000013_0002
wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
(H) a compound having the structure ##STR004c##
Figure imgf000013_0003
wherein R1, R2, R3, R4, R5, R6, R7, R8 , R11, are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
(I) a compound having the structure ##STR005##
Figure imgf000014_0001
wherein X and Y are each independently—OH, — NR1, or— S, wherein R1, R2 are each independently— H, alkyl (e.g., C1-C10 alkyl), substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
a compound having the structure ##STR006a##
Figure imgf000014_0002
Wherein X, Y and Z are each independently -O, -NR, or -S , wherein R is H or C1-C10 alkyl; R1 ; R2, R3, R4, R5, R6, R7, R8 , R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a most particular embodiment, the compounds may include but are not limited to
(i) templazole A;
(ii) templazole B;
(iii) templamide A;
(iv) templamide B;
(v) FR901228;
Figure imgf000014_0003
(Vii)
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
(xl) FR901465;
(xli) F8H17, an active compound from fraction F8, which has been assigned a molecular weight of 1080 based on the molecular ion peak at 1081.75 (M + H) in positive ESI mode and further confirmed by the negative ESIMS with base peak at 1079.92. This compound showed UV absorption at 234 nm.
In a related aspect, disclosed is a method for modulating proliferation and/or growth of a pest (e.g., algae, arachnid, nematode, insect, fungus) comprising applying to a location where modulation of proliferation and/or growth of a pest (e.g., algae, arachnid, nematode, insect, fungus) is desired an amount of
(I) (a) the isolated compounds set forth above and (b) optionally another substance, wherein said substance is an algicide or
(II) the composition or combination set forth above
in an amount effective to modulate proliferation and/or growth of pest at said location.
In another related aspect, disclosed is a method for modulating proliferation and/or growth of algae and/or modulating pest infestation in a plant and/or a method for modulating emergence and/or growth of monocotyledonous , sedge or dicotyledonous weeds comprising applying to a location where modulation of proliferation and/or growth of algae and/or modulation of infestation of an arachnid and/or modulation of emergence and/or growth of said weed is desired an amount of
(A) the formulation set forth above or pesticidally effective substance derived therefrom;
(B) the combination set forth above;
(C) templamide A;
(D) templamide B ;
(E) FR901465;
(F) FR901228
[effective to modulate said proliferation and/or growth of algae and/or pest infestation and/or emergence or growth of monocotyledonous, sedge or dicotyledonous weeds at said location. The nematode and/or insect infestation is modulated with templamide A, templamide B , FR901465 and/or FR901228. In a more particular embodiment, infestation of insects, specifically Oncopeltus sp. (e.g., O.fasciatus) and/or Lygus sp. and/or free living nematodes and/or parasitic nematodes (e.g., M. incognita) are modulated.
BRIEF DESCRIPTION OF THE FIGURES
Figure 1 shows the comparison of the growth rate of Burkholderia A396 to
Burkholderia multivorans ATCC 17616.
Figure 2 shows the general scheme used to obtain fractions from formulated MBI-206. Figure 3 shows the general scheme used to obtain fractions and compounds from an MBI-206 culture.
Figure 4 shows insecticidal (sucking) activities of tested compounds against milkweed bugs (Oncopeltus fasciatus) .
Figure 5 shows insecticidal (feeding) activities of pure compounds against Lygus
Hesperus.
DETAILED DESCRIPTION OF EMBODIMENTS
While the compositions and methods heretofore are susceptible to various modifications and alternative forms, exemplary embodiments will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims .
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is included therein. Smaller ranges are also included. The upper and lower limits of these smaller ranges are also included therein, subject to any specifically excluded limit in the stated range.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the preferred methods and materials are now described.
It must be noted that as used herein and in the appended claims, the singular forms "a," "and" and "the" include plural references unless the context clearly dictates otherwise.
As defined herein, "derived from" means directly isolated or obtained from a particular source or alternatively having identifying characteristics of a substance or organism isolated or obtained from a particular source.
As defined herein, an "isolated compound" is essentially free of other compounds or substances, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by analytical methods, including but not limited to chromatographic methods, electrophoretic methods. As used herein, the term "alkyl" refers to a monovalent straight or branched chain hydrocarbon group having from one to about 12 carbon atoms, including methyl, ethyl, n- propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-hexyl, and the like.
As used herein, "substituted alkyl" refers to alkyl groups further bearing one or more substituents selected from hydroxy, alkoxy, mercapto, cycloalkyl, substituted cycloalkyl, heterocyclic, substituted heterocyclic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, aryloxy, substituted aryloxy, halogen, cyano, nitro, amino, amido, — C(0)H, acyl, oxyacyl, carboxyl, sulfonyl, sulfonamide, sulfuryl, and the like.
As used herein, "alkenyl" refers to straight or branched chain hydrocarbyl groups having one or more carbon-carbon double bonds, and having in the range of about 2 up to 12 carbon atoms, and "substituted alkenyl" refers to alkenyl groups further bearing one or more substituents as set forth above.
As used herein, "alkynyl" refers to straight or branched chain hydrocarbyl groups having at least one carbon-carbon triple bond, and having in the range of about 2 up to 12 carbon atoms, and "substituted alkynyl" refers to alkynyl groups further bearing one or more substituents as set forth above.
As used herein, "aryl" refers to aromatic groups having in the range of 6 up to 14 carbon atoms and "substituted aryl" refers to aryl groups further bearing one or more substituents as set forth above.
As used herein, "heteroaryl" refers to aromatic rings containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and "substituted heteroaryl" refers toheteroaryl groups further bearing one or more substituents as set forth above.
As used herein, "alkoxy" refers to the moiety— O-alkyl-, wherein alkyl is as defined above, and "substituted alkoxy" refers to alkoxyl groups further bearing one or more substituents as set forth above.
As used herein, "thioalkyl" refers to the moiety— S-alkyl-, wherein alkyl is as defined above, and "substituted thioalkyl" refers to thioalkyl groups further bearing one or more substituents as set forth above.
As used herein, "cycloalkyl" refers to ring-containing alkyl groups containing in the range of about 3 up to 8 carbon atoms, and "substituted cycloalkyl" refers to cycloalkyl groups further bearing one or more substituents as set forth above.
As used herein, "heterocyclic", refers to cyclic (i.e., ring-containing) groups containing one or more heteroatoms (e.g., N, O, S, or the like) as part of the ring structure, and having in the range of 3 up to 14 carbon atoms and "substituted heterocyclic" refers to heterocyclic groups further bearing one or more substituent's as set forth above.
As used herein "algae" refers to any of various chiefly aquatic, eukaryotic,
photosynthetic organisms, ranging in size from single-celled forms to the giant kelp. The term may further refer to photosynthetic protists responsible for much of the photosynthesis on Earth. As a group, the algae are polyphyletic. Accordingly, the term may refer to any protists considered to be algae from the following groups, alveolates, chloraraachniophytes,
cryptomonads, euglenids, glaucophytes, haptophytes, red algae such as Rhodophyta, stramenopiles, and viridaeplantae. The term refers to the green, yellow-green, brown, and red algae in the eukaryotes. The term may also refer to the cyanobacteria in the prokaryotes. The term also refers to green algae, blue algae, and red algae.
As used herein "algicide" refers to one or more agents, compounds and/or compositions having algaestatic and/or algaecidal activity.
As used herein "algicidal" as used herein means the killing of algae.
As used herein "algistatic" as used herein means inhibiting the growth of algae, which can be reversible under certain conditions.
The Burkholderia Strain
The Burkholderia strain set forth herein is a non-Burkholderia cepacia complex, non- Burkholderia plantari, non-Burkholderia gladioli, Burkholderia sp and non-pathogenic to vertebrates, such as birds, mammals and fish. This strain may be isolated from a soil sample using procedures known in the art and described by Lorch et al., 1995. The Burkholderia strain may be isolated from many different types of soil or growth medium. The sample is then plated on potato dextrose agar (PDA). The bacteria are gram negative, and it forms round, opaque cream-colored colonies that change to pink and pinkish-brown in color and mucoid or slimy over time.
Colonies are isolated from the potato dextrose agar plates and screened for those that have biological, genetic, biochemical and/or enzymatic characteristics of the Burkholderia strain of the present invention set forth in the Examples below. In particular, the Burkholderia strain has a 16S rRNA gene comprising a forward sequence that is at least about 99.5% , more preferably about 99.9% and most preferably about 100% identical to the sequence set forth in SEQ ID NO: 8, 1 1 and 12 and a forward sequence that is at least about 99.5% , more preferably about 99.9% and most preferably about 100% identical to the sequence set forth in SEQ ID NO: 9, 10, 13 , 14 and 15 as determined by clustal analysis. Furthermore, as set forth below, this Burkholderia strain may, as set forth below, have pesticidal activity, particularly, virucidal, herbicidal, germicidal, fungicidal, nematicidal, bactericidal and insecticidal and more particularly, herbicidal, algicidal, acaricidal, insecticidal, fungicidal and nematicidal activity. It is not pathogenic to vertebrate animals, such as mammals, birds, and fish.
Additionally, the Burkholderia strain produces at least the pesticidal compounds set forth in the instant disclosure.
The Burkholderia strain is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin , imipenem, and a combination of sulphamethoxazole and trimethoprim and contains the fatty acids 16:0, cyclo 17:0, 16:0 3- OH, 14:0, cyclo 19:0, 18:0.
This Burkholderia strain may be obtained by culturing a microorganism having the identifying characteristics of Burkholderia A396 (NRRL Accession No. B-50319) on Potato Dextrose Agar (PDA) or in a fermentation medium containing defined carbon sources such as glucose, maltose, fructose, galactose, and undefined nitrogen sources such as peptone, tryptone, soy tone, and NZ amine. Algicidal and Acaricidal Compounds
The algicidal and acaricidal compounds disclosed herein may have the following properties: (a) is obtainable from a novel Burkholderia species, e.g., A396; (b) is, in particular, toxic to most common agricultural insect pests; (c) has a molecular weight of about 525-555 and more particularly, 540 as determined by Liquid Chromatography /Mass Spectroscopy (LC/MS) ; (d) hasな NMR values of 6.22 , 5.81 , 5.69 , 5.66 , 5.65 , 4.64 , 4.31 , 3.93 , 3.22 , 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; (d) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 (e) has an High Pressure Liquid Chromatography (HPLC) retention time of about 10- 15 minutes, more specifically about 12 minutes and even more specifically about 12.14 min on a reversed phase C- 18 HPLC (Phenomenex, Luna 5μ C 18 (2) 100A, 100 x 4.60 mm) column using a
water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min 90-0 % aqueous CH3CN, 20-24 min 100% CH3CN, 24-27 min, 0-90 % aqueous CH3CN, 27-30 min 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm (f) has a molecular formula, C24H36N406S2, which is determined by interpretation ofな, 13C NMR and LC/MS data (g) a 13C NMR spectrum with signals for all 24 carbons, including 5 methyl, 4 methylene, 9 methine, and 6 quaternary carbons and (g)な NMR spectrum displaying characteristics of a typical depsipeptide, illustrating three -amino protons [4.63 , 4.31 , 3.93] , and one ester carbinol proton [5.69] . In a particular embodiment, the compound has the structure ##STR001##:
Figure imgf000025_0001
Or a pesticidally acceptable salt or stereoisomers thereof, wherein M is 1 , 2, 3 or 4; n is 0, 1 , 2, or 3; p and q are independently 1 or 2; X is O, NH or NR; Rl , R2 and R3 are the same or different and independently an amino acid side-chain moiety or an amino acid side-chain derivative and R is a lower chain alkyl, aryl or arylalkyl moiety.
In an even more particular embodiment, the compound has the structure of FR901228:
Figure imgf000025_0002
##STR002## wherein: X, Y and Z are each independently— O, — NR1, or— S, wherein R1 is— H or C1-C10 alkyl; R1, R2 and m are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In an even another particular embodiment, Family ##STR002## compounds may be the compounds set forth in (vi)-(xix).
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
Figure imgf000026_0004
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000028_0002
These are from either natural materials or compounds obtained from commercial sources or by chemical synthesis. Natural sources of Family ##STR002## compounds include, but are not limited to, microorganisms, alga, and sponges. In a more particular embodiment, microorganisms which include the Family ##STR002## compounds include but are not limited to, or alternatively, Family ##STR002## compounds may be derived from species such as Streptoverticillium waksmanii (compound vi) (Umehara, et al., 1984), Streptomyces pimprina (compound vii) (Naiket al., 2001), Streptoverticillium olivoreticuli (compounds viii, ix, x) (Koyama Y., et al., 1981), Streptomyces sp (compounds xi, xii) (Watabe et al., 1988),
Pseudomonas syringae (compounds xiii, xiv) (Pettit et al., 2002). Family ##STR002## compounds may also be derived from algae including but not limited to red alga (compound xv) (N'Diaye, et al., 1996), red alga Martensia fragilis (compound xvi) (Takahashi S . et al., 1998), Diazona chinensis (compounds xvii & xviii) (Lindquist N. et al., 1991), Rhodophycota haraldiophyllum sp (compound xix) (Guella et al., 1994).
Also provided is ##STR003##:
Figure imgf000029_0001
wherein: X and Y are each independently—OH,— NR1, or — S, wherein R1 is — H or C1-C10 alkyl; R1, R2 and m, a substituent on the oxazole ring, are each independently — H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
Further provided is ##STR005##
Figure imgf000029_0002
wherein X and Y are each independently—OH,— NR1, or— S, wherein R1, R2 are each independently— H, alkyl (e.g., Ci-Cio alkyl), substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a particular embodiment, Family ##STR005## compounds such as compounds from xx-xxiii set forth below may be derived from natural or commercial sources or by chemical synthesis .
Figure imgf000029_0003
(xxi)
Figure imgf000030_0001
Natural sources of Family ##STR005## compounds include, but are not limited to plants, corals, microorganisms, and sponges. The microorganisms include, but are not limited to Streptomyces griseus (compound xx) (Hirota et al., 1978), Streptomyces albus (compound xxi) (Werner et al., 1980). Family STR004 compounds may also be derived from algae including but not limited to Haraldiophyllum sp (compound xxii (Guella et al., 2006), and red algae (compound xxiii) (N'Diaye et al., 1994).
In one embodiment, the compound may be derived from or is obtainable from a microorganism, and in particular from Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons and at least eight oxygen and one nitrogen. The compound further comprises at least one of the following characteristics:
(a) pesticidal properties and in particular, nematicidal, fungicidal, insecticidal, acaricidal, algicidal and herbicidal properties;
(b) a molecular weight of about 530-580 and more particularly, 555 as determined by
Liquid Chromatography/Mass Spectroscopy (LC/MS);
(c)な NMR values of δ 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73, 3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04; (d) 13C NMR values of δ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41 ;
(e) an High Pressure Liquid Chromatography (HPLC) retention time of about 7- 12 minutes, more specifically about 10 minutes and even more specifically about 10.98 min on a reversed phase C- 18 HPLC (Phenomenex, Luna 5μ C I 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90-0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0-90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
(f) 13C NMR spectrum which exhibits 28 discrete carbon signals which may be attributed to six methyls, four methylene carbons, and thirteen methines including five sp2, four quaternary carbons;
(g) a molecular formula of C28H45NO10 which was determined by interpretation of the ESIMS and NMR data analysis;
(h) UV absorption bands between about 210-450 nm and most particularly at about 234 nm.
Also provided are compounds having the structure ##STR004a##:
Figure imgf000031_0001
Wherein X, Y and Z are each independently -O, -NR, or -S, wherein R is H or Ci-Cio alkyl; R1, R2, R3, R4, R5, R6, R7, Re, R9, R1o, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a particular embodiment, the compound has the structure set forth in ##STR004b##:
Figure imgf000031_0002
wherein R1, R2, R3, R4, R5, R6, R7, Rs, R9, R1o, R11, R12, and R13 are as previously defined for ##STR004a##. In a more particular embodiment, the compound is Templamide A with the following structur
rmula ##STR004c##:
Figure imgf000032_0001
Wherein Rh R2, R3, R4, R5, Re, R7, e, and Rn are as previously defined for ##STR004a##.
In another embodiment, provided is a compound which may be derived from
Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons and at least 8 oxygen and 1 nitrogen, and pesticide activity. The compound further comprises at least one of the following characteristics:
(a) pesticidal properties and in particular, insecticidal, fungicidal, nematocidal, acaricidal, algicidal and herbicidal properties;
(b) a molecular weight of about 520-560 and particularly 537 as determined by Liquid
Chromatography/Mass Spectroscopy (LC/MS);
(c) 1H NMR δ values at about 6.41, 6.40, 6.01, 5.97, 5.67, 5.55, 4.33, 3.77, 3.75, 3.72, 3.64, 3.59, 3.54, 3.52, 2.44, 2.34, 2.25, 1.96, 1.81, 1.76, 1.42, 1.38, 1.17, 1.12, 1.04;
(d) 13C NMR values of δ 174.03, 166.12, 143.63, 137.50, 134.39, 128.70, 126.68, 124.41, 98.09, 80.75, 76.84, 75.23, 69.87, 69.08, 68.69, 68.60, 48.83, 41.07, 35.45, 31.67,
29.19, 27.12, 24.55, 19.20, 18.95, 13.48, 1 1.39, 8.04;
(e) High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, more specifically about 8 minutes on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) gradient, particularly, an High Pressure Liquid Chromatography (HPLC) retention time of about 8-15 minutes, more specifically about 1 1 minutes and even more specifically about 1 1.73 min on a reversed phase C-18 HPLC (Phenomenex, Luna 5μ CI 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90-0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0 - 90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
(f) a molecular formula of C28H43N09 which was determined by interpretation of the ESIMS and NMR data analysis;
(g) UV absorption bands at about 210-450 nm and most particularly at about 234 nm. In a particular embodiment, the compound has the structure ##STR006a##:
Figure imgf000033_0001
Wherein X, Y and Z are each independently -O, -NR., or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, R6, R7, Re, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a particular embodiment, the compound has the structure:
Figure imgf000033_0002
having formula ##STR006b##:
Figure imgf000033_0003
Wherein Ru R2, R3, R4, R5, Re, R7, e, and Rn are as previously defined for ##STR006a##.
In a more particular embodiment, the compound is Templamide B with the following structure:
Figure imgf000034_0001
In yet another particular embodiment, the compound may be derived from Burkholderia species and characterized as having a structure comprising at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons and at least 8 oxygen and at least 1 nitrogen. The compound further comprises at least one of the following characteristics:
(a) pesticidal properties and in particular, insecticidal, fungicidal, acaricidal, nematicidal, algicidal and herbicidal properties;
(b) a molecular weight of about 510-550 and particularly about 523 as determined by
Liquid Chromatography/Mass Spectroscopy (LC/MS);
(c) 1H NMR δ values at about 6.41, 6.40, 6.01, 5.98, 5.68, 5.56, 4.33, 3.77, 3.75, 3.72, 3.65, 3.59, 3.55, 3.50, 2.44, 2.26, 2.04, 1.96, 1.81, 1.75, 1.37, 1.17, 1.04;
(d) 13C NMR values of δ 172.22, 167.55, 144.98, 138.94, 135.84, 130.14, 125.85, 123.37, 99.54, 82.19, 78.28, 76.69, 71.31, 70.13, 69.68, 48.83, 42.52, 36.89, 33.1 1, 30.63,
25.99, 21.20, 20.38, 18.14, 14.93, 12.84;
(e) an High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, more specifically about 8 minutes on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) gradient, particularly, an High Pressure Liquid Chromatography (HPLC) retention time of about 8-15 minutes, more specifically about 10 minutes and even more specifically about 10.98 min on a reversed phase C-18 HPLC (Phenomenex, Luna 5μ CI 8(2) 100 A, 100 x 4.60 mm) column using a watenacetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90 - 0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0 - 90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
(f) a molecular formula of C27H41N09 which was determined by interpretation of the ESIMS and NMR data analysis;
(g) UV absorption bands at about 210-450 nm and most particularly at about 234 nm.
In a more particular embodiment, the compound is a known compound FR901465 which was isolated earlier from culture broth of a bacterium of Pseudomonas sp. No. 2663 (Nakajima et al. 1996) and had been reported to have anticancer activity with the following structure:
Figure imgf000035_0001
In an even another particular embodiment, Family ##STR006a## compounds may be the compounds set forth in xxiv to xxxix. These are from either natural materials or compounds obtained from commercial sources or by chemical synthesis. Natural sources of Family ##STR006a## compounds include, but are not limited to, microorganisms, alga, and sponges. In a more particular embodiment, microorganisms which include the Family
##STR006a## compounds which may be derived from species such as Pseudomonas sp. No. 2663 (compounds xxiv-xxvi) (Nakajima et al., 1996), The synthetic analogues of the FR901464 (xxvii-xxxix) which have been synthesized and patented as anticancer compounds (see Koide et al., US Patent Application No. 2008/0096879 Al).
Also provided are the pesticidal compounds produced by the formulation set forth above which comprises at least one of the following characteristics:
