WO2022005234A1 - 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 - Google Patents

전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 Download PDF

Info

Publication number
WO2022005234A1
WO2022005234A1 PCT/KR2021/008382 KR2021008382W WO2022005234A1 WO 2022005234 A1 WO2022005234 A1 WO 2022005234A1 KR 2021008382 W KR2021008382 W KR 2021008382W WO 2022005234 A1 WO2022005234 A1 WO 2022005234A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode lead
battery
battery module
assembly
battery cell
Prior art date
Application number
PCT/KR2021/008382
Other languages
English (en)
French (fr)
Inventor
박수빈
성준엽
박원경
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2022541863A priority Critical patent/JP2023509736A/ja
Priority to US17/795,315 priority patent/US20240014526A1/en
Priority to EP21834607.0A priority patent/EP4089792A4/en
Priority to CN202180015167.3A priority patent/CN115136382A/zh
Publication of WO2022005234A1 publication Critical patent/WO2022005234A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/591Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module, a battery pack including the same, and a manufacturing method thereof, and more particularly, to a battery module with improved productivity, a battery pack including the same, and a manufacturing method thereof.
  • a rechargeable battery capable of charging and discharging is a measure to solve air pollution such as conventional gasoline vehicles using fossil fuels, and electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles ( P-HEV) is being used as a power source, and the need for the development of secondary batteries is increasing.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • P-HEV plug-in hybrid electric vehicles
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, so charging and discharging are possible freely. , the self-discharge rate is very low and the energy density is high.
  • Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively.
  • the lithium secondary battery includes an electrode assembly in which a positive electrode plate and a negative electrode plate to which the positive electrode active material and the negative electrode active material are respectively applied with a separator interposed therebetween, and a battery case for sealingly accommodating the electrode assembly together with an electrolyte.
  • a lithium secondary battery may be classified into a can-type secondary battery in which an electrode assembly is embedded in a metal can and a pouch-type secondary battery in which an electrode assembly is embedded in a pouch of an aluminum laminate sheet according to the shape of the exterior material.
  • a battery module in which a plurality of battery cells are electrically connected this is used In such a battery module, a plurality of battery cells are connected in series or parallel to each other to form a battery cell stack, thereby improving capacity and output.
  • one or more battery modules may be mounted together with various control and protection systems such as a Battery Disconnect Unit (BDU), a Battery Management System (BMS), and a cooling system to form a battery pack.
  • BDU Battery Disconnect Unit
  • BMS Battery Management System
  • a cooling system to form a battery pack.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • a battery cell stack 20 is accommodated in a module frame 30 and an end plate 40 .
  • the battery cell stack 20 is formed by stacking a plurality of battery cells in one direction, and thus the electrode leads 21 may protrude in a direction perpendicular to the one direction in which the battery cells are stacked.
  • the module frame 30 may be made of a material having a predetermined strength to protect the battery cell stack 20 from external impact, etc., and is structurally formed by combining the upper frame 31 and the lower frame 32 . can be
  • the end plate 40 may be positioned in the protruding direction of the electrode lead 21 with respect to the battery cell stack 20 , and a bus bar frame 50 between the battery cell stack 20 and the end plate 40 . ) can be located.
  • FIG. 2 is an enlarged perspective view of the bus bar frame 50 and the end plate 40 included in the battery module of FIG. 1
  • FIG. 3 is an enlarged view of part “A” of FIG. At this time, for convenience of explanation, FIG. 3 shows a state in which the electrode lead 21 of the battery cell is included.
  • the bus bar 51 may be mounted on the bus bar frame 50 .
  • the bus bar 51 is for electrical connection between a plurality of battery cells, and the electrode lead 21 of the battery cell passes through a slit formed in the bus bar frame 50 and is bent to be connected to the bus bar 51 .
  • the method is not limited, and may be connected by welding, for example.
  • the battery cell stack to which the battery cells are electrically connected through the bus bar 51 may be connected to another battery module or a BDU (Battery Disconnect Unit) through a terminal bus bar exposed to the outside.
  • BDU Battery Disconnect Unit
  • the conventional battery module 10 electrically connects the battery cells through a bus bar 51 and electrically connects the battery module 10 with other battery modules through a terminal bus bar, etc., so that HV (High Voltage) ) connection can be implemented.
  • the HV connection is a connection that serves as a power source for supplying power, and refers to a connection between battery cells or a connection between battery modules.
  • the conventional battery module 10 may include a low voltage (LV) sensing assembly 60 to transmit voltage information of a battery cell to the BMS.
  • the LV sensing assembly 60 may be connected to the bus bar 51 to measure the voltage of each battery cell, and the measured value may be transmitted to an external BMS through a connector. That is, the conventional battery module 10 may implement a low voltage (LV) connection by transmitting voltage information through the bus bar 51 and the LV sensing assembly 60 .
  • the LV connection means a sensing connection for sensing and controlling the voltage of the battery cell.
  • the conventional battery module 10 bonds the electrode leads 21 of each stacked battery cell to the bus bar 51 to implement HV connection, and the LV sensing assembly 60 to implement LV connection. may be connected to the bus bar 51 to which the electrode lead 21 is bonded.
  • the bus bar frame 50 may be formed to mount the bus bar 51 .
  • An object of the present invention is to provide a battery module with improved productivity by improving the conventional HV connection structure and the LV connection structure, a battery pack including the same, and a manufacturing method thereof.
  • a battery module includes: a battery cell stack in which a plurality of battery cells including electrode leads are stacked; and a sensing assembly for transmitting voltage information of the battery cell.
  • the sensing assembly includes a connector, a connecting member connecting the connector and the electrode lead, and a bonding member positioned at one end of the connecting member and joined to the electrode lead. At least two of the electrode leads are bent and joined to form an electrode lead assembly, and the bonding member is joined to the electrode lead assembly.
  • One surface of the electrode lead assembly may be perpendicular to a direction in which the electrode lead protrudes from the battery cell.
  • the electrode lead may include a positive electrode lead and a negative electrode lead, and with respect to one battery cell, the positive electrode lead and the negative electrode lead may protrude in opposite directions.
  • the battery module may include an insulating cover covering the front and rear surfaces of the battery cell stack from which the electrode leads protrude, and the sensing assembly may be mounted on an inner surface of the insulating cover and connected to the electrode leads. have.
  • the inner surface of the insulation cover may face the electrode lead, and a recessed mounting portion may be formed on the inner surface of the insulation cover to mount the sensing assembly.
  • the insulating cover may include an opening, and the opening may be formed at a position corresponding to a portion where the bonding member is bonded to the electrode lead.
  • the insulating cover may include a cover part covering the opening, and the cover part may form an opening/closing structure with respect to the opening.
  • a battery pack includes: the battery module; a pack frame accommodating the battery module; and a thermally conductive resin layer positioned between the battery module and the bottom of the pack frame.
  • a method of manufacturing a battery module includes: stacking a plurality of battery cells to form a battery cell stack; forming an electrode lead assembly by bonding electrode leads protruding from at least two adjacent battery cells among the battery cells; and an LV connection step of connecting the sensing assembly to the electrode lead assembly.
  • the sensing assembly includes a connector, a connection member for connecting the connector and the electrode lead assembly, and a bonding member positioned at one end of the connection member, wherein the LV connection step includes bonding the bonding member to the electrode lead assembly including the steps of
  • the LV connection step may include mounting the sensing assembly on the inner surface of the insulating cover and positioning the insulating cover on which the sensing assembly is mounted on the front and rear surfaces of the battery cell stack.
  • the insulating cover may include an opening, and the LV connection may further include bonding the bonding member and the electrode lead assembly through the opening.
  • the insulating cover may include a cover part that forms an opening/closing structure with respect to the opening.
