WO2013032082A1 - 대용량 이차전지 - Google Patents

대용량 이차전지 Download PDF

Info

Publication number
WO2013032082A1
WO2013032082A1 PCT/KR2012/001697 KR2012001697W WO2013032082A1 WO 2013032082 A1 WO2013032082 A1 WO 2013032082A1 KR 2012001697 W KR2012001697 W KR 2012001697W WO 2013032082 A1 WO2013032082 A1 WO 2013032082A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
terminal
secondary battery
large capacity
capacity secondary
Prior art date
Application number
PCT/KR2012/001697
Other languages
English (en)
French (fr)
Inventor
김선재
홍지준
Original Assignee
(주)열린기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)열린기술 filed Critical (주)열린기술
Publication of WO2013032082A1 publication Critical patent/WO2013032082A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/517Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a large-capacity secondary battery, and more particularly, it is easy to configure a battery pack because the battery case can be strengthened and the battery case can be erected, thereby improving productivity by modularizing a terminal, a liquid inlet, and a vent. It relates to a large capacity secondary battery.
  • a secondary battery is a battery that can be charged and discharged, unlike a primary battery that can not be charged, in recent years, a high output secondary battery using a non-aqueous electrolyte of high energy density has been developed, one battery cell (battery cell)
  • the low-capacity battery packaged in the form of a pack is used for portable small electronic devices such as mobile phones, notebook computers, and camcorders, and requires a large power source for a motor driving power supply such as an electric vehicle.
  • the battery cells are connected in series or in parallel to form a large capacity secondary battery package.
  • the secondary battery is manufactured in various shapes. Typical shapes include a cylindrical shape in which an electrode group (or jelly roll) is wound around a stripe through a separator, which is an insulator, between a positive electrode plate and a negative electrode plate, and a positive electrode plate; There is a stack type in which an electrode group is formed by alternately stacking a separator and a negative electrode plate and then installing the separator in a case.
  • a separator which is an insulator, between a positive electrode plate and a negative electrode plate, and a positive electrode plate
  • FIG. 1 is an exploded perspective view showing a laminated structure of a positive electrode plate, a separator and a negative electrode plate included in a conventional stacked secondary battery
  • Figure 2 is an exploded side view of a conventional stacked secondary battery
  • Figure 3 is a conventional stacked secondary battery Partial exploded perspective view of.
  • the positive electrode plate 10a coated with the positive electrode active material and the negative electrode plate 10b coated with the negative electrode active material are sequentially stacked with the separator 20 interposed therebetween. It consists of a structure.
  • the positive electrode tab 12a and the negative electrode tab 12b for electrical connection are protruded, respectively.
  • the positive electrode tab 12a and the negative electrode tab 12b are provided at positions not overlapping with each other.
  • the positive electrode tab 12a and the negative electrode tab 12b are disposed. Are each separated and stacked.
  • the external terminal 40 is coupled to the positive electrode tab 12a and the negative electrode tab 12b, respectively, and the external terminal 40 is coupled to the electrode tab 12 by the rivet 50 and the washer 60. Since the structure in which the external terminal 40 is coupled to the positive electrode tab 12a and the structure in which the external terminal 40 is coupled to the negative electrode tab 12b are the same, hereinafter, the external terminal 40 is coupled to the positive electrode tab 12a. The structure to be described will be described in detail with an example.
  • the plurality of positive electrode tabs 12a are closely stacked at one end thereof, and the external terminal 40 is seated at one side of the upper surface of the positive electrode tab 12a and ends of the rivet 50. Passes through the external terminal 40, the plurality of positive electrode tabs 12a, and the washer 60. As such, when the insertion of the rivet 50 is completed, the external terminal 40 and the washer 60 are coupled to be in close contact with the positive electrode tab 12a by a riveting process of pressing the end of the rivet 50 upward.
  • the external terminal 40 is seated on the positive electrode tab 12a. Penetrating the 50 through the external terminal 40 and the positive electrode tab 12a, mounting the washer 60 so that the end of the rivet 50 is inserted, the external terminal 40 and the washer 60 is positive Several steps, such as the step of riveting to be in close contact with the tab 12a is required, there is a problem that the process is complicated and takes a lot of production time.
  • Korean Patent Application No. 2001-0014318 discloses a lithium ion secondary battery having a thin light area.
  • the secondary battery disclosed in the patent application can not only lay down the secondary battery due to its structure and cannot stand the secondary battery. Therefore, in order to form a battery pack that binds a plurality of batteries into one using this type of secondary battery, a plurality of secondary batteries should be laid down to form a battery pack. In order to prevent direct contact between the cases of the batteries, such as a mold The absence of is required and the unit battery pack work. In addition, in forming the battery pack, there is a disadvantage that the operation of connecting the electrode terminals of the individual batteries is not easy.
  • the present invention has been proposed to solve the above problems, having a structure or rigid battery case that can stand the secondary battery in an upright form is advantageous in the formation of a battery pack, easily connecting a plurality of batteries in series Provides a large capacity secondary battery that can be.
  • One embodiment of the present invention can increase the productivity of the battery, because the terminal, the liquid inlet or the safety vent can be modularized and manufactured separately from the battery, a large capacity to ensure sufficient thickness of the battery and increase the capacity of the battery It provides a secondary battery.
  • One embodiment of the present invention provides a large-capacity secondary battery that can be used stably in an environment having high vibration resistance and high vibration or external impact.
  • a large capacity secondary battery for achieving the above object, the first case for opening and closing the flat one surface of the electrode assembly; A second case facing the first case to open and close the other surface of the electrode assembly; And a third case for sealing between the first case and the second case, wherein ends of the first case and the second case are wound with ends of the third case to form a winding coupling part.
  • the winding coupling portion may be wound toward an outer surface of the third case.
  • the rigidity of the battery case can be increased and the secondary battery can be built using the winding coupling portion.
  • An edge portion of each of the first case and the second case may be formed to be in close contact with the inner surface of the third case, and the bent portion may be formed adjacent to the winding coupling portion.
  • the winding length of the winding coupling part may be shorter than the winding length of the third case and the winding length of the first case.
  • a step portion for supporting the electrode assembly may be formed at edges of the first case and the second case, and the step portion may be formed to be adjacent to the bent portion and recessed toward the electrode assembly.
  • a buffer space may be formed between the stepped portion of the first case and the stepped portion of the second case.
  • An external force absorbing member may be formed in the buffer space.
  • the external force absorbing member may be formed along a thickness side surface of the electrode assembly.
  • the third case is mounted with a terminal module connected to the electrode tab of the electrode assembly, the electrode assembly connected to the terminal module is characterized in that two sets.
  • the third case may be equipped with a vent module for releasing the pressure of the space surrounded by the first to the third case, the vent module may be formed in close proximity to the terminal module.
  • the vent module is in communication with the vent hole formed in the third case, the base bracket welded to the third case; An expansion membrane provided inside the base bracket to cover the vent hole; And a cover provided at an upper portion of the expansion membrane and fixed at an edge thereof by the base bracket. When the expansion membrane is inflated, the expansion membrane may be damaged by a perforation pin formed on an inner surface of the cover.
  • a plurality of discharge holes may be formed in the cover so that the gas flowing out of the expansion film flows out of the cover.
  • the third case may be equipped with a injection hole module for injecting the electrolyte solution impregnated with the electrode assembly, the injection hole module may be formed on one side of the terminal module.
  • the injection hole module has a double sealing structure.
  • the injection hole is formed in a conical shape that narrows toward the bottom, the sealing member is characterized in that the tapered screw with a screw formed on the outer surface.
  • Polypropylene, polyethylene, or polyphenyleneether may be applied to a portion of the winding coupling portion where the first to third cases contact each other.
  • a high-capacity secondary battery according to an embodiment of the present invention to achieve the above object, an electrode connecting member connected to the electrode tab of the electrode assembly; A terminal provided to contact the electrode connecting member; And a terminal housing mounted to the battery case and fixing the terminal to the battery case.
  • a plurality of electrode assemblies may be connected to the electrode connection member.
  • the electrode connection member may include a first connection part formed to be parallel to the electrode plate of the electrode assembly and to which the electrode tab of the electrode assembly is connected; A second connection part formed to be parallel to the first connection part and connected to electrode tabs of another electrode assembly; And a terminal connection part connecting an upper end of the first connection part and an upper end of the second connection part and provided to contact the terminal.
  • the terminal connection part may be provided with a fastening hole for connection with the terminal, and the fastening hole may be equipped with a fastening means for coupling the terminal and the terminal connection part.
  • the terminal is coupled to the electrode connecting member, the lower portion passing through the battery case and the terminal housing; A stop portion formed on an upper portion of the lower portion and positioned inside the terminal housing; And an upper end formed on an upper portion of the interruption portion and protruding outward of the terminal housing, wherein the interruption portion may protrude laterally than the upper end portion and the lower end portion.
  • the terminal housing may be a flange portion welded to the battery case; An accommodation portion formed to surround the interruption portion; And a sealing part sealing a terminal hole formed in the accommodating part so that the upper end part is exposed.
  • An insulating material may be provided between the stop part and the accommodating part.
  • the terminal module may include a connection terminal formed at the upper end and connecting the terminals of the same poles of neighboring secondary batteries to each other to form a battery pack.
  • the battery case may include: a first case opening and closing one surface of the electrode assembly; A second case facing the first case to open and close the other surface of the electrode assembly; And a third case sealing the space between the first case and the second case, wherein the terminal module may be formed in the third case.
  • the large-capacity secondary battery according to an embodiment of the present invention has a battery case having a rigidity large enough to stand the secondary battery in an upright form, so that the battery pack can be easily installed by setting up a plurality of unit cells. Can be formed.
  • the large capacity secondary battery according to an embodiment of the present invention is advantageous in increasing the capacity of the battery because a plurality of batteries can be easily connected in series.
  • a large capacity secondary battery according to an embodiment of the present invention can increase the productivity of the battery because the terminal, the liquid inlet or the safety vent can be modularized and manufactured separately from the battery, and the battery thickness can be sufficiently secured. Can increase the capacity.
  • the large capacity secondary battery according to the exemplary embodiment of the present invention may be stably used even in an environment in which vibrations or external shocks are high due to its excellent vibration resistance.
  • Large capacity secondary battery according to an embodiment of the present invention can improve the flexural rigidity and torsional rigidity without a separate reinforcing member.
  • FIG. 1 illustrates a laminated structure of a positive electrode plate and a negative electrode plate included in a conventional stacked secondary battery.
  • FIG. 2 is a side exploded view of a conventional stacked secondary battery.
  • FIG. 3 is a partially exploded perspective view of a conventional stacked secondary battery.
  • FIG. 4 is a front view illustrating the inside of a large-capacity secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a large capacity secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a right side view illustrating a large capacity secondary battery according to an embodiment of the present invention.
  • FIG. 7 is a side cross-sectional view showing the inside of a large capacity secondary battery according to an embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional views illustrating a terminal module of a large capacity secondary battery according to an embodiment of the present invention.
  • FIG. 10 is an exploded perspective view illustrating a coupling structure of a terminal module of a large capacity secondary battery according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a case of a large capacity secondary battery according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a vent module of a large capacity secondary battery according to an exemplary embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a pouring hole module of a large capacity secondary battery according to an exemplary embodiment of the present invention.
  • FIG. 14 is a plan view illustrating a battery pack using a large capacity secondary battery according to an embodiment of the present invention.
  • Figure 4 is a front view showing the inside of a large capacity secondary battery according to an embodiment of the present invention
  • Figure 5 is a plan view showing a large capacity secondary battery according to an embodiment of the present invention
  • the large capacity secondary battery according to the present invention to be described below can be applied not only to lithium ion secondary batteries but also to other types of secondary batteries.
  • the large-capacity secondary battery 100 includes a first case 113 and a first case 113 that open and close a flat surface of the electrode assembly 120.
  • the battery case 110 includes a second case 115 facing and opening and closing the other surface of the electrode assembly 120, and a third case 111 sealing the space between the first case 113 and the second case 115. ).
  • the secondary battery 100 includes a battery case 110 having a thin light area having a wide front face and a rear face but a thin thickness.
  • the upper and lower edges of the battery case 110 are rounded, and most of the inside of the battery case 110 is filled with the electrode assembly 120.
  • a buffer space (BS) is formed between the edge of the electrode assembly 120 and the battery case 110, the buffer space (BS) may be used to reduce the vibration, impact or external force applied to the secondary battery (100). have.
  • the electrode assembly 120 is formed by alternately stacking the positive electrode plate 126 and the negative electrode plate 121, and the positive electrode tab 127 of the positive electrode plate 126 and the negative electrode tab 122 of the negative electrode plate 121 are spatially separated from each other. have.
  • the negative electrode tab 122 and the positive electrode tab 127 are positioned above the battery case 110. Since the large capacity secondary battery 100 according to the embodiment of the present invention can stand the battery case 110 in an upright form, the electrode tabs 122 and 127 for forming the battery pack are preferably formed on the upper side of the battery.
  • the electrode tabs 122 and 127 may be connected to the terminal module 130 provided at the top of the battery case 110.
  • the terminal module 130 has a positive terminal module and a negative terminal module, respectively.
  • the battery pack can be easily formed by connecting terminal modules having the same polarity to each other.
  • a liquid injection hole module 150 may be provided between the terminal modules 130.
  • the injection hole module 150 is formed at the upper side of the battery case 110 and is a module for injecting electrolyte into the battery case 110.
  • the vent module 160 may be provided at an upper side of the battery case 110. The vent module 160 may be damaged when the temperature or the pressure inside the battery case 110 is increased to lower the pressure inside the case 110.
  • the first and second cases 113 and 115 which open or close the front and rear surfaces of the battery, respectively, may be formed in a thin thin plate shape.
  • Can be.
  • the third case 111 may be said to have a substantially band shape as a part forming the thickness of the secondary battery 100.
  • the secondary battery 100 may use a curling process without using welding in coupling the first to third cases 111, 113, and 115 to each other. That is, the cases may be coupled to each other by overlapping and winding the ends or edges of the first to third cases 111, 113, and 115 that contact each other.
  • FIG. 11 is a cross-sectional view illustrating a case of a large capacity secondary battery according to an embodiment of the present invention.
  • ends of the first case 113 and the second case 115 may be wound with ends of the third case 111 to form a winding coupling part C.
  • the winding coupling part C may be formed by performing a curling process in a state where the ends of the first case 113 and the third case 111 and the ends of the second case 115 and the third case 111 overlap each other. .
  • the winding coupling portion C formed by winding the ends of the first to third cases 111, 113, and 115 may be formed while winding toward the outer surface of the third case 111.