(a) has pesticidal properties and in particular, herbicidal, insecticidal, nematicidal, and fungicidal properties;
(b) has a molecular weight of about 210-240 and more particularly, 222 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(e) has 1H NMR values of δ 7.90, 6.85, 4.28, 1.76, 1.46, 1.38, 1.37, 0.94;
(d) has 13C NMR values of δ 166.84, 162.12, 131.34 (2C), 121.04, 1 14.83 (2C), 64.32,
31.25, 28.43, 25.45, 22.18. 12.93;
(e) has an High Pressure Liquid Chromatography (HPLC) retention time of about 15-20 minutes, more specifically about 17 minutes and even more specifically about 17.45 min on a reversed phase C- 18 HPLC (Phenomenex, Luna 5μ C I 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90 - 0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0-90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm;
(f) The 13C NMR spectrum exhibited 13 discrete carbon signals which were attributed to one methyl, five methylene carbons, four methines, and three quaternary carbons;
(g) has a molecular formula of C13H1803 which was determined by interpretation of the
ESIMS and NMR data analysis; (h) has UV absorption bands between about 210-450 nm and most particularly at about 248 nm.
Also rovided are compounds having the structure shown below
Figure imgf000036_0001
Wherein
X, is independently -O, -NR, or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, and R6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
In a more particular embodiment, the compound is butyl parben with the following structure:
Figure imgf000036_0002
In a more particular embodiment, the compound is hexyl parben with the following structure:
Figure imgf000036_0003
In a more particular embodiment, the compound is octyl parben with the following structure:
Figure imgf000036_0004
In yet another embodiment, the compound is F7H18, which has a molecular weight of about 1080. Compositions
A substantially pure culture, cell fraction or supernatant and compounds produced by the Burkholderia strain disclosed herein, all of which are alternatively referred to as "active ingredient(s)", may be formulated into pesticidal compositions. In a particular embodiment, the supernatant may be a cell-free supernatant.
The active ingredient(s) set forth above can be formulated in any manner. Non-limiting formulation examples include but are not limited to emulsifiable concentrates (EC) , wettable powders (WP), soluble liquids (SL), aerosols, ultra-low volume concentrate solutions (ULV), soluble powders (SP), microencapsulation, water dispersed granules , flowables (FL), microemulsions (ME), nano-emulsions (NE), dusts, emulsions, liquids, flakes etc. In any formulation described herein, percent of the active ingredient is within a range of 0.01 % to 99.99% .
A solid composition can be prepared by suspending a solid carrier in a solution of pesticidal compounds and drying the suspension under mild conditions , such as evaporation at room temperature or vacuum evaporation at 65°C or lower. Alternatively, a solid composition may be derived via spray-drying or freeze-drying.
When referring to solid compositions , it should be understood by the artisan of ordinary skill that physical forms such as dusts , beads , powders , particulates , pellets , tablets , agglomerates, granules , floating solids and other known solid formulations are included. The artisan of ordinary skill will be able to readily optimize a particular solid formulation for a given application using methods well known to those of ordinary skill in the art.
The composition may comprise gel-encapsulated compounds derived from the
Burkholderia strain set forth above. Such gel-encapsulated materials can be prepared by mixing a gel-forming agent (e.g., gelatin, cellulose, or lignin) with a solution of algicidal compounds and inducing gel formation of the agent.
The composition may additionally comprise a surfactant to be used for the purpose of emulsification, dispersion, wetting, spreading, integration, disintegration control, stabilization of active ingredients, and improvement of fluidity or rust inhibition. In a particular
embodiment, the surfactant is a non-phytotoxic non-ionic surfactant which preferably belongs to EPA List 4B . In another particular embodiment, the nonionic surfactant is polyoxyethylene (20) monolaurate. The concentration of surfactants may range between 0.1-35% of the total formulation, preferred range is 5-25% . The choice of dispersing and emulsifying agents, such as non-ionic, anionic, amphoteric and cationic dispersing and emulsifying agents, and the amount employed is determined by the nature of the composition and the ability of the agent to facilitate the dispersion of these compositions. In order to provide compositions containing the active ingredient(s) set forth above in the form of dusts, granules , water dispersible powders, aqueous dispersions, or emulsions and dispersions in organic liquids , the carrier or diluent agent in such compositions may be a finely divided solid, an organic liquid, water, a wetting agent, a dispersing agent, humidifying agent, or emulsifying agent, or any suitable combination of these. Generally, when liquids and wettable powders are prepared, a conditioning agent comprising one or more surface-active agents or surfactants is present in amounts sufficient to render a given composition containing the active material, the microorganism, dispersible in water or oil.
Since these compositions can be applied as a spray utilizing a liquid carrier, it is contemplated that a wide variety of liquid carriers such as, for example, water, organic solvents, decane, dodecane, oils, vegetable oil, mineral oil, alcohol, glycol, polyethylene glycol, agents that result in a differential distribution of pathogenic bacterium in water being treated, combinations thereof and other known to artisan of ordinary skill can be used.
The present compositions can also include other substances which are not detrimental to the active ingredient(s) such as adjuvants, surf actants , binders , stabilizers and the like, which are commonly used in algicides , either singly or in combination as needed.
It will be understood by the artisan of ordinary skill that various additives or agents that predispose pests susceptible to the active ingredient set forth above are added to enhance its pesticidal action. By the phrase "additive that enhances the pesticidal action of the active ingredient" is meant any compound, solvent, reagent, substance, or agent that increases the effect of the active ingredient toward pests and more particularly, mites as compared to the pesticidal effect of the active ingredient in the absence of said additive. In some embodiments, these additives will increase the susceptibility of a particular pest to the active ingredient.
Additional additives include but are not limited to agents which weaken the biological defenses of susceptible pests. Such agents can include salts, such as NaCl and CaCl2.
The composition may further comprise another microorganism and/or pesticide (e.g, nematocide, fungicide, insecticide, herbicide, algicide, aracicide). The microorganism may include but is not limited to an agent derived from Bacillus sp., Pseudomonas sp., Brevabacillus sp., Lecanicillium sp., non- Ampelomyces sp., Pseudozyma sp., Streptomyces sp, Burkholderia sp, Trichoderma sp, Gliocladium sp. Alternatively, the agent may be a natural oil or oil-product having fungicidal, herbicidal, aracidal, algicidal, nematocidal and/or insecticidal activity (e.g., paraffinic oil, tea tree oil, lemongrass oil, clove oil, cinnamon oil, citrus oil, rosemary oil).
The composition, in particular, may further comprise an insecticide. The insecticide may include but is not limited to avermectin, Bacillus thuringiensis , neem oil and azadiractin, spinosads, Chromobacterium subtsugae, eucalyptus extract, entomopathogenic bacterium or fungi such a Beauveria bassiana, and Metarrhizium anisopliae and chemical insecticides including but not limited to organochlorine compounds, organophosphorous compounds, carbamates, pyrethroids, and neonicotinoids .
The composition my further comprise a nematocide. The nematocide may include, but is not limited to chemical nematocides such as fenamiphos, aldicarb, oxamyl, carbofuran, natural product neamticide, avermectin, the fungi Paecilomyces lilacinas and Muscodor spp., the bacteria Bacillus firmus and other Bacillus spp. and Pasteuria penetrans.
The composition may further comprise a biofungicide such as extract of R.
sachalinensis (Regalia) or a fungicide. Such fungicides include, but are not limited to, a single site anti-fungal agent which may include but is not limited to benzimidazole, a demethylation inhibitor (DMI) (e.g., imidazole, piperazine, pyrimidine, triazole), morpholine,
hydroxypyrimidine, anilinopyrimidine, phosphorothiolate, quinone outside inhibitor, quinoline, dicarboximide, carboximide, phenylamide, anilinopyrimidine, phenylpyrrole, aromatic hydrocarbon, cinnamic acid, hydroxyanilide, antibiotic, poly amine, calamine, phthalimide, benzenoid (xylylalanine) . In yet a further embodiment, the antifungal agent is a demethylation inhibitor selected from the group consisting of imidazole (e.g., triflumizole), piperazine, pyrimidine and triazole (e.g., bitertanol, myclobutanil, penconazole, propiconazole, triadimefon, bromuconazole, cyproconazole, diniconazole, fenbuconazole, hexaconazole, tebuconazole, tetraconazole, propiconazole).
The antimicrobial agent may also be a multi-site non-inorganic, chemical fungicide selected from the group consisting of a nitrile (e.g., chloronitrile or fludioxonil) , quinoxaline, sulphamide, phosphonate, phosphite, dithiocarbamate, chloralkythios, phenylpyridin-amine, cyano-acetamide oxime.
The compositions may be applied using methods known in the art. Specifically, these compositions may be applied to plants or plant parts. Plants are to be understood as meaning in the present context all plants and plant populations such as desired and undesired wild plants or crop plants (including naturally occurring crop plants) . Crop plants can be plants which can be obtained by conventional plant breeding and optimization methods or by biotechnological and genetic engineering methods or by combinations of these methods , including the transgenic plants and including the plant cultivars protectable or not protectable by plant breeders' rights. Plant parts are to be understood as meaning all parts and organs of plants above and below the ground, such as shoot, leaf, flower and root, examples which may be mentioned being leaves, needles, stalks, stems, flowers, fruit bodies, fruits, seeds, roots, tubers and rhizomes. The plant parts also include harvested material, and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds. Treatment of the plants and plant parts with the compositions set forth above may be carried out directly or by allowing the compositions to act on their surroundings, habitat or storage space by, for example, immersion, spraying, evaporation, fogging, scattering, painting on, injecting. In the case that the composition is applied to a seed, the composition may be applied to the seed as one or more coats prior to planting the seed using one or more coats using methods known in the art.
As noted above, the compositions may be herbicidal compositions. The composition may further comprise one or more herbicides. These may include, but are not limited to, a bioherbicide and/or a chemical herbicide. The bioherbicide may be selected from the group consisting of clove oil, cinnamon oil, lemongrass oil, citrus oil, orange peel oil, tentoxin, cornexistin, AAL-toxin, manuka oil, leptospermone, thaxtomin, sarmentine, momilactone B , sorgoleone, ascaulatoxin and ascaulatoxin aglycone. The chemical herbicide may include, but is not limited to, diflufenzopyr and salts thereof, dicamba and salts thereof, topramezone, tembotrione, S-metolachlor, atrazine, mesotrione, primisulfuron-methyl, 2,4- dichlorophenoxy acetic acid, nicosulfuron, thifensulfuron-methyl, asulam, metribuzin, diclofop- methyl, fluazifop, fenoxaprop-p-ethyl, asulam, oxyfluorfen, rimsulfuron, mecoprop, and quinclorac, thiobencarb, clomazone, cyhalofop, propanil, bensulfuron-methyl, penoxsulam, triclopyr, imazethapyr, halosulfuron-methyl, pendimethalin, bispyribac-sodium, carfentrazone ethyl, sodium bentazon/sodium acifluorfen, glyphosate, glufosinate and orthosulfamuron.
Herbicidal compositions may be applied in liquid or solid form as pre-emergence or post-emergence formulations.
For pre-emergence dry formulations , the granule size of the carrier is typically 1 -2 mm (diameter) but the granules can be either smaller or larger depending on the required ground coverage. Granules may comprise porous or non-porous particles.
For post-emergence formulations , the formulation components used may contain smectite clays, attapulgite clays and similar swelling clays, thickeners such as xanthan gums, gum Arabic and other polysaccharide thickeners as well as dispersion stabilizers such as nonionic surfactants (for example polyoxyethylene (20) monolaurate) .
In a particular embodiment, the composition may comprise in addition to the active ingredient another microorganism and/or algicide and/or acaricide. The microorganism may include but is not limited to an agent derived from Bacillus sp., Brevibacillus sp., and
Streptomyces sp.
The compositions may also as set forth above, be algicidal compositions which can further comprise other algicides such as copper sulphate, diquat or thaxtomin A. The compositions may be acaricidal compositions which can further comprise other acaricides such as antibiotics, carbamates, formamidine acaricides , pyrethroids , mite growth regulators , organophosphate acaricides and diatomaceous earth.
Uses
The compositions and pesticidal compounds derived from the Burkholderia strain set forth herein may be used as pesticides, particularly as insecticides, nematocides, fungicides, algicides, acaricides and herbicides.
Specifically, nematodes that may be controlled using the method set forth above include but are not limited to parasitic nematodes such as root-knot, ring, sting, lance, cyst, and lesion nematodes, including but not limited to free living nematodes, Meloidogyne, Heterodera and Globodera spp; particularly Meloidogyne incognita (root knot nematodes), as well as
Globodera rostochiensis and globodera pallida (potato cyst nematodes); Heterodera glycines (soybean cyst nematode); Heterodera schachtii (beet cyst nematode); Oligonychus pratensis (Banks grass mite); Eriophyes cynodoniensis (Bermuda grass mite); Bryobia praetiosa (Clover mite) -and Heterodera avenae (cereal cyst nematode).
Phytopathogenic insects controlled by the method of the present invention include, but are not limited to, insects from the order
(a) Lepidoptera, for example, Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseolafusca, Cadra cautella, Carposina nipponensis, Chilo spp.,
Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypiella, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni and Yponomeuta spp.;
(b) Coleoptera, for example, Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. and Trogoderma spp.; (c) Orthoptera,for example, Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. and Schistocerca spp.; (d) Isoptera,for example, Reticulitermes spp.; (e) Psocoptera,for example, Liposcelis spp.; (f) Anoplura,for example, Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.; (g) Mallophaga,for example, Damalinea spp. and Trichodectes spp.; (h) Thysanoptera, or example, Frankliniella spp., Hercinotnrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci and Scirtothrips aurantii; (i) Heteroptera,for example, Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp., Oncopeltus spp. Lygys spp. and Tniatoma spp.; (j) Homoptera,for example, Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., Nephotettix spp., Nilaparvata spp., Paratoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vapor ariorum, Trioza erytreae and Unaspis citri; (k) Hymenoptera, for example, Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. and Vespa spp.; (I) Diptera,for example, Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp.,
Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinellafrit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.; (m) Siphonaptera, for example, Ceratophyllus spp. und Xenopsylla cheopis and (n) from the order Thysanura, for example, Lepisma saccharina. The active ingredients according to the invention may further be used for controlling crucifer flea beetles (Phyllotreta spp.), root maggots (Delia spp.), cabbage seedpod weevil (Ceutorhynchus spp.) and aphids in oil seed crops such as canola (rape), mustard seed, and hybrids thereof, and also rice and maize. In a particular embodiment, the insect may be a member of the Spodoptera, more particularly, Spodoptera exigua, Myzus persicae, Plutella xylostella or Euschistus sp.
The substances and compositions may also be used to modulate emergence in either a pre -emergent or post-emergent formulation of monoeotyledonous. including sedges and grasses, or dicotyledonous weeds. In a particular embodiment, the weeds may include, but not be limited to, Chenopodhim sp. (e.g. , album), Abulilon sp. (e.g. A. theophrasti),
Helianthus sp. (e.g. H. annum), Ludwigia sp. (e.g. L. hexapetala), Ambrosia sp. (e.g. A. artemesifolia), Amaranthus sp. (e.g., ^4. retrofiexus, A. palmeri), Convolvulus sp. (e.g. C. arvensis), Ipomoeae sp., Brassica sp. (e.g. B. kaber), Raphanus sp., Taraxacum sp. (e.g. T. officinale), Centaurea sp. (e.g. C. solstitalis) , Conyza sp. (e.g. C. bonariensis), Cirsium sp. (e.g. C. arvense), Lepidium sp.. Gallium sp., Solanum sp. (e.g. S. nigrum), Malva sp. (e.g. M. neglecla), Cyperus sp. (e.g. C. rotundas), Oxalls sp., Euphorbia sp., Trifolium sp., Medicago sp., Hydrilla sp., Azolla sp., Digitaria sp. (e.g. D. sanguinalis), Setaria sp. (e.g. S. lutescens), Cynodon d ctylon, Bromus sp. (e.g., B. tectorum), Poa sp. (e.g. P. annua, P. prate nsis), Lollium sp. (e.g. L. perenne), Sorghum sp. (e.g. S. halepense) , Arundo donax, Festuca sp. (e.g. F. arundinaceae), Echinochloa sp. (e.g., E. crus-galli, E. phyllopogon).
The Burkholderia strain, compounds and compositions set forth above may also be used as a fungicide. The targeted fungus may be a Fusarium sp., Botrytis sp., Monilinia sp., Colletotrichum sp, Verticillium sp.; Microphomina sp., Phytophtora sp, Mucor sp.,
Podosphaera sp., Rhizoctonia sp., Peronospora sp., Geotrichum sp., Phoma, and Penicillium. In another most particular embodiment, the bacteria are Xanthomonas .
The substance or compositions can be used to control, reduce and or eliminate the growth and proliferation of marine and non-marine micro and macro algae including but not limited to unicellular, multicellular and diatom, red-, green- and bluegreen- algae such as
Pseudokirchneriella subcapitata, Rhizocionium sp., Cladophoera sp., Anabaena sp., Nostoc sp., Hydrodictyon sp., Char a sp, Microcystis and Didymo sp., Chlamydomonas sp., Scenedesmus sp., Oscillatoria sp., Volvox sp., Navicula sp, Oedogonium sp., Spirogyra sp., Batrichospermum sp., Rhodymenia sp., Callithamnion sp.,Undaria sp., through algaecide and algaestatic activity.
The active ingredient(s) and compositions set forth above may be applied to locations containing algae. These include but are not limited to a body of water such as a pond, lake, stream, river, aquarium, water treatment facility, power plant or a solid surface, such as plastic, concrete, wood, fiberglass, pipes made of iron and polyvinyl choride, surfaces covered wih coating materials and/or paints .
As noted above, the active ingredient(s) and compositions set forth above may be applied to locations containing arachnids, such as mites, including but not limited to,
Panonychus sp. such as Panonychus citri (citrus red mite), and Panonychus ulmi (red spider mite), Tetranychus sp. such as Tetranychus kanzawi (Kanzawa spider mite), Tetranychus urticae (2 spotted spider mite) , Tetranychus pacificus (Pacific spider mite) , Tetranychus turkestanii (Strawberry mite) and Tetranychus cinnabarinus (Carmine spider mite),
Oligonychus sp. such as Oligonychus panicae (avacado brown mite), Oligonychus perseae (persea mite), Oligonychus pratensis (Banks grass mite) and Oligonychus coffeae , Aculus sp. such as Aculus cornatus (Peach silver mite), Aculus fockeni (plum rust mite) and Aculus ly coper sici (tomato russet mite) , Eotetranychus sp. such as Eotetranychus wilametti,
Eotetranychus yumensis (yuma spider mite) and Eotetranychus sexmaculatis (6-spotted mite), Bryobia rubrioculus (brown mite) , Epitrimerus pyri (pear rust mite) , Phytoptus pyri (Pear leaf blister mite) , Acalitis essigi (red berry mite) , Polyphagotarsonemus latus (Broad mite), Eriophyes sheldoni (citrus bud mite) , Brevipalpus lewisi (citrus flat mite) , Phylocoptruta oleivora (citrus rust mite), Petrobia lateens (Brown wheat mite), Oxyenus maxwelli (olive mite), Rhizoglyphus spp., Tyrophagus spp., Diptacus gigantorhyncus (bigheaded plum mite) and Penthaleaa major (winter grain mite), Avocado red mite, Flat mite, black and red Mango spider mite, Papaya leaf edgeroller mite, Texas citrus mite, European red mite, Grape erineum mite (blister mite), Pacific spider mite, Willamette spider mitePink citrus rust mite.
Such locations may include but are not limited to crops that are infested with such mites or other arachnids (e.g., aphenids).
The invention will now be described in greater detail by reference to the following non- limiting examples. EXAMPLES
The compositions and methods set forth above will be further illustrated in the following, non-limiting Examples. The examples are illustrative of various embodiments only and do not limit the claimed invention regarding the materials, conditions, weight ratios, process parameters and the like recited herein.
1. Example 1. Isolation and identification of the microbe
1.1 Isolation of the microorganism
The microbe is isolated using established techniques know to the art from a soil sample collected under an evergreen tree at the Rinnoji Temple, Nikko, Japan. The isolation is done using potato dextrose agar (PDA) using a procedure described in detail by Lorch et al. , 1995. In this procedure, the soil sample is first diluted in sterile water, after which it is plated in a solid agar medium such as potato dextrose agar (PDA). The plates are grown at 25°C for five days, after which individual microbial colonies are isolated into separate PDA plates. The isolated bacterium is gram negative, and it forms round, opaque cream-colored colonies that change to pink and pinkish-brown in color and mucoid or slimy over time. 1.2. Identification on the microorganism
The microbe is identified based on gene sequencing using universal bacterial primers to amplify the 16S rRNA region. The following protocol is used: Burkholderia sp. A396 is cultured on potato-dextrose agar plates . Growth from a 24 hour-old plate is scraped with a sterile loop and re-suspended in DNA extraction buffer. DNA is extracted using the MoBio Ultra Clean Microbial DNA extraction kit. DNA extract is checked for quality /quantity by running 5μΙ on a 1 % agarose gel.