  • the forming of the battery cell stack may include attaching the adjacent battery cells to each other by applying an adhesive between the adjacent battery cells, and bending and bonding the electrode leads of each of the adjacent battery cells to each other.
  • a step of wrapping the upper surface, the lower surface and both sides of the battery cell stack with a holding band may be performed.
  • the junction between the electrode leads and the junction between the electrode leads and the sensing assembly are integrally formed instead of the conventional bus bar, so productivity can be improved.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • FIG. 2 is an enlarged perspective view of a bus bar frame and an end plate included in the battery module of FIG. 1 .
  • FIG. 3 is a partial view showing an enlarged portion "A" of FIG.
  • FIG. 4 is a perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of the battery module of FIG. 4 .
  • FIG. 6 is a perspective view of a battery cell included in the battery module of FIG. 4 .
  • FIG. 7 is a perspective view illustrating a state in which an insulating cover is removed from the battery module of FIG. 4 .
  • FIG. 8 is a partial view showing an enlarged portion "B" of FIG.
  • 9 to 11 are views illustrating the insulating cover included in the battery module of FIG. 4 from various angles.
  • FIG. 12 is an exploded perspective view of a battery pack according to an embodiment of the present invention.
  • FIGS. 13A to 13C are views for explaining a method of manufacturing a battery cell stack according to an embodiment of the present invention.
  • 14A and 14B are views for explaining a method of manufacturing a battery module according to an embodiment of the present invention.
  • a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where there is another part in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
  • the reference part means to be located above or below the reference part, and to necessarily mean to be located “on” or “on” in the direction opposite to gravity no.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 4 is a perspective view of a battery module according to an embodiment of the present invention.
  • 5 is an exploded perspective view of the battery module of FIG. 4 .
  • 6 is a perspective view of a battery cell included in the battery module of FIG. 4 .
  • the battery module 100 includes a battery cell stack 200 in which a plurality of battery cells 110 are stacked.
  • the battery cell 110 is preferably a pouch-type battery cell, and may be formed in a rectangular sheet-like structure.
  • two electrode leads 111 and 112 face each other with respect to the cell body 113 from one end 114a and the other end 114b, respectively. It has a protruding structure.
  • the electrode leads 111 and 112 are connected to an electrode assembly (not shown), and protrude from the electrode assembly (not shown) to the outside of the battery cell 110 .
  • One of the two electrode leads 111 and 112 may be the positive lead 111 , and the other may be the negative lead 112 . That is, the positive lead 111 and the negative lead 112 may protrude in opposite directions with respect to one battery cell 110 .
  • both ends 114a and 114b of the cell case 114 and one side 114c connecting them are adhered in a state in which an electrode assembly (not shown) is accommodated in the cell case 114 .
  • the battery cell 110 according to the present embodiment has a total of three sealing portions, the sealing portion has a structure in which the sealing portion is sealed by a method such as thermal fusion, and the other side portion may be formed of the connecting portion 115 .
  • the cell case 114 may be formed of a laminate sheet including a resin layer and a metal layer.
  • the battery cells 110 may be configured in plurality, and the plurality of battery cells 110 are stacked to be electrically connected to each other to form the battery cell stack 200 .
  • a plurality of battery cells 110 may be stacked along the x-axis direction. Accordingly, the electrode leads 111 and 112 may protrude in the y-axis direction and the -y-axis direction, respectively.
  • the battery module 100 according to this embodiment forms a module-less structure in which the module frame and the end plate are removed, unlike the conventional battery module 10 in FIGS. 1 to 3 . can do.
  • the battery module 100 according to the present embodiment may include a side plate 600 and a holding band 700 .
  • a complicated process requiring precise control such as a process of accommodating the battery cell stack 200 in the module frame or a process of assembling the module frame and the end plate, is unnecessary.
  • it has the advantage that the weight of the battery module 100 can be greatly reduced by the removed module frame and end plate.
  • the battery module 100 according to this embodiment has an advantage in that reworkability is advantageous during the battery pack assembly process according to the removal of the module frame, but the conventional battery module 10 is defective due to the welding structure of the module frame. Even if this occurs, it can be compared to that rework is impossible.
  • the side plate 600 is a plate-shaped member and is located on both sides of the battery cell stack 200 to supplement the rigidity of the battery module 100 .
  • the side plate 600 has elastic properties and may include a plastic material manufactured by injection molding, and in some cases, a leaf spring material may be applied.
  • the holding band 700 is a member surrounding the battery cell stack at both ends of the battery cell stack 200 , and includes a plurality of battery cells 110 and a side plate 600 constituting the battery cell stack 200 . may be responsible for fixing the In this way, after fixing the battery cell stack 200 and the side plate 600 through the holding band 700, the front and rear surfaces of the battery cell stack 200 corresponding to the direction in which the electrode lead 111 protrudes.
  • the sensing assembly 300 and the insulating cover 400 may be positioned there.
  • the holding band 700 may be made of a material having a predetermined elastic force, and specifically, a structure of a leaf spring may be applied.
  • FIG. 7 is a perspective view illustrating a state in which an insulating cover is removed from the battery module of FIG. 4 .
  • 8 is a partial view showing an enlarged portion "B" of FIG.
  • the battery module 100 includes a sensing assembly 300 for transmitting voltage information of the battery cells 110 .
  • the sensing assembly 300 is positioned at one end of the connector 310 , the connector 310 and the connecting member 320 connecting the connector 310 and the electrode lead 111 , and the connecting member 320 to be bonded to the electrode lead 111 . and a bonding member 330 .
  • the sensing assembly 300 and the connector 310 included therein according to the present embodiment may be an LV sensing assembly and an LV connector for low voltage (LV) connection, respectively.
  • the connector 310 may be configured to transmit and receive signals to and from an external control device to control the plurality of battery cells 110 .
  • the connection member 320 may be a flexible printed circuit board (FPCB) or a flexible flat cable (FFC).
  • FPCB flexible printed circuit board
  • FFC flexible flat cable
  • the voltage and temperature of the plurality of battery cells 110 may be sensed, and electrical information may be transmitted to a Battery Management System (BMS) through the connector 310 . That is, the sensing assembly 300 including the connector 310 and the connection member 320 can detect and control phenomena such as overvoltage, overcurrent, and overheating of each battery cell 110 .
  • the bonding member 330 is located at one end of the connection member 320 and may be made of a metal material having electrical conductivity.
  • connection member 320 and the electrode lead 111 may be electrically and physically connected. Specifically, one side of the bonding member 330 passes through the connection member 320 and then is bent to be combined with the connection member 320, and the other side of the bonding member 330 is formed in a plate shape to form an electrode lead 111 and bonding, in particular welding bonding.
  • the battery cells 110 may be stacked along the x-axis direction to form the battery cell stack 200 , and accordingly, the electrode leads 111 and 112 are respectively disposed in the y-axis direction and the -y direction. It may protrude in the axial direction.
  • at least two electrode leads 111 may be bent and joined to form an electrode lead assembly 111A.
  • the electrode leads 111 protruding in the same direction with respect to the adjacent battery cells 110 are bent in a direction perpendicular to the protrusion direction of the electrode leads 111, and are bonded to each other to form the electrode lead assembly 111A.
  • one surface of the electrode lead assembly 111A may be perpendicular to a direction in which the electrode lead 111 protrudes from the battery cell 110 .
  • the electrode lead 111 of the battery cell 110 positioned outside the battery cell stack 200 may be connected to the terminal bus bar 500 .
  • the electrode leads 111 according to this embodiment are directly bonded to each other, and some of them are connected to the terminal bus bar 500 , so that the HV connection is achieved. can be formed Accordingly, in the HV connection structure according to the present embodiment, the bus bar and the bus bar frame to which the bus bar is mounted can be removed.
  • the bonding member 330 of the sensing assembly 300 may be bonded to the electrode lead assembly 111A, so that the sensing assembly 300 and the electrode lead 111 may be connected to each other.