  • the rigidity of the battery case 110 may be increased, and the secondary battery 100 may be erected using the winding coupling part C.
  • the winding coupling part C is bent toward the outer surface of the third case 111, that is, in contact with the outer surface of the third case 111.
  • the rigidity of the battery case 110 may be increased by forming the winding coupling part C in contact with the outer surface of the third case 111 or by winding the winding coupling part C toward the outer surface of the third case 111.
  • the bottom surface of the third case 111 in contact with the bottom surface on which the secondary battery 100 is standing may be strengthened.
  • the winding coupling part C may be bent to contact the outer surface of the first case 113 or the second case 115.
  • the winding coupling portion C may not have the same length of winding of the first and second cases 113 and 115 and the third case 111. That is, the winding length of the winding coupling portion (C) may be formed shorter than the winding length of the first case 113 and the second case 115, the winding length of the third case (111). That is, when the winding coupling portion C is released in the state shown in FIG. 11, the lengths of the portions in which the cases abut each other are longer than the lengths of the third and second cases 111 and 115. Is formed.
  • the third case 111 is formed to have a substantially flat surface
  • the first case 113 and the second case 115 are bent portions 113c and 115c or stepped portions at portions adjacent to edges or ends thereof. 113b and 115b may be formed.
  • Bending parts 113c and 115c may be formed at edges of each of the first case 113 and the second case 115 to be in close contact with the inner surface of the third case 111.
  • a state in which the first and second cases 113 and 115 are temporarily assembled to the third case 111 so as to perform a curling process with the third case 111 may be formed. That is, the first and second cases 113 and 115 may be fitted such that the bent portions 113c and 115c contact the inner surface of the third case 111.
  • the winding coupling portion C may be more easily formed.
  • the bent portions 113c and 115c may be formed adjacent to the winding coupling portion (C).
  • stepped portions 113b and 115b may be formed at edges of the first case 113 and the second case 115 to support the electrode assembly B1, B2, or 120.
  • the first and second cases 113 and 115 have a recessed shape basically because the bent portions 113c and 115c are formed along the edge, and the stepped portions 113b and 115b recessed further inward than the recessed form. ) May be formed adjacent to the bent portions 113c and 115c. That is, the stepped portions 113b and 115b may be recessed toward the electrode assembly 120.
  • the stepped portions 113b and 115b may be continuously formed along the edges of the first case 113 and the second case 115. As shown in FIG. 11, the stepped portions 113b and 115b may serve to support the circumference of the electrode assembly 120. As such, the electrode assembly 120 may be easily located within the battery case 110 by supporting the electrode assembly 120 using the stepped portions 113b and 115b.
  • the bent portions 113c and 115c are formed at the ends of the first and second cases 113 and 115 to be temporarily coupled to the third case 111, so that the first and second cases 113 and 115 are provided.
  • the gap between the positive electrode plate 126 and the negative electrode plate 121 of the assembly 120 may be prevented from spreading.
  • a buffer space BS may be formed between the stepped portion 113b of the first case 113 and the stepped portion 115b of the second case 115. Since the distance between the stepped portion 113b of the first case 113 and the stepped portion 115b of the second case 115 is smaller than the thickness of the electrode assembly 120, the stepped portion 113b of the first case 113 is provided. ) And the stepped portion 115b of the second case 115 is formed with an empty space in which the electrode assembly 120 is not located, which becomes the buffer space BS.
  • An external force absorbing member such as a foam may be formed in the buffer space BS. That is, the external force absorbing member may fill the buffer space BS.
  • the external force absorbing member may be formed along the side surface in the thickness direction of the electrode assembly 120.
  • FIG. 8 and 9 are cross-sectional views illustrating a terminal module of a large capacity secondary battery according to an embodiment of the present invention
  • FIG. 10 is an exploded view illustrating a coupling structure of the terminal module of a large capacity secondary battery according to an embodiment of the present invention. Perspective view.
  • the large-capacity secondary battery 100 includes an electrode connection member 131 and an electrode connection member connected to the electrode tabs 122 and 127 of the electrode assembly 120.
  • 131 may be provided with a terminal module 130 including a terminal 135 and a terminal housing 140 mounted to the battery case 110 and fixing the terminal 135 to the battery case 110. have.
  • a plurality of electrode assemblies 120 may be connected to the electrode connection member 131 of the terminal module 130.
  • two electrode assemblies B1 and B2 or two sets of electrode assemblies B1 and B2 are shown for a battery connected to the electrode connection member 131, but the structure of the electrode connection member 131 is shown.
  • three or more electrode assemblies 120 may be connected depending on the shape.
  • the secondary battery 100 may include not only one set of electrode assemblies B1 corresponding to one conventional battery, but also another set of electrode assemblies B2. Since the same battery case 110 can be accommodated, it is possible to maximize the capacity of the battery compared to the existing.
  • the terminal module 130 may include an electrode connection member 131 to which the electrode tabs 122 and 127 of the two sets of electrode assemblies B1 and B2 may be connected.
  • the electrode connecting member 131 has an approximately " ⁇ " shape when viewed from the side.
  • the electrode connecting member 131 is formed to be parallel to the electrode plate of the electrode assembly B2 and to face the first connecting portion 131a and the first connecting portion 131a to which the electrode tabs 122 and 127 of the electrode assembly 120 are connected. It is formed side by side and connects the upper end of the second connecting portion 131b and the first connecting portion 131a and the second connecting portion 131b to which the electrode tabs 122 and 127 of the other electrode assembly B1 are connected, and the terminal 135. It may include a terminal connection portion (131f) provided to contact with.
  • the terminal module 130 is formed for the negative electrode tab 122 and the positive electrode tab 127 of the electrode assembly (B1, B2) is provided in two sets, respectively, the electrode connecting member 131 also the negative electrode tab 122 ) And the positive electrode tab 127, respectively.
  • Holes 131c and 131d for fastening with the electrode tabs 122 and 127 are formed in the first connection part 131a and the second connection part 131b of the electrode connection member 131, and the electrode connection members are also formed in the electrode tabs 122 and 127. Holes 122a communicating with the holes 131c and 131d formed in 131 may be formed. The holes 131c and 131d of the electrode connection member 131 and the holes 122a of the electrode tabs 122 and 127 may be fastened by using the rivet 133 in an overlapping state so as to communicate with each other. The electrode tabs 122 and 127 may be fastened not only at the outer surfaces of the first and second connectors 131a and 131b but also at the inner surfaces thereof.
  • a fastening hole 131e for connecting to the terminal 135 is formed in the terminal connection part 131f, and a fastening means 132 for coupling the terminal 135 and the terminal connection part 131f to the fastening hole 131e.
  • the fastening means 132 may include a head portion 132a and a screw portion 132b.
  • the terminal 135 may be formed with a fastener 135d having a screw formed to engage the threaded portion 132b of the fastening means 132.
  • the terminal 135 is coupled to the electrode connecting member 131 and formed in the upper portion of the lower portion 135c, the lower portion 135c passing through the battery case 110 and the terminal housing 140 and of the terminal housing 140 It may include a stop 135b and an upper end 135a protruding out of the terminal housing 140 and formed at an upper portion of the stop 135b.
  • the terminal 135 is a member that passes through the battery case 110 to electrically connect the electrode tabs 122 and 127 of the electrode assembly 120 and the external terminal.
  • the terminal 135 is preferably formed in a substantially cylindrical shape, but is not necessarily limited to the cylindrical shape.
  • the stop 135b may protrude laterally than the upper end 135a and the lower end 135c. That is, the diameter of the stop 135b is preferably larger than the diameter of the upper end 135a and the lower end 135c.
  • the stopper part 135b of the terminal 135 may be formed larger than other parts so as to be caught between the third case 111 of the battery case 110 and the terminal housing 140 to be described later.
  • the terminal housing 140 is a member for fixing the terminal 135 so that the terminal 135 is not separated from the battery case 110 to the third case 111.
  • the terminal housing 140 has a flange portion 143 welded to the battery cases 110 to the third case 111, a receiving portion 141 and a terminal 135 formed to surround the stop portion 135b of the terminal 135. It may include a sealing portion 142 for sealing the terminal hole 142 formed in the receiving portion 141 so that the upper end (135a) of the).
  • the flange portion 143 of the terminal housing 140 is coupled to the battery case 110 by welding, and the third case 111 in which the flange portion 143 and the terminal housing 140 are located is connected to the terminal 135. Holes (not shown) for mounting may be formed.
  • the accommodating part 141 may have a predetermined height so as to surround the stopping part 135b of the terminal 135 and have a larger diameter than the stopping part 135b.
  • the upper end of the receiving portion 141 is bent toward the upper surface of the stopping portion 135b so as to be caught by the stopping portion 135b of the terminal 135.
  • the stopping part 135b of the terminal 135 is spaced apart from the direct contact with the receiving part 141 of the housing 140, and an insulating material 144 may be provided between the stopping part 135b and the receiving part 141. Can be.
  • a gasket 142 may be formed between the bent end of the accommodation portion 141 and the upper end 135a of the terminal 135.
  • the sealing between the battery case 110 or the third case 111 and the terminal 135 may be firmly maintained by the terminal housing 140, the insulating material 144, or the gasket 142.
  • connection terminal 137 may be additionally formed at the upper end 135a of the terminal 135.
  • 14 is a plan view illustrating a battery pack using a large capacity secondary battery according to an embodiment of the present invention.
  • the connection terminal 137 may be used to connect the terminal modules of each secondary battery 100 to each other to form the battery pack 200 shown in FIG. 14.
  • a plurality of secondary batteries 100 may be connected in series to make a battery pack 200.
  • two bolts 139 may be mounted at ends of the connection terminal 137 to fix the connection plate 210 to the connection terminal 137. That is, the secondary battery 100 may be connected in series by inserting the connection plate 210 between the two bolts 139.
  • the terminal module 130 is formed on the upper end 135a of the terminal 135, and the connection terminal 137 for connecting the terminals of the same pole of the neighboring secondary battery 100 to each other to form a battery pack 200 It may include.
  • the battery case 110 has a first case 113 for opening and closing one surface of the electrode assembly 120, a second case 115 facing the first case 113 and opening and closing the other surface of the electrode assembly 120;
  • the third case 111 may be sealed between the first case 113 and the second case 115, and the terminal module 130 may be formed in the third case 111.
  • the third case 111 is equipped with a terminal module 130 connected to the electrode tabs 122 and 127 of the electrode assembly 120, and the electrode assembly 120 connected to the terminal module 130 includes two sets B1, B2).
  • FIG. 12 is a cross-sectional view illustrating a vent module of a large capacity secondary battery according to an exemplary embodiment of the present invention.
  • a vent module 160 is installed in the third case 111 to release pressure in an internal space of the battery case 110 surrounded by the first to third cases 111, 113, and 115.
  • the module 160 may be formed to be close to the terminal module 130.
  • Vent module 160 may be provided.
  • the vent module 160 may be referred to as a kind of safety valve.
  • the vent module 160 has a vent hole 111a formed in the third case 111 so that the gas or electrolyte in the battery case 110 can be discharged to the outside when the pressure inside the battery case 110 increases and is expanded.
  • the base bracket 164 is mounted to communicate with the vent hole 111a, the expansion membrane 166 coupled to cover the through hole, and the upper portion of the expansion membrane 166.
  • the expansion membrane 166 When the expansion membrane 166 is inflated upward, it may include a cover 161 formed with a punching pin 163 for puncturing the expansion membrane 166.
  • the expansion membrane 166 is fixedly coupled to the base bracket 164 by a separate fixing member 165, the lower space of the expansion membrane 166 is filled with electrolyte or gas, the battery case 110
  • the expansion membrane 166 expands toward the cover 161 and is damaged while being punctured by the punching pin 163. Accordingly, the electrolyte or gas inside the battery case 110 is expanded through the expansion membrane 166. It can be discharged to the outside through the perforation of the. As such, when the electrolyte or gas inside the battery case 110 is discharged to the outside, the internal pressure of the battery case 110 may drop rapidly to the atmospheric pressure level, thereby reducing the risk of the secondary battery exploding.
  • the vent module 160 communicates with the vent hole 111a formed in the third case 111 and the base bracket 164 to cover the base bracket 164 and the vent hole 111a welded to the third case 111.
  • Including the expansion membrane 166 and the cover 161 is provided on top of the expansion membrane 166 and the edge is fixed by the base bracket 164, the cover when the expansion membrane 166 is inflated As the expansion membrane 166 is damaged by the puncture pins 163 formed on the inner surface of the 161, the pressure inside the battery case 110 may be reduced.
  • a plurality of discharge holes 162 may be formed in the cover 161 so that the gas flowing out of the expansion membrane 166 flows out of the cover 161.
  • the vent module 160 used in the large-capacity secondary battery 100 is manufactured or assembled separately from the secondary battery and then coupled to the third case 111 of the secondary battery 100 by projection welding. Can be.
  • the vent module 160 is formed in the third case 111 corresponding to the side of the battery case 110. As the vent module 160 is formed on the side of the battery, the secondary battery 160 is stacked with a plurality of secondary batteries. Due to the thickness of the vent module 160, the overall size of the battery pack may be prevented from being formed, and a more compact battery pack may be formed.
  • vent module 160 may be located at an upper side close to the terminal module 130 without being located at the bottom of the secondary battery. As such, the vent module 160 may be formed on the upper side of the battery case 110 to prevent the electrolyte from leaking through the vent module 160.
  • FIG. 13 is a cross-sectional view illustrating a pouring hole module of a large capacity secondary battery according to an exemplary embodiment of the present invention.
  • the third case 111 is equipped with a pouring hole module 150 for injecting an electrolyte solution in which the electrode assembly 120 is impregnated, and the pouring hole module 150 is a terminal module 130. It may be formed on one side of.
  • the liquid injection hole module 150 is preferably located between the positive electrode terminal module and the negative electrode terminal module.
  • the pouring hole module 150 may be manufactured or assembled separately from the secondary battery and then coupled to or mounted on the secondary battery.
  • a third injection hole module mounting unit (not shown) for mounting the injection hole module 150 may be formed in the third case 111 of the secondary battery 100.
  • the injection hole module 150 includes a sealing member 152 and a sealing member 152 that seal the injection hole frame 154 welded to the third case 111 and the injection hole 151 formed on the injection hole frame 154. Located at an upper portion of the injection hole frame 154 may include a stopper 153 for sealing the opening 155 formed on the top. As such, the injection hole module 150 has a double sealing structure using the sealing member 152 and the stopper 153.
  • the injection hole 151 is formed in a conical shape that becomes narrower toward the bottom
  • the sealing member 152 may be a tapered screw with a screw formed on the outer surface.
  • the large capacity secondary battery 100 may inject the electrolyte by the boat injection method. After injecting the electrolyte through the injection hole module 150, the battery is placed in a vacuum chamber (not shown) to make a vacuum inside the battery, and then the injection hole 151 is sealed with the sealing member 152. Then, using a stopper 153 is sealed once more.
  • the stopper 153 is preferably made of aluminum.
  • the terminal module 130, the liquid injection hole module 150, the vent module 160, and the battery case 110 may be separately assembled first.
  • the terminal module 130 is first manufactured to be connected to the electrode assembly 120, and the terminal module 130 and the electrode assembly 120 are inserted into the battery case 110.
  • a synthetic resin such as polypropylene, polyethylene, or polyphenylene ether may be applied to portions of the first to third cases 111, 113, and 115 that contact each other. That is, polypropylene, polyethylene, or polyphenylene ether may be applied to a portion where the first to third cases 111, 113, and 115 of the winding coupling part C contact each other.
  • the battery case 110 of the large capacity secondary battery 100 may maintain the airtightness of the battery case 110 by using curling and coating of synthetic resin.
  • the present invention can be used in thin batteries, secondary batteries, energy storage devices and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명에 따른 대용량 이차전지는 전극 조립체의 평평한 일면을 개폐하는 제1 케이스; 상기 제1 케이스와 대향하며, 상기 전극 조립체의 타면을 개폐하는 제2 케이스; 및 상기 제1 케이스와 상기 제2 케이스의 사이를 밀봉하는 제3 케이스;를 포함하고, 상기 제1 케이스 및 상기 제2 케이스의 끝단은 상기 제3 케이스의 끝단과 서로 감겨서 감김 결합부를 형성하되, 상기 감김 결합부는 상기 제3 케이스의 외면을 향해서 감기도록 형성된다. 이러한 대용량 이차전지는 세워 놓을 수 있기 때문에 전지 팩을 용이하게 만들 수 있다.