PCR reactions are set up as follows: 2 μ\ DNA extract, 5 μ\ PCR buffer, 1 μ\ dNTPs (10 mM each), 1.25 μ\ forward primer (27F; (SEQ ID NO: 1), 1.25 μ\ reverse primer (907R; (SEQ ID NO:2)) and 0.25 μ\ Taq enzyme. The reaction volume is made up to 50 μ\ using sterile nuclease-free water. The PCR reaction includes an initial denaturation step at 95°C for 10 minutes, followed by 30 cycles of 94°C/30 sec, 57°C/20 sec, 72°C/30 sec, and a final extension step at 72°C for 10 minutes.
The product's approximate concentration and size is calculated by running a 5 μ\ volume on a 1 % agarose gel and comparing the product band to a mass ladder.
Excess primers, dNTPs and enzyme are removed from the PCR product with the MoBio PCR clean up kit. The cleaned PCR product as directly sequenced using primers 27F (same as above), 530F (SEQ ID NO:3)), 1 1 14F (SEQ ID NO:4)) and 1525R (SEQ ID NO:5)), 1 100R (SEQ ID NO:6)), 519R (SEQ ID NO:7).
The 16S rRNA gene sequence of strain A396 is compared with the available 16S rRNA gene sequences of representatives of the β-proteobacteria using BLAST. Strain A395 A396 is closely related to members of the Burkholderia cepacia complex, with 99% or higher similarity to several isolates of Burkholderia multivorans , Burkholderia vietnamensis , and Burkholderia cepacia. A BLAST search excluding the B. cepacia complex, showed 98% similarity to B. plantarii, B. gladioli and Burkholderia sp. isolates.
A distance tree of results using the neighbor joining method, showed that A396 is related to Burkholderia multivorans and other Burkholderia cepacia complex isolates .
Burkholderia plantarii and Burkholderia glumae grouped in a separate branch of the tree.
The isolated Burkholderia strain was found to contain the following sequences:
Forward sequence, DNA sequence with 27F primer, 815 nucleotides (SEQ ID NO:8); Reverse sequence, 1453 bp, using primers 1525R, 1 100R, 519R (SEQ ID NO:9); Reverse sequence 824 bp using primer 907R (SEQ ID NO: 10); Forward sequence 1 152 bp using primer 530F (SEQ ID NO: 1 1); Forward sequence 1067 bp using 1 1 14F primer (SEQ ID NO: 12); Reverse sequence 1223 bp using 1525R primer (SEQ NO: 13); Reverse sequence 1216 bp using 1 100R primer (SEQ ID NO: 14); Reverse sequence 1 194 bp using 519R primer (SEQ ID NO: 15)
1.3. Proof that Burkholderia A396 does not belong to Burkholderia cepacia complex
1.3.1 Molecular Biology work using specific PCR primers
In order to confirm the identification of Burkholderia A396 as Burkholderia
multivorans, additional sequencing of housekeeping genes is performed. Burkholderia multivorans is a known member of the Burkholderia cepacia complex. Efforts are focused on PCR of recA genes, as described by Mahenthiralingam et al., 2000. The following primers are used: (a) BCR1 and BCR2 set forth in Mahenthiralingam et al., 2000 to confirm B. cepacia complex match and (b) BCRBM1 and BCRBM2 set forth Mahenthiralingam et al, 2000 to confirm B. multivorans match. A product-yielding PCR reaction for the first primer set would confirm that the microbe belongs to the B. cepacia complex. A product-yielding PCR reaction for the second primer set would confirm that the microbe is indeed B. multivorans.
No PCR product is obtained for either pair of primers . The performance of the PCR reaction and primers is tested using Burkholderia multivorans ATCC 17616 (positive control) and Pseudomonas fluorescens (negative control). Strong bands are observed both for B.
multivorans using both sets of primers. No bands are observed for Pseudomonas fluorescens . The results indicate that A396 is a Burkholderia, but not a member of the B. cepacia complex, and not Burkholderia multivorans . This is also demonstrated in a comparative culture experiment in which both A396 and a type culture of B. multivorans are grown side-by-side in a shake culture, and the growth is monitored daily using optical density measurements at 600 nm. Under the set conditions, species A396 grew much faster than the B. multivorans type strain (Figure 1).
1.3.2 DNA-DNA Hybridization
In order to confirm that isolate A396 is a new species of Burkholderia, a DNA-DNA hybridization experiment with Burkholderia multivorans (the closest 16SrRNA sequence match) is conducted. Biomass for both A396 and B. multivorans is produced in ISP2 broth, grown over 48 hours at 200 rpm/25°C in Fernbach flasks. The biomass is aseptically harvested by centrifugation. The broth is decanted and the cell pellet is resuspended in a 1 : 1 solution of water: isopropanol. DNA-DNA hybridization experiments are performed by the DSMZ, the German Collection of Microorganisms and Cell Cultures in Germany. DNA is isolated using a French pressure cell (Thermo Spectronic) and is purified by chromatography on hydroxyapatite as described by Cashion et al., 1977. DNA-DNA hybridization is carried out as described by De Ley et al., 1970 under consideration of the modifications described by Huss et al., 1983 using a model Cary 100 Bio UV/VIS-spectrophotometer equipped with a Peltier thermostatted 6x6 multicell changer and a temperature controller with in-situ temperature probe (Varian) . DSMZ reported % DNA-DNA similarly between A396 and Burkholderia multivorans of 37.4% . The results indicate that Burkholderia sp strain A396 does not belong to the species Burkholderia multivorans when the recommendations of a threshold value of 70% DNA-DNA similarity for the definition of bacterial species by the ad hoc committee (Wayne et al., 1987) are considered. 1.4. Biochemical profile using Biolog GN2 plates
For the carbon source utilization profile, A396 is grown overnight on Potato Dextrose Agar (PDA). The culture is transferred to BUG agar to produce an adequate culture for Biolog experiments as recommended by the manufacturer (Biolog, Hayward, CA).
The biochemical profile of the microorganism is determined by inoculating onto a Biolog GN2 plate and reading the plate after a 24-hour incubation using the MicroLog 4- automated microstation system. Identification of the unknown bacteria is attempted by comparing its carbon utilization pattern with the Microlog 4 Gram negative database.
No clear definitive matches are found to the Biolog profile. The closest matches all had less than 35% similarity with A396: Pseudomonas spinosa (Burkholderia), Burkholderia cepacia, and Burkholderia pseudomallei. The results are shown in Table 1.
Figure imgf000048_0001
7.5. Fatty acid composition
After incubation for 24 hours at 28°C, a loopful of well-grown cells are harvested and fatty acid methyl esters are prepared, separated and identified using the Sherlock Microbial Identification System (MIDI) as described (see Vandamme et al., 1992). The predominant fatty acids present in the Burkholderia A396 are as follows: 16:0 (24.4%), cyclo 17:0 (7.1%), 16:0 3- OH (4.4%), 14:0 (3.6%), 19:0 co8c (2.6%) cyclo, 18:0 (1.0%). Summed feature 8 (comprising 18: 1 co7c) and summed feature 3 (comprising of 16: 1 co7c and 16: 1 co6c) corresponded to 26.2% and 20.2 % of the total peak area, respectively. Summed feature 2 comprising 12:0 ALDE, 16: 1 iso I, and 14:0 3-OH) corresponded to 5.8% of the total peak area while summed feature 5 comprising 18:0 ANTE and 18:2 co6,9c corresponded to 0.4%. Other fatty acids detected in A396 in minor quantities included: 13 : 1 at 12-13 (0.2%), 14: 1 co5c (0.2%), 15:0 3-OH (0.13%), 17: 1 co7c (0.14%), 17:0 (0.15%), 16:0 iso 3-OH (0.2%), 16:0 2-OH (0.8%), 18: 1 co7c 1 1 -methyl (0.15%), and 18: 1 2-OH (0.4%).
A comparison of the fatty acid composition of A396 with those of known microbial strains in the MIDI database suggested that the fatty acids in the novel strain A396 were most similar with those of Burkholderia cenocepacia.
1.6 Resistance to Antibiotics
Antibiotic susceptibility of Burkholderia A396 is tested using antibiotic disks on Muller- Hinton medium as described in PML Microbiological' s technical data sheet #535. Results obtained after 72-hour incubation at 25°C are presented in Table 2 below.
Figure imgf000050_0001
The results indicate that the antibiotic susceptibility spectrum of Burkholderia A396 is quite different from pathogenic B. cepacia complex strains. Burkholderia A396 is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin, imipenem, and a combination of sulphamethoxazole and trimethoprim. As a comparison, Zhou et al., 2007 tested the susceptibility of 2,621 different strains in B. cepacia complex isolated from cystic fibrosis patients, and found that only 7% and 5% of all strains were susceptible to imipenem or ciprofloxacin, respectively. They also found 85% of all strains to be resistant to
chloramphenicol (15% susceptible), and 95% to be resistant (5% susceptible) to the combination of sulphamethoxazole and trimethoprim. Results of Zhou et al, 2007 are similar to those of Pitt et al, 1996 who determined antibiotic resistance among 366 B. cepacia isolates and reported that most of them are resistant to ciprofloxacin, cefuroxime, imipenem, chloramphenicol, tetracycline, and sulphametoxacole. 2. Example 2: Burkholderia formulation and isolation of Fractions from Formulated Product
The following procedure is used for the purification of compounds extracted from a formulated product of MBI-206 containing a whole cell broth of a culture of Burkholderia sp:.
The culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium and formulated using methyl 0.1 % and propyl paraben, 0.1 % hexanol 0.67 % and Glycosperse 0-20, 0.67% is extracted with Amberlite XAD-7 resin (Asolkar et al., "Weakly cytotoxic polyketides from a marine-derived Actinomycete of the genus Streptomyces strain CNQ-085." J. Nat. Prod. 69: 1756- 1759. 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature. The resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts. The resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract (MBI-206-FP-CE). The crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H20/CH3OH; gradient 80:20 to 0: 100%) to give 10 fractions (see Figure 1 for schematic). These fractions are then concentrated to dryness using rotary evaporator and the resulting dry residues are screened for biological activity using a whole plant herbicidal assay. The active fractions, fractions 3 , 4, 5 and 6 and indicated as MBI-206-FP-3, MBI-206-FP-4, MBI-206-FP-5 , and MBI-206-FP-6 respectively are then subjected to repeatedly to reversed phase HPLC separation (Spectra System P4000 (Thermo Scientific) to give pure compounds, which are then screened in above- mentioned bioassays to locate/identify the active compounds (see Figure 2).
2.1 Analysis of Formulation fractions
These fractions are analyzed on a Thermo high performance liquid chromatography (HPLC) instrument equipped with Finnigan Surveyor PDA plus detector, autosampler plus, MS pump and a 4.6 mm x 100 mm Luna C 18 5 μπι column (Phenomenex) . The solvent system consisted of water (solvent A) and acetonitrile (solvent B). The mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returned to 10% solvent B over 3 min and kept for 3 min. The flow rate is 0.5 mL/min. The injection volume is 10 iL and the samples are kept at room temperature in an auto sampler.
To discover the identity of the compound, additional spectroscopic data such as LC/MS and UV are recorded. Compound corresponding to fraction 5 , with a retention time of 17.45 minutes is not found in any of the starting materials, which indicates that the compound is a product of a chemical reaction between natural products in the microbial fermentation broth and one or more of the compounds found in the formulation agents. Specifically, this fraction was analyzed using ESI-LCMS on a Thermo Finnigan LCQ Deca XP Plus electrospray (ESI) instrument using both positive and negative ionization modes in a full scan mode (m/z 100- 1500 Da) on a LCQ DECA XPplus Mass Spectrometer (Thermo Electron Corp., San Jose, CA). Mass spectroscopy analysis is performed under the following conditions: The flow rate of the nitrogen gas was fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization was performed with a spray voltage set at 5000 V and a capillary voltage at 35.0 V. The capillary temperature was set at 400°C. The data was analyzed on Xcalibur software. The additional new compounds found in fraction 5 were found to have a molecular weight (MW) of 194 (RT = 14.74 min) and 222 (RT = 17.43 min).
2.2 Bioassay
Healthy radish plants with two to three true leaves were selected for testing. The radish plants are 13 days old at treatment. The plants are sorted so that all treatments are equivalent in foliage surface area and plant height. The pots are labeled with treatment number and repetition number. Three repetitions per treatment are tested.
Ten fractions of MBI-206 formulated product are tested. The fractions are at a concentration of 10 mg/ml. The crude extracts of the formulated product and broth are also tested. An untreated control (treated with deionized water) and a positive control (RoundUp Super Concentrate at a rate of 2.5 fluid ounces per gallon) are included in the test.
The following treatments were tested as shown in Table 3 :
Table 3: Test description
Figure imgf000052_0001
All products and treatments are well shaken prior to application. Treatments are applied using a nozzle from a 2-ounce spray bottle. Separate spray nozzles were used for each treatment. The plant foliage is sprayed evenly and with a moderate volume (i.e. neither a light misting nor a heavy application that resulted in runoff) . Two milliliters of each treatment are sprayed simultaneously over the three repetitions of each treatment so that each plant is treated with approximately 0.67 milliliters of treatment solution.
The plants are allowed to air dry and are then randomized in holding trays . Each tray is labeled with the experiment name and treatment date and placed on the laboratory greenhouse shelves. The laboratory greenhouse maintains a temperature of 70-80°F and a relative humidity of 30-40% . Throughout the bioassay, plants are watered from below by filling the holding trays with an appropriate amount of water so that plant foliage remained dry.
Results are taken at 3 , 8, and 14 days after treatment. Symptoms included foliage burning and plant stunting. The following rating scale, shown in Table 4 is used to quantify efficacy. Ratings are determined by observing the following factors relative to the plants of the untreated control: overall plant health, average plant height, and foliage health. Symptoms of affected plants may include discolored/spotted/burnt/bleached foliage, warped/twisted/curled leaves, side branching (due to damaged apical meristem) , plant dieback, or death.
Figure imgf000053_0001
The mean of three readings is shown in Figure 2. In a whole plant herbicide test, fractions 4 and 5 show good herbicidal activity (see Figure 2). 2.3 Isolation of Pesticidal Compounds from Formulation
This fraction was further purified using a HPLC C- 18 column (Phenomenex, Luna 1 Ou C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 80 % aqueous CH3CN, 10-25 min; 80 - 65 % aqueous CH3CN, 25-50 min; 65 - 50 % aqueous CH3CN, 50-60 min; 50 - 70 % aqueous CH3CN, 60-80 min; 70 - 0 % aqueous CH3CN, 80-85 min; 0 - 20 % aqueous CH3CN) at 8 L/min flow rate and UV detection of 210 nm, to give butyl paraben, retention time 59.15 min (MBI206-FP-F5H32) and hexyl paraben, retention time 74.59 min (MBI206-FP-F5H40) respectively. 2.3.1 NMR Spectroscopy Analysis of Compounds
NMR spectra were measured on a Bruker 600 MHz gradient field spectrometer. The reference is set on the internal standard tetramethylsilane (TMS, 0.00 ppm). 2.3.1.1 Structure elucidation of hexyl paraben (MBI206-FP-F5H40)
The active compound was isolated as a colorless solid, with UV absorption at 248 nm. The (-) ESIMS showed molecular ion at 221 (M-H) corresponding to the molecular weight of 222. The compound exhibited *Η NMR δ singals at 7.90, 6.85, 4.28, 1.76, 1.46, 1.38, 1.37, 0.94 and has 13C NMR values of 166.84, 162.12, 131.34 (2C), 121.04, 114.83 (2C), 64.32, 31.25 , 28.43 , 25.45 , 22.18. 12.93. The molecular formula of C ^ 803 (5 degrees of unsaturation), was assigned by combination of NMR and ESI mass spectrometry data. The H NMR spectrum exhibited signals for an A2B2-type aromatic signals at δ 7.90, 2H d, J= 8.5 Hz, and 6.85, 2H d, J = 8.5 Hz. Furthermore, the H NMR spectrum revealed the presence of -CH2- CH2-CH2-CH2-CH2-CH3 group, at δ 4,28, 2H, t, J = 7.3 Hz; 1,76, 2H, m; 1.46, 2H, m; 1.38, 2H. m; 1.37, 2H, m, and 0.94, 3H, t, J= 7.3 Hz. From an analysis of the foregoing spectral data, the structure of the aromatic polyketide was established as hexyl paraben, which was confirmed by detail analysis of the COSY, HMQC and HMBC experiments. A literature search revealed that this compound has been reported as synthetic compound. 2.3.1.2 Structure elucidation of butyl paraben (MBI206-FP-F5H32)
This compound was obtained as a colorless solid with UV max at 248 nm. The LCMS analysis in the negative mode showed molecular ion at m/z 193 corresponding to the molecular formula 194. By comparison of the UV, MS and NMR data with that of hexyl paraben with MW 222, this compound was found to be the analogue of hexyl paraben. The only difference between them was only in the side chain. Thus, the structure of butyl paraben was assigned to this compound with MW 194. A search in the literature suggested that this compound is also known as a synthetic compound.
2.3.2 Herbicidal Activity
The pure compounds (butyl paraben [MBI206-FP-F5H32] and hexyl paraben [MBI206-
FP-F5H40]) obtained from fraction 5 were tested at a concentration of 10 mg/ml. An untreated control (treated with deionized water), the formulation blank (at 3% v/v & 10 % v/v), and a positive control (RoundUp Super Concentrate at a rate of 2.5 fluid ounces per gallon) are included in the test.
The following treatments were tested as shown in Table 5:
Figure imgf000055_0001
Results obtained are set forth in Table 6.
Figure imgf000055_0002
Based on the data presented in the table above, hexyl paraben was found to be the most potent herbicidal compound.
2.3.3 Insecticidal Acitivity
The insecticidal activity of butyl paraben (MBI206-FP-F5H32) and hexyl paraben
(MBI206-FP-F5H40) were tested in a laboratory assay using a 96-well diet overlay assay with 1st instar Beet Army worm (Spodoptera exigua) larvae using microtiter plates with 200 ul of solid, artificial Beet Armyworm diet in each well. One hundred (100) microliters of each test sample (containing 40 ug of sample) is pipetted on the top of the diet (one sample in each well), and the sample is let dry under flowing air until the surface is dry. Each sample was tested in six replicates, and water and a commercial Dipel product are used as negative and positive controls, respectively. One first instar larvae of the test insect (Beet armyworm - Spodoptera exiqua) was placed in each well, and the plate was covered with plastic cover with airholes. The plates with insects were incubated at 26 °C for 6 days with daily mortality evaluations. Based on the results presented in Table 7, hexyl paraben and butyl paraben resulted in 71 % and 9% mortality, respectively.
Table 7. Insecticidal Bioassay data for butyl paraben (MBI206-FP-F5H32) and hexyl paraben (MBI206-FP-F5H40) against 1st instar Beet Army Worm (Spodoptera exigua).
Figure imgf000056_0001
2.3.4 Nematicidal Acitivity; In vitro testing of butyl paraben (MBI206-FP-F5H32) and hexyl paraben (MBI206-FP-F5H40):
The pure sample of butyl paraben and hexyl paraben was used in an in vitro 96-well plastic cell-culture plate bioassay. 15-20 nematodes in a 50 μΐ water solution were exposed to 3 μΐ of a 20 mg/ml peak concentrate for a 24 hour period at 25°C. Once the incubation period was completed, results were recorded based on a visual grading of immobility of the juvenile nematodes (J2's) in each well treated with compounds; each treatment was tested in replicate of 4 wells. Results are shown in Table 8, which shows the results of two different 96-well plate extract bioassays of compounds. Three controls are included in each trial; 1 positive (1% Avid) & 2 negative (DMSO & water). Trials (Tl) was carried out using M. incognita nematodes and and trail (T2) was carried out using M. hapla nematodes, the samples were dissolved in 100% DMSO. The hexyl paraben (MBI206-FP-F5H40) showed the excellent control with the immobility of 93.75% against M. incognita as compared to butyl paraben with 81.25% immobility.
Table 8: Effect of hexyl paraben and butyl paraben on M. incognita and M. hapla.
Figure imgf000056_0002
2.3.5 Study of formation of Parabens during formulation of the product In order to understand the formation of these parabens, the effect of change in alcohol in the formulation was taken into consideration. The different carbon chain alcohols were used in the formulation and the formation of the new parabens were monitored using LCMS.
Four separate formulation experiments were performed using butanol, hexanol, octanol and cetyl alcohol and all other ingradients were kept same. The formulation products were extracted over the period of 2 days and 3 weeks. The crude extract obtained from these formulations were analysed by LCMS. The corresponding parabens formed for all alcohols except for cetyl alcohol. The yield of the parabens was found to be the highest for butyl paraben, followed by hexyl paraben and then octyl paraben for the one day old formulation product. The analysis result even after 3 weeks remain the same order ie, butyl paraben > hexyl paraben > octyl paraben. Thus, the rate of formation of these parabens such as butyl paraben, hexyl paraben & octyl paraben was found to depend on the carbon chain (number of carbon) of the solvent (alcohol) of the corresponding alcohol used in the formulation (butanol (C4) > hexanol (C6) > octanol (C8) etc). The formation of cetyl paraben was not detected till 3 weeks. The yields of these parabens were found to increase over the time.
Another set of experiments were carried out to understand the role of whole cell broth (WCB) in the formation of the new paraben analogues. In 4 different expt. with were carried out with following changes in the formulation-
- Expt-1 Propyl paraben (No methyl paraben) + WCB + other ingredients
- Expt-2 Methyl paraben (No Propyl paraben) + WCB + other ingredients
- Expt-3 No parabens (both) + WCB + other ingredients.
- Expt-4 Methyl Paraben + Propyl paraben + other ingredients + No WCB.
The above formulations were extracted separately and the crude extract obtained were then analysed using LCMS. The formation of the hexyl paraben was observed only in the first two experiments. Thus, these experiments suggested that WCB plays a very important role in the formation of these parabens.
3. Example 3. Isolation of Templazole A and B
Methods and Materials
The following procedure is used for the purification of Templazole A and B extracted from cell culture of Burkholderia sp (see Figure 3):
The culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al, 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature. The resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts. The resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract. The crude extract is then fractionated by using reversed-phase C18 vacuum liquid chromatography (H20/CH3OH; gradient 90: 10 to 0: 100%) to give 11 fractions. These fractions are then concentrated to dryness using rotary evaporator and the resulting dry residues are screened for biological activity using 96 well plate lettuce seeding assay. The active fractions are then subjected to reversed phase HPLC (Spectra System P4000 (Thermo Scientific) to give pure compounds, which are then screened in above mentioned bioassays to locate/identify the active compounds. To confirm the identity of the compound, additional spectroscopic data such as LC/MS and NMR is recorded.