  • the bonding member 330 of the sensing assembly 300 may be directly bonded to the one surface of the electrode lead assembly 111A. That is, unlike the conventional battery module in which the sensing assembly is mounted on the bus bar frame, the sensing assembly 300 according to the present embodiment is directly connected to the electrode lead assembly 111A formed by the electrode lead 111 to connect the LV. can form.
  • the battery module 100 has an electrode lead assembly 111A and a sensing assembly 300 directly connected thereto. ), the HV connection and the LV connection can be simultaneously made, and as described above, the configuration of the bus bar and the bus bar frame is unnecessary. Since the HV connection and the LV connection can be carried out at once without being made respectively, an improvement in productivity can be expected, and the configuration such as a bus bar frame can be removed, so that the battery module 100 of a more compact configuration can be manufactured. have
  • the bonding method is not particularly limited, For example, a weld joint may be made.
  • the structure of the electrode lead assembly and the sensing assembly 300 may be similarly formed for the electrode lead 112 protruding in the -y-axis direction. .
  • FIGS. 9 to 11 are views illustrating the insulating cover included in the battery module of FIG. 4 from various angles.
  • FIG. 9 is an enlarged view of the insulating cover 400 positioned along the -y-axis direction with respect to the battery cell stack 200 in FIG. 4
  • FIGS. 10A and 10B are the battery cell stack body in FIG. 4 .
  • It is an enlarged view of the insulating cover 400 positioned along the y-axis direction with reference to 200
  • FIG. 11 is a plan view of the insulating cover of FIGS. 10A and 10B viewed in the -y-axis direction on the xz plane.
  • the battery module 100 has an insulating cover 400 covering the front and rear surfaces of the battery cell stack 200 from which the electrode leads 111 and 112 protrude. may further include.
  • the front and rear surfaces of the battery cell stack 200 mean surfaces corresponding to the y-axis direction and the -y-axis direction, respectively, with respect to the battery cell stack 200 .
  • the insulating cover 400 may include a material having electrical insulation, for example, a plastic material, a polymer material, or a composite material. In addition, it may be formed in a kind of basket shape to cover the front and rear surfaces of the battery cell stack 200 . In FIGS.
  • the insulating cover 400 is removed for convenience of explanation of the sensing assembly 300 , but according to the present embodiment, the sensing assembly 300 is disposed inside the insulating cover 400 . While being mounted on the side, it may be connected to the electrode lead 111 .
  • the inner surface of the insulating cover 400 may mean a surface of the insulating cover 400 that faces the electrode lead 111 , that is, the electrode lead assembly 111A.
  • a recessed mounting part 410 may be formed on the inner surface of the insulating cover 400 so that the sensing assembly 300 can be mounted.
  • the mounting part 410 may be configured to correspond to the sensing assembly 300 . It may be a structure recessed into a shape.
  • the sensing assembly 300 may be fixed to the inner surface of the insulating cover 400, in detail, may be fixed by a method such as bolts, heat sealing, bonding or welding.
  • the end plate and the bus bar frame may be removed, and the insulating cover 400 on which the sensing assembly 300 is mounted may be provided instead. While the insulating cover 400 covers the front and rear surfaces of the battery cell stack 200 , the sensing assembly 300 mounted on the inner surface of the insulating cover 400 is connected to the electrode lead assembly 111A through the bonding member 330 . ) and the LV connection structure described above may be formed.
  • the insulating cover 400 may include an opening 420 , and the opening 420 may be formed by the bonding member 330 of the sensing assembly 300 to the electrode lead ( 111) and may be formed at a position corresponding to the portion joined. Accordingly, as shown in FIG. 11 , the bonding member 330 positioned on the electrode lead assembly may be observed through the opening 420 . In this case, illustration of the cover part 430 to be described later is omitted in FIG. 11 for convenience of description.
  • the bonding member 330 and the electrode After positioning the insulating cover 400 in a state in which the sensing assembly 300 is mounted on the mounting part 410 on the front and rear surfaces of the battery cell stack 200 , the bonding member 330 and the electrode through the opening 420 . Bonding between the lead assemblies 111A may be made. For example, by inserting a welding device through the opening 420, welding bonding between the bonding member 330 and the electrode lead assembly 111A may be performed.
  • the insulating cover 400 may include a cover part 430 forming an opening/closing structure with respect to the opening 420 .
  • a cover part 430 may be connected to the insulating cover 400 , and the remaining edges may be separated from the insulating cover 400 to form an opening/closing structure for the opening 420 . Therefore, when bonding between the bonding member 330 and the electrode lead assembly 111A, the lid part 430 is opened to form an open state, and in other circumstances, the lid part 430 can be closed to maintain a closed state.
  • the insulating cover 400 may guide the external connection between the connector 310 and the terminal bus bar 500 instead of the configuration of the end plate.
  • a connector opening 440 for guiding the external connection of the connector 310 that is, the LV connection
  • the external connection of the terminal bus bar 500 ie, the HV connection
  • a terminal bus bar opening 450 may be formed for this purpose.
  • the insulating cover 400 may block contact with an external conductive object during LV connection and HV connection and secure insulation.
  • bolts and nuts may be fastened through the through holes formed in the terminal bus bar 500 , and the insulating cover 400 and the terminal bus bar opening 450 formed therein are fastened with the bolts and nuts. It can serve as a kind of guide to get this done right.
  • FIG. 12 is an exploded perspective view of a battery pack according to an embodiment of the present invention.
  • the battery pack 1000 includes a battery module 100 , a pack frame 1100 accommodating the battery module 100 , and the battery module 100 and the pack frame ( A thermally conductive resin layer 1200 positioned between the bottom portions 1111 of the 1100 may be included.
  • the battery module 100 may include an insulating cover, and instead may form a module-less structure in which the module frame and the end plate are removed. A plurality of such battery modules 100 may be gathered and accommodated in the pack frame 1100 to form the battery pack 1000 .
  • the pack frame 1100 may include a lower frame 1110 and an upper frame 1120 covering the lower frame 1110 , and a plurality of battery modules 100 on the bottom 1111 of the lower frame 1110 . This can be located
  • the thermally conductive resin layer 1200 may be formed by applying a thermally conductive resin to the bottom 1111 of the lower frame 1110 .
  • the thermally conductive resin may include a thermally conductive adhesive material, and specifically, may include at least one of a silicone material, a urethane material, and an acrylic material.
  • the thermally conductive resin may serve to fix the battery module 100 by being in a liquid phase during application, but may be cured after application. In addition, it is possible to prevent overheating of the battery pack 1000 by quickly transferring heat generated from the battery module 100 to the bottom 1111 due to its excellent thermal conductivity.
  • the battery module 100 has a module-less structure in which the module frame is removed, so that a part of the battery cell 110 may be exposed to the outside.
  • the battery pack 1000 according to the present embodiment has a thermally conductive resin layer capable of fixing the battery module 100, in particular, each battery cell 110 constituting the battery module 100 to the bottom part 1111 . By forming 1200, it was attempted to improve structural safety.
  • 13A to 13C are views for explaining a method of manufacturing a battery cell stack according to an embodiment of the present invention.
  • 14A and 14B are views for explaining a method of manufacturing a battery module according to an embodiment of the present invention.
  • the method of manufacturing a battery module includes the steps of stacking a plurality of battery cells 110 to form a battery cell stack 200 and and bonding the electrode leads 111 and 112 protruding from at least two adjacent battery cells 110 among the battery cells 110 to form an electrode lead assembly 111A.