Description

대용량 이차전지
본 발명은 대용량 이차전지에 관한 것으로, 보다 상세하게는 전지케이스의 강성을 강화하고 전지케이스를 세울 수 있기 때문에 전지 팩의 구성이 용이하며 단자, 주액구 및 벤트를 모듈화하여 생산성을 향상시킬 수 있는 대용량 이차전지에 관한 것이다.
일반적으로 이차전지(secondary battery)는 충전이 불가능한 일차전지와는 달리 충전 및 방전이 가능한 전지로, 최근 들어 고에너지 밀도의 비수전해액을 이용한 고출력 이차 전지가 개발되고 있으며, 하나의 전지 셀(battery cell)이 팩(pack) 형태로 포장된 저 용량 전지의 경우 휴대폰이나 노트북 컴퓨터 및 캠코더와 같은 휴대가 가능한 소형 전자기기에 사용되고, 대 전력을 필요로 하는 기기 예컨대, 전기 자동차 등의 모터 구동용 전원의 경우에는 상기 전지 셀을 수십 개 직렬 또는 병렬로 연결하여 대용량의 이차 전지 패키지를 구성하게 된다.
상기 이차전지는 여러 가지 형상으로 제조되고 있는데 대표적인 형상으로는, 띠 상의 양극판과 음극판 사이에 절연체인 분리막(separator)을 개재하여 이를 둥글게 감아 전극군(또는 젤리롤)을 형성한 원통형과, 양극판과 분리막과 음극판을 교대로 적층하여 전극군을 형성한 후 이를 케이스에 내장 설치한 스택형이 있다.
이하 첨부된 도면을 참조하여 종래의 스택형 이차전지의 구조에 대하여 상세히 설명한다.
도 1은 종래의 스택형 이차전지에 포함되는 양극판, 분리막 및 음극판의 적층구조를 도시하는 분해사시도이고, 도 2는 종래의 스택형 이차전지의 측면 분해도이며, 도 3은 종래의 스택형 이차전지의 부분 분해사시도이다.
도 1에 도시된 바와 같이 종래의 스택형 이차전지는, 양극 활물질이 도포되어 있는 양극판(10a)과 음극 활물질이 도포되어 있는 음극판(10b)이 분리막(20)을 개재시킨 상태에서 순차적으로 적층되어 있는 구조로 이루어져 있다.
양극판(10a) 및 음극판(10b)의 일측단부에는 각각 전기적 연결을 위한 양극탭(12a) 및 음극탭(12b)이 돌출되어 있다. 이때, 양극탭(12a)과 음극탭(12b)은 상호 겹치지 아니하는 위치에 마련되는 바, 복수 개의 양극판(10a)과 음극판(10b)이 적층되는 경우 양극탭(12a)과 음극탭(12b)은 각각 구분되어 적층된다.
한편, 양극탭(12a) 및 음극탭(12b)에는 외부단자(40)가 각각 결합되는데, 외부단자(40)는 리벳(50)과 와셔(60)에 의해 전극탭(12)에 결합된다. 외부단자(40)가 양극탭(12a)에 결합되는 구조와 외부단자(40)가 음극탭(12b)에 결합되는 구조는 동일하므로, 이하에서는 외부단자(40)가 양극탭(12a)에 결합되는 구조를 예로 들어 상세히 설명한다.
도 2 및 도 3에 도시된 바와 같이 복수 개의 양극탭(12a)은 끝단이 하나로 밀착 적층되고, 외부단자(40)는 일측이 양극탭(12a)의 상면에 안착되며, 리벳(50)의 끝단은 외부단자(40)와 복수 개의 양극탭(12a)과 와셔(60)를 관통한다. 이와 같이 리벳(50)의 삽입이 완료되면, 리벳(50)의 끝단을 상향 가압하는 리벳팅 공정으로 통해 상기 외부단자(40)와 와셔(60)는 양극탭(12a)에 밀착되도록 결합된다.
그러나, 이와 같이 리벳(50)과 와셔(60)를 이용하여 외부단자(40)를 양극탭(12a)에 체결시키기 위해서는, 외부단자(40)를 양극탭(12a) 상에 안착시키는 단계, 리벳(50)을 외부단자(40) 및 양극탭(12a)에 관통시키는 단계, 리벳(50)의 끝단이 인입되도록 와셔(60)를 거치시키는 단계, 외부단자(40)와 와셔(60)가 양극탭(12a)에 밀착되도록 리벳팅하는 단계 등 여러 단계가 필수적으로 요구되는바 공정이 복잡해지고 생산시간이 많이 소요된다는 문제점이 있다.
또한, 리벳(50)의 끝단이 인입되도록 와셔(60)를 거치시킨 이후에는 리벳팅공정이 완료될 때까지 와셔(60)가 낙하하지 아니하도록 와셔(60)를 받치고 있어야 하는데, 와셔(60)의 개수가 많은 경우에는 와셔(60)들을 모두 받치는 데에 많은 어려움이 있다는 단점이 있다.
한편, 한국특허출원 제2001-0014318호에는 박형 광면적의 리튬이온 이차전지가 개시되어 있다. 상기 특허출원에 개시된 이차전지는 그 구조상 이차전지를 눕혀 놓을 수밖에 없고 이차전지를 세울 수 없다. 따라서, 이러한 형태의 이차전지를 이용하여 다수개의 전지를 하나로 묶는 전지 팩을 형성하기 위해서는 다수개의 이차전지를 눕혀 놓고 전지 팩을 형성해야 하는데, 전지의 케이스끼리 직접 닿는 것을 방지하기 위해 형틀과 같은 별도의 부재가 필요하며 단위 전지팩 작업을 해야 한다. 또한, 전지 팩을 형성함에 있어서 낱개 전지의 전극 단자끼리 연결하는 작업도 용이하지 않은 단점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 이차전지를 직립 형태로 세울 수 있는 구조 내지 강성을 가지는 전지케이스를 구비하여 전지 팩 형성에 유리하고, 다수의 전지를 용이하게 직렬로 연결할 수 있는 대용량 이차전지를 제공한다.
본 발명의 일 실시예는 단자, 주액구 또는 안전벤트가 모듈화되어 전지와 별개로 제작될 수 있기 때문에 전지의 생산성을 높일 수 있으며, 전지의 두께를 충분히 확보하고 전지의 용량을 증대시킬 수 있는 대용량 이차전지를 제공한다.
본 발명의 일 실시예는 내진동성이 우수하여 진동이나 외부의 충격이 많은 환경에서도 안정적으로 사용될 수 있는 대용량 이차전지를 제공한다.
상기한 바와 같은 과제를 달성하기 위한 본 발명의 일 실시예에 따른 대용량 이차전지는, 전극 조립체의 평평한 일면을 개폐하는 제1 케이스; 상기 제1 케이스와 대향하며, 상기 전극 조립체의 타면을 개폐하는 제2 케이스; 및 상기 제1 케이스와 상기 제2 케이스의 사이를 밀봉하는 제3 케이스;를 포함하고, 상기 제1 케이스 및 상기 제2 케이스의 끝단은 상기 제3 케이스의 끝단과 서로 감겨서 감김 결합부를 형성하되, 상기 감김 결합부는 상기 제3 케이스의 외면을 향해서 감긴 것을 특징으로 한다.
상기와 같이 감김 결합부를 형성함으로써, 전지케이스의 강성을 높일 수 있고 감김 결합부를 이용하여 이차전지를 세울 수도 있다.
상기 제1 케이스 및 상기 제2 케이스 각각의 가장자리에는 상기 제3 케이스의 내면과 밀착되는 절곡부가 형성되며, 상기 절곡부는 상기 감김 결합부와 인접하여 형성될 수 있다.
상기 감김 결합부의 감긴 길이는 상기 제3 케이스의 감긴 길이가 상기 제1 케이스 및 상기 제2 케이스의 감긴 길이 보다 짧게 형성될 수 있다.
상기 제1 케이스 및 상기 제2 케이스 각각의 가장자리에는 상기 전극조립체를 지지하는 단차부가 형성되며, 상기 단차부는 상기 절곡부와 인접하고 상기 전극조립체를 향하여 함몰 형성될 수 있다.
상기 제1 케이스의 단차부와 상기 제2 케이스의 단차부 사이에는 완충 공간이 형성될 수 있다.
상기 완충 공간에는 외력흡수부재가 형성될 수 있다.
상기 외력흡수부재는 상기 전극조립체의 두께방향 측면을 따라 형성될 수 있다.
상기 제3 케이스에는 상기 전극조립체의 전극탭과 연결된 단자모듈이 장착되며, 상기 단자모듈에 연결되는 상기 전극조립체는 2개 세트인 것을 특징으로 한다.
상기 제3 케이스에는 상기 제1 내지 상기 제3 케이스로 둘러 싸인 공간의 압력을 해소시키는 벤트모듈이 장착되며, 상기 벤트모듈은 상기 단자모듈에 근접하게 형성될 수 있다.
상기 벤트모듈은 상기 제3 케이스에 형성된 벤트홀과 연통되며, 상기 제3 케이스에 용접되는 베이스브라켓; 상기 벤트홀을 덮도록 상기 베이스브라켓의 내부에 제공되는 팽창막; 및 상기 팽창막의 상부에 제공되고 상기 베이스브라켓에 의해 가장자리가 고정되는 덮개;를 포함하며, 상기 팽창막이 부풀어 오르면 상기 덮개의 내면에 형성된 천공핀에 의해 상기 팽창막이 파손될 수 있다.
상기 팽창막이 파손되면, 상기 팽창막에서 유출된 기체가 상기 덮개의 외부로 유출되도록 상기 덮개에는 복수개의 토출공이 형성될 수 있다.
상기 제3 케이스에는 상기 전극조립체가 함침되는 전해액을 주입하기 위한 주액구 모듈이 장착되며, 상기 주액구 모듈은 상기 단자모듈의 일측에 형성될 수 있다.
상기 주액구 모듈은 이중 밀봉 구조를 가지는 것을 특징으로 한다.
상기 주액구 모듈은, 상기 제3 케이스에 용접되는 주액구 프레임; 상기 주액구 프레임에 형성된 주액구를 밀봉하는 밀봉부재; 및 상기 밀봉부재의 상부에 위치하며, 상기 주액구 프레임의 상부에 형성된 개구부를 밀봉하는 마개;를 포함할 수 있다.
상기 주액구는 아래쪽으로 갈수록 좁아지는 원추형상으로 형성되며, 상기 밀봉부재는 외면에 나사가 형성된 테이퍼 나사인 것을 특징으로 한다.
상기 감김 결합부의 상기 제1 내지 상기 제3 케이스가 서로 맞닿는 부분에는 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene) 또는 폴리페닐렌에테트(polyphenyleneether)가 도포될 수 있다.
한편, 상기한 과제를 달성하기 위해 본 발명의 일 실시예에 따른 대용량 이차전지는, 전극조립체의 전극탭과 연결되는 전극연결부재; 상기 전극연결부재와 접촉하도록 제공되는 터미널; 및 전지 케이스에 장착되며, 상기 전지 케이스에 상기 터미널을 고정하는 터미널 하우징;을 포함하는 단자모듈을 구비하며, 상기 전극연결부재에는 다수개의 전극조립체가 연결될 수 있다.
상기 전극연결부재는, 상기 전극조립체의 전극판과 나란하게 형성되며, 상기 전극조립체의 전극탭이 연결되는 제1 연결부; 상기 제1 연결부와 마주 보도록 나란하게 형성되며, 다른 전극조립체의 전극탭이 연결되는 제2 연결부; 및 상기 제1 연결부의 상단과 상기 제2 연결부의 상단을 연결하며, 상기 터미널과 접촉하도록 제공되는 터미널 연결부;를 포함할 수 있다.