The active fraction 5 is purified further by using HPLC C- 18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 80% aqueous CH3CN, 10-25 min; 80 - 65% aqueous CH3CN, 25-50 min; 65 - 50 % aqueous CH3CN, 50-60 min; 50-70% CH3CN, 60-80 min; 70-0% aqueous CH3CN, 80-85 min; 0 - 20% aqueous CH3CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templazole B, retention time 46.65 min. The other active fraction 7 is also purified using HPLC C-18 column
(Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0- 10 min; 80 % aqueous CH3CN, 10-25 min; 80 - 60 % aqueous CH3CN, 25-50 min; 60 - 40% aqueous CH3CN, 50-60 min; 40% CH3CN, 60-80 min; 40-0% aqueous CH3CN, 80-85 min; 0- 20 % aqueous CH3CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templazole A, retention time 70.82 min.
Mass spectroscopy analysis of pure compounds is performed on a Thermo Finnigan LCQ Deca XP Plus electrospray (ESI) instrument using both positive and negative ionization modes in a full scan mode (m/z 100-1500 Da) on a LCQ DECA XPplus Mass Spectrometer (Thermo Electron Corp., San Jose, CA). Thermo high performance liquid chromatography (HPLC) instrument equipped with Finnigan Surveyor PDA plus detector, autosampler plus, MS pump and a 4.6 mm x 100 mm Luna C18 5 μιη column (Phenomenex). The solvent system consists of water (solvent A) and acetonitrile (solvent B). The mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returned to 10% solvent B over 3 min and kept for 3 min. The flow rate is 0.5 mL/min. The injection volume was 10 and the samples are kept at room temperature in an auto sampler. The compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions: The flow rate of the nitrogen gas was fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization was performed with a spray voltage set at 5000 V and a capillary voltage at 35.0 V. The capillary temperature was set at 400°C. The data was analyzed on Xcalibur software. The active compound templazole A has a molecular mass of 298 and showed m/z ion at 297.34 in negative ionization mode. The LC-MS chromatogram for templazole B suggests a molecular mass of 258 and exhibited m/z ion at 257.74 in negative ionization mode.
¾ 13C and 2D NMR spectra were measured on a Bruker 500 MHz & 600 MHz gradient field spectrometer. The reference is set on the internal standard tetramethylsilane (TMS, 0.00 ppm).
For structure elucidation of templazole A, the purified compound with a molecular weight 298 is further analyzed using a 500 MHz NMR instrument, and has H NMR δ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08 and has 13C NMR values of δ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7. Templazole A has UV absorption bands at 226, 275, 327 nm, which suggested the presence of indole and oxazole rings. The molecular formula, C 7H18N2O3, was determined by
interpretation of ¾ 13C NMR and HRESI MS data m/z 299.1396 (M+H)+ (Calcd for
C17H19N2O3, 299.1397), which entails a high degree of unsaturation shown by 10 double bond equivalents. The 13C NMR spectrum revealed signals for all 17 carbons, including two methyls, a methoxy, a methylene carbon, an aliphatic methine, an ester carbonyl, and eleven aromatic carbons. The presence of 3 '-substituted indole was revealed from COSY and HMBC spectral data. The COSY and HMBC also indicated the presence of a carboxylic acid methyl ester group and a -CH2-CH-(CH3)2 side chain. From the detailed analysis of
COSY, 13C, and HMBC data it was derived that the compound contained an oxazole nucleus. From the 2D analysis it was found that the iso-butyl side chain was attached at C-2 position, a carboxylic acid methyl ester at C-4 position and the indole unit at C-5 position to give templazole A.
The second herbicidally active compound, templazole B, with a molecular weight 258 is further analyzed using a 500 MHz NMR instrument, and has H NMR δ values at 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93 and 13C NMR values of δ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 115.2, 1 15.2, 41.2, 35.3, 26.7, 21.5, 21.5. The molecular formula, is assigned as C15H18N2O2, which is determined by interpretation of ¾ 13C NMR and mass data. The 13C NMR spectrum revealed signals for all 15 carbons, including two methyls, two methylene carbons, one aliphatic methine, one amide carbonyl, and nine aromatic carbons. The general nature of the structure was deduced from H and 13C NMR spectra that showed a para- substituted aromatic ring [δ 7.08 (2H, d, J = 8.8 Hz), 6.75 (2H, d, J = 8.8 Hz), and 132.7, 129.5, 1 15.2, 127.3, 1 15.2, 129.5]. The 1H NMR spectrum of this structure together with the COSY and HSQC spectra, displayed characteristic signals for an isobutyl moiety [δ 0.93 (6H, d, J = 6.9 Hz), 2.15 (1H, sept., J = 6.9 Hz), 2.57 (2H, d, J = 6.9 Hz). In addition, an olefinic/aromatic proton at (δ 7.06, s), and a carbonyl carbon group (δ 158.9) were also found in the H and 13C NMR spectra. On inspection of the HMBC spectrum, the Η- signal in the isobutyl moiety correlated with the olefinic carbon (C-2, δ 156.3), and the olefinic proton H-4 correlated with (C-5, δ 155.5; C-2, 156.3 & C-l ", 41.2). The methylene signal at δ 3.75 correlated with C-5, C-4 as well as the C-2" of the para-substituted aromatic moiety. All these observed correlations suggested the connectivity among the isobutyl, and the para-substituted benzyl moieties for the skeleton of the structure as shown. In addition, the carboxamide group is assigned at the para position of the benzyl moiety based on the HMBC correlation from the aromatic proton at H-4"& H-6" position. Thus, based on the above data, the structure was designated as templazole B. 4. Example 4. Isolation of FR901228
The whole cell broth from the fermentation of Burkholderia sp. in an undefined growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al., 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature. The resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts . The resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract. The crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H20/CH3OH; gradient 90: 10 to 0: 100%) to give 1 1 fractions. These fractions are then concentrated to dryness using rotary evaporator and the resulting dry residues are screened for biological activity using both insect bioassay as well as herbicidal bioassay. The active fractions are then subjected to reversed/normal phase HPLC (Spectra System P4000; Thermo Scientific) to give pure compounds, which are then screened in herbicidal, insecticidal and nematicidal bioassays described below to locate/identify the active compounds. To confirm the identity of the compound, additional spectroscopic data such as LC/MS and NMR is recorded.
Mass spectroscopy analysis of active peaks is performed on a Thermo Finnigan LCQ
Deca XP Plus electrospray (ESI) instrument using both positive and negative ionization modes in a full scan mode (m/z 100- 1500 Da) on a LCQ DECA XPplus Mass Spectrometer (Thermo Electron Corp., San Jose, CA). Thermo high performance liquid chromatography (HPLC) instrument equipped with Finnigan Surveyor PDA plus detector, autosampler plus, MS pump and a 4.6 mm x 100 mm Luna C 18 5 μπι column (Phenomenex) . The solvent system consists of water (solvent A) and acetonitrile (solvent B). The mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returned to 10% solvent B over 3 min and kept for 3 min. The flow rate is 0.5 mL/min. The injection volume is 10 iL and the samples are kept at room temperature in an auto sampler. The compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions: The flow rate of the nitrogen gas is fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization is performed with a spray voltage set at 5000 V and a capillary voltage at 35.0 V. The capillary temperature is set at 400°C. The data is analyzed on Xcalibur software. Based on the LC-MS analysis, the active insecticidal compound from fraction 6 has a molecular mass of 540 in negative ionization mode.
For structure elucidation, the purified insecticidal compound from fraction 6 with molecular weight 540 is further analyzed using a 500 MHz NMR instrument, and hasな NMR values at 6.22, 5.81 , 5.69, 5.66, 5.65, 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; and has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51. The NMR data indicates that the compound contains amino, ester, carboxylic acid, aliphatic methyl, ethyl, methylene, oxymethylene, methine, oxymethine and sulfur groups. The detailed ID and 2D NMR analysis confirms the structure for the compound as FR901228 as a known compound.
5. Example 5. Isolation of Templamide A, B, FR901465 and FR901228
Methods and Materials
The culture broth derived from the 10-L fermentation Burkholderia (A396) in Hy soy growth medium is extracted with Amberlite XAD-7 resin (Asolkar et al., 2006) by shaking the cell suspension with resin at 225 rpm for two hours at room temperature. The resin and cell mass are collected by filtration through cheesecloth and washed with DI water to remove salts. The resin, cell mass, and cheesecloth are then soaked for 2 h in acetone after which the acetone is filtered and dried under vacuum using rotary evaporator to give the crude extract. The crude extract is then fractionated by using reversed-phase C 18 vacuum liquid chromatography (H20/CH3OH; gradient 90: 10 to 0: 100%) to give 1 1 fractions. These fractions are then concentrated to dryness using rotary evaporator and the resulting dry residues are screened for biological activity using 96 well plate lettuce seeding (herbicidal) and early 3rd instar Beet Army worm (insecticidal) assay. The active fractions are then subjected to repeatedly to reversed phase HPLC separation (Spectra System P4000 (Thermo Scientific) to give pure compounds, which are then screened in above-mentioned bioassays to locate/identify the active compounds. To confirm the identity of the compound, additional spectroscopic data such as LC/MS , HRMS and NMR are recorded.
The active fraction 6 is purified further by using HPLC C- 18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 80 % aqueous CH3CN, 10-25 min; 80 - 65 % aqueous CH3CN, 25-50 min; 65 - 50 % aqueous CH3CN, 50-60 min; 50-70 % aqueous CH3CN, 60-80 min; 70 - 0 % aqueous CH3CN, 80-85 min; 0 - 20 % aqueous CH3CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templamide A, retention time 55.64 min and FR901465 , retention time 63.59 min and
FR90128, retention time 66.65 min respectively. The other active fraction 6 is also purified using HPLC C-18 column (Phenomenex, Luna lOu C18(2) 100 A, 250 x 30), water: acetonitrile gradient solvent system (0-10 min; 70-60 % aqueous CH3CN, 10-20 min; 60-40 % aqueous CH3CN, 20-50 min; 40 - 15 % aqueous CH3CN, 50-75 min; 15 - 0 % CH3CN, 75-85 min; 0 - 70 % aqueous CH3CN) at 8 mL/min flow rate and UV detection of 210 nm, to give templamide B, retention time 38.55 min.
Mass spectroscopy analysis of pure compounds is performed on a Thermo Finnigan LCQ Deca XP Plus electrospray (ESI) instrument using both positive and negative ionization modes in a full scan mode (m/z 100-1500 Da) on a LCQ DECA XpPlus Mass Spectrometer (Thermo Electron Corp., San Jose, CA). Thermo high performance liquid chromatography (HPLC) instrument equipped with Finnigan Surveyor PDA plus detector, autosampler plus, MS pump and a 4.6 mm x 100 mm Luna CI 8 5 μιη column (Phenomenex) is used. The solvent system consists of water (solvent A) and acetonitrile (solvent B). The mobile phase begins at 10% solvent B and is linearly increased to 100% solvent B over 20 min and then kept for 4 min, and finally returns to 10% solvent B over 3 min and kept for 3 min. The flow rate is 0.5 mL/min. The injection volume is 10 and the samples are kept at room temperature in an auto sampler. The compounds are analyzed by LC-MS utilizing the LC and reversed phase chromatography. Mass spectroscopy analysis of the present compounds is performed under the following conditions: The flow rate of the nitrogen gas is fixed at 30 and 15 arb for the sheath and aux/sweep gas flow rate, respectively. Electrospray ionization is performed with a spray voltage set at 5000 V and a capillary voltage at 45.0 V. The capillary temperature is set at
300°C. The data is analyzed on Xcalibur software. The active compound templamide A has a molecular mass of 555 based on the m/z peak at 556.41 [M + H]+ and 578.34 [M + Na]+ in positive ionization mode. The LC-MS analysis in positive mode ionization for templamide B suggests a molecular mass of 537 based m/z ions at 538.47 [M + H]+ and 560.65 [M + Na]+. The molecular weight for the compounds FR901465 and FR901228 are assigned as 523 and 540 respectively on the basis of LCMS analysis.
¾ 13C and 2D NMR spectra are measured on a Bruker 600 MHz gradient field spectrometer. The reference is set on the internal standard tetramethylsilane (TMS, 0.00 ppm).
For structure elucidation of templamide A, the purified compound with molecular weight 555 is further analyzed using a 600 MHz NMR instrument, and has H NMR δ values at 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73, 3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04 and has 13C NMR values οί δ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41. The 13C NMR spectrum exhibits 28 discrete carbon signals which are attributed to six methyls , four methylene carbons, and thirteen methines including five sp2, four quaternary carbons. The molecular formula, C28H45NO10, is determined by interpretation of ¾ 13C NMR and HRESI MS data. The detailed analysis of COSY, HMBC and HMQC spectral data reveals the following substructures (I - IV) and two isolated methylene & singlet methyl groups. These substructures are connected later using the key HMBC correlations to give the planer structure for the compound, which has been not yet reported in the literature and designated as templamide A. This polyketide molecule contains two tetrahydropyranose rings, and one conjugated amide.
Figure imgf000063_0001
Ill IV
Substructures I-IV assigned by analysis of ID & 2D NMR spectroscopic data.
The (+) ESIMS analysis for the second herbicidal compound, shows m/z ions at 538.47 [M + H]+ and 560.65 [M + Na]+ corresponding to the molecular weight of 537. The molecular formula of C28H43N09 is determined by interpretation of the ESIMS and NMR data analysis. The H and 13C NMR of this compound is similar to that of templamide A except that a new isolated -CH2- appear instead of the non-coupled methylene group in templamide A. The small germinal coupling constant of 4.3 Hz is characteristic of the presence of an epoxide methylene group. The presence of this epoxide is further confirmed from the 13C NMR shift from 60.98 in templamide A to 41.07 in compound with MW 537. The molecular formulae difference between these two compounds is reasonably explained by elimination of the water molecule followed by formation of epoxide. Thus, on the basis of based NMR and MS analysis the structure for the new compound was assigned and was designated as templamide B.
For structure elucidation, the purified compound from fraction 6 with molecular weight 523 is further analyzed using a 600 MHz NMR instrument, and hasな NMR values at 6.41, 6.40, 6.01, 5.98, 5.68, 5.56, 4.33, 3.77, 3.75, 3.72, 3.65, 3.59, 3.55, 3.50, 2.44, 2.26, 2.04, 1.96, 1.81, 1.75, 1.37, 1.17, 1.04; and has 13C NMR values of 172.22, 167.55, 144.98, 138.94, 135.84, 130.14, 125.85, 123.37, 99.54, 82.19, 78.28, 76.69, 71.31, 70.13, 69.68, 48.83, 42.52, 36.89, 33.1 1, 30.63, 25.99, 21.20, 20.38, 18.14, 14.93, 12.84. The detailedな and 13C NMR analysis of compound suggested that this compound was quite similar to compound templamide B ; the only difference was in the ester side chain; an acetate moiety was present instead of a propionate moiety in the side chain. The detailed ID and 2D NMR analysis confirm the structure for the compound as FR901465 as a known compound.
Based on the LC-MS analysis, the other compound from fraction 6 has a molecular mass of 540 in negative ionization mode. For structure elucidation, the purified compound from fraction 5 with molecular weight 540 is further analyzed using a 500 MHz NMR instrument, and hasな NMR values at 6.22 , 5.81 , 5.69 , 5.66 , 5.65 , 4.64 , 4.31 , 3.93 , 3.22 , 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; and has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51. The NMR data indicates that the compound contains amino, ester, carboxylic acid, aliphatic methyl, ethyl, methylene, oxymethylene, methine, oxymethine and sulfur groups. The detailed ID and 2D NMR analysis confirm the structure for the compound as FR901228 as a known compound.
The molecular weight for the other active compound (F8H17) from Fraction F8 was assigned as 1080 based on the molecular ion peak at 1081.75 (M + H) in positive ESI mode and further confirmed by the negative ESIMS with base peak at 1079.92. This compound showed UV absorption at 234 nm.
Example 6. Burkholderia sp. as an Algicide
Burkholderia sp. A396 is grown in an undefined mineral medium for 5 days (25°C, 200 rpm). Cells are separated from the supernatant by centrifugation at 8,000 g, and the cell-free supernatant is used to test the algaicidal activity against a unicellular algal species (P.
subcapitata) and a blue-green alga species (Anabaena sp.). A specified increasing amount of supernatant is added into wells of a 24-well polystyrene plate that has the specified algae growing in 750 micro liters of Gorham's medium to determine the dose-response curve for the test supernatant on each algae type. Each treatment is done in two replicates, and the blank growth medium is used as a negative control. The plate is closed with a lid and incubated for 48 hours under constant growth light at room temperature. After 48 hours, the fluorescence (at 700 nm) of the suspension in each well is measured using a SpectraMax Gemini XS plate reader, and the reduction in fluorescence compared with the un-treated control is converted into percent control of algal growth. Results presented in Table 9 below show excellent control of unicellular algae and good control or algistatic effect on blue-green algae.
Figure imgf000065_0001
Example 7: Control of Chlamydomonas reinhardtii by crude extract and fractions of Burkholderia sp.
Fractions obtained from the fractionation of crude extract of Burkholderia sp. were tested for algaecide activity against Chlamydomonas reinhardtii. An increasing volume of fraction (with concentration of 20 mg/mL in ethanol) was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing. Each treatment was done in two replicates and the solvent (ethanol) used as a negative control. The plate was closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours, the fluorescence (at 680 nm) of the suspension in each well was measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the negative control was converted into percent control of algal growth. Each sample was visually compared to the negative control; a well that was visually clearer than the negative control was scored as active. Results presented in Table 10 below shows control of the specified algae in fractions 5, 6, 7, 8, and 9. Tests were run in two replicates and % Control was calculated as a reduction of fluorescence at 680 nm compared with the negative control. Each sample was visually compared to the negative control; a well that was visually clearer than the negative control was scored as active.
Figure imgf000066_0001
Example 8: Algicidal effect of crude extract and various fractions obtained from Burkholderia sp. against P. subcapitata. The crude extract as well as the fractions obtained from Burkholderia sp. was tested for algicidal activity against a unicellular algal species (P. subcapitata). An increasing volume of pure ethanol solution derived by re-dissolving a known amount of material (10 mg/mL concentration) corresponding to each sample was added into wells of a 24-well polystyrene plate that has the specified algae growing in 750 micro liters of Gorham's medium to determine the algicidal effect of sample (extract/fractions) on unicellular algae. Each treatment was done in three replicates, and pure ethanol was used as a negative control. After mixing, the plate was closed with a lid and incubated for 48 hours under constant growth lights at room temperature. After 48 hours, the fluorescence (at 700 nm) of the suspension in each well was measured using a SpectraMax Gemini XS plate reader, and the reduction in fluorescence compared with the untreated control was converted into percent control of algal growth. Results presented in Table 1 1 below show excellent control of unicellular algae with fractions F5, F6 and F7 whereas no substantial algicidal effect was obtained with other samples.
Figure imgf000068_0001
Example 9: Control of Chlamydomonas reinhardtii by purified compounds from
Burkholderia sp. fermentation broth
Purified compounds from Burkholderia sp. fermentation broth was tested for algaicidal activity against Chlamydomonas reinhardtii. An increasing volume of the purified compounds (20 mg/mL in ethanol) was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing. Each treatment was done in two replicates and the solvent used as a negative control. The plate was closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours the fluorescence (at 680 nm) of the suspension in each well was measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the negative control was converted into percent control of algal growth. Each sample was visually compared to the negative control; a well that was visually clearer than the negative control was scored as active. Results presented in Table 12 below shows control of the specified algae in samples containing templamide B (MW 537), FR901228 (MW 540), templazole A (MW 298), and F8H18 (MW 1080). Tests were run in two replicates and %. Control was calculated as a reduction of fluorescence at 680 nm compared with the negative control. Each sample was visually compared to the negative control; a well that was visually clearer than the negative control was scored as active.
Figure imgf000070_0001
Templazole A was tested twice in this bioassay.
Example 10: Control of Scenedesmus quadricauda by heat-treated Burkholderia sp.
fermentation supernatant.
Burkholderia sp. was grown in a fermentation broth as previously described. The broth was heat treated at the end of the fermentation to inactivate all cells. The cell free supernatant was tested for algaecide activity against Scenedesmus quadricauda. An increasing volume of supernatant was added to a clear 48 well polystyrene plate with 750 micro liters of the specified algae growing. Each treatment is done in two replicates and the blank growth medium used as a negative control. The plate is closed with a lid and incubated for 72 hours under constant light at room temperature After 72 hours the fluorescence (at 680 nm) of the suspension in each well is measured using a SpectraMax M2 plate reader, and the reduction in fluorescence compared with the untreated control is converted into percent control of algal growth. Results presented in Table 13 below shows control of the specified algae. Tests were run in two replicates and % Control was calculated as a reduction of fluorescence at 680 nm compared with the untreated control.