  • the step of forming the battery cell stack 200 and the step of forming the electrode lead assembly 111A may be performed at the same time. Specifically, in forming the battery cell stack 200 by stacking the pouch-type battery cells 110 in which the two electrode leads 111 and 112 protrude to face each other in one direction, one battery cell 110 ) by bonding the electrode leads 111 and 112 of the battery cell 110 with the electrode leads 111 and 112 of another battery cell 110 to form an electrode lead assembly 111A, and bending the electrode leads 111 and 112. It can be done repeatedly.
  • the adhesive 800 may be applied between the adjacent battery cells in order to improve the fixing force between the adjacent battery cells (110).
  • the step of forming the battery cell stack 200 includes the steps of applying an adhesive 800 between the adjacent battery cells 110 to attach the adjacent battery cells 110 to each other, and the It may include bending the electrode leads 111 and 112 of each of the adjacent battery cells 110 and bonding them to each other.
  • the manufacturing method of the battery module 100 is a (Low Voltage) sensing assembly 300 to the electrode lead assembly 111A. ), including an LV connection step that connects them.
  • the sensing assembly 300 includes a connector 310 , a connection member 320 connecting the connector 310 and the electrode lead assembly 111A, and a bonding member 330 positioned at one end of the connection member 320 . . A detailed description of the configuration will be omitted since it overlaps with the previous description.
  • the LV connection step includes bonding the bonding member 330 to the electrode lead assembly 111A.
  • the sensing assembly 300 is mounted on the inner surface of the insulating cover 400 and the sensing assembly 300 is mounted on the front and rear surfaces of the battery cell stack 200 and the insulating cover ( 400) may be included.
  • a mounting part 410 is formed on the inner surface of the insulation cover 400 to mount the sensing assembly 300, and the insulation cover 400 may be positioned such that the inner surface faces the electrode lead assembly 111A.
  • the insulating cover 400 is formed in a kind of basket shape and may be coupled to the battery cell stack 200 so as to cover the front and rear surfaces of the battery cell stack 200 .
  • the insulating cover 400 may include an opening 420 , and the LV connection may further include bonding the bonding member 330 and the electrode lead assembly 111A through the opening 420 . have.
  • the opening 420 is preferably formed at a position corresponding to the portion where the bonding member 330 is bonded to the electrode lead 111 .
  • the insulating cover 400 may further include a cover part 430 forming an opening/closing structure with respect to the opening 420 . After the bonding member 330 and the electrode lead assembly 111A are bonded, the cover part 430 may be closed to maintain a closed state.
  • a step of disposing plate-shaped side plates 600 on both sides of the battery cell stack 200 to supplement the rigidity of the battery module 100 may be performed.
  • a step of wrapping the upper surface, the lower surface and both sides of the battery cell stack 200 with the holding band 700 may be performed before the LV connection step.
  • the holding band 700 may wrap not only the battery cell stack 200 but also the side plates 600 disposed on both sides thereof.
  • One or more battery modules according to the present embodiment described above may be mounted together with various control and protection systems such as a battery management system (BMS) and a cooling system to form a battery pack.
  • BMS battery management system
  • a cooling system to form a battery pack.
  • the battery module or battery pack may be applied to various devices. Specifically, it may be applied to transportation means such as electric bicycles, electric vehicles, hybrids, etc., but is not limited thereto, and may be applied to various devices capable of using a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 전극 리드를 포함하는 복수의 전지셀이 적층된 전지셀 적층체; 및 상기 전지셀의 전압 정보 전달을 위한 센싱 조립체를 포함한다. 상기 센싱 조립체는, 커넥터, 상기 커넥터와 상기 전극 리드를 연결하는 연결부재 및 상기 연결부재의 일단에 위치하여 상기 전극 리드에 접합되는 접합부재를 포함한다. 적어도 2개의 상기 전극 리드끼리 구부러지고 접합되어 전극 리드 접합체를 형성하고, 상기 전극 리드 접합체에 상기 접합부재가 접합된다.

Description

전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2020년 7월 2일자 한국 특허 출원 제10-2020-0081307호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로는 생산성이 향상된 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법에 관한 것이다.
현대 사회에서는 휴대폰, 노트북, 캠코더, 디지털 카메라 등의 휴대형 기기의 사용이 일상화되면서, 상기와 같은 모바일 기기와 관련된 분야의 기술에 대한 개발이 활발해지고 있다. 또한, 충방전이 가능한 이차 전지는 화석 연료를 사용하는 기존의 가솔린 차량 등의 대기 오염 등을 해결하기 위한 방안으로, 전기 자동차(EV), 하이브리드 전기자동차(HEV), 플러그-인 하이브리드 전기자동차(P-HEV) 등의 동력원으로 이용되고 있는바, 이차 전지에 대한 개발의 필요성이 높아지고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충, 방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
이러한 리튬 이차 전지는 주로 리튬계 산화물과 탄소재를 각각 양극 활물질과 음극 활물질로 사용한다. 리튬 이차 전지는, 이러한 양극 활물질과 음극 활물질이 각각 도포된 양극판과 음극판이 세퍼레이터를 사이에 두고 배치된 전극 조립체 및 전극 조립체를 전해액과 함께 밀봉 수납하는 전지 케이스를 구비한다.
일반적으로 리튬 이차 전지는 외장재의 형상에 따라, 전극 조립체가 금속 캔에 내장되어 있는 캔형 이차 전지와 전극 조립체가 알루미늄 라미네이트 시트의 파우치에 내장되어 있는 파우치형 이차 전지로 분류될 수 있다.
소형 기기들에 이용되는 이차 전지의 경우, 2-3개의 전지셀들이 배치되나, 자동차 등과 같은 중대형 디바이스에 이용되는 이차 전지의 경우는, 다수의 전지셀을 전기적으로 연결한 전지 모듈(Battery module)이 이용된다. 이러한 전지 모듈은 다수의 전지셀이 서로 직렬 또는 병렬로 연결되어 전지셀 적층체를 형성함으로써 용량 및 출력이 향상된다. 또한, 하나 이상의 전지 모듈은 BDU(Battery Disconnect Unit), BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
도 1은 종래의 전지 모듈에 대한 분해 사시도이다.
도 1을 참고하면, 종래의 전지 모듈(10)은 전지셀 적층체(20)가 모듈 프레임(30)과 엔드 플레이트(40)에 수납되어 형성된다.
전지셀 적층체(20)는 복수의 전지셀들이 일 방향을 따라 적층되어 형성되며, 이에 따라 전극 리드(21)가 상기 전지셀이 적층되는 일 방향과 수직한 방향으로 돌출될 수 있다.
모듈 프레임(30)은 전지셀 적층체(20)를 외부 충격 등으로부터 보호하기 위해 소정의 강도를 갖는 소재로 이루어질 수 있고, 구조적으로는 상부 프레임(31)과 하부 프레임(32)이 결합되어 형성될 수 있다.
전지셀 적층체(20)를 기준으로 전극 리드(21)의 돌출 방향에 엔드 플레이트(40)가 위치할 수 있고, 전지셀 적층체(20)와 엔드 플레이트(40) 사이에 버스바 프레임(50)이 위치할 수 있다.
도 2는 도 1의 전지 모듈에 포함된 버스바 프레임(50)과 엔드 플레이트(40)를 확대하여 나타낸 사시도이고, 도 3은 도 2의 “A”부분을 확대하여 나타낸 부분도이다. 이때, 설명의 편의를 위해 도 3은 전지셀의 전극 리드(21)가 포함된 모습을 나타내었다.