상기 터미널 연결부에는 상기 터미널과의 연결을 위한 체결공이 형성되고, 상기 체결공에는 상기 터미널과 상기 터미널 연결부를 결합하는 체결수단이 장착될 수 있다.
상기 터미널은 상기 전극연결부재와 결합되며, 상기 전지케이스와 상기 터미널 하우징을 통과하는 하단부; 상기 하단부의 상부에 형성되며, 상기 터미널 하우징의 내부에 위치하는 중단부; 및 상기 중단부의 상부에 형성되며 상기 터미널 하우징 외부로 돌출되는 상단부;를 포함하며, 상기 중단부는 상기 상단부 및 상기 하단부 보다 횡방향으로 돌출될 수 있다.
상기 터미널 하우징은 상기 전지케이스에 용접되는 플랜지부; 상기 중단부를 둘러싸도록 형성된 수용부; 및 상기 상단부가 노출되도록 상기 수용부에 형성된 단자구멍을 밀봉하는 실링부;를 포함하며, 상기 중단부와 상기 수용부 사이에는 절연재가 제공될 수 있다.
상기 단자모듈은 상기 상단부에 형성되고, 이웃하는 이차전지의 동일 극의 터미널을 서로 연결하여 전지 팩을 형성하는 연결단자를 포함할 수 있다.
상기 전지케이스는, 상기 전극 조립체의 일면을 개폐하는 제1 케이스; 상기 제1 케이스와 대향하며, 상기 전극 조립체의 타면을 개폐하는 제2 케이스; 및 상기 제1 케이스와 상기 제2 케이스의 사이를 밀봉하는 제3 케이스;를 포함하고, 상기 단자모듈은 상기 제3 케이스에 형성될 수 있다.
이상 설명한 바와 같이, 본 발명의 일 실시예에 따른 대용량 이차전지는 이차전지를 직립 형태로 세울 수 있을 정도로 큰 강성을 가지는 전지케이스를 구비하기 때문에 다수개의 단위 전지를 세워 놓음으로써 용이하게 전지 팩을 형성할 수 있다.
본 발명의 일 실시예에 따른 대용량 이차전지는 다수의 전지를 용이하게 직렬로 연결할 수 있기 때문에 전지의 용량 증대에 유리하다.
본 발명의 일 실시예에 따른 대용량 이차전지는 단자, 주액구 또는 안전벤트가 모듈화되어 전지와 별개로 제작될 수 있기 때문에 전지의 생산성을 높일 수 있으며, 전지의 두께를 충분히 확보할 수 있기 때문에 전지의 용량을 증대시킬 수 있다.
본 발명의 일 실시예에 따른 대용량 이차전지는 내진동성이 우수하여 진동이나 외부의 충격이 많은 환경에서도 안정적으로 사용될 수 있다.
본 발명의 일 실시예에 따른 대용량 이차전지는 별도의 보강부재 없이도 휨강성 및 비틀림강성을 향상시킬 수 있다.
도 1은 종래의 스택형 이차전지에 포함되는 양극판과 음극판의 적층구조를 도시한다.
도 2는 종래의 스택형 이차전지의 측면 분해도이다.
도 3은 종래의 스택형 이차전지의 부분 분해사시도이다.
도 4는 본 발명의 일 실시예에 따른 대용량 이차전지의 내부를 도시한 정면도이다.
도 5는 본 발명의 일 실시예에 따른 대용량 이차전지를 도시한 평면도이다.
도 6은 본 발명의 일 실시예에 따른 대용량 이차전지를 도시한 우측면도이다.
도 7은 본 발명의 일 실시예에 따른 대용량 이차전지의 내부를 도시한 측단면도이다.
도 8 및 도 9는 본 발명의 일 실시예에 따른 대용량 이차전지의 단자 모듈을 도시한 단면도이다.
도 10은 본 발명의 일 실시예에 따른 대용량 이차전지의 단자 모듈의 결합 구조를 도시한 분해 사시도이다.
도 11은 본 발명의 일 실시예에 따른 대용량 이차전지의 케이스를 도시한 단면도이다.
도 12는 본 발명의 일 실시예에 따른 대용량 이차전지의 벤트 모듈을 도시한 단면도이다.
도 13은 본 발명의 일 실시예에 따른 대용량 이차전지의 주액구 모듈을 도시한 단면도이다.
도 14는 본 발명의 일 실시예에 따른 대용량 이차전지를 이용한 전지 팩을 도시한 평면도이다.
이하에서, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 4는 본 발명의 일 실시예에 따른 대용량 이차전지의 내부를 도시한 정면도, 도 5는 본 발명의 일 실시예에 따른 대용량 이차전지를 도시한 평면도, 도 6은 본 발명의 일 실시예에 따른 대용량 이차전지를 도시한 우측면도, 도 7은 본 발명의 일 실시예에 따른 대용량 이차전지의 내부를 도시한 측단면도이다.
이하에서 설명할 본 발명에 따른 대용량 이차전지는 리튬이온 이차전지에 적용될 수 있을 뿐만 아니라 다른 형태의 이차전지에도 적용될 수 있다.
도 4 내지 도 7을 참조하면, 본 발명의 일 실시예에 따른 대용량 이차전지(100)는, 전극 조립체(120)의 평평한 일면을 개폐하는 제1 케이스(113), 제1 케이스(113)와 대향하며 전극 조립체(120)의 타면을 개폐하는 제2 케이스(115) 및 제1 케이스(113)와 제2 케이스(115)의 사이를 밀봉하는 제3 케이스(111)를 포함하는 전지케이스(110)를 구비한다.
도 4는 전지케이스(110) 중에서 전극조립체(120)의 일면을 덮고 있는 제1 또는 제2 케이스(113,115) 중 어느 하나를 제거하고 이차전지(100)의 내부를 도시한 정면도이다. 도 4에 도시된 바와 같이, 이차전지(100)는 정면 및 배면은 넓은 반면에 두께는 얇은 박형 광면적 형태의 전지케이스(110)를 구비한다. 전지케이스(110)의 상하 모서리는 둥글게 형성되며, 전지케이스(110)의 내부의 대부분은 전극조립체(120)로 채워진다. 여기서, 전극조립체(120)의 가장자리와 전지케이스(110) 사이에는 완충공간(BS)이 형성되는데, 완충공간(BS)은 이차전지(100)에 가해지는 진동, 충격 또는 외력 등을 줄이는데 사용될 수 있다.
전극조립체(120)는 양극판(126) 및 음극판(121)이 교대로 적층되어 형성되며, 양극판(126)의 양극탭(127)과 음극판(121)의 음극탭(122)은 서로 공간적으로 분리되어 있다. 음극탭(122)과 양극탭(127)은 전지케이스(110)의 상부에 위치한다. 본 발명의 일 실시예에 따른 대용량 이차전지(100)는 전지케이스(110)를 직립 형태로 세울 수 있기 때문에 전지 팩을 형성하기 위한 전극탭(122,127)은 전지의 상부쪽에 형성되는 것이 바람직하다.
전극탭(122,127)은 전지케이스(110)의 상단에 마련되는 단자모듈(130)에 연결될 수 있다. 단자모듈(130)은 양극단자모듈 및 음극단자모듈이 각각 형성된다. 여러 개의 이차전지를 나란하게 세워서 전지 팩을 형성하는 경우에는 같은 극성을 가지는 단자모듈을 서로 연결함으로써 용이하게 전지 팩을 형성할 수 있다.
한편, 단자모듈(130) 사이에는 주액구 모듈(150)이 마련될 수 있다. 주액구 모듈(150)은 전지케이스(110)의 상단 쪽에 형성되며, 전지케이스(110) 내부에 전해액을 주입하기 위한 모듈이다. 또한, 전지케이스(110)의 측면 상부에는 벤트모듈(160)이 마련될 수 있다. 벤트 모듈(160)은 전지케이스(110) 내부의 온도 또는 압력이 상승하는 경우에 파손되어 케이스(110) 내부의 압력을 낮추기 위한 모듈이다.
본 발명의 일 실시예에 따른 대용량 이차전지(100)의 전지케이스(110) 중에서 전지의 정면과 배면을 각각 개폐하거나 밀폐하는 제1 및 제2 케이스(113,115)는 대략 사각형의 얇은 판상으로 형성될 수 있다. 제3 케이스(111)는 이차전지(100)의 두께를 형성하는 부분으로서 대략 띠 모양을 가진다고 할 수 있다.
본 발명의 일 실시예에 따른 이차전지(100)는 제1 내지 제3 케이스(111,113,115)를 서로 결합함에 있어서 용접을 사용하지 않고 컬링(curling) 공정을 이용할 수 있다. 즉, 제1 내지 제3 케이스(111,113,115)끼리 서로 접하는 끝단 또는 가장자리를 서로 겹치고 감아서 케이스를 서로 결합할 수 있다.
도 11은 본 발명의 일 실시예에 따른 대용량 이차전지의 케이스를 도시한 단면도이다. 도 11을 참조하면, 제1 케이스(113) 및 제2 케이스(115)의 끝단은 제3 케이스(111)의 끝단과 서로 감겨서 감김 결합부(C)를 형성할 수 있다. 감김 결합부(C)는 제1 케이스(113)와 제3 케이스(111) 그리고 제2 케이스(115)와 제3 케이스(111)의 끝단을 서로 겹친 상태에서 컬링 공정을 수행하여 형성될 수 있다.
제1 내지 제3 케이스(111,113,115)의 끝단을 감아서 형성된 감김 결합부(C)는 제3 케이스(111)의 외면을 향해서 감기면서 형성될 수 있다.
상기와 같이 컬링공정에 의한 감김 결합부(C)를 형성함으로써, 전지케이스(110)의 강성을 높일 수 있고 감김 결합부(C)를 이용하여 이차전지(100)를 세울 수도 있다.
도 11을 참조하면, 감김 결합부(C)는 제3 케이스(111)의 외면을 향해, 즉 제3 케이스(111)의 외면과 접촉되도록 감김 결합부(C)가 꺾여 있음을 알 수 있다. 이와 같이, 감김 결합부(C)를 제3 케이스(111)의 외면과 접촉하도록 형성하거나 제3 케이스(111)의 외면을 향해서 감기도록 형성함으로써 전지케이스(110)의 강성을 크게 할 수 있을 뿐만 아니라 이차전지(100)가 세워지는 바닥면과 접촉하는 제3 케이스(111)의 아랫면을 강화할 수도 있다.
다만, 경우에 따라서 감김 결합부(C)는 제1 케이스(113) 또는 제2 케이스(115)의 외면과 접촉되도록 꺾여질 수도 있다.
감김 결합부(C)는 제1 및 제2 케이스(113,115)와 제3 케이스(111)의 감긴 길이가 동일하지 않다. 즉, 감김 결합부(C)의 감긴 길이는 제3 케이스(111)의 감긴 길이가 제1 케이스(113) 및 제2 케이스(115)의 감긴 길이 보다 짧게 형성될 수 있다. 즉, 도 11에 도시된 상태에서 감김 결합부(C)를 풀었을 때 케이스끼리 서로 맞닿은 부분의 길이는 제1 및 제2 케이스(113,115)의 길이가 제3 케이스(111)의 길이 보다 더 길게 형성된다.
한편, 제3 케이스(111)는 대략 평평한 면으로 형성되는 반면에, 제1 케이스(113)와 제2 케이스(115)는 그 가장자리 또는 끝단과 인접한 부분에 절곡부(113c,115c) 또는 단차부(113b,115b)가 형성될 수 있다.