Figure imgf000071_0001
Example 11: Control of Oscillatoria tenius by heat kill Burkholderia sp. fermentation supernatant
Burkholderia sp. was grown in a fermentation broth as previously described. The broth was heat treated at the end of the fermentation to inactivate all cells. The cell free supernatant was tested for algaecide activity against Oscillatoria tenius. An increasing volume of supernatant was added to a clear 48 well polystyrene plate with 750 of the specified algae growing. Each treatment is done in two replicates and the blank growth medium used as a negative control. The plate is closed with a lid and incubated for 72 hours under constant light at room temperature. After 72 hours the absorbance at 680 nm is measured in each well using a SpectraMax M2 plate reader, and the reduction in absorbance compared with the untreated control is converted into percent control of algal growth. Results presented in Table 14 below shows control of the specified algae. Tests were run in two replicates and % control was calculated as a reduction of absorbance at 680 nm compared with the untreated control.
Figure imgf000071_0002
Example 13: Efficacy of Burkholderia sp. against two-spotted spidermites infesting marigold plants
Marigold, Tagetes erecta, grown in 6" containers were infested with two-spotted spidermite, Tetranychus urticae, by placing leaves extracted from host plant (cotton) onto the test plants. Approximately ten (10) leaves with 30-40 spidermites present were placed on various parts of test plants for fourteen (14) days. Test plants were individually caged following infestation to allow spidermite population to build. Host leaves were removed from test plant. No pesticides were applied to test plants prior to study application. Spray application was applied using a Gen3 spray booth calibrated to 100 gpa. Each replicate was individually caged immediately following application. Cage description; a wire tomato cage 30" height x 12" diameter, covered with antivirus insect screening. Test plants received natural lighting for duration of trial. Test plants were soil watered every twenty- four (24) hours as needed. Plants were evaluated prior to application (pre-count), 3, 5 and 7 days after application. Four leaves were randomly selected and harvested from each replicate equaling a 6 cm sq total surface area evaluated. Actual count was recorded on live and dead two-spotted spidermite. Burkholderia sp. showed slight activity against both TSSM nymphs and adults. This activity shows potential for biopesticide formulations against TSSM. The treatments also reduced the number of live mites observed on samples. This is compelling evidence that MBI206 shows potential for biopesticide formulations against TSSM.
Example 14: Efficacy of Burkholderia sp. fermentation supernatant against two- spotted spidermites infesting Marigold plants
Marigold plants grown in 6" containers were infested with two- spotted spidermite by placing leaves extracted from host plant (cotton) onto the test plants. Eight to ten (8-10) leaves with approximately 30-40 two-spotted spidermite present were placed on various parts of test plants for fourteen (14) days. Test plants were individually caged following infestation to allow mite population to build. Host leaves were removed from test plant. No pesticides were applied to test plants prior to study application. Plants were treated with either 100% supernatant or 10% supernatant (in water) Spray application was applied to full coverage with no run-off using a disposable hand-sprayer. Test plants were placed research greenhouse on a wire-mesh raised bench and arranged in a complete randomized block design. Research greenhouse is monitored by Procom, Micro Grow Greenhouse System temperature control system Environmental conditions averaged high temperature 85F to low temperature of 72F during trial dates. Average humidity levels ranged from 40% to 75% . Test plants received natural lighting for duration of trial. Test plants were soil watered every twenty-four (24) hours as needed. Plants were evaluated prior to application (pre-count), 3, 5, 7 and 14 days after application. Evaluations were taken on a 6cm square total area per replicate. Actual count was recorded on live/dead two-spotted spidermite nymph and live/dead two-spotted spidermite adult.
Example 14: Efficacy of Burkholderia sp. formulation (MBI 206) for control of two spotted spidermite (TSM) in strawberry - field data.
The efficacies of five traditional chemistry-derived and MBI 206 were evaluated for
TSM control under field conditions. 'Strawberry Festival' transplants were set in the field in plastic mulched beds, 13 inches high and 27 inches across the top, and with 4 ft bed spacing. Overhead irrigation was applied for 10 days after setting to aid in establishment of the transplants. Trickle irrigation was used for the remainder of the experiment. Each 12.5-ft. plot consisted of 20 plants in two ten-plant rows per bed. Plots were infested from a laboratory colony in four sessions with 10 to 20 motile TSM, per plant. Each session accomplished the infestation of one block of the experiment. The experiment consisted of treatments of various rates and schedules of application of miticides, some combined with an adjuvant, and a non- treated check. Treatments were replicated four times in a RCB design. Savey and Acramite treatments were applied before TSM densities reached threshold levels (6 Jan); the remainder of the treatment programs began 2 wks later. Treatments were applied using a hand-held sprayer with a spray wand outfitted with a nozzle containing a 45 -degree core and a number four disc. The sprayer was pressurized by C02, to 40 psi, and calibrated to deliver 100 gal per acre. Pre- treatment samples were taken on Day 1 and sampling continued weekly through 2 wks after the last application of treatments. Samples consisted of ten randomly selected leaflets per plot and were collected from the middle one-third stratum of the plants. Samples were transported to the laboratory where motile and egg TSM were brushed from the leaflets onto rotating sticky discs and counted on 1/10 of the disc surface to estimate average numbers per leaflet. Distinctions could not be made between viable and non-viable eggs, thus total eggs were recorded. MBI 206 at the highest rate (3 gal/acre) shows decrease in the number of eggs at a level comparable to at least two of the chemical controls. 15. Effects of Various Formulations on TSM Egg Production
Treatment/ Rate No. egg TSM/leaflet ormulation
Non-treated
azate+ Blend
alkyl aryl
xylkane ethe
fatty acids a
hyl polysilox
ionic spread
fenpyroxima
EW
npyroximate
exythiazox
206 + Blend
alkyl aryl
xylkane ethe
fatty acids a
hyl polysilox
206 + Blend
alkyl aryl
xylkane ethe
fatty acids a
hyl polysilox
Figure imgf000074_0001
Example 15: Control of citrus rust mites (Phyllocoptruta olewora) on citrus under filed conditions
MBI 206 (formulated broth of Burkhoderia sp.) was sprayed on Valencia Sweet Orange at I, 2, and 3 gal/acre in combination with 0.25% v/v/ of LI-700 (surfactant) and delivered in a volume of 100 GPA. A single treatment was delivered and compared to an untreated sample. Mite counts were performed pre-treatment, and then at 1, 7, 10 and 14 days after treatment. Mite counts were an average of 10 fruits per treatment per sampling point. A reduction in the number of mites present in the MBI 206 treatments was observed at 14 days after treatments with 1 and 2 gal/acre MBI 206 (approximately 6-8 mites per count), when compared to the untreated control (approx. 16 mites per count).
Example 16: Insecticidal (sucking contact) activity of Templamide, FR901465 and FR901228 against milkweed bugs.
The insecticidal activity of the pure compounds templamide B (MBI 206; MW 537), FR 901465 (MBI 206; MW 523) and FR901228 (MBI 206; MW 540) were tested in a laboratory assay using a sucking contact bioassay system. The compounds were dissolved in 100% ethanol to concentrations of lmg/mL. Individual 4th instar milkweed bugs, penultimate nymph, larvae were placed in 5C Rubbermaid container with 2 sunflower seeds in each tub and 1 water cup (water in contact cup with cotton wick) into each tub. A Hamilton Micropipette was used to apply 1 uL (1 drop) of compound onto abdomen of milkweed bugs (MWB) of each larvae. Tubs were place into the Rubbermaid container and cap with mesh lid. Eight larvae per sample were treated. The assay was incubated at 25°C, 12h light/12h dark. Larvae were scored at 4 and 7 day after application. All the three compounds exhibited contact activity against MWB, while not all insects died but many were clearly affected and unable to move. Most of the MWB on day 7 had molted which suggests that the compounds may inhibit molting or affect normal MWB development. Thus, FR 901465 provided a better (87.5 %) control of milkweed bugs, than FR 901228 (MW 540) and templamide B (Figure 4). Example 17: Insecticidal activity of pure compounds against Lygus hesperus late 2nd/early 3rd instar
The insecticidal activity of the four compounds, templamide A, templamide B, FR901465 & FR901228 isolated from Burkholderia were tested in a laboratory assay using a 12 well plate with treated green beans bioassay system. The compound was dissolved in 100% ethanol to concentrations of 1 mg/mL and 500 of this sample was added to 3.5 mL of water to make a total volume of 4 mL containing 0.25 mg/mL concentration of the compound. Green beans were washed earlier in bleach solution and then sat in water to rinse. Beans were dried before using and then were cut with scissors to fit into wells of 12 - well plate. With the help of forceps the beans were dunked into a 15 mL plastic falcon tube containing each treatment and then submerged in treatment for exactly one min. one bean part was put into each well and then individual late 2nd/early 3rd instar Lygus hesperus, were placed in wells with help of brush. Plate sealer was used to cover tray and hole poked into the plate sealer for aeration. The numbers of Lygus/well were counted and plates were placed on brench top. Larvae were scored at 24, 48 and 120 hours after application. Based on the results presented in Figure 5, compound FR 901465, was found to be the most potent with mortality of 91.2%, followed by templamide with B 69.2%, and FR901228 with 51.7%. The templamide A was inactive in the Lygus feeding bioassay. The positive control used in this testing was Avid (Avemectin) at the rate of 13 μί/10 mL.
Example 18: Nematicidal Activity of FR901228
The pure sample of FR 901228 was tested using an in vitro 96-well plastic cell- culture plate bioassay. 15-20 nematodes in a 50 μΐ water solution were exposed to 3 μΐ of a 20 mg/ml solution of FR 901228 for a 24 hour period at 25C. Once the incubation period was completed, results were recorded based on a visual grading of immobility of the juvenile nematodes (J2's) in each well treated with compounds; each treatment was tested in replicate of 4 wells. Three controls are included in each trial; 1 positive (1% Avid) & 2 negative (DMSO & water). Trials (Tl) was carried out using Free living nematodes (FLN) and trail (T2) was carried out using M. incognita nematodes, the samples were dissolved in 100% DMSO. FR 901228 (MW 540) showed the excellent control with immobility of 75% against free living nematodes as compared to M. incognita with 75% immobility.
MICROORGANISM DEPOSIT
The following biological material has been deposited under the terms of the
Budapest Treaty with the Agricultural Research Culture Collection (NRRL), 1815 N.
University Street, Peoria, Illinois 61604 USA, and given the following number:
Deposit Accession Number Date of Deposit
Burkholderia sp. A396 NRRL B-50319 September 15, 2009 The strain has been deposited under conditions that assure that access to the culture will be available during the pendency of this patent application to one determined by the Commissioner of Patents and Trademarks to be entitled thereto under 37 C.F.R. § 1.14 and 35 U.S .C. §122. The deposit represents a substantially pure culture of the deposited strain. The deposit is available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny are filed. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by government action. Although this invention has been described with reference to specific embodiments, the details thereof are not to be construed as limiting, as it is obvious that one can use various equivalents, changes and modifications and still be within the scope of the present invention.
Various references are cited throughout this specification, each of which is incorporated herein by reference in its entirety.
Literature cited:
Anderson, et al. "The structure of thiostrepton," Nature 225: 233-235. 1970.
Andra, "Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas) plantarii: immune cell stimulation and biophysical characterization." Biol. Chem. 387: 301-310. 2006.
Arena, et al. "The mechanism of action of avermectins in Caenorhabditis elegans - correlation between activation of glutamate-sensitive chloride current, membrane binding and biological activity." J Parasitol. 81 : 286-294. 1995.
Asolkar, et al., "Weakly cytotoxic polyketides from a marine-derived Actinomycete of the genus Streptomyces strain CNQ-085." J. Nat. Prod. 69: 1756- 1759. 2006. Burkhead, et al., "Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes." Appl. Environ. Microbiol. 60: 2031- 2039. 1994.
Burkholder, W. H "Sour skin, a bacterial rot of onion bulbs." Phytopathology 40: 1 15- 1 17. 1950.
Caballero-Mellado et al., "Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species." Int. J. Syst. Evol. Microbiol. 54: 1 165- 1 172. 2004. Cashion et al. "Rapid method for base ratio determination of bacterial DNA." Anal. Biochem. 81 : 461-466. 1977.
Casida, et al., US Patent No. 6,689,357. Chen et al. , "Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella " Int. J. Syst. Evol. Microbiol. 57: 1055- 1059. 2007.
Cheng, A. C. and Currie, B . J. "Melioidosis: epidemiology, pathophysiology, and
management." Clin. Microbiol. 18: 383-416. 2005. Coenye, T. and P. Vandamme, P. "Diversity and significance of Burkholderia species occupying diverse ecological niches." Environ. Microbiol. 5: 719-729. 2003. Compant, et al. "Diversity and occurence of Burkholderia spp. in the natural environment." FEMS Microbiol. Rev. 32: 607-626. 2008.
De Ley et al. "The quantitative measurement of DNA hybridization from renaturation rates." Eur. J. Biochem. 12: 133- 142. 1970.
Duke et al. "Natural products as sources for herbicides: current status and future trends." Weed Res 40: 99- 1 1 1. 2000.
Gerwick et al., US Patent No. 7,393 ,812.
Gottlieb et al., US Patent No. 4,808,207.
Gouge et al., US Patent Application Pub. No. 2003/0082147. Guella et al. "Almazole C, a new indole alkaloid bearing an unusually 2,5-disubstituted oxazole moiety and its putative biogenetic precursors, from a Senegalese Delesseriacean sea weed." Helv. Chim. Acta 77: 1999-2006. 1994.
Guella et al. "Isolation, synthesis and photochemical properties of almazolone, a new indole alkaloid from a red alga of Senegal." Tetrahedron. 62: 1 165- 1 170. 2006.
Henderson, P. J. and Lardy H. A. "Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria." J. Biol. Chem. 245: 1319- 1326. 1970. Hirota et al. "Isolation of indolmycin and its derivatives as antagonists of L-tryptophan." Agri. Biol Chem. 42: 147- 151. 1978.
Hu, F.-P. and Young, J. M. "Biocidal activity in plant pathogenic Acidovorax, Burkholderia, Herbaspirillum, Ralstonia, and Xanthomonas spp." J. Appl. Microbiol. 84: 263-271. 1998. Huss et al. "Studies of the spectrophotometric determination of DNA hybridization from renaturation rates." System. Appl. Microbiol. 4: 184- 192. 1983.
Jansiewicz, W. J. and Roitman J. "Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia." Phytopathology 78: 1697- 1700. 1988.
Jeddeloh et al., WO2001/055398.
Jansen et al. "Thiangazole: a novel inhibitor of HIV- 1 from Polyangium Spec." Liebigs Ann. Chem. 4: 357-3359. 1992.
Jeong et al. "Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops." Plant Disease 87: 890-895. 2003. Knudsen, G. R. and Spurr, J. "Field persistence and efficacy of five bacterial preparations for control of peanut leaf spot." Plant Disease 71 : 442-445. 1987.
Koga-Ban et al. "cDNA sequences of three kinds of beta- tubulins from rice." DNA Research 2: 21-26. 1995.
Koide et al. US Patent Application Pub. No. 2008/0096879.
Koyama et al. "Isolation, characterization, and synthesis of pimprinine, pimrinrthine, and pimprinaphine, metabolites of Streptoverticillium olivoreticuU Agri. Biol. Chem. 45: 1285- 1287. 1981.
Krieg et al. "Bacillus thuringiensis var. tenebrionis: Ein neuer, gegenuber Larven von
Coleopteren wirksamer Pathotyp." Z. Angew. Entomol._96:500-508. 1983. Kunze et al. "Thiangazole, a new thiazoline antibiotic from Polyangium sp (Myxobacteria
Production, antimicrobial activity and mechanism of action." J. Antibiot, 46: 1752-1755. 1993.
Leahy et al. "Comparison of factors influencing trichloroethylene degradation by toluene- oxidizing bacteria." Appl. Environ. Microbiol. 62: 825-833. 1996. Lessie et al. "Genomic complexity and plasticity of Burkholderia cepacia." FEMS Microbiol. Lett. 144: 1 17- 128. 1996.
Lindquist, N. et al. "Isolation and structure determination of diazonamides A and B , unusual cytotoxic metabolites from the marine ascidian Diazona chinensisT J. Am Chem. Soc. 1 13: 2303-2304. 1991.
Lorch, H et al. "Basic methods for counting microoganisms in soil and water. In Methods in applied soil microbiology and biochemistry. K. Alef and P. Nannipieri. Eds. San Diego, CA, Academic Press: pp. 146- 161. 1995.
Ludovic et al. "Burkholderia diveristy and versatility: An inventory of the extracellular products." J. Microbiol. Biotechnol. 17: 1407- 1429. 2007. Lydon, J. and Duke, S . "Inhibitors of glutamine biosynthesis." in Plant amino acids:
Biochemistry and Biotechnology. B . Singh., Ed. New York, USA, Marcel Decker, pp. 445-464. 1999.
Mahenthiralingam et al. "DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis , Burkholderia multivorans , Burkholderia stabilis, and Burkholderia cepacia genomovars I and III." J.Clin. Microbiol. 38: 3165-3173. 2000.
Ming, L.-J. and Epperson. "Metal binding and structure-activity relationship of the
metalloantibiotic peptide bacitracin." Biochemistry 91 : 46-58. 2002.
Morita et al. "Biological activity of tropolone." Biol. Pharm. Bull. 26: 1487- 1490. 2003.
Nagamatsu, T. "Syntheses, transformation, and biological activities of 7-azapteridine antibiotics: toxoflavin, fervenulin, reumycin, and their analogs". Recent Res. Devel. Org.
Bioorg. Chem. 4: 97 -121. 2001.
Naik et al., "Pimprine, an extracellular alkaloid produced by Streptomyces CDRIL-312:
fermentation, isolation and pharmacological activity." J. Biotech. 88: 1- 10. 2001.
Nakajima et al., "Antitumor Substances, FR901463 , FR901464 and FR901465. 1. Taxonomy, Fermentation, Isolation, Physico-chemical Properties and Biological Activities." J. Antibiot. 49: 1 196- 1203. 1996.
Nakajima et al. US Patent No. 5 ,545 ,542.
Nakajima et al., "Hydantocidin: a new compound with herbicidal activity." J Antibiot. 44: 293- 300. 1991.
N'Diaye, I. et al., "Almazole A and amazole B , unusual marine alkaloids of an unidentified red seaweed of the family Delesseriaceae from the coasts of Senegal." Tet Lett. 35: 4827-4830. 1994.
N'Diaye, I. et al., "Almazole D, a new type of antibacterial 2,5-disubstituted oxazolic dipeptide from a red alga of the coast of Senegal." Tet Lett. 37: 3049-3050. 1996.
Nierman et al., "Structural flexibility in the Burkholderia mallei genome." Proc. Natl. Acad. Sci. USA 101 : 14246- 14251. 2004.
Okazaki et al., "Rhizobial strategies to enhance symbiotic interaction: Rhizobitoxine and 1- aminocyclopropane- 1 -carboxylate deaminase." Microbes Environ. 19: 99- 1 1 1. 2004.
Parke, J. L. and D. Gurian-Sherman, D. 2001. "Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains." Annual Reviews in
Phytopathology 39: 225-258. 2001.
Parke, et al. US Patent No. 6,077,505.
Pettit, G. et al. "Isolation of Labradorins 1 and 2 from Pseudomonas syringaeT J. Nat. Prod. 65: 1793- 1797. 2002.
Pitt, et al., "Type characterization and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland." J. Med. Microbiol. 44: 203-210. 1996. Ramette et al., "Species abundance and diversity of Burkholderia cepacia complex in the environment." Appl. Environ. Microbiol. 71 : 1 193- 1201. 2005.
Resi et al., "Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated
bacterium."Int. J. Syst. Evol. Microbiol. 54: 2155-2162. 2004.
Salama et al. "Potency of spore-gamma-endotoxin complexes of Bacillus thuringiensis against some cotton pests." Z. Angew. Entomol. 91 : 388-398. 1981. Selva et al, "Targeted screening for elongation factor Tu binding antibiotics." J. Antibiot. 50: 22-26. 1997.
Takahashi, S. et al. "Martefragin A, a novel indole alkaloid isolated from a red alga, inhibits lipid peroxidation." Chem Pharm. Bull. 46: 1527-1529. 1998.
Thompson et al. "Spinosad - a case study: an example from a natural products discovery programme." Pest Management Science 56: 696-702. 2000.
Takita et al, "Chemistry of Bleomycin. XIX Revised structures of bleomycin and phleomycin." J. Antibiot. 31 : 801-804. 1978.
Tran Van et al., "Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield component in low fertility sulphate acid soils of Vietnam." Plant and Soil 218: 273-284. 2000.
Tsuruo et al., "Rhizoxin, a macrocyclic lactone antibiotic, as a new antitumor agent against human and murine tumor cells and their vincristine-resistant sublines." Cancer Res. 46: 381 - 385. 1986. Ueda et al . , US Patent No . 7 ,396 ,665.
Umehara, K. et al. "Studies of new antiplatelet agents WS-30581 A and B ." J. Antibiot. 37: 1 153- 1 160. 1984. Vandamme et al. Polyphasic taxonomic study of the emended genus Arcobacter with
Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens." Int. J. Syst. Bacteriol. 42: 344-356. 1992. Vanderwall et al., "A model of the structure of HOO-Co'bleomycin bound to
d(CCAGTACTGG): recognition at the d(GpT)site and implications for double-stranded DNA cleavage, Chem. Biol. 4: 373-387. 1997.
Vermis K., et al. "Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex." J. Med. Microbiol 51 : 937-940. 2002.
Watanabe, H. et al. "A new antibiotic SF2583A, 4-chloro-5-(3'indoly)oxazole, produced by Streptomyces." Meiji Seika Kenkyu Nenpo 27: 55-62. 1988. Wayne et al., "Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics." Int. J. Syst. Evol. Microbiol. 37: 463-464. 1987.
Werner et al., "Uptake of indolmycin in gram-positive bacteria." Antimicrob Agents
Chemotherapy 18: 858-862. 1980.
Wilson et al. "Toxicity of rhizonin A, isolated from Rhizopus microsporias , in laboratory animals." Food Chem. Toxicol. 22: 275-281. 1984.
Zeck W.M. "Ein Bonitierungsschema zur Feldauswertung von Wurzelgallenbefall.
Pflanzenschutznachrichten." Bayer 24, 1 : 144-147. 1971.
Zhang et al., US Patent No. 7,141 ,407.
Zhou et al, "Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis." Antimicrobial Agents and Chemotherapy 51 : 1085- 1088. 2007.