도 1 내지 도 3을 참고하면, 버스바 프레임(50)에는 버스바(51)가 장착될 수 있다. 버스바(51)는 복수의 전지셀 간의 전기적 연결을 위한 것으로, 전지셀의 전극 리드(21)가 버스바 프레임(50)에 형성된 슬릿을 통과한 뒤 구부러져 버스바(51)와 연결될 수 있다. 전극 리드(21)와 버스바(51) 사이의 연결에 있어, 전기적 연결이 가능하다면 그 방법에 제한은 없으며, 일례로 용접 접합으로 연결될 수 있다. 이와 같이 버스바(51)를 통해 전지셀들이 전기적으로 연결된 전지셀 적층체는 외부로 노출되는 단자 버스바 등을 통해 다른 전지 모듈이나 BDU(Battery Disconnect Unit) 등과 연결될 수 있다. 즉, 종래의 전지 모듈(10)은 버스바(51)를 통해 전지셀들을 전기적으로 연결하고, 단자 버스바 등을 통해 전지 모듈(10)을 다른 전지 모듈과 전기적으로 연결함으로써, HV(High Voltage) 연결을 구현할 수 있다. 여기서 HV 연결은 전력을 공급하기 위한 전원 역할의 연결로써, 전지셀 간의 연결이나 전지 모듈 간의 연결을 의미한다.
한편, 전지 모듈(10)의 발화나 폭발을 방지하기 위해, 전지셀의 전압 정보와 온도 정보를 측정하여 BMS(Battery Management System)에 전달할 필요가 있다. 종래의 전지 모듈(10)은 LV(Low Voltage) 센싱 조립체(60)를 포함하여 전지셀의 전압 정보를 상기 BMS에 전달할 수 있다. 구체적으로, LV 센싱 조립체(60)가 버스바(51)와 연결되어 각 전지셀의 전압을 측정할 수 있고, 측정된 값을 커넥터를 통해 외부 BMS에 전달할 수 있다. 즉, 종래의 전지 모듈(10)은 버스바(51)와 LV 센싱 조립체(60)를 통해 전압 정보를 전달함으로써, LV(Low Voltage) 연결을 구현할 수 있다. 여기서 LV 연결은 전지셀의 전압을 감지하고 제어하기 위한 센싱 연결을 의미한다.
종합하면, 종래의 전지 모듈(10)은 HV 연결을 구현하기 위해 적층된 전지셀 각각의 전극 리드(21)를 버스바(51)에 접합하고, LV 연결을 구현하기 위해 LV 센싱 조립체(60)를 전극 리드(21)가 접합된 버스바(51)에 연결할 수 있다. 또한 이러한 버스바(51)를 장착하기 위해 버스바 프레임(50)을 형성할 수 있다.
본 발명이 해결하고자 하는 과제는, 종래의 HV 연결 구조와 LV 연결 구조를 개선하여 생산성이 향상된 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법을 제공하는 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지 모듈은, 전극 리드를 포함하는 복수의 전지셀이 적층된 전지셀 적층체; 및 상기 전지셀의 전압 정보 전달을 위한 센싱 조립체를 포함한다. 상기 센싱 조립체는, 커넥터, 상기 커넥터와 상기 전극 리드를 연결하는 연결부재 및 상기 연결부재의 일단에 위치하여 상기 전극 리드에 접합되는 접합부재를 포함한다. 적어도 2개의 상기 전극 리드끼리 구부러지고 접합되어 전극 리드 접합체를 형성하고, 상기 전극 리드 접합체에 상기 접합부재가 접합된다.
상기 전극 리드 접합체의 일면은, 상기 전지셀으로부터 상기 전극 리드가 돌출되는 방향과 수직일 수 있다.
상기 전극 리드는 양극 리드 및 음극 리드를 포함할 수 있고, 하나의 전지셀을 기준으로, 상기 양극 리드와 상기 음극 리드가 서로 대향하는 방향으로 돌출될 수 있다.
상기 전지 모듈은, 상기 전극 리드들이 돌출된 상기 전지셀 적층체의 전면 및 후면을 덮는 절연 커버를 포함할 수 있고, 상기 센싱 조립체는, 상기 절연 커버의 내측면에 장착되어 상기 전극 리드와 연결될 수 있다.
상기 절연 커버의 상기 내측면은 상기 전극 리드와 대면할 수 있고, 상기 절연 커버의 상기 내측면에 상기 센싱 조립체가 장착될 수 있도록 만입된 장착부가 형성될 수 있다.
상기 절연 커버는, 개구부를 포함할 수 있고, 상기 개구부는 상기 접합부재가 상기 전극 리드에 접합된 부분과 대응하는 위치에 형성될 수 있다.
상기 절연 커버는, 상기 개구부를 덮는 덮개부를 포함할 수 있고, 상기 덮개부는 상기 개구부에 대해 개폐 구조를 형성할 수 있다.
본 발명의 일 실시예에 따른 전지팩은, 상기 전지 모듈, 상기 전지 모듈을 수납하는 팩 프레임; 및 상기 전지 모듈과 팩 프레임의 바닥부 사이에 위치하는 열전도성 수지층을 포함한다.
본 발명의 일 실시예에 따른 전지 모듈의 제조 방법은, 복수의 전지셀들을 적층하여 전지셀 적층체를 형성하는 단계; 상기 전지셀들 중 인접한 적어도 2개의 상기 전지셀로부터 돌출된 전극 리드들을 접합하여 전극 리드 접합체를 형성하는 단계; 및 상기 전극 리드 접합체에 센싱 조립체를 연결하는 LV 연결 단계를 포함한다. 상기 센싱 조립체는, 커넥터, 상기 커넥터와 상기 전극 리드 접합체를 연결하는 연결부재 및 상기 연결부재의 일단에 위치하는 접합부재를 포함하며, 상기 LV 연결 단계는, 상기 접합부재를 상기 전극 리드 접합체에 접합하는 단계를 포함한다.
상기 LV 연결 단계는, 상기 센싱 조립체를 절연 커버의 내측면에 장착하는 단계 및 상기 전지셀 적층체의 전면과 후면에 상기 센싱 조립체가 장착된 상기 절연 커버를 위치시키는 단계를 포함할 수 있다.
상기 절연 커버는 개구부를 포함할 수 있고, 상기 LV 연결 단계는, 상기 개구부를 통해 상기 접합부재와 상기 전극 리드 접합체를 접합하는 단계를 더 포함할 수 있다.
상기 절연 커버는 상기 개구부에 대해 개폐 구조를 형성하는 덮개부를 포함할 수 있다.
상기 전지셀 적층체를 형성하는 단계는, 접착제를 인접한 전지셀 사이에 도포하여 상기 인접한 전지셀을 서로 부착하는 단계 및 상기 인접한 전지셀 각각의 전극 리드를 구부리고 서로 접합하는 단계를 포함할 수 있다.
상기 LV 연결 단계 이전에, 상기 전지셀 적층체의 상면, 하면 및 양 측면을 홀딩 밴드로 감싸는 단계가 이루어질 수 있다.
본 발명의 실시예들에 따르면, 종래의 버스바 대신 전극 리드 간 접합과 전극 리드와 센싱 조립체 간 접합을 일체로 형성하여, HV 연결과 LV 연결이 동시에 이루어질 수 있으므로, 생산성 향상을 기대할 수 있다.
또한, 종래의 버스바 및 버스바 프레임을 제거할 수 있어, 전지 모듈 내 부품을 보다 콤팩트하게 배치할 수 있으므로, 전지 모듈 및 이를 포함하는 전지팩의 용량이나 출력을 증대시킬 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 전지 모듈에 대한 분해 사시도이다.
도 2는 도 1의 전지 모듈에 포함된 버스바 프레임과 엔드 플레이트를 확대하여 나타낸 사시도이다.
도 3은 도 2의 “A”부분을 확대하여 나타낸 부분도이다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈의 사시도이다.
도 5는 도 4의 전지 모듈에 대한 분해 사시도이다.
도 6은 도 4의 전지 모듈에 포함된 전지셀에 대한 사시도이다.
도 7은 도 4의 전지 모듈에 대해 절연 커버를 제거한 모습을 나타낸 사시도이다.
도 8은 도 7의 “B” 부분을 확대하여 나타낸 부분 도면이다.