제1 케이스(113) 및 제2 케이스(115) 각각의 가장자리에는 제3 케이스(111)의 내면과 밀착되는 절곡부(113c,115c)가 형성될 수 있다. 절곡부(113c,115c)를 형성함으로써 제3 케이스(111)와 컬링 공정을 할 수 있도록 제3 케이스(111)에 제1 및 제2 케이스(113,115)를 가조립한 상태를 만들 수 있다. 즉, 절곡부(113c,115c)가 제3 케이스(111)의 내면과 접촉하도록 제1 및 제2 케이스(113,115)를 끼워두면 된다. 이와 같이, 절곡부(113c,115c)가 제3 케이스(111)의 내면과 접촉한 상태에서 컬링 공정을 수행하면 감김 결합부(C)를 보다 용이하게 형성할 수 있다. 이 때, 절곡부(113c,115c)는 감김 결합부(C)와 인접하여 형성될 수 있다.
또한, 제1 케이스(113) 및 제2 케이스(115) 각각의 가장자리에는 전극조립체(B1,B2 또는 120)를 지지하는 단차부(113b,115b)가 형성될 수 있다. 제1 및 제2 케이스(113,115)는 가장자리를 따라 절곡부(113c,115c)가 형성되기 때문에 기본적으로 함몰된 형태를 가지는데, 이 함몰된 형태에서 보다 더 안쪽으로 함몰된 단차부(113b,115b)가 절곡부(113c,115c)와 인접하게 형성될 수 있다. 즉, 단차부(113b,115b)는 전극조립체(120)를 향하여 함몰 형성될 수 있다.
여기서, 단차부(113b,115b)는 제1 케이스(113) 및 제2 케이스(115)의 가장자리를 따라 연속적으로 형성될 수 있다. 도 11에 도시된 바와 같이 단차부(113b,115b)는 전극조립체(120)의 둘레를 지지하는 역할을 할 수 있다. 이와 같이, 단차부(113b,115b)를 이용하여 전극조립체(120)를 지지함으로써 전지케이스(110) 내에서 전극조립체(120)가 정위치를 쉽게 찾을 수 있다.
도 7에 도시된 바와 같이, 제3 케이스(111)에 가결합이 가능하도록 제1 및 제2 케이스(113,115)의 끝단에 절곡부(113c,115c)를 형성함으로써 제1 및 제2 케이스(113,115)가 전극조립체(120)를 양면에서 누른 상태에서 컬링 작업을 할 수 있고, 이와 같이 제1 및 제2 케이스(113,115)의 가운데 부분이 전극조립체(120)를 누르게 형성함으로써 전지를 사용함에 따라 전극조립체(120)의 양극판(126)과 음극판(121) 사이의 간격이 벌어지는 것을 방지할 수도 있다.
여기서, 제1 케이스(113)의 단차부(113b)와 제2 케이스(115)의 단차부(115b) 사이에는 완충 공간(BS)이 형성될 수 있다. 제1 케이스(113)의 단차부(113b)와 제2 케이스(115)의 단차부(115b) 사이의 간격은 전극조립체(120)의 두께 보다 작기 때문에 제1 케이스(113)의 단차부(113b)와 제2 케이스(115)의 단차부(115b) 사이에는 전극조립체(120)가 위치하지 않는 빈 공간이 형성되는데, 이 빈 공간이 완충 공간(BS)이 된다.
완충 공간(BS)에는 폼(foam)과 같은 외력흡수부재(미도시)가 형성될 수 있다. 즉, 상기 외력흡수부재가 완충 공간(BS)을 채울 수 있다. 여기서, 상기 외력흡수부재는 전극조립체(120)의 두께방향 측면을 따라 형성될 수 있다. 이와 같이, 상기 외력흡수부재를 이용하여 완충 공간(BS)을 채움으로써, 대용량 이차전지(100)가 진동이나 충격 또는 외력이 많은 환경에 사용되더라도 전극조립체(120) 등에 충격이나 외력이 직접 전달되는 것을 방지하고 전지의 안전성 또는 수명을 개선할 수 있다.
이하에서는 도면을 참조하여 단자모듈(130)에 대해서 설명한다. 도 8 및 도 9는 본 발명의 일 실시예에 따른 대용량 이차전지의 단자 모듈을 도시한 단면도이고, 도 10은 본 발명의 일 실시예에 따른 대용량 이차전지의 단자 모듈의 결합 구조를 도시한 분해 사시도이다.
도 7 내지 도 10을 참조하면, 본 발명의 일 실시예에 따른 대용량 이차전지(100)는, 전극조립체(120)의 전극탭(122,127)과 연결되는 전극연결부재(131), 전극연결부재(131)와 접촉하도록 제공되는 터미널(135) 및 전지 케이스(110)에 장착되며 전지 케이스(110)에 터미널(135)을 고정하는 터미널 하우징(140)을 포함하는 단자모듈(130)을 구비할 수 있다.
여기서, 단자모듈(130)의 전극연결부재(131)에는 다수개의 전극조립체(120)가 연결될 수 있다. 도면에는 2개의 전극조립체(B1,B2) 또는 2개 세트(set)의 전극조립체(B1,B2)가 전극연결부재(131)에 연결된 전지에 대해서 도시되어 있으나, 전극연결부재(131)의 구조 또는 형태에 따라 3개 이상의 전극조립체(120)가 연결될 수도 있다.
이하에서는 설명의 편의를 위해 2개 또는 2세트의 전극조립체(B1,B2)가 전지케이스(110) 내에 수용되는 전지를 예로서 설명한다.
도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 이차전지(100)는 기존의 전지 1개에 해당하는 1세트의 전극조립체(B1) 뿐만 아니라 다른 1세트의 전극조립체(B2)도 동일한 전지케이스(110) 내에 수용할 수 있기 때문에 기존 대비 전지의 용량을 극대화할 수 있다.
단자모듈(130)은 2세트의 전극조립체(B1,B2)의 전극탭(122,127)가 연결될 수 있는 전극연결부재(131)를 포함할 수 있다. 도 10을 참조하면, 전극연결부재(131)는 측면에서 보면 대략 "∩" 형상을 가진다. 전극연결부재(131)는 전극조립체(B2)의 전극판과 나란하게 형성되며 전극조립체(120)의 전극탭(122,127)이 연결되는 제1 연결부(131a), 제1 연결부(131a)와 마주 보도록 나란하게 형성되며 다른 전극조립체(B1)의 전극탭(122,127)이 연결되는 제2 연결부(131b) 및 제1 연결부(131a)의 상단과 제2 연결부(131b)의 상단을 연결하며 터미널(135)과 접촉하도록 제공되는 터미널 연결부(131f)를 포함할 수 있다.
여기서, 단자모듈(130)은 2개 세트로 구비되는 전극조립체(B1,B2)의 음극탭(122)과 양극탭(127)에 대해 각각 형성되기 때문에 전극연결부재(131)도 음극탭(122)과 양극탭(127)에 대해서 각각 마련된다.
전극연결부재(131)의 제1 연결부(131a) 및 제2 연결부(131b)에는 전극탭(122,127)과의 체결을 위한 구멍(131c,131d)이 형성되며, 전극탭(122,127)에도 전극연결부재(131)에 형성된 구멍(131c,131d)과 연통되는 구멍(122a)가 형성될 수 있다. 전극연결부재(131)의 구멍(131c,131d)과 전극탭(122,127)의 구멍(122a)이 서로 연통되도록 겹친 상태에서 리벳(133)을 이용하여 양자를 체결할 수 있다. 전극탭(122,127)은 제1 및 제2 연결부(131a,131b)의 외면에서 체결될 수 있을 뿐만 아니라 내면에서도 체결될 수 있다.
한편, 터미널 연결부(131f)에는 터미널(135)과의 연결을 위한 체결공(131e)이 형성되고, 체결공(131e)에는 터미널(135)과 터미널 연결부(131f)를 결합하는 체결수단(132)이 장착될 수 있다. 체결수단(132)은 머리부(132a) 및 나사부(132b)를 포함할 수 있다. 터미널(135)에는 체결수단(132)의 나사부(132b)가 맞물리도록 나사가 형성된 체결구(135d)가 형성될 수 있다.
한편, 터미널(135)은 전극연결부재(131)와 결합되며 전지케이스(110)와 터미널 하우징(140)을 통과하는 하단부(135c), 하단부(135c)의 상부에 형성되며 터미널 하우징(140)의 내부에 위치하는 중단부(135b) 및 중단부(135b)의 상부에 형성되며 터미널 하우징(140) 외부로 돌출되는 상단부(135a)를 포함할 수 있다. 터미널(135)은 전지케이스(110)를 통과하여 전극조립체(120)의 전극탭(122,127)과 외부 단자를 전기적으로 연결하는 부재이다.
터미널(135)은 대략 원통형으로 형성되는 것이 바람직하지만 반드시 원통 형상에 국한되는 것은 아니다. 터미널(135)은 중단부(135b)가 상단부(135a) 및 하단부(135c) 보다 횡방향으로 돌출될 수 있다. 즉, 중단부(135b)의 직경이 상단부(135a) 및 하단부(135c)의 직경 보다 큰 것이 바람직하다. 터미널(135)의 중단부(135b)는 전지케이스(110)의 제3 케이스(111)와 후술할 터미널 하우징(140) 사이에 걸릴 수 있도록 다른 부분 보다 크게 형성될 수 있다.
터미널 하우징(140)은 터미널(135)이 전지케이스(110) 내지 제3 케이스(111)에서 분리되지 않도록 터미널(135)을 고정하는 부재이다. 터미널 하우징(140)은 전지케이스(110) 내지 제3 케이스(111)에 용접되는 플랜지부(143), 터미널(135)의 중단부(135b)를 둘러싸도록 형성된 수용부(141) 및 터미널(135)의 상단부(135a)가 노출되도록 수용부(141)에 형성된 단자구멍(142)을 밀봉하는 실링부(142)를 포함할 수 있다.
터미널 하우징(140)의 플랜지부(143)는 전지케이스(110)에 용접에 의해서 결합되며, 플랜지부(143)와 터미널 하우징(140)이 위치하는 제3 케이스(111)에는 터미널(135)의 장착을 위한 구멍(미도시)이 형성될 수 있다. 수용부(141)는 터미널(135)의 중단부(135b)를 둘러쌀 수 있도록 소정의 높이를 가지며 중단부(135b) 보다 큰 직경으로 형성되는 것이 바람직하다. 수용부(141)의 상단은 터미널(135)의 중단부(135b)에 걸릴 수 있도록 중단부(135b)의 상면을 향해 절곡된다.