Claims

WHAT IS CLAIMED IS:
1. A formulation comprising:
(A) an isolated strain or fermentation broth comprising cells and culture medium of a non-Burkhoideria cepacia, non-Burkhoideria plantari, non-Burkhoideria gladioli, Burkholderia sp. non-Burkhoideria cepacia, non-Burkhoideria multivorans , Burkholderia sp. which has the following characteristics:
(1) 16S rRNA gene sequence comprising the forward sequence having at least 99% identity to the sequence set forth in SEQ ID NO:8, 1 1 , 12 and a reverse sequence having at least 99% identity to the sequence set forth in SEQ ID NO:9, 10, 13 , 14 and 15;
(2) pesticidal activity;
(3) produces a pesticidal compound selected from the group consisting of:
(a) a compound having the following properties: (i) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (ii)な NMR d values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; (iii) has 13C NMR d values of 172.99, 172.93 , 169.57,
169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and (iv) an High Pressure Liquid
Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient;
(b) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group, at least 17 carbons, at least 3 oxygens and at least 2 nitrogens;
(c) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group, at least 15 carbons, at least 2 oxygen and at least 2 nitrogens;
(d) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups , at least three hydroxyl groups , at least twenty five carbons , at least eight oxygen and at least one nitrogen and
(e) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen;
(4) is non-pathogenic to vertebrate animals;
(5) is susceptible to kanamycin, chloramphenicol, ciprofloxacin, piperacillin, imipenem, and a combination of sulphamethoxazole and trimethoprim and
(6) contains the fatty acids 16:0, cyclo 17:0, 16:0 3-OH, 14:0, cyclo 19:0 co8c,
18:0 and
(B) C 1-C7 paraben, C2-C 17 alcohol and detergent.
2. The formulation according to claim 1 , wherein said C I -7 paraben is present in the amount of about 0.01-5%, the C2-C 17 alcohol is present in the amount of about 0.001-10% and the detergent is present in the amount of about 0.001-10% .
3. A method for obtaining a pesticidally effective substance derived from the formulation of claim 1 , wherein said pesticidally effective substance is: (a) a substance that has the following properties: (1) has pesticidal properties; (ii) has a molecular weight of about 210- 240 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS); (iii) has H NMR values of δ 7.90, 6.85, 4.28, 1.76, 1.46, 1.38, 1.37, 0.94; (iv) has 13C NMR values of δ 166.84, 162.12, 131.34 (2C), 121.04, 1 14.83 (2C), 64.32, 31.25, 28.43, 25.45, 22.18. 12.93; (v) has an High Pressure Liquid Chromatography (HPLC) retention time of about 15-20 minutes on a reversed phase C- 18 HPLC (Phenomenex, Luna 5μ C I 8(2) 100 A, 100 x 4.60 mm) column using a water: acetonitrile (CH3CN) with a gradient solvent system (0-20 min; 90 - 0 % aqueous CH3CN, 20-24 min; 100% CH3CN, 24-27 min; 0 - 90 % aqueous CH3CN, 27-30 min; 90% aqueous CH3CN) at 0.5 mL/min flow rate and UV detection of 210 nm; (vi) 13C NMR spectrum which exhibits 13 discrete carbon signals attributed to one methyl, five methylene carbons, four methines, and three quaternary carbons; (vii) has a molecular formula of C13H1803 which was determined by interpretation of the ESIMS and NMR data analysis; (viii) has UV absorption bands between about 210-450 nm and most particularly at about 248 nm or (b) a substance that has the structure
Figure imgf000086_0001
Wherein
X, is independently -O, -NR, or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, and R6 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl
comprising:
(A) providing the formulation of claim 1 ;
(B) incubating said formulation for a time and at a temperature sufficient to produce said pesticidally effective substance and
(C) isolating said pesticidally effective substance.
4. A combination comprising
(A) the formulation of claim 1 or pesticidally effective substance derived therefrom and (B) at least one of
(1) a second substance, wherein said second substance is a chemical or biological algicide or acaricide or
(2) at least one of a pesticidally acceptable carrier, diluent, surfactant, adjuvant.
5. A combination comprising
(I) a first substance selected from the group consisting of
(A) a pure culture, cell fraction, supernatant or extract derived from an isolated strain of a non-Burkholderia cepacia, non-Burkholderia plantari, non-Burkholderia gladioli, Burkholderia sp. non-Burkholderia cepacia, non-Burkholderia multivorans , Burkholderia sp. which has the following characteristics:
(1) a 16S rRNA gene sequence comprising the forward sequence having at least 99% identity to the sequence set forth in SEQ ID NO:8, 1 1 , 12 and a reverse sequence having at least 99% identity to the sequence set forth in SEQ ID NO:9, 10, 13 , 14 and 15;
(2) pesticidal activity;
(3) produces a pesticidal compound selected from the group consisting of:
(a) a compound having the following properties:
(i) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(ii)な NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02;
(iii) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59,
130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and
(iv) an High Pressure Liquid Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient; (b) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group, at least 17 carbons, at least 3 oxygens and at least 2 nitrogens;
(c) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group, at least 15 carbons, at least 2 oxygen and at least 2 nitrogens;
(d) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygen and at least one nitrogen and
(e) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen;
(B) an isolated pesticidal compound optionally obtainable from a Burkholderia species selected from the group consisting of:
(1) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens; and which has at least one of the following:
(a) a molecular weight of 275-435;
(b)な NMR δ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08;
(c) 13C NMR values of δ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7;
(d) an High Pressure Liquid Chromatography (HPLC) retention time of about 10-20 minutes on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) with a gradient solvent system and UV detection of 210 nm;
(e) UV absorption bands at 226, 275, 327 nm.;
(2) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one amide group; at least 15 carbons, at least 2 oxygens and at least 2 nitrogens; and at least one of the following characteristics:
(a) a molecular weight of about 240-290 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(b)な NMR δ values at about 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93; (c) ljC NMR values of δ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 1 15.2, 115.2, 41.2, 35.3, 26.7, 21.5, 21.5;
(d) an High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) gradient and
(e) UV absorption bands at about 230, 285, 323 nm;
(3) a non-epoxide compound comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygens and one nitrogen and at least one of the following
characteristics:
(a) has a molecular weight of about 530-580 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(b) lH NMR values of δ 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73, 3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04;
(c) 13C NMR values of δ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41 ;
(d) a High Pressure Liquid Chromatography (HPLC) retention time of about 7- 12 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile
(CH3CN) with a gradient solvent system and UV detection of 210 nm;
(e) has a molecular formula of C28H45NO10 which was determined by interpretation of the ESIMS and NMR data analysis;
(f) has UV absorption bands between about 210-450 nm;
(4) a compound comprising
(a) at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen,
(b) 13C NMR values of δ 174.03, 166.12, 143.63, 137.50, 134.39, 128.70,
126.68, 124.41, 98.09, 80.75, 76.84, 75.23, 69.87, 69.08, 68.69, 68.60, 48.83, 41.07, 35.45, 31.67, 29.19, 27.12, 24.55, 19.20, 18.95, 13.48, 1 1.39, 8.04,
(c) a molecular formula of C28H43N09 and at least one of:
(i) 1H NMR δ values at about 6.41, 6.40, 6.01, 5.97, 5.67, 5.55, 4.33, 3.77, 3.75, 3.72, 3.64, 3.59, 3.54, 3.52, 2.44, 2.34, 2.25, 1.96, 1.81, 1.76, 1.42, 1.38, 1.17, 1.12,
1.04;
(ii) an High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, on a reversed phase C-18 HPLC column using a watenacetonitrile
(CH3CN) gradient;
(iii) UV absorption bands between about 210-450 nm;
(II) optionally a second substance, wherein said second substance is a chemical or biological algicide or acaricide and
(III) optionally at least one of a carrier, diluent, surfactant, adjuvant.
6. The combination of claims 4 or 5, wherein said combination is a composition.
7. The combination of claim 4, wherein said pesticidally effective substance has the structure
Figure imgf000090_0001
Wherein
X, is -O; R1 is hydroxy, R2, R3, R4, R5 are each H, R6 C4-10 alkyl, C4-10 substituted alkyl.
8. The combination of claim 4, wherein said pesticidally effective substance is buty, hexyl or octyl paraben.
9. A method of modulating proliferation and/or growth of algae and/or modulating infestation of an arachnid comprising comprising applying to a location where modulation of proliferation and/or growth of algae and/or modulation of infestation of an arachnid is desired:
(A) the combination of claim 5 ;
(B) a pure culture, cell fraction, supernatant or extract derived from an isolated strain of a non-Burkholderia cepacia, non-Burkholderia plantari, non-Burkholderia gladioli,
Burkholderia sp. non-Burkholderia cepacia, non-Burkholderia multivorans , Burkholderia sp. which has the following characteristics:
(1) a 16S rRNA gene sequence comprising the forward sequence having at least 99% identity to the sequence set forth in SEQ ID NO:8, 1 1 , 12 and a reverse sequence having at least 99% identity to the sequence set forth in SEQ ID NO:9, 10, 13 , 14 and 15;
(2) pesticidal activity;
(3) produces a pesticidal compound selected from the group consisting of:
(a) a compound having the following properties:
(i) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(ii)な NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05, 1.02;
(iii) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26,
18.59, 18.38, 18.09, 17.93 , 12.51 and
(iv) an High Pressure Liquid Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient;
(b) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group, at least 17 carbons, at least 3 oxygens and at least 2 nitrogens;
(c) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group, at least 15 carbons, at least 2 oxygen and at least 2 nitrogens;
(d) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygen and at least one nitrogen and
(e) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen;
(C) an isolated pesticidal compound optionally obtainable from a Burkholderia species selected from the group consisting of:
(1) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one carboxylic ester group; at least 17 carbons and at least 3 oxygen and 2 nitrogens; and which has at least one of the following:
(a) a molecular weight of 275-435;
(b)な NMR δ values at 8.44, 8.74, 8.19, 7.47, 7.31, 3.98, 2.82, 2.33, 1.08;
(c) 13C NMR values of δ 163.7, 161.2, 154.8, 136.1, 129.4, 125.4, 123.5, 123.3, 121.8, 121.5, 1 1 1.8, 104.7, 52.2, 37.3, 28.1, 22.7, 22.7; (d) an High Pressure Liquid Chromatography (HPLC) retention time of about 10-20 minutes on a reversed phase C-18 HPLC column using a water: acetonitrile (CH3CN) with a gradient solvent system and UV detection of 210 nm;
(e) UV absorption bands at 226, 275, 327 nm.;
(2) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one amide group; at least 15 carbons, at least 2 oxygens and at least 2 nitrogens; and at least one of the following characteristics:
(a) a molecular weight of about 240-290 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(b)な NMR δ values at about 7.08, 7.06, 6.75, 3.75, 2.56, 2.15, 0.93, 0.93;
(c) 13C NMR values οί δ 158.2, 156.3, 155.5, 132.6, 129.5, 129.5, 127.3, 121.8, 1 15.2, 1 15.2, 41.2, 35.3, 26.7, 21.5, 21.5;
(d) an High Pressure Liquid Chromatography (HPLC) retention time of about 6- 15 minutes, on a reversed phase C-18 HPLC column using a watenacetonitrile (CH3CN) gradient and
(e) UV absorption bands at about 230, 285, 323 nm;
(3) a non-epoxide compound comprising at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygens and one nitrogen and at least one of the following
characteristics:
(a) has a molecular weight of about 530-580 as determined by Liquid
Chromatography/Mass Spectroscopy (LC/MS);
(b)な NMR values of δ 6.40, 6.39, 6.00, 5.97, 5.67, 5.54, 4.33, 3.77, 3.73,
3.70, 3.59, 3.47, 3.41, 2.44, 2.35, 2.26, 1.97, 1.81, 1.76, 1.42, 1.37, 1.16, 1.12, 1.04;
(c) 13C NMR values of δ 173.92, 166.06, 145.06, 138.76, 135.71, 129.99, 126.20, 123.35, 99.75, 82.20, 78.22, 76.69, 71.23, 70.79, 70.48, 69.84, 60.98, 48.84, 36.89, 33.09, 30.63, 28.55, 25.88, 20.37, 18.1 1, 14.90, 12.81, 9.41 ;
(d) a High Pressure Liquid Chromatography (HPLC) retention time of about 7-
12 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) with a gradient solvent system and UV detection of 210 nm;
(e) has a molecular formula of C28H45NO10 which was determined by
interpretation of the ESIMS and NMR data analysis;
(f) has UV absorption bands between about 210-450 nm; (4) a compound comprising
(a) at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens and at least 1 nitrogen,
(b) 13C MR values of δ 174.03, 166.12, 143.63, 137.50, 134.39, 128.70, 126.68, 124.41, 98.09, 80.75, 76.84, 75.23, 69.87, 69.08, 68.69, 68.60, 48.83, 41.07, 35.45, 31.67, 29.19, 27.12, 24.55, 19.20, 18.95, 13.48, 1 1.39, 8.04,
(c) a molecular formula of C28H43N09 and at least one of:
(i) 1H NMR δ values at about 6.41, 6.40, 6.01, 5.97, 5.67, 5.55, 4.33,
3.77, 3.75, 3.72, 3.64, 3.59, 3.54, 3.52, 2.44, 2.34, 2.25, 1.96, 1.81, 1.76, 1.42, 1.38, 1.17, 1.12, 1.04;
(ii) an High Pressure Liquid Chromatography (HPLC) retention time of about 6-15 minutes, on a reversed phase C-18 HPLC column using a watenacetonitrile
(CH3CN) gradient;
(5) a compound having the following properties:
(i) a molecular weight of about 525-555 as determined by Liquid Chromatography/Mass Spectroscopy (LC/MS);
(ii)な NMR values of 6.22 , 5.81 , 5.69 , 5.66 , 5.65 , 4.64 , 4.31 , 3.93 , 3.22 , 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02;
(iii) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and
(iv) an High Pressure Liquid Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile
(CH3CN) gradient;
(6) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one carboxylic ester group, at least 17 carbons and at least 3 oxygen and 2 nitrogens;
(7) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons, at least 2 oxygens and at least 2 nitrogens;
(8) a non-epoxide compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons and at least eight oxygen and one nitrogen and
(9) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens, at least 1 nitrogen and
(II) optionally another substance, wherein said substance is an algicidal substance or acaricidal substance in amounts effective to modulate said proliferation and/or growth of algae and/or infestation of an arachnid at said location.
10. A method of modulating proliferation and/or growth of algae and/or modulating infestation of an arachnid comprising comprising applying to a location where modulation of proliferation and/or growth of algae and/or modulation of infestation of an arachnid is desired an amount of
(I) a compound selected from the group consisting of:
(A) a compound having the structure ##STR001##
Figure imgf000094_0001
or a pesticidally acceptable salt or steriosomers thereof, wherein M is 1 , 2, 3 or 4; n is 0, 1 , 2, or 3; p and q are independently 1 or 2; X is O, NH or NR; Rl , R2 and R3 are the same or different and independently an amino acid side-chain moiety or an amino acid side-chain derivative and R is a lower chain alkyl, aryl or arylalkyl moiety;
(B) a compound having the structure ##STR002##
Figure imgf000095_0001
##STR002##
wherein X, Y and Z are each independently— O,— NR1, or— S, wherein R1 is — H or Ci-Cio alkyl; R1, R2 and m are each independently— H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl and "m" may be located anywhere on the oxazole ring;
(C) a compound having the structure ##STR003##
Figure imgf000095_0002
wherein: X and Y are each independently—OH,— NR1, or — S, wherein R1 is — H or C1-C10 alkyl; R1, R2 and m, a substituent on the oxazole ring, are each independently — H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, — C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl.
(D) a compound having the structu #
Figure imgf000095_0003
##STR005## wherein: X and Y are each independently—OH,— NR1, or— S, wherein R1, R2 are each independently— H, alkyl (e.g., Ci-Cio alkyl), substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl,— C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl;
(E) a compound having the structure ##STR004a##
Figure imgf000096_0001
Wherein X, Y and Z are each independently -O, -NR., or -S, wherein R is H or Ci-Cio alkyl; R1, R2, R3, R4, R5, R6, R7, Re, R9, R1o, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl
F) a compound having the structure ##STR006a##
Figure imgf000096_0002
Wherein X, Y and Z are each independently -O, -NR, or -S, wherein R is H or C1-C10 alkyl; R1, R2, R3, R4, R5, R6, R7, Re, R11, R12, and R13 are each independently H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl, substituted cycloalkyl, alkoxy, substituted alkoxy, thioalkyl, substituted thioalkyl, hydroxy, halogen, amino, amido, carboxyl, -C(0)H, acyl, oxyacyl, carbamate, sulfonyl, sulfonamide, or sulfuryl and
(II) and optionally another substance, wherein said substance is an algicidal substance or acaracidal substance in amounts effective to modulate said proliferation and/or growth of algae and/or infestation of an arachnid.
1 1. The method according to claim 10, wherein said compound is selected from the group consisting of:
(i) templazole A;
(ii) templazole B;
(iii) templamide A;
(iv) templamide B; (v) FR901228;
Figure imgf000097_0001
(xii)
Figure imgf000098_0001
Figure imgf000098_0002
Figure imgf000098_0003
(xvii)
Figure imgf000099_0001
Figure imgf000099_0002
Figure imgf000099_0003
Figure imgf000100_0001
Figure imgf000101_0001
1 1. The method according to claim 9 or 10, wherein the Burkholderia species is a Burkholderia strain having the identifying characteristics of Burkholderia A396 (NRRL Accession NO B-50319).
12. The method according to claim 3 , wherein said supernatant is a cell-free
supernatant.
13. Use of a compound selected from the group consisting of:
(A) a compound having (i) a molecular weight of about 525-555 as determined by Liquid Chromatography /Mass Spectroscopy (LC/MS); (ii) 1H NMR values of 6.22, 5.81 , 5.69, 5.66, 5.65 , 4.64, 4.31 , 3.93 , 3.22, 3.21 , 3.15 , 3.10, 2.69, 2.62, 2.26, 2.23. 1.74, 1.15 , 1.12, 1.05 , 1.02; (iii) has 13C NMR values of 172.99, 172.93 , 169.57, 169.23 , 167.59, 130.74, 130.12, 129.93 , 128.32, 73.49, 62.95 , 59.42, 57.73 , 38.39, 38.00, 35.49, 30.90, 30.36, 29.26, 18.59, 18.38, 18.09, 17.93 , 12.51 and (iv) an High Pressure Liquid Chromatography (HPLC) retention time of about 10- 15 minutes, on a reversed phase C- 18 HPLC column using a water: acetonitrile (CH3CN) gradient;
(B) a compound having an oxazolyl-indole structure comprising at least one indole moiety, at least one oxazole moiety, at least one substituted alkyl group, at least one carboxylic ester group, at least 17 carbons, at least 3 oxygen and at least 2 nitrogens;
(C) a compound having an oxazolyl-benzyl structure comprising at least one benzyl moiety, at least one oxazole moiety, at least one substituted alkyl group and at least one amide group; at least 15 carbons, at least 2 oxygens, at least 2 nitrogens;
(D) a compound having at least one ester, at least one amide, at least three methylene groups, at least one tetrahydropyranose moiety, at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least twenty five carbons, at least eight oxygens and at least one nitrogen and
(E) a compound having at least one ester, at least one amide, an epoxide methylene group, at least one tetrahydropyranose moiety and at least three olefinic double bonds, at least six methyl groups, at least three hydroxyl groups, at least 25 carbons, at least 8 oxygens, and at least 1 nitrogen,
and optionally a pesticide
for formulating a composition modulating proliferation and/or growth of algae and/or modulating infestation of an arachnid at a location.
15. A method for modulating proliferation and/or growth of algae and/or modulating pest infestation in a plant and/or a method for modulating emergence and/or growth of monocotyledonous , sedge or dicotyledonous weeds comprising applying to a location where modulation of proliferation and/or growth of algae and/or modulation of infestation of an arachnid and/or modulation of emergence and/or growth of said weed is desired an amount of
(A) the formulation of claim 1 or pesticidally effective substance derived therefrom;
(B) combination of claim 5;
(C) templamide A;
(D) templamide B ;
(E) FR901465;
(F) FR901228
[effective to modulate said proliferation and/or growth of algae and/or pest infestation and/or emergence or growth of monocotyledonous, sedge or dicotyledonous weeds at said location.
16. The method according to claim 15 , wherein nematode and/or insect infestation is modulated with templamide A; templamide B; FR901465; FR901228.
17. The method according to claim 15 , wherein infestation of Oncopeltus sp. and/or free living nematodes and/or M. incognita nematodes are modulated.
18. A seed comprising the combination of claim 3 or 9 or the formulation of claim 1.
PCT/US2012/050807 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses WO2013032693A2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
IN242MUN2014 IN2014MN00242A (en) 2011-08-27 2012-08-14
KR1020167011541A KR20160054627A (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
MX2014002329A MX347407B (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses.
KR1020147004669A KR101632806B1 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
BR112014004386A BR112014004386A2 (en) 2011-08-27 2012-08-14 isolated bacterial strain of the genus burkholderia and pesticide formulations and uses of its metabolites
CA2845732A CA2845732C (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
EP12827368.7A EP2748304A4 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
JP2014528424A JP5961693B2 (en) 2011-08-27 2012-08-14 Formulation and use of isolated bacterial strains of the genus Burkholderia and pesticidal metabolites derived therefrom
NZ620640A NZ620640B2 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
US14/238,467 US20140221207A1 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom- formulations and uses
AU2012301466A AU2012301466B2 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom-formulations and uses
MA36839A MA35445B1 (en) 2011-08-27 2014-03-20 Bacterial strain isolated from the burkholderia gene and pesticide metabolites derived from this strain, formulations and uses
US15/481,511 US20170208817A1 (en) 2011-08-27 2017-04-07 Isolated Bacterial Strain of the Genus Burkholderia and Pesticidal Metabolites Therefrom-Formulations and Uses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161528153P 2011-08-27 2011-08-27
US201161528149P 2011-08-27 2011-08-27
US61/528,149 2011-08-27
US61/528,153 2011-08-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/238,467 A-371-Of-International US20140221207A1 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom- formulations and uses
US15/481,511 Continuation US20170208817A1 (en) 2011-08-27 2017-04-07 Isolated Bacterial Strain of the Genus Burkholderia and Pesticidal Metabolites Therefrom-Formulations and Uses