도 9 내지 도 11은 도 4의 전지 모듈에 포함된 절연 커버를 다양한 각도에서 나타낸 도면들이다.
도 12는 본 발명의 일 실시예에 따른 전지팩에 대한 분해 사시도이다.
도 13a 내지 도 13c는 본 발명의 일 실시예에 따른 전지셀 적층체의 제조 방법을 설명하기 위한 도면들이다.
도 14a 및 14b는 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법을 설명하기 위한 도면들이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명의 일 실시예에 따른 전지 모듈의 사시도이다. 도 5는 도 4의 전지 모듈에 대한 분해 사시도이다. 도 6은 도 4의 전지 모듈에 포함된 전지셀에 대한 사시도이다.
도 4 내지 도 6을 참고하면, 본 발명의 일 실시예에 따른 전지 모듈(100)은 복수의 전지셀(110)이 적층된 전지셀 적층체(200)를 포함한다.
우선, 전지셀(110)은 파우치형 전지셀인 것이 바람직하며, 장방형의 시트형 구조로 형성될 수 있다. 예를 들어, 본 실시예에 따른 전지셀(110)은 두 개의 전극 리드(111, 112)가 셀 본체(113)를 기준으로 서로 대향하여 일단부(114a)와 다른 일단부(114b)로부터 각각 돌출되어 있는 구조를 갖는다. 보다 상세하게는 전극 리드(111, 112)는 전극 조립체(미도시)와 연결되고, 상기 전극 조립체(미도시)로부터 전지셀(110)의 외부로 돌출된다. 두 개의 전극 리드(111, 112) 중 하나는 양극 리드(111)일 수 있고, 다른 하나는 음극 리드(112)일 수 있다. 즉, 하나의 전지셀(110)을 기준으로 양극 리드(111)와 음극 리드(112)가 서로 대향하는 방향으로 돌출될 수 있다.
한편, 전지셀(110)은, 셀 케이스(114)에 전극 조립체(미도시)를 수납한 상태로 셀 케이스(114)의 양 단부(114a, 114b)와 이들을 연결하는 일측부(114c)를 접착함으로써 제조될 수 있다. 다시 말해, 본 실시예에 따른 전지셀(110)은 총 3군데의 실링부를 갖고, 실링부는 열융착 등의 방법으로 실링되는 구조이며, 나머지 다른 일측부는 연결부(115)로 이루어질 수 있다. 셀 케이스(114)는 수지층과 금속층을 포함하는 라미네이트 시트로 이루어질 수 있다.
이러한 전지셀(110)은 복수개로 구성될 수 있으며, 복수의 전지셀(110)은 상호 전기적으로 연결될 수 있도록 적층되어 전지셀 적층체(200)를 형성한다. 특히, 도 5에 도시된 바와 같이 x축 방향을 따라 복수의 전지셀(110)이 적층될 수 있다. 이에 따라 전극 리드(111, 112)는 각각 y축 방향과 -y축 방향으로 돌출될 수 있다.
한편, 본 실시예에 따른 전지 모듈(100)은, 도 1 내지 도 3에서의 종래의 전지 모듈(10)과 달리, 모듈 프레임과 엔드 플레이트가 제거된 모듈-리스(module-less) 구조를 형성할 수 있다. 모듈 프레임을 대신하여, 본 실시예에 따른 전지 모듈(100)은 측면 플레이트(600)와 홀딩 밴드(700)를 포함할 수 있다. 모듈 프레임과 엔드 플레이트가 제거됨에 따라, 전지셀 적층체(200)를 모듈 프레임 내부에 수납하는 공정이나 모듈 프레임과 엔드 플레이트를 조립하는 공정과 같이 정밀한 컨트롤이 요구되는 복잡한 공정이 불필요하다. 또한, 제거된 모듈 프레임과 엔드 플레이트만큼 전지 모듈(100)의 무게를 크게 줄일 수 있다는 장점을 갖는다. 또한, 본 실시예에 따른 전지 모듈(100)은 모듈 프레임의 제거에 따라, 전지팩 조립 공정 시 재작업성이 유리하다는 장점을 갖는데, 종래의 전지 모듈(10)은 모듈 프레임의 용접 구조로 불량이 발생하여도 재작업이 불가능한 것과 비교될 수 있다.
측면 플레이트(600)는 판상형 부재로써, 전지셀 적층체(200)의 양 측면에 위치하여, 전지 모듈(100)의 강성을 보완할 수 있다. 이러한 측면 플레이트(600)는 탄성 성질을 가지며 사출 성형으로 제조되는 플라스틱 소재를 포함할 수 있고, 경우에 따라서 판 스프링 소재가 적용될 수 있다.
홀딩 밴드(700)는 전지셀 적층체(200)의 양 단부에서 전지셀 적층체를 감싸는 부재로써, 전지셀 적층체(200)를 구성하는 복수의 전지셀(110)들과 측면 플레이트(600)를 고정하는 기능을 담당할 수 있다. 이와 같이, 홀딩 밴드(700)를 통해 전지셀 적층체(200) 및 측면 플레이트(600)를 고정한 후, 전극 리드(111)가 돌출되는 방향에 해당하는 전지셀 적층체(200)의 전면과 후면에 센싱 조립체(300)와 절연 커버(400)를 위치시킬 수 있다. 이러한 홀딩 밴드(700)는 소정의 탄성력을 갖는 소재로 이루어질 수 있으며, 구체적으로 판스프링의 구조가 적용될 수 있다.
이하에서는, 도 7 내지 도 11 등을 참고하여, 본 실시예에 따른 센싱 조립체와 절연 커버를 통한 HV 연결 구조 및 LV 연결 구조에 대해 설명하도록 한다.
도 7은 도 4의 전지 모듈에 대해 절연 커버를 제거한 모습을 나타낸 사시도이다. 도 8은 도 7의 “B” 부분을 확대하여 나타낸 부분 도면이다.
도 5, 도 7 및 도 8을 참고하면, 본 실시예에 따른 전지 모듈(100)은, 전지셀(110)의 전압 정보 전달을 위한 센싱 조립체(300)를 포함한다. 이러한 센싱 조립체(300)는, 커넥터(310), 커넥터(310)와 전극 리드(111)를 연결하는 연결부재(320) 및 연결부재(320)의 일단에 위치하여 전극 리드(111)에 접합되는 접합부재(330)를 포함한다. 본 실시예에 따른 센싱 조립체(300)와 이에 포함된 커넥터(310)는, 각각 LV(Low voltage) 연결을 위한 LV 센싱 조립체와 LV 커넥터일 수 있다.
커넥터(310)는 복수의 전지셀(110)을 제어하기 위해 외부의 제어 장치와 신호를 송수신하도록 구성될 수 있다. 연결부재(320)는 연성인쇄회로기판(FPCB: Flexible Printed Circuit Board) 또는 연성평판케이블(FFC: Flexible Flat Cable)일 수 있다. 복수의 전지셀(110)들의 전압 및 온도를 센싱하고, 커넥터(310)를 통해 BMS(Battery Mamagement System)로 전기적 정보를 전달할 수 있다. 즉, 커넥터(310)와 연결부재(320)를 포함하는 센싱 조립체(300)는 각 전지셀(110)의 과전압, 과전류, 과발열 등의 현상을 검출하고, 제어할 수 있다. 접합부재(330)는 연결부재(320)의 일단에 위치하고, 전기 전도성을 갖는 금속 소재로 구성될 수 있다. 이러한 접합부재(330)를 전극 리드(111)에 접합함으로써, 연결부재(320)와 전극 리드(111)를 전기적, 물리적으로 연결할 수 있다. 구체적으로, 접합부재(330)의 일측은 연결부재(320)를 관통한 후 구부러짐으로써 연결부재(320)와 결합되고, 접합부재(330)의 타측은 판상형태로 구성되어 전극 리드(111)와 접합, 특히 용접 접합될 수 있다.