터미널(135)의 중단부(135b)는 하우징(140)의 수용부(141)와 직접 접촉하지 않도록 이격 설치되며, 중단부(135b)와 수용부(141) 사이에는 절연재(144)가 제공될 수 있다. 수용부(141)의 절곡된 끝단과 터미널(135)의 상단부(135a) 사이에는 가스켓(142)이 형성될 수 있다.
전지케이스(110) 또는 제3 케이스(111)와 터미널(135) 사이의 밀봉은 터미널 하우징(140), 절연재(144) 또는 가스켓(142)에 의해서 견고하게 유지될 수 있다.
한편, 터미널(135)의 상단부(135a)에는 연결단자(137)가 부가적으로 형성될 수 있다. 도 14는 본 발명의 일 실시예에 따른 대용량 이차전지를 이용한 전지 팩을 도시한 평면도이다. 연결단자(137)는 도 14에 도시된 전지 팩(200)을 형성하기 위해 각각의 이차전지(100)의 단자모듈을 서로 연결하는데 사용될 수 있다. 도 14에 도시된 바와 같이, 각 이차전지(100)의 연결단자(137)를 연결플레이트(210)를 사용하여 연결함으로써 다수개의 이차전지(100)가 직렬로 연결된 전지 팩(200)을 만들 수 있다. 여기서, 연결단자(137)에 연결플레이트(210)를 고정하기 위해서 연결단자(137)의 끝단에는 2개의 볼트(139)가 장착될 수 있다. 즉, 2개 볼트(139) 사이에 연결플레이트(210)를 끼움으로써 이차전지(100)를 직렬로 연결할 수 있다.
상기한 단자모듈(130)은 터미널(135)의 상단부(135a)에 형성되고, 이웃하는 이차전지(100)의 동일 극의 터미널을 서로 연결하여 전지 팩(200)을 형성하는 연결단자(137)를 포함할 수 있다.
상기 전지케이스(110)는 전극 조립체(120)의 일면을 개폐하는 제1 케이스(113), 제1 케이스(113)와 대향하며 전극 조립체(120)의 타면을 개폐하는 제2 케이스(115) 및 제1 케이스(113)와 제2 케이스(115)의 사이를 밀봉하는 제3 케이스(111)를 포함하고, 단자모듈(130)은 제3 케이스(111)에 형성될 수 있다.
상기 제3 케이스(111)에는 전극조립체(120)의 전극탭(122,127)과 연결된 단자모듈(130)이 장착되며, 단자모듈(130)에 연결되는 전극조립체(120)는 2개 세트(B1,B2)로 형성될 수 있다.
도 12는 본 발명의 일 실시예에 따른 대용량 이차전지의 벤트 모듈을 도시한 단면도이다. 도 12에 도시된 바와 같이, 제3 케이스(111)에는 제1 내지 상기 제3 케이스(111,113,115)로 둘러 싸인 전지케이스(110) 내부 공간의 압력을 해소시키는 벤트모듈(160)이 장착되며, 벤트모듈(160)은 단자모듈(130)에 근접하게 형성될 수 있다.
이차전지가 기준치 이상으로 가열될 때에는 팽창 과정을 거쳐 폭발을 하게 되므로, 이차전지가 기준치 이상으로 팽창되었을 때 전지케이스(110) 내부의 가스 또는 전해액을 외부로 배출시킴으로써 이차전지의 폭발을 방지할 수 있는 벤트모듈(160)이 구비될 수 있다. 여기서, 벤트모듈(160)은 일종의 안전밸브라고 할 수 있다.
벤트모듈(160)은 전지케이스(110) 내부의 압력이 상승하여 팽창될 때 전지케이스(110) 내부의 가스 또는 전해액을 외부로 배출시킬 수 있도록, 제3 케이스(111)에 형성된 벤트홀(111a)과 연통되도록 장착되며 벤트홀(111a)과 연통되는 관통공이 형성되는 베이스브라켓(164)과, 상기 관통공을 덮도록 결합되는 팽창막(166)과, 팽창막(166)의 상부에 장착되며 팽창막(166)이 상향으로 팽창되었을 때 팽창막(166)을 천공시키는 천공핀(163)이 형성된 덮개(161)를 포함하여 구성될 수 있다.
이 때 팽창막(166)은 별도의 고정부재(165)에 의해 베이스브라켓(164)에 고정 결합되며, 팽창막(166)의 하측 공간은 전해액 또는 가스로 채워지는 바, 전지케이스(110)의 내부압력이 높아지면 팽창막(166)은 덮개(161)를 향해 팽창되어 천공핀(163)에 의해 구멍이 뚫리면서 파손되고, 이에 따라 전지케이스(110) 내부의 전해액 또는 가스는 팽창막(166)의 천공 부위를 통해 외부로 배출될 수 있다. 이와 같이 전지케이스(110) 내부의 전해액 또는 가스가 외부로 배출되면, 전지케이스(110)의 내부 압력이 대기압 수준으로 급격히 떨어지므로 이차전지가 폭발하는 위험을 줄일 수 있다.
상기 벤트모듈(160)은 제3 케이스(111)에 형성된 벤트홀(111a)과 연통되며 제3 케이스(111)에 용접되는 베이스브라켓(164), 벤트홀(111a)을 덮도록 베이스브라켓(164)의 내부에 제공되는 팽창막(166) 및 팽창막(166)의 상부에 제공되고 베이스브라켓(164)에 의해 가장자리가 고정되는 덮개(161)를 포함하며, 팽창막(166)이 부풀어 오르면 덮개(161)의 내면에 형성된 천공핀(163)에 의해 팽창막(166)이 파손되면서 전지케이스(110) 내부의 압력을 감소시킬 수 있다.
팽창막(166)이 파손되면, 팽창막(166)에서 유출된 기체가 덮개(161)의 외부로 유출되도록 덮개(161)에는 복수개의 토출공(162)이 형성될 수 있다.
본 발명의 일 실시예에 따른 대용량 이차전지(100)에 사용되는 벤트모듈(160)은 이차전지와 별도로 제작 또는 조립된 후 이차전지(100)의 제3 케이스(111)에 프로젝션 용접에 의해서 결합될 수 있다.
벤트모듈(160)은 전지케이스(110)의 측면에 해당하는 제3 케이스(111)에 형성되는데, 이와 같이 벤트모듈(160)이 전지의 측면에 형성되기 때문에 여러 개의 이차전지를 적층하여 전지 팩을 형성할 때 벤트모듈(160)의 두께 때문에 전지 팩의 전체 크기가 커지는 것을 방지하고 보다 컴팩트한 전지 팩을 형성할 수 있다.
또한, 벤트모듈(160)은 이차전지의 하부에 위치하지 않고 단자모듈(130)과 가까운 상부 쪽에 위치하는 것이 바람직하다. 이와 같이, 벤트모듈(160)을 전지케이스(110)의 측면 위쪽에 형성함으로써 전해액이 벤트모듈(160)을 통해 누액되는 것을 방지할 수 있다.
도 13은 본 발명의 일 실시예에 따른 대용량 이차전지의 주액구 모듈을 도시한 단면도이다. 도 13에 도시된 바와 같이, 제3 케이스(111)에는 전극조립체(120)가 함침되는 전해액을 주입하기 위한 주액구 모듈(150)이 장착되며, 주액구 모듈(150)은 단자모듈(130)의 일측에 형성될 수 있다. 주액구 모듈(150)은 양극 단자모듈과 음극 단자모듈의 사이에 위치하는 것이 바람직하다.
한편, 본 발명의 일 실시예에 따른 주액구 모듈(150)은 이차전지와 별도로 제작 또는 조립된 후 이차전지에 결합 내지 장착될 수 있다. 이차전지(100)의 제3 케이스(111)에는 주액구 모듈(150)을 장착하기 위한 주액구 모듈 장착부(미도시)가 형성될 수 있다.
주액구 모듈(150)은 제3 케이스(111)에 용접되는 주액구 프레임(154), 주액구 프레임(154)에 형성된 주액구(151)를 밀봉하는 밀봉부재(152) 및 밀봉부재(152)의 상부에 위치하며 주액구 프레임(154)의 상부에 형성된 개구부(155)를 밀봉하는 마개(153)를 포함할 수 있다. 이와 같이, 주액구 모듈(150)은 밀봉부재(152)와 마개(153)를 이용한 이중 밀봉 구조를 가진다.
여기서, 주액구(151)는 아래쪽으로 갈수록 좁아지는 원추형상으로 형성되며, 밀봉부재(152)는 외면에 나사가 형성된 테이퍼 나사가 사용될 수 있다.
본 발명의 일 실시예에 따른 대용량 이차전지(100)는 보트주액법에 의해서 전해액을 주입할 수 있다. 주액구 모듈(150)을 통해 전해액을 주입한 후 진공 챔버(미도시)에 전지를 넣어서 전지 내부를 진공으로 만든 후 밀봉부재(152)로 주액구(151)를 밀봉한다. 그런 후에 마개(153)를 이용하여 한 번 더 밀봉을 해 준다. 마개(153)는 알루미늄으로 제조되는 것이 바람직하다.
이하에서는 본 발명의 일 실시예에 따른 대용량 이차전지(100)를 제조하는 방법에 대해서 설명한다.
본 발명의 일 실시예에 따른 대용량 이차전지(100)는 단자모듈(130), 주액구 모듈(150), 벤트모듈(160) 및 전지케이스(110)가 각각 따로 먼저 조립될 수 있다. 단자모듈(130)은 전극조립체(120)와 연결되도록 먼저 제작되고, 단자모듈(130)과 전극조립체(120)를 전지케이스(110) 내부에 넣는다.
전극조립체(120)를 전지케이스(110)에 넣은 후 전지케이스(110)의 끝단을 컬링하여 밀봉하게 된다. 이 때, 제1 내지 제3 케이스(111,113,115)의 서로 맞닿는 부분에는 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene) 또는 폴리페닐렌에테트(polyphenyleneether)와 같은 합성수지가 도포될 수 있다. 즉, 감김 결합부(C)의 제1 내지 제3 케이스(111,113,115)가 서로 맞닿는 부분에는 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene) 또는 폴리페닐렌에테트(polyphenyleneether)가 도포될 수 있다.
전지케이스(110)을 끝단을 컬링한 후에 고주파 히터 등을 이용하여 감김 결합부(C)를 가열하면 도포된 폴리프로필렌(PP), 폴리에틸렌(PE) 또는 폴리페닐렌에테트(PPE)가 녹으면서 감김 결합부(C)에 존재하는 틈새나 공간을 밀봉할 수 있다.
따라서, 본 발명의 일 실시예에 따른 대용량 이차전지(100)의 전지케이스(110)는 컬링 및 합성수지의 도포를 이용하여 전지케이스(110)의 기밀을 유지할 수 있다.
이상과 같이 본 발명의 일실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
본 발명은 박형전지, 이차전지, 에너지저장장치 등에 이용될 수 있다.