Publications (2)

Publication Number Publication Date
WO2013032693A2 true WO2013032693A2 (en) 2013-03-07
WO2013032693A3 WO2013032693A3 (en) 2013-05-02

Family

ID=47757117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/050807 WO2013032693A2 (en) 2011-08-27 2012-08-14 Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses

Country Status (16)

Country Link
US (2) US20140221207A1 (en)
EP (1) EP2748304A4 (en)
JP (2) JP5961693B2 (en)
KR (2) KR101632806B1 (en)
AR (1) AR087684A1 (en)
AU (1) AU2012301466B2 (en)
BR (1) BR112014004386A2 (en)
CA (1) CA2845732C (en)
CL (2) CL2014000467A1 (en)
CO (1) CO7020854A2 (en)
CR (1) CR20140097A (en)
IN (1) IN2014MN00242A (en)
MA (1) MA35445B1 (en)
MX (1) MX347407B (en)
TW (1) TW201322924A (en)
WO (1) WO2013032693A2 (en)

Cited By (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822193B2 (en) 2010-02-25 2014-09-02 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
CN104041495A (en) * 2014-04-27 2014-09-17 贵州道元生物技术有限公司 Method for applying ciprofloxacin in preventing and curing tobacco bacterial wilt
WO2014147528A1 (en) 2013-03-20 2014-09-25 Basf Corporation Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
WO2015034629A1 (en) * 2013-09-07 2015-03-12 Marrone Bio Innovations, Inc. Methods and compositions for control of mite infestations using a newly discovered species of burkholderia
US9119401B2 (en) 2012-10-19 2015-09-01 Marrone Bio Innovations, Inc. Plant glutamine synthetase inhibitors and methods for their identification
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2962568A1 (en) 2014-07-01 2016-01-06 Basf Se Mixtures comprising a bacillus amyliquefaciens ssp. plantarum strain and a pesticide
EP2962567A1 (en) 2014-07-01 2016-01-06 Basf Se Ternary mixtures comprising biopesticides and at least two chemical insecticides
CN105829299A (en) * 2013-11-19 2016-08-03 普渡研究基金会 Anti-cancer agents and preparation thereof
WO2016128239A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and a biopesticide
WO2016142456A1 (en) 2015-03-11 2016-09-15 BASF Agro B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
WO2016202656A1 (en) 2015-06-16 2016-12-22 Basf Agrochemical Products B.V. Method for managing flea beetles of the family chrysomelidae in brassica crops
US9526251B2 (en) 2010-02-25 2016-12-27 Marrone Bio Innovations, Inc. Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
EP3111763A1 (en) 2015-07-02 2017-01-04 BASF Agro B.V. Pesticidal compositions comprising a triazole compound
WO2017093163A1 (en) 2015-11-30 2017-06-08 Basf Se Mixtures of cis-jasmone and bacillus amyloliquefaciens
EP3205209A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or metabolites thereof and other biopesticides
WO2018050421A1 (en) 2016-09-13 2018-03-22 Basf Se Fungicidal mixtures i comprising quinoline fungicides
US9968092B2 (en) 2014-04-17 2018-05-15 Basf Se Combination of novel nitrification inhibitors and biopesticides as well as combination of (thio)phosphoric acid triamides and biopesticides
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
WO2018177781A1 (en) 2017-03-28 2018-10-04 Basf Se Pesticidal compounds
WO2018184882A1 (en) 2017-04-06 2018-10-11 Basf Se Pyridine compounds
WO2018197466A1 (en) 2017-04-26 2018-11-01 Basf Se Substituted succinimide derivatives as pesticides
WO2018206479A1 (en) 2017-05-10 2018-11-15 Basf Se Bicyclic pesticidal compounds
WO2018219725A1 (en) 2017-05-30 2018-12-06 Basf Se Pyridine and pyrazine compounds
WO2018229202A1 (en) 2017-06-16 2018-12-20 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
WO2018234202A1 (en) 2017-06-19 2018-12-27 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
WO2019072906A1 (en) 2017-10-13 2019-04-18 Basf Se Imidazolidine pyrimidinium compounds for combating animal pests
WO2019121159A1 (en) 2017-12-21 2019-06-27 Basf Se Pesticidal compounds
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
WO2019145140A1 (en) 2018-01-09 2019-08-01 Basf Se Silylethynyl hetaryl compounds as nitrification inhibitors
WO2019166560A1 (en) 2018-02-28 2019-09-06 Basf Se Use of n-functionalized alkoxy pyrazole compounds as nitrification inhibitors
WO2019166561A1 (en) 2018-02-28 2019-09-06 Basf Se Use of alkoxypyrazoles as nitrification inhibitors
WO2019166558A1 (en) 2018-02-28 2019-09-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
WO2020020765A1 (en) 2018-07-23 2020-01-30 Basf Se Use of a substituted thiazolidine compound as nitrification inhibitor
WO2020020777A1 (en) 2018-07-23 2020-01-30 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
WO2020109039A1 (en) 2018-11-28 2020-06-04 Basf Se Pesticidal compounds
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
WO2020126591A1 (en) 2018-12-18 2020-06-25 Basf Se Substituted pyrimidinium compounds for combating animal pests
CN111349089A (en) * 2018-12-24 2020-06-30 天津师范大学 Indole heterocyclic compound, preparation method thereof and application thereof in preventing and treating plant diseases
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2020239517A1 (en) 2019-05-29 2020-12-03 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
US10899932B2 (en) 2014-10-24 2021-01-26 Basf Se Non-amphoteric, quaternisable and water-soluble polymers for modifying the surface charge of solid particles
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2021099271A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
EP3903583A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
EP3903584A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
WO2021219513A1 (en) 2020-04-28 2021-11-04 Basf Se Pesticidal compounds
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021249800A1 (en) 2020-06-10 2021-12-16 Basf Se Substituted [1,2,4]triazole compounds as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
US11219211B2 (en) 2015-03-11 2022-01-11 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
EP3960727A1 (en) 2020-08-28 2022-03-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
WO2022089969A1 (en) 2020-10-27 2022-05-05 BASF Agro B.V. Compositions comprising mefentrifluconazole
WO2022090069A1 (en) 2020-11-02 2022-05-05 Basf Se Compositions comprising mefenpyr-diethyl
WO2022106304A1 (en) 2020-11-23 2022-05-27 BASF Agro B.V. Compositions comprising mefentrifluconazole
EP4011208A1 (en) 2020-12-08 2022-06-15 BASF Corporation Microparticle compositions comprising fluopyram
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022128812A1 (en) 2020-12-17 2022-06-23 Basf Se Spore compositions, production and uses thereof
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022167488A1 (en) 2021-02-02 2022-08-11 Basf Se Synergistic action of dcd and alkoxypyrazoles as nitrification inhibitors
CN114885952A (en) * 2017-09-08 2022-08-12 马罗内生物创新公司 Novel herbicidal compounds
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022243523A1 (en) 2021-05-21 2022-11-24 Basf Se Use of an n-functionalized alkoxy pyrazole compound as nitrification inhibitor
WO2022243109A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted quinolines as fungicides
WO2022243107A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted pyridines as fungicides
WO2022243111A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted pyridines as fungicides
WO2022243521A1 (en) 2021-05-21 2022-11-24 Basf Se Use of ethynylpyridine compounds as nitrification inhibitors
WO2022268810A1 (en) 2021-06-21 2022-12-29 Basf Se Metal-organic frameworks with pyrazole-based building blocks
WO2022268648A1 (en) 2021-06-24 2022-12-29 Syngenta Crop Protection Ag 2-[3-[1 [(quinazolin-4-yl)amino]ethyl]pyrazin-2-yl]thiazole-5-carbonitrile derivatives and similar compounds as pesticides
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
WO2023011958A1 (en) 2021-08-02 2023-02-09 Basf Se (3-pirydyl)-quinazoline
WO2023011957A1 (en) 2021-08-02 2023-02-09 Basf Se (3-quinolyl)-quinazoline
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023092050A1 (en) 2021-11-20 2023-05-25 Bayer Cropscience Lp Beneficial combinations with recombinant bacillus cells expressing a serine protease
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198033A1 (en) 2021-12-14 2023-06-21 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
EP4197333A1 (en) 2021-12-15 2023-06-21 Syngenta Crop Protection AG Method for controlling diamide resistant pests & compounds therefor
US11691982B2 (en) 2017-09-20 2023-07-04 Ph Pharma Co., Ltd. Thailanstatin analogs
WO2023148028A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests
WO2023148029A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in cereals
WO2023148034A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in perennials
WO2023148036A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in soybean
WO2023148369A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148368A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148030A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in corn
WO2023148031A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in cotton
WO2023148037A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in vegetables
WO2023148035A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in rice
WO2023148033A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in oilseed rape
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
WO2023187191A1 (en) 2022-04-01 2023-10-05 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
WO2023217989A1 (en) 2022-05-12 2023-11-16 Syngenta Crop Protection Ag Alkoxy heteroaryl- carboxamide or thioamide compounds
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2023247360A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
EP3902908A4 (en) * 2018-12-24 2024-01-03 Pro Farm Group, Inc. A method for increasing romidepsin production from fermentation broth
WO2024017788A1 (en) 2022-07-22 2024-01-25 Syngenta Crop Protection Ag Solid form of a heterocyclic amide derivative
WO2024022910A1 (en) 2022-07-26 2024-02-01 Syngenta Crop Protection Ag 1-[1-[2-(pyrimidin-4-yl)-1,2,4-triazol-3-yl]ethyl]-3-[2,4-dichloro-5-phenyl]urea derivatives and similar compounds as pesticides
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds
WO2024033374A1 (en) 2022-08-11 2024-02-15 Syngenta Crop Protection Ag Novel arylcarboxamide or arylthioamide compounds
WO2024056732A1 (en) 2022-09-16 2024-03-21 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
EP4342885A1 (en) 2022-09-20 2024-03-27 Basf Se N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides
WO2024068837A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Agricultural methods
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068838A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
EP4361126A1 (en) 2022-10-24 2024-05-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024089216A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Novel sulfur-containing heteroaryl carboxamide compounds
CN118045106A (en) * 2024-02-19 2024-05-17 山东第一医科大学附属眼科医院(山东省眼科医院) Application of Burkholderia vietnamensis in preparation of biological preparation for inhibiting and/or killing Demodex
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104643A1 (en) 2022-11-17 2024-05-23 Bayer Aktiengesellschaft Use of isotianil for controlling plasmodiophora brassica
WO2024126388A1 (en) 2022-12-12 2024-06-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024126404A1 (en) 2022-12-14 2024-06-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024126650A1 (en) 2022-12-15 2024-06-20 Syngenta Crop Protection Ag Novel bicyclic-carboxamide compounds useful as pesticides
EP4389210A1 (en) 2022-12-21 2024-06-26 Basf Se Heteroaryl compounds for the control of invertebrate pests
WO2024146945A1 (en) 2023-01-07 2024-07-11 Syngenta Crop Protection Ag Novel carboxamide and sulfonamide pesticidal compounds
WO2024158837A2 (en) 2023-01-24 2024-08-02 Flagship Pioneering Innovations Vii, Llc Peptide in combination with fungicide compositions for fungal control and related methods
WO2024156664A1 (en) 2023-01-23 2024-08-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024165343A1 (en) 2023-02-08 2024-08-15 Basf Se New substituted quinoline compounds for combatitng phytopathogenic fungi
WO2024170339A1 (en) 2023-02-13 2024-08-22 Syngenta Crop Protection Ag Pesticidally active bicyclic compounds
WO2024194038A1 (en) 2023-03-17 2024-09-26 Basf Se Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016201022A1 (en) * 2015-06-09 2016-12-15 Valent U.S.A. Corporation Gibberellin formulations
MX2018015269A (en) 2016-06-08 2019-09-18 Univ Rice William M Derivatives of thailanstatin a, methods of treatment and methods of synthesis thereof.
MX2019005265A (en) * 2016-11-03 2019-07-01 Marrone Bio Innovations Inc Algicidal organisms.
JP7451077B2 (en) * 2017-10-05 2024-03-18 上野製薬株式会社 pest repellent
KR101855264B1 (en) 2018-01-11 2018-05-04 한국생명공학연구원 Composition for controlling pine wilt disease comprising pimprinethine as effective component
JP7119636B2 (en) 2018-06-22 2022-08-17 トヨタ自動車株式会社 In-vehicle terminal, user terminal, and ride-sharing control method
WO2023212300A1 (en) * 2022-04-28 2023-11-02 Pro Farm Group, Inc. Method and composition of synergistic herbicidal mixtures
CN116218740B (en) * 2023-04-03 2023-09-01 上海交通大学 Burkholderia cepacia and application thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083989A (en) * 1975-03-19 1978-04-11 Chevron Research Company Insect control employing certain benzoates
ATE86067T1 (en) * 1984-04-09 1993-03-15 American Cyanamid Co INSECTICIDAL AQUEOUS MICROEMULSIONS.
GB8817743D0 (en) * 1988-07-26 1988-09-01 Fujisawa Pharmaceutical Co Fr901228 substance & preparation thereof
US5021237A (en) * 1989-11-27 1991-06-04 The Clorox Company Gel insecticidal compositions
US5902595A (en) * 1996-07-29 1999-05-11 Effcon, Inc. Pesticidal composition and method of use
BE1011198A6 (en) * 1997-06-09 1999-06-01 Nil Peter De Method for synthesizing of antimicrobial hydroxybenzoates.
CA2246795C (en) * 1998-08-27 2007-04-03 Reynald Roy Insect repellent
WO2001055398A1 (en) * 2000-01-26 2001-08-02 U.S. Army Medical Research Institute Of Infectious Diseases Burkholderia toxins
CU23176A1 (en) * 2001-01-03 2006-09-22 Ct Ingenieria Genetica Biotech PESTICID AND ANTIPARASITARY COMPOSITIONS
US20030082147A1 (en) * 2001-08-28 2003-05-01 Xeno Insecticides, Inc. Bacteria for insect control
WO2005115149A2 (en) * 2004-05-20 2005-12-08 Dow Agrosciences Llc Insectidal activity of a cyclic peptide
CA2512359A1 (en) * 2005-07-15 2007-01-15 Alberta Research Council Inc. Natural herbicide
JP2007045728A (en) * 2005-08-09 2007-02-22 Nippon Nohyaku Co Ltd Water-based horticultural pesticide composition
US7825267B2 (en) * 2006-09-08 2010-11-02 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Synthesis of FR901464 and analogs with antitumor activity
US8629086B2 (en) * 2007-02-06 2014-01-14 Oro Agri, Inc. Compositions and methods for the control of nematodes and soil borne diseases
AR080234A1 (en) * 2010-02-25 2012-03-21 Marrone Bio Innovations Inc BACTERIAL CEPA ISOLATED FROM THE BURKHOLDERIA AND METABOLITES PESTICIDES OF THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2748304A4 *