한편, 상술한 바 대로, 전지셀(110)은 x축 방향을 따라 적층되어 전지셀 적층체(200)를 형성할 수 있고, 이에 따라 전극 리드(111, 112)는 각각 y축 방향과 -y축 방향으로 돌출될 수 있다. 이때, 도 8에 도시된 바와 같이, 적어도 2개의 전극 리드(111)끼리 구부러지고 접합되어 전극 리드 접합체(111A)를 형성할 수 있다. 구체적으로, 인접한 전지셀(110)들에 대해 같은 방향으로 돌출된 전극 리드(111)들이 그 전극 리드(111)의 돌출 방향과 수직한 방향으로 구부러지고, 서로 접합되어 전극 리드 접합체(111A)를 형성할 수 있다. 이에 따라 전극 리드 접합체(111A)의 일면은, 전지셀(110)로부터 전극 리드(111)가 돌출되는 방향과 수직일 수 있다. 한편, 전지셀 적층체(200)의 바깥쪽에 위치한 전지셀(110)의 전극 리드(111)는 단자 버스바(500)와 연결될 수 있다. 종래의 전지 모듈이 버스바를 통해 전극 리드를 서로 연결한 것과 달리, 본 실시예에 따른 전극 리드(111)는 서로 직접 접합되고, 그 중 일부가 단자 버스바(500)와 연결됨으로써, HV 연결을 형성할 수 있다. 따라서, 본 실시예에 따른 HV 연결 구조에서, 버스바 및 버스바가 장착되는 버스바 프레임은 제거될 수 있다.
한편, 이러한 전극 리드 접합체(111A)에 센싱 조립체(300)의 접합부재(330)가 접합되어, 센싱 조립체(300)와 전극 리드(111)가 서로 연결될 수 있다. 구체적으로, 이러한 전극 리드 접합체(111A)의 상기 일면에 센싱 조립체(300)의 접합부재(330)가 직접 접합될 수 있다. 즉, 종래의 전지 모듈에서 센싱 조립체가 버스바 프레임에 장착되는 것과 달리, 본 실시예에 따른 센싱 조립체(300)는 전극 리드(111)가 형성하는 전극 리드 접합체(111A)와 직접 연결되어 LV 연결을 형성할 수 있다.
도 3에 나타난 종래의 전지 모듈(10)의 경우 HV 연결과 LV 연결이 각각 이루어지는 것과 달리, 본 실시예에 따른 전지 모듈(100)은 전극 리드 접합체(111A) 및 이와 직접 연결되는 센싱 조립체(300)를 통해 HV 연결과 LV 연결이 동시에 이루어질 수 있으며, 상술한 바 대로, 버스바 및 버스바 프레임의 구성이 불필요하다. HV 연결과 LV 연결이 각각 이루어지지 않고 한번에 진행될 수 있으므로, 생산성 향상을 기대할 수 있고, 버스바 프레임 등의 구성을 제거할 수 있어 보다 컴팩트한 구성의 전지 모듈(100)을 제조할 수 있다는 장점을 갖는다.
한편, 전극 리드 접합체(111A)를 형성하는 전극 리드(111) 간의 접합이나 전극 리드 접합체(111A)와 접합부재(330)와의 접합에 있어, 전기적 연결이 가능하다면 그 접합 방식에 특별한 제한은 없으며, 일례로 용접 접합이 이루어질 수 있다. 또한, y축 방향으로 돌출된 전극 리드(111)를 기준으로 설명하였으나, -y축 방향으로 돌출된 전극 리드(112)에 대해서도 마찬가지로 전극 리드 접합체 및 센싱 조립체(300)의 구조가 형성될 수 있다.
이하에서는, 도 9 내지 도 11을 참고하여, 센싱 조립체가 장착되는 절연 커버에 대해 자세히 설명하도록 한다.
도 9 내지 도 11은 도 4의 전지 모듈에 포함된 절연 커버를 다양한 각도에서 나타낸 도면들이다. 구체적으로, 도 9는 도 4에서 전지셀 적층체(200)를 기준으로 -y축 방향을 따라 위치한 절연 커버(400)를 확대한 도면이고, 도 10a 및 도 10b는 도 4에서 전지셀 적층체(200)를 기준으로 y축 방향을 따라 위치한 절연 커버(400)를 확대한 도면이며, 도 11은 도 10a 및 도 10b의 절연 커버를 xz 평면 상에서 -y축 방향으로 바라본 평면도이다.
먼저 도 4 및 도 9를 참고하면, 본 실시예에 따른 전지 모듈(100)은, 전극 리드(111, 112)들이 돌출된 전지셀 적층체(200)의 전면 및 후면을 덮는 절연 커버(400)를 더 포함할 수 있다. 전지셀 적층체(200)의 전면 및 후면은, 각각 전지셀 적층체(200)를 기준으로 y축 방향과 -y축 방향에 해당하는 면을 의미한다. 이러한 절연 커버(400)는 전기적 절연을 띄는 소재를 포함할 수 있으며, 일례로 플라스틱 소재, 고분자 소재 또는 복합 소재를 포함할 수 있다. 또한, 전지셀 적층체(200)의 전면 및 후면을 덮을 수 있도록 일종의 바스켓 모양으로 이루어질 수 있다. 도 7 및 도 8에서는 센싱 조립체(300)에 대한 설명의 편의를 위해 절연 커버(400)가 제거된 모습을 나타내었으나, 본 실시예에 따르면, 센싱 조립체(300)는 절연 커버(400)의 내측면에 장착된 채, 전극 리드(111)와 연결될 수 있다. 절연 커버(400)의 상기 내측면은 절연 커버(400) 중에서 전극 리드(111), 즉 전극 리드 접합체(111A)와 대면하는 면을 의미할 수 있다. 나아가, 절연 커버(400)의 상기 내측면에 센싱 조립체(300)가 장착될 수 있도록 만입된 장착부(410)가 형성될 수 있고, 구체적으로, 장착부(410)는 센싱 조립체(300)와 대응하는 형상으로 만입된 구조일 수 있다. 한편, 센싱 조립체(300)는 절연 커버(400)의 상기 내측면에 고정될 수 있는데, 상세하게는 볼트, 열융착, 본딩 또는 용접 등의 방법으로 고정될 수 있다.
앞서 설명한 바 대로, 본 실시예에 따른 전지 모듈(100)은 엔드 플레이트와 버스바 프레임이 제거될 수 있으며, 대신 센싱 조립체(300)가 장착되는 절연 커버(400)가 마련될 수 있다. 절연 커버(400)가 전지셀 적층체(200)의 전면과 후면을 덮으면서, 절연 커버(400)의 내측면에 장착된 센싱 조립체(300)가 접합부재(330)를 통해서 전극 리드 접합체(111A)와 연결되어 앞서 설명한 LV 연결 구조가 형성될 수 있다.
다음, 도 10a, 도 10b 및 도 11을 참고하면, 절연 커버(400)는 개구부(420)를 포함할 수 있고, 개구부(420)는 센싱 조립체(300)의 접합부재(330)가 전극 리드(111)에 접합된 부분과 대응하는 위치에 형성될 수 있다. 따라서, 도 11에서와 같이 개구부(420)를 통해 전극 리드 접합체 상에 위치한 접합부재(330)가 관찰될 수 있다. 이때, 설명의 편의를 위해 도 11에서는 후술하는 덮개부(430)의 도시를 생략하였다.
센싱 조립체(300)가 장착부(410)에 장착된 상태의 절연 커버(400)를 전지셀 적층체(200)의 전면과 후면에 위치시킨 후, 개구부(420)를 통해서 접합부재(330)와 전극 리드 접합체(111A) 간의 접합이 이루어질 수 있다. 예를 들어 개구부(420)를 통해 용접장치를 삽입하여 접합부재(330)와 전극 리드 접합체(111A) 간의 용접 접합이 이루어질 수 있다.