Claims (23)

  1. 전극 조립체의 평평한 일면을 개폐하는 제1 케이스;
    상기 제1 케이스와 대향하며, 상기 전극 조립체의 타면을 개폐하는 제2 케이스; 및
    상기 제1 케이스와 상기 제2 케이스의 사이를 밀봉하는 제3 케이스;를 포함하고,
    상기 제1 케이스 및 상기 제2 케이스의 끝단은 상기 제3 케이스의 끝단과 서로 감겨서 감김 결합부를 형성하되, 상기 감김 결합부는 상기 제3 케이스의 외면을 향해서 감긴 것을 특징으로 하는 대용량 이차전지.
  2. 제1항에 있어서,
    상기 제1 케이스 및 상기 제2 케이스 각각의 가장자리에는 상기 제3 케이스의 내면과 밀착되는 절곡부가 형성되며, 상기 절곡부는 상기 감김 결합부와 인접하는 것을 특징으로 하는 대용량 이차전지.
  3. 제2항에 있어서,
    상기 감김 결합부의 감긴 길이는 상기 제3 케이스의 감긴 길이가 상기 제1 케이스 및 상기 제2 케이스의 감긴 길이 보다 짧은 것을 특징으로 하는 대용량 이차전지.
  4. 제3항에 있어서,
    상기 제1 케이스 및 상기 제2 케이스 각각의 가장자리에는 상기 전극조립체를 지지하는 단차부가 형성되며,
    상기 단차부는 상기 절곡부와 인접하고 상기 전극조립체를 향하여 함몰 형성된 것을 특징으로 하는 대용량 이차전지.
  5. 제4항에 있어서,
    상기 제1 케이스의 단차부와 상기 제2 케이스의 단차부 사이에는 완충 공간이 형성된 것을 특징으로 하는 대용량 이차전지.
  6. 제5항에 있어서,
    상기 완충 공간에는 외력흡수부재가 형성되는 것을 특징으로 하는 대용량 이차전지.
  7. 제6항에 있어서,
    상기 외력흡수부재는 상기 전극조립체의 두께방향 측면을 따라 형성된 것을 특징으로 하는 대용량 이차전지.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 제3 케이스에는 상기 전극조립체의 전극탭과 연결된 단자모듈이 장착되며,
    상기 단자모듈에 연결되는 상기 전극조립체는 2개 세트인 것을 특징으로 하는 대용량 이차전지.
  9. 제8항에 있어서,
    상기 제3 케이스에는 상기 제1 내지 상기 제3 케이스로 둘러 싸인 공간의 압력을 해소시키는 벤트모듈이 장착되며,
    상기 벤트모듈은 상기 단자모듈에 근접하게 형성된 것을 특징으로 하는 대용량 이차전지.
  10. 제9항에 있어서,
    상기 벤트모듈은
    상기 제3 케이스에 형성된 벤트홀과 연통되며, 상기 제3 케이스에 용접되는 베이스브라켓;
    상기 벤트홀을 덮도록 상기 베이스브라켓의 내부에 제공되는 팽창막; 및
    상기 팽창막의 상부에 제공되고 상기 베이스브라켓에 의해 가장자리가 고정되는 덮개;를 포함하며,
    상기 팽창막이 부풀어 오르면 상기 덮개의 내면에 형성된 천공핀에 의해 상기 팽창막이 파손되는 것을 특징으로 하는 대용량 이차전지.
  11. 제10항에 있어서,
    상기 팽창막이 파손되면, 상기 팽창막에서 유출된 기체가 상기 덮개의 외부로 유출되도록 상기 덮개에는 복수개의 토출공이 형성된 것을 특징으로 하는 대용량 이차전지.
  12. 제9항에 있어서,
    상기 제3 케이스에는 상기 전극조립체가 함침되는 전해액을 주입하기 위한 주액구 모듈이 장착되며,
    상기 주액구 모듈은 상기 단자모듈의 일측에 형성되는 것을 특징으로 하는 대용량 이차전지.
  13. 제12항에 있어서,
    상기 주액구 모듈은 이중 밀봉 구조를 가지는 것을 특징으로 하는 대용량 이차전지.
  14. 제13항에 있어서,
    상기 주액구 모듈은,
    상기 제3 케이스에 용접되는 주액구 프레임;
    상기 주액구 프레임에 형성된 주액구를 밀봉하는 밀봉부재; 및
    상기 밀봉부재의 상부에 위치하며, 상기 주액구 프레임의 상부에 형성된 개구부를 밀봉하는 마개;를 포함하는 것을 특징으로 하는 대용량 이차전지.
  15. 제14항에 있어서,
    상기 주액구는 아래쪽으로 갈수록 좁아지는 원추형상으로 형성되며,
    상기 밀봉부재는 외면에 나사가 형성된 테이퍼 나사인 것을 특징으로 하는 대용량 이차전지.
  16. 제8항에 있어서,
    상기 감김 결합부의 상기 제1 내지 상기 제3 케이스가 서로 맞닿는 부분에는 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene) 또는 폴리페닐렌에테트(polyphenyleneether)가 도포된 것을 특징으로 하는 대용량 이차전지.
  17. 전극조립체의 전극탭과 연결되는 전극연결부재;
    상기 전극연결부재와 접촉하도록 제공되는 터미널; 및
    전지 케이스에 장착되며, 상기 전지 케이스에 상기 터미널을 고정하는 터미널 하우징;을 포함하는 단자모듈을 구비하며,
    상기 전극연결부재에는 다수개의 전극조립체가 연결되는 것을 특징으로 하는 대용량 이차전지.
  18. 제17항에 있어서,
    상기 전극연결부재는,
    상기 전극조립체의 전극판과 나란하게 형성되며, 상기 전극조립체의 전극탭이 연결되는 제1 연결부;
    상기 제1 연결부와 마주 보도록 나란하게 형성되며, 다른 전극조립체의 전극탭이 연결되는 제2 연결부; 및
    상기 제1 연결부의 상단과 상기 제2 연결부의 상단을 연결하며, 상기 터미널과 접촉하도록 제공되는 터미널 연결부;를 포함하는 것을 특징으로 하는 대용량 이차전지.
  19. 제18항에 있어서,
    상기 터미널 연결부에는 상기 터미널과의 연결을 위한 체결공이 형성되고, 상기 체결공에는 상기 터미널과 상기 터미널 연결부를 결합하는 체결수단이 장착되는 것을 특징으로 하는 대용량 이차전지.
  20. 제18항에 있어서,
    상기 터미널은 상기 전극연결부재와 결합되며, 상기 전지케이스와 상기 터미널 하우징을 통과하는 하단부;
    상기 하단부의 상부에 형성되며, 상기 터미널 하우징의 내부에 위치하는 중단부; 및
    상기 중단부의 상부에 형성되며 상기 터미널 하우징 외부로 돌출되는 상단부;를 포함하며,
    상기 중단부는 상기 상단부 및 상기 하단부 보다 횡방향으로 돌출된 것을 특징으로 하는 대용량 이차전지.
  21. 제20항에 있어서,
    상기 터미널 하우징은 상기 전지케이스에 용접되는 플랜지부;
    상기 중단부를 둘러싸도록 형성된 수용부; 및
    상기 상단부가 노출되도록 상기 수용부에 형성된 단자구멍을 밀봉하는 실링부;를 포함하며,
    상기 중단부와 상기 수용부 사이에는 절연재가 제공되는 것을 특징으로 하는 대용량 이차전지.
  22. 제21항에 있어서,
    상기 단자모듈은 상기 상단부에 형성되고, 이웃하는 이차전지의 동일 극의 터미널을 서로 연결하여 전지 팩을 형성하는 연결단자를 포함하는 것을 특징으로 하는 대용량 이차전지.
  23. 제17항에 있어서,
    상기 전지케이스는,
    상기 전극 조립체의 일면을 개폐하는 제1 케이스;
    상기 제1 케이스와 대향하며, 상기 전극 조립체의 타면을 개폐하는 제2 케이스; 및
    상기 제1 케이스와 상기 제2 케이스의 사이를 밀봉하는 제3 케이스;를 포함하고,
    상기 단자모듈은 상기 제3 케이스에 형성되는 것을 특징으로 하는 대용량 이차전지.
PCT/KR2012/001697 2011-08-30 2012-03-08 대용량 이차전지 WO2013032082A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110086801A KR101134122B1 (ko) 2011-08-30 2011-08-30 대용량 이차전지
KR10-2011-0086801 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013032082A1 true WO2013032082A1 (ko) 2013-03-07