Cited By (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917999B2 (en) 2010-02-25 2024-03-05 Pro Farm Group, Inc. Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
US11793201B2 (en) 2010-02-25 2023-10-24 Pro Farm Group, Inc. Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
US9433218B2 (en) 2010-02-25 2016-09-06 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
US11382331B2 (en) 2010-02-25 2022-07-12 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
US11172684B2 (en) 2010-02-25 2021-11-16 Marrone Bio Innovations, Inc. Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
US9526251B2 (en) 2010-02-25 2016-12-27 Marrone Bio Innovations, Inc. Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
US10149480B2 (en) 2010-02-25 2018-12-11 Marrone Bio Innovations, Inc. Use of Burkholderia formulations, compositions and compounds to modulate crop yield and/or corn rootworm infestation
US10159250B2 (en) 2010-02-25 2018-12-25 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom
US8822193B2 (en) 2010-02-25 2014-09-02 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
US9119401B2 (en) 2012-10-19 2015-09-01 Marrone Bio Innovations, Inc. Plant glutamine synthetase inhibitors and methods for their identification
WO2014147528A1 (en) 2013-03-20 2014-09-25 Basf Corporation Synergistic compositions comprising a bacillus subtilis strain and a biopesticide
WO2015034629A1 (en) * 2013-09-07 2015-03-12 Marrone Bio Innovations, Inc. Methods and compositions for control of mite infestations using a newly discovered species of burkholderia
JP2017503753A (en) * 2013-11-19 2017-02-02 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation Anticancer agent and preparation method thereof
CN113461705A (en) * 2013-11-19 2021-10-01 普渡研究基金会 Anticancer agent and preparation thereof
CN105829299A (en) * 2013-11-19 2016-08-03 普渡研究基金会 Anti-cancer agents and preparation thereof
EP3071563A1 (en) * 2013-11-19 2016-09-28 Purdue Research Foundation Anti-cancer agents and preparation thereof
AU2014353087B2 (en) * 2013-11-19 2018-07-19 Purdue Research Foundation Anti-cancer agents and preparation thereof
EP3071563A4 (en) * 2013-11-19 2017-09-06 Purdue Research Foundation Anti-cancer agents and preparation thereof
US10000505B2 (en) 2013-11-19 2018-06-19 Purdue Research Foundation Anti-cancer agents and preparation thereof
US9968092B2 (en) 2014-04-17 2018-05-15 Basf Se Combination of novel nitrification inhibitors and biopesticides as well as combination of (thio)phosphoric acid triamides and biopesticides
CN104041495A (en) * 2014-04-27 2014-09-17 贵州道元生物技术有限公司 Method for applying ciprofloxacin in preventing and curing tobacco bacterial wilt
EP2952507A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952512A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole compounds
EP2952506A1 (en) 2014-06-06 2015-12-09 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2962568A1 (en) 2014-07-01 2016-01-06 Basf Se Mixtures comprising a bacillus amyliquefaciens ssp. plantarum strain and a pesticide
EP2962567A1 (en) 2014-07-01 2016-01-06 Basf Se Ternary mixtures comprising biopesticides and at least two chemical insecticides
US10899932B2 (en) 2014-10-24 2021-01-26 Basf Se Non-amphoteric, quaternisable and water-soluble polymers for modifying the surface charge of solid particles
US10508102B2 (en) 2014-12-11 2019-12-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9944628B2 (en) 2014-12-11 2018-04-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
WO2016128239A1 (en) 2015-02-11 2016-08-18 Basf Se Pesticidal mixture comprising a pyrazole compound and a biopesticide
US11882830B2 (en) 2015-03-11 2024-01-30 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
US11219211B2 (en) 2015-03-11 2022-01-11 Basf Agrochemical Products B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
WO2016142456A1 (en) 2015-03-11 2016-09-15 BASF Agro B.V. Pesticidal mixture comprising a carboxamide compound and a biopesticide
WO2016202656A1 (en) 2015-06-16 2016-12-22 Basf Agrochemical Products B.V. Method for managing flea beetles of the family chrysomelidae in brassica crops
EP3111763A1 (en) 2015-07-02 2017-01-04 BASF Agro B.V. Pesticidal compositions comprising a triazole compound
WO2017093163A1 (en) 2015-11-30 2017-06-08 Basf Se Mixtures of cis-jasmone and bacillus amyloliquefaciens
EP3205209A1 (en) 2016-02-09 2017-08-16 Basf Se Mixtures and compositions comprising paenibacillus strains or metabolites thereof and other biopesticides
WO2018050421A1 (en) 2016-09-13 2018-03-22 Basf Se Fungicidal mixtures i comprising quinoline fungicides
WO2018149754A1 (en) 2017-02-16 2018-08-23 Basf Se Pyridine compounds
WO2018177781A1 (en) 2017-03-28 2018-10-04 Basf Se Pesticidal compounds
WO2018184882A1 (en) 2017-04-06 2018-10-11 Basf Se Pyridine compounds
WO2018197466A1 (en) 2017-04-26 2018-11-01 Basf Se Substituted succinimide derivatives as pesticides
WO2018206479A1 (en) 2017-05-10 2018-11-15 Basf Se Bicyclic pesticidal compounds
WO2018219725A1 (en) 2017-05-30 2018-12-06 Basf Se Pyridine and pyrazine compounds
WO2018229202A1 (en) 2017-06-16 2018-12-20 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2018234202A1 (en) 2017-06-19 2018-12-27 Basf Se Substituted pyrimidinium compounds and derivatives for combating animal pests
WO2018234488A1 (en) 2017-06-23 2018-12-27 Basf Se Substituted cyclopropyl derivatives
CN114885952A (en) * 2017-09-08 2022-08-12 马罗内生物创新公司 Novel herbicidal compounds
EP3453706A1 (en) 2017-09-08 2019-03-13 Basf Se Pesticidal imidazole compounds
US11691982B2 (en) 2017-09-20 2023-07-04 Ph Pharma Co., Ltd. Thailanstatin analogs
WO2019057660A1 (en) 2017-09-25 2019-03-28 Basf Se Indole and azaindole compounds with substituted 6-membered aryl and heteroaryl rings as agrochemical fungicides
WO2019072906A1 (en) 2017-10-13 2019-04-18 Basf Se Imidazolidine pyrimidinium compounds for combating animal pests
WO2019121143A1 (en) 2017-12-20 2019-06-27 Basf Se Substituted cyclopropyl derivatives
WO2019121159A1 (en) 2017-12-21 2019-06-27 Basf Se Pesticidal compounds
WO2019145140A1 (en) 2018-01-09 2019-08-01 Basf Se Silylethynyl hetaryl compounds as nitrification inhibitors
WO2019137995A1 (en) 2018-01-11 2019-07-18 Basf Se Novel pyridazine compounds for controlling invertebrate pests
WO2019166558A1 (en) 2018-02-28 2019-09-06 Basf Se Use of pyrazole propargyl ethers as nitrification inhibitors
WO2019166561A1 (en) 2018-02-28 2019-09-06 Basf Se Use of alkoxypyrazoles as nitrification inhibitors
WO2019166560A1 (en) 2018-02-28 2019-09-06 Basf Se Use of n-functionalized alkoxy pyrazole compounds as nitrification inhibitors
WO2019175712A1 (en) 2018-03-14 2019-09-19 Basf Corporation New uses for catechol molecules as inhibitors to glutathione s-transferase metabolic pathways
WO2019175713A1 (en) 2018-03-14 2019-09-19 Basf Corporation New catechol molecules and their use as inhibitors to p450 related metabolic pathways
WO2019224092A1 (en) 2018-05-22 2019-11-28 Basf Se Pesticidally active c15-derivatives of ginkgolides
WO2020002472A1 (en) 2018-06-28 2020-01-02 Basf Se Use of alkynylthiophenes as nitrification inhibitors
WO2020020765A1 (en) 2018-07-23 2020-01-30 Basf Se Use of a substituted thiazolidine compound as nitrification inhibitor
WO2020020777A1 (en) 2018-07-23 2020-01-30 Basf Se Use of substituted 2-thiazolines as nitrification inhibitors
EP3613736A1 (en) 2018-08-22 2020-02-26 Basf Se Substituted glutarimide derivatives
EP3628158A1 (en) 2018-09-28 2020-04-01 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
WO2020064480A1 (en) 2018-09-28 2020-04-02 Basf Se Pesticidal mixture comprising a mesoionic compound and a biopesticide
WO2020083733A1 (en) 2018-10-24 2020-04-30 Basf Se Pesticidal compounds
EP3643705A1 (en) 2018-10-24 2020-04-29 Basf Se Pesticidal compounds
WO2020109039A1 (en) 2018-11-28 2020-06-04 Basf Se Pesticidal compounds
EP3670501A1 (en) 2018-12-17 2020-06-24 Basf Se Substituted [1,2,4]triazole compounds as fungicides
WO2020126591A1 (en) 2018-12-18 2020-06-25 Basf Se Substituted pyrimidinium compounds for combating animal pests
EP3902908A4 (en) * 2018-12-24 2024-01-03 Pro Farm Group, Inc. A method for increasing romidepsin production from fermentation broth
CN111349089B (en) * 2018-12-24 2022-11-29 天津师范大学 Indole heterocyclic compounds, preparation method thereof and application thereof in preventing and treating plant diseases
CN111349089A (en) * 2018-12-24 2020-06-30 天津师范大学 Indole heterocyclic compound, preparation method thereof and application thereof in preventing and treating plant diseases
EP3696177A1 (en) 2019-02-12 2020-08-19 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP3730489A1 (en) 2019-04-25 2020-10-28 Basf Se Heteroaryl compounds as agrochemical fungicides
WO2020239517A1 (en) 2019-05-29 2020-12-03 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
WO2021013561A1 (en) 2019-07-19 2021-01-28 Basf Se Pesticidal pyrazole and triazole derivatives
EP3766879A1 (en) 2019-07-19 2021-01-20 Basf Se Pesticidal pyrazole derivatives
EP3769623A1 (en) 2019-07-22 2021-01-27 Basf Se Mesoionic imidazolium compounds and derivatives for combating animal pests
EP3701796A1 (en) 2019-08-08 2020-09-02 Bayer AG Active compound combinations
WO2021099271A1 (en) 2019-11-18 2021-05-27 Bayer Aktiengesellschaft Active compound combinations comprising fatty acids
WO2021170463A1 (en) 2020-02-28 2021-09-02 BASF Agro B.V. Methods and uses of a mixture comprising alpha-cypermethrin and dinotefuran for controlling invertebrate pests in turf
EP3708565A1 (en) 2020-03-04 2020-09-16 Bayer AG Pyrimidinyloxyphenylamidines and the use thereof as fungicides
WO2021209490A1 (en) 2020-04-16 2021-10-21 Bayer Aktiengesellschaft Cyclaminephenylaminoquinolines as fungicides
EP3903584A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iv
WO2021219513A1 (en) 2020-04-28 2021-11-04 Basf Se Pesticidal compounds
EP3903582A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ii
EP3903583A1 (en) 2020-04-28 2021-11-03 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors iii
WO2021224220A1 (en) 2020-05-06 2021-11-11 Bayer Aktiengesellschaft Pyridine (thio)amides as fungicidal compounds
WO2021228734A1 (en) 2020-05-12 2021-11-18 Bayer Aktiengesellschaft Triazine and pyrimidine (thio)amides as fungicidal compounds
EP3909950A1 (en) 2020-05-13 2021-11-17 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2021233861A1 (en) 2020-05-19 2021-11-25 Bayer Aktiengesellschaft Azabicyclic(thio)amides as fungicidal compounds
WO2021245087A1 (en) 2020-06-04 2021-12-09 Bayer Aktiengesellschaft Heterocyclyl pyrimidines and triazines as novel fungicides
WO2021249995A1 (en) 2020-06-10 2021-12-16 Bayer Aktiengesellschaft Azabicyclyl-substituted heterocycles as fungicides
WO2021249800A1 (en) 2020-06-10 2021-12-16 Basf Se Substituted [1,2,4]triazole compounds as fungicides
WO2021255071A1 (en) 2020-06-18 2021-12-23 Bayer Aktiengesellschaft 3-(pyridazin-4-yl)-5,6-dihydro-4h-1,2,4-oxadiazine derivatives as fungicides for crop protection
WO2021255169A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255091A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazoles and their derivatives as fungicides
WO2021255170A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines as fungicides
WO2021255089A1 (en) 2020-06-19 2021-12-23 Bayer Aktiengesellschaft 1,3,4-oxadiazole pyrimidines and 1,3,4-oxadiazole pyridines as fungicides
EP3939961A1 (en) 2020-07-16 2022-01-19 Basf Se Strobilurin type compounds and their use for combating phytopathogenic fungi
WO2022017836A1 (en) 2020-07-20 2022-01-27 BASF Agro B.V. Fungicidal compositions comprising (r)-2-[4-(4-chlorophenoxy)-2-(trifluoromethyl)phenyl]-1- (1,2,4-triazol-1-yl)propan-2-ol
EP3945089A1 (en) 2020-07-31 2022-02-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors v
EP3960727A1 (en) 2020-08-28 2022-03-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors vi
WO2022058327A1 (en) 2020-09-15 2022-03-24 Bayer Aktiengesellschaft Substituted ureas and derivatives as new antifungal agents
EP3970494A1 (en) 2020-09-21 2022-03-23 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors viii
WO2022089969A1 (en) 2020-10-27 2022-05-05 BASF Agro B.V. Compositions comprising mefentrifluconazole
WO2022090069A1 (en) 2020-11-02 2022-05-05 Basf Se Compositions comprising mefenpyr-diethyl
WO2022106304A1 (en) 2020-11-23 2022-05-27 BASF Agro B.V. Compositions comprising mefentrifluconazole
EP4011208A1 (en) 2020-12-08 2022-06-15 BASF Corporation Microparticle compositions comprising fluopyram
EP3915971A1 (en) 2020-12-16 2021-12-01 Bayer Aktiengesellschaft Phenyl-s(o)n-phenylamidines and the use thereof as fungicides
WO2022128812A1 (en) 2020-12-17 2022-06-23 Basf Se Spore compositions, production and uses thereof
WO2022129190A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft (hetero)aryl substituted 1,2,4-oxadiazoles as fungicides
WO2022129188A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft 1,2,4-oxadiazol-3-yl pyrimidines as fungicides
WO2022129196A1 (en) 2020-12-18 2022-06-23 Bayer Aktiengesellschaft Heterobicycle substituted 1,2,4-oxadiazoles as fungicides
WO2022167488A1 (en) 2021-02-02 2022-08-11 Basf Se Synergistic action of dcd and alkoxypyrazoles as nitrification inhibitors
EP4043444A1 (en) 2021-02-11 2022-08-17 Basf Se Substituted isoxazoline derivatives
WO2022207494A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022207496A1 (en) 2021-03-30 2022-10-06 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2022243109A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted quinolines as fungicides
WO2022243107A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted pyridines as fungicides
WO2022243111A1 (en) 2021-05-18 2022-11-24 Basf Se New substituted pyridines as fungicides
WO2022243523A1 (en) 2021-05-21 2022-11-24 Basf Se Use of an n-functionalized alkoxy pyrazole compound as nitrification inhibitor
WO2022243521A1 (en) 2021-05-21 2022-11-24 Basf Se Use of ethynylpyridine compounds as nitrification inhibitors
WO2022268810A1 (en) 2021-06-21 2022-12-29 Basf Se Metal-organic frameworks with pyrazole-based building blocks
WO2022268648A1 (en) 2021-06-24 2022-12-29 Syngenta Crop Protection Ag 2-[3-[1 [(quinazolin-4-yl)amino]ethyl]pyrazin-2-yl]thiazole-5-carbonitrile derivatives and similar compounds as pesticides
EP4119547A1 (en) 2021-07-12 2023-01-18 Basf Se Triazole compounds for the control of invertebrate pests
WO2023011958A1 (en) 2021-08-02 2023-02-09 Basf Se (3-pirydyl)-quinazoline
WO2023011957A1 (en) 2021-08-02 2023-02-09 Basf Se (3-quinolyl)-quinazoline
WO2023017120A1 (en) 2021-08-13 2023-02-16 Bayer Aktiengesellschaft Active compound combinations and fungicide compositions comprising those
EP4140986A1 (en) 2021-08-23 2023-03-01 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4151631A1 (en) 2021-09-20 2023-03-22 Basf Se Heterocyclic compounds for the control of invertebrate pests
WO2023072671A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors ix
WO2023072670A1 (en) 2021-10-28 2023-05-04 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors x
WO2023078915A1 (en) 2021-11-03 2023-05-11 Bayer Aktiengesellschaft Bis(hetero)aryl thioether (thio)amides as fungicidal compounds
WO2023092050A1 (en) 2021-11-20 2023-05-25 Bayer Cropscience Lp Beneficial combinations with recombinant bacillus cells expressing a serine protease
WO2023099445A1 (en) 2021-11-30 2023-06-08 Bayer Aktiengesellschaft Bis(hetero)aryl thioether oxadiazines as fungicidal compounds
EP4194453A1 (en) 2021-12-08 2023-06-14 Basf Se Pyrazine compounds for the control of invertebrate pests
EP4198033A1 (en) 2021-12-14 2023-06-21 Basf Se Heterocyclic compounds for the control of invertebrate pests
EP4197333A1 (en) 2021-12-15 2023-06-21 Syngenta Crop Protection AG Method for controlling diamide resistant pests & compounds therefor
EP4198023A1 (en) 2021-12-16 2023-06-21 Basf Se Pesticidally active thiosemicarbazone compounds
WO2023148031A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in cotton
WO2023148034A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in perennials
WO2023148030A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in corn
WO2023148028A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests
WO2023148037A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in vegetables
WO2023148035A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in rice
WO2023148033A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in oilseed rape
WO2023148029A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in cereals
WO2023148036A1 (en) 2022-02-01 2023-08-10 Globachem Nv Methods and compositions for controlling pests in soybean
WO2023148368A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023148369A1 (en) 2022-02-07 2023-08-10 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP4238971A1 (en) 2022-03-02 2023-09-06 Basf Se Substituted isoxazoline derivatives
WO2023187191A1 (en) 2022-04-01 2023-10-05 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2023203066A1 (en) 2022-04-21 2023-10-26 Basf Se Synergistic action as nitrification inhibitors of dcd oligomers with alkoxypyrazole and its oligomers
WO2023213626A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Use of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine for controlling unwanted microorganisms
WO2023213670A1 (en) 2022-05-03 2023-11-09 Bayer Aktiengesellschaft Crystalline forms of (5s)-3-[3-(3-chloro-2-fluorophenoxy)-6-methylpyridazin-4-yl]-5-(2-chloro-4-methylbenzyl)-5,6-dihydro-4h-1,2,4-oxadiazine
WO2023217989A1 (en) 2022-05-12 2023-11-16 Syngenta Crop Protection Ag Alkoxy heteroaryl- carboxamide or thioamide compounds
WO2023247360A1 (en) 2022-06-21 2023-12-28 Syngenta Crop Protection Ag Pesticidally active fused bicyclic heteroaromatic compounds
WO2024017788A1 (en) 2022-07-22 2024-01-25 Syngenta Crop Protection Ag Solid form of a heterocyclic amide derivative
WO2024022910A1 (en) 2022-07-26 2024-02-01 Syngenta Crop Protection Ag 1-[1-[2-(pyrimidin-4-yl)-1,2,4-triazol-3-yl]ethyl]-3-[2,4-dichloro-5-phenyl]urea derivatives and similar compounds as pesticides
WO2024028243A1 (en) 2022-08-02 2024-02-08 Basf Se Pyrazolo pesticidal compounds
WO2024033374A1 (en) 2022-08-11 2024-02-15 Syngenta Crop Protection Ag Novel arylcarboxamide or arylthioamide compounds
WO2024056732A1 (en) 2022-09-16 2024-03-21 Syngenta Crop Protection Ag Pesticidally active cyclic amine compounds
EP4342885A1 (en) 2022-09-20 2024-03-27 Basf Se N-(3-(aminomethyl)-phenyl)-5-(4-phenyl)-5-(trifluoromethyl)-4,5-dihydroisoxazol-3-amine derivatives and similar compounds as pesticides
WO2024068837A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Agricultural methods
EP4295688A1 (en) 2022-09-28 2023-12-27 Bayer Aktiengesellschaft Active compound combination
WO2024068520A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068517A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068519A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-(hetero)aryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068518A1 (en) 2022-09-28 2024-04-04 Bayer Aktiengesellschaft 3-heteroaryl-5-chlorodifluoromethyl-1,2,4-oxadiazole as fungicide
WO2024068838A1 (en) 2022-09-28 2024-04-04 Syngenta Crop Protection Ag Fungicidal compositions
EP4361126A1 (en) 2022-10-24 2024-05-01 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024088792A1 (en) 2022-10-24 2024-05-02 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi containing an amino acid substitution f129l in the mitochondrial cytochrome b protein conferring resistance to qo inhibitors xv
WO2024089216A1 (en) 2022-10-27 2024-05-02 Syngenta Crop Protection Ag Novel sulfur-containing heteroaryl carboxamide compounds
WO2024104823A1 (en) 2022-11-16 2024-05-23 Basf Se New substituted tetrahydrobenzoxazepine
WO2024104815A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104822A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted tetrahydrobenzodiazepine as fungicides
WO2024104818A1 (en) 2022-11-16 2024-05-23 Basf Se Substituted benzodiazepines as fungicides
WO2024104643A1 (en) 2022-11-17 2024-05-23 Bayer Aktiengesellschaft Use of isotianil for controlling plasmodiophora brassica
WO2024126388A1 (en) 2022-12-12 2024-06-20 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024126404A1 (en) 2022-12-14 2024-06-20 Syngenta Crop Protection Ag Imidazo[1,2-a]pyridine derivatives
WO2024126650A1 (en) 2022-12-15 2024-06-20 Syngenta Crop Protection Ag Novel bicyclic-carboxamide compounds useful as pesticides
EP4389210A1 (en) 2022-12-21 2024-06-26 Basf Se Heteroaryl compounds for the control of invertebrate pests
WO2024146945A1 (en) 2023-01-07 2024-07-11 Syngenta Crop Protection Ag Novel carboxamide and sulfonamide pesticidal compounds
WO2024156664A1 (en) 2023-01-23 2024-08-02 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2024158837A2 (en) 2023-01-24 2024-08-02 Flagship Pioneering Innovations Vii, Llc Peptide in combination with fungicide compositions for fungal control and related methods
WO2024165343A1 (en) 2023-02-08 2024-08-15 Basf Se New substituted quinoline compounds for combatitng phytopathogenic fungi
WO2024170339A1 (en) 2023-02-13 2024-08-22 Syngenta Crop Protection Ag Pesticidally active bicyclic compounds
WO2024194038A1 (en) 2023-03-17 2024-09-26 Basf Se Substituted pyridyl/pyrazidyl dihydrobenzothiazepine compounds for combatting phytopathogenic fungi
CN118045106A (en) * 2024-02-19 2024-05-17 山东第一医科大学附属眼科医院(山东省眼科医院) Application of Burkholderia vietnamensis in preparation of biological preparation for inhibiting and/or killing Demodex

Also Published As

Publication number Publication date
WO2013032693A3 (en) 2013-05-02
EP2748304A2 (en) 2014-07-02
EP2748304A4 (en) 2015-02-11
BR112014004386A2 (en) 2017-03-21
KR20160054627A (en) 2016-05-16
JP5961693B2 (en) 2016-08-02
KR20140043823A (en) 2014-04-10
AR087684A1 (en) 2014-04-09
CL2014000467A1 (en) 2014-09-05
CO7020854A2 (en) 2014-08-11
CR20140097A (en) 2014-05-02
TW201322924A (en) 2013-06-16
JP2014527069A (en) 2014-10-09
AU2012301466A1 (en) 2013-05-02
AU2012301466B2 (en) 2015-07-23
CA2845732C (en) 2019-07-16
CL2016001235A1 (en) 2016-11-25
KR101632806B1 (en) 2016-06-23
US20170208817A1 (en) 2017-07-27
IN2014MN00242A (en) 2015-09-25
US20140221207A1 (en) 2014-08-07
MX347407B (en) 2017-04-25
NZ620640A (en) 2015-09-25
MX2014002329A (en) 2014-08-22
CA2845732A1 (en) 2013-03-07
MA35445B1 (en) 2014-09-01
JP2016183157A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
AU2012301466B2 (en) Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom-formulations and uses
DK2539432T3 (en) INSULATED BACTERIAL STRAINS FROM CEREAL STANDARD AND PESTICID REPLACEMENT PRODUCTS THEREOF
US12075785B2 (en) Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
AU2015202421B2 (en) Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
NZ620640B2 (en) Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827368

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2012301466

Country of ref document: AU

Date of ref document: 20120814

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14238467

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2845732

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147004669

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014528424

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014000467

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14042252

Country of ref document: CO

Ref document number: MX/A/2014/002329

Country of ref document: MX

Ref document number: CR2014-000097

Country of ref document: CR

REEP Request for entry into the european phase

Ref document number: 2012827368

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014004386

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014004386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140225