Family

ID=46143361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001697 WO2013032082A1 (ko) 2011-08-30 2012-03-08 대용량 이차전지

Country Status (2)

Country Link
KR (1) KR101134122B1 (ko)
WO (1) WO2013032082A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099457A1 (en) * 2021-06-03 2022-12-07 Gree Altairnano New Energy Inc. Cover plate assembly for battery and battery device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062896B2 (en) 2012-11-08 2018-08-28 Lg Chem, Ltd. Method of manufacturing secondary battery
US9819048B2 (en) 2012-11-08 2017-11-14 Lg Chem, Ltd. Method of manufacturing secondary battery
WO2014073899A1 (ko) * 2012-11-08 2014-05-15 주식회사 엘지화학 이차전지 제조 방법
KR101955122B1 (ko) 2016-12-09 2019-03-06 한양대학교 산학협력단 미세구조를 갖는 전극, 이의 제조방법 및 이를 포함하는 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021374A (ja) * 1997-11-05 2000-01-21 Philips Consumer Commun France バッテリユニット及びこのバッテリユニットを含む携帯型バッテリ式装置
KR20060085774A (ko) * 2005-01-25 2006-07-28 삼성에스디아이 주식회사 이차 전지 모듈
KR20080012872A (ko) * 2005-05-17 2008-02-12 토요세이깐 가부시키가이샤 3조각 사각형 캔 및 그 제조방법
KR100909164B1 (ko) * 2006-08-31 2009-07-23 닛산 지도우샤 가부시키가이샤 전지 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021374A (ja) * 1997-11-05 2000-01-21 Philips Consumer Commun France バッテリユニット及びこのバッテリユニットを含む携帯型バッテリ式装置
KR20060085774A (ko) * 2005-01-25 2006-07-28 삼성에스디아이 주식회사 이차 전지 모듈
KR20080012872A (ko) * 2005-05-17 2008-02-12 토요세이깐 가부시키가이샤 3조각 사각형 캔 및 그 제조방법
KR100909164B1 (ko) * 2006-08-31 2009-07-23 닛산 지도우샤 가부시키가이샤 전지 모듈

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099457A1 (en) * 2021-06-03 2022-12-07 Gree Altairnano New Energy Inc. Cover plate assembly for battery and battery device

Also Published As

Publication number Publication date
KR101134122B1 (ko) 2012-04-09

Similar Documents

Publication Publication Date Title
WO2014133275A1 (ko) 이차 전지 및 그 제조 방법
WO2018074842A1 (ko) 이차 전지 및 그 모듈
WO2018147603A1 (ko) 이차 전지
WO2017073905A1 (ko) 테이핑을 이용하는 벤팅 구조의 전지셀
WO2021033943A1 (ko) 이차 전지
WO2013032082A1 (ko) 대용량 이차전지
WO2018199439A1 (ko) 이차 전지
WO2019045256A1 (ko) 벤팅 유도 장치를 포함하는 파우치형 이차전지
WO2019146892A1 (en) Battery module comprising a housing with integrated bus bar
WO2021054603A1 (ko) 이차전지 제조방법 및 이차전지
WO2014003361A1 (en) Easily assembled all-in-one secondary battery module
WO2016056776A1 (ko) 계단 구조의 전극조립체에 대응하는 형상으로 형성되어 있는 전지케이스를 포함하는 전지셀
WO2018021698A1 (ko) 이차 전지
WO2021033939A1 (ko) 이차 전지
WO2016018113A1 (ko) 배터리 셀의 치수 고정을 위한 배터리모듈
WO2019050181A1 (ko) 이차 전지
WO2014003357A1 (en) Secondary battery module for easily gathering and discharging gas
WO2020197040A1 (ko) 버스 바 모듈과 그 제조 방법
WO2022215881A1 (ko) 이차전지 및 이의 제조 방법
WO2020027430A1 (ko) 복수의 벤트를 갖는 이차전지
WO2022108244A1 (ko) 이차 전지
WO2013187687A1 (en) Easily assembled secondary battery module
WO2018056557A1 (ko) 이차 전지, 전극 조립체 및 전극 조립체 제조 방법
WO2021153922A1 (ko) 이차전지 및 이차전지의 제조 방법
WO2018074846A1 (ko) 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827970

Country of ref document: EP

Kind code of ref document: A1