또한, 본 실시예에 따른 절연 커버(400)는 개구부(420)에 대해 개폐 구조를 형성하는 덮개부(430)를 포함할 수 있다. 도 10a에 도시된 바와 같이, 덮개부(430)의 일 모서리가 절연 커버(400)와 이어지고, 나머지 모서리들이 절연 커버(400)와 분리되어 개구부(420)에 대한 개폐 구조를 형성할 수 있다. 따라서, 접합부재(330)와 전극 리드 접합체(111A) 간의 접합 시 덮개부(430)를 열어 개방된 상태를 형성하고, 그 외의 상황에서는 덮개부(430)를 닫아 폐쇄된 상태를 유지할 수 있다.
한편, 본 실시예에 따른 절연 커버(400)는 엔드 플레이트 등의 구성을 대신하여, 커넥터(310)와 단자 버스바(500)의 외부 연결을 안내할 수 있다. 구체적으로, 절연 커버(400)에 커넥터(310)의 외부 연결, 즉 LV 연결을 안내하기 위한 커넥터 개구부(440)가 형성될 수 있고, 단자 버스바(500)의 외부 연결, 즉 HV 연결을 안내하기 위한 단자 버스바 개구부(450)가 형성될 수 있다. 절연 커버(400)는 LV 연결과 HV 연결 시 외부 전도성 물체와의 접촉을 차단하고 절연성을 확보할 수 있다. 또한, HV 연결 과정에서, 단자 버스바(500)에 형성된 관통홀을 통해 볼트 및 너트 체결이 이루어질 수 있는데, 상기 절연 커버(400)와 그에 형성된 단자 버스바 개구부(450)는 상기 볼트 및 너트 체결이 올바르게 이루어질 수 있는 일종의 가이드로써 기능할 수 있다.
도 12는 본 발명의 일 실시예에 따른 전지팩에 대한 분해 사시도이다.
도 12를 참고하면, 본 발명의 일 실시예에 따른 전지팩(1000)은, 전지 모듈(100), 전지 모듈(100)을 수납하는 팩 프레임(1100) 및 전지 모듈(100)과 팩 프레임(1100)의 바닥부(1111) 사이에 위치하는 열전도성 수지층(1200)을 포함할 수 있다.
먼저, 전지 모듈(100)은 앞서 설명한 바 대로, 절연 커버를 포함하며, 대신 모듈 프레임과 엔드 플레이트가 제거된 모듈-리스(module-less) 구조를 형성할 수 있다. 이러한 전지 모듈(100)이 복수로 모여 팩 프레임(1100)에 수납되어 전지팩(1000)을 형성할 수 있다.
팩 프레임(1100)은, 하부 프레임(1110) 및 하부 프레임(1110)을 덮는 상부 프레임(1120)을 포함할 수 있고, 하부 프레임(1110)의 바닥부(1111)에 복수의 전지 모듈(100)이 위치할 수 있다.
한편, 열전도성 수지층(1200)은 하부 프레임(1110)의 바닥부(1111)에 열전도성 수지(Thermal resin)가 도포되어 형성될 수 있다. 상기 열전도성 수지는 열전도성 접착 물질을 포함할 수 있으며, 구체적으로 실리콘(Silicone) 소재, 우레탄(Urethan) 소재 및 아크릴(Acrylic) 소재 중 적어도 하나를 포함할 수 있다. 상기 열전도성 수지는, 도포 시에는 액상이나 도포 후에 경화되어 전지 모듈(100)을 고정하는 역할을 수행할 수 있다. 또한, 열전도 특성이 뛰어나 전지 모듈(100)에서 발생한 열을 신속히 바닥부(1111)로 전달하여 전지팩(1000)의 과열을 방지할 수 있다.
도 4에 도시된 바와 같이, 본 실시예에 따른 전지 모듈(100)은, 모듈 프레임이 제거된 모듈-리스(module-less) 구조에 있어서, 전지셀(110)의 일부가 외부로 노출될 수 있는데, 구조적 안전성을 위해 노출되는 전지셀(110)을 고정하는 것이 필수적이다. 이에, 본 실시예에 따른 전지팩(1000)은 바닥부(1111)에 전지 모듈(100), 특히 전지 모듈(100)을 구성하는 각각의 전지셀(110)을 고정할 수 있는 열전도성 수지층(1200)을 형성함으로써, 구조적 안전성을 향상시키고자 하였다.
이하에서는, 도 13 및 도 14 등을 참고하여, 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법에 대해 자세히 설명하도록 한다. 다만, 앞서 설명한 부분과 중복되는 부분은 설명의 반복을 피하기 위해 생략하도록 한다.
도 13a 내지 도 13c는 본 발명의 일 실시예에 따른 전지셀 적층체의 제조 방법을 설명하기 위한 도면들이다. 도 14a 및 14b는 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법을 설명하기 위한 도면들이다.
먼저 도 4 및 도 13a 내지 도 13c를 참고하면, 본 발명의 일 실시예에 따른 전지 모듈의 제조 방법은, 복수의 전지셀(110)들을 적층하여 전지셀 적층체(200)를 형성하는 단계 및 전지셀(110)들 중 인접한 적어도 2개의 전지셀(110)로부터 돌출된 전극 리드(111, 112)들을 접합하여 전극 리드 접합체(111A)를 형성하는 단계를 포함한다.
이 때, 전지셀 적층체(200)를 형성하는 단계와 전극 리드 접합체(111A)를 형성하는 단계는 동시에 이루어질 수 있다. 구체적으로, 두 개의 전극 리드(111, 112)가 서로 대향하여 돌출되는 파우치형 전지셀(110)을 일 방향을 따라 적층하여 전지셀 적층체(200)를 형성함에 있어, 하나의 전지셀(110)의 전극 리드(111, 112)와 다른 전지셀(110)의 전극 리드(111, 112)를 접합하여 전극 리드 접합체(111A)를 형성하고, 상기 전극 리드(111, 112)들을 구부리는 방식을 반복적으로 수행할 수 있다. 또한 인접한 전지셀(110) 간의 고정력 향상을 위해 접착제(800)를 인접한 전지셀 사이에 도포할 수 있다. 다시 말해, 본 실시예에 따른 전지셀 적층체(200)를 형성하는 단계는, 접착제(800)를 인접한 전지셀(110) 사이에 도포하여 상기 인접한 전지셀(110)을 서로 부착하는 단계 및 상기 인접한 전지셀(110) 각각의 전극 리드(111, 112)를 구부리고 서로 접합하는 단계를 포함할 수 있다.
다음, 도 4, 도 9, 도 10a, 도 14a 및 도 14b를 참고하면, 본 실시예에 따른 전지 모듈(100)의 제조 방법은, 전극 리드 접합체(111A)에 (Low Voltage) 센싱 조립체(300)를 연결하는 LV 연결 단계를 포함한다. 센싱 조립체(300)는, 커넥터(310), 커넥터(310)와 전극 리드 접합체(111A)를 연결하는 연결부재(320) 및 연결부재(320)의 일단에 위치하는 접합부재(330)를 포함한다. 상기 구성에 대한 자세한 설명은 앞서 설명한 내용과 중복이므로 생략하도록 한다.
상기 LV 연결 단계는, 접합부재(330)를 전극 리드 접합체(111A)에 접합하는 단계를 포함한다. 구체적으로, 상기 LV 연결 단계는 센싱 조립체(300)를 절연 커버(400)의 내측면에 장착하는 단계 및 전지셀 적층체(200)의 전면과 후면에 센싱 조립체(300)가 장착된 절연 커버(400)를 위치시키는 단계를 포함할 수 있다. 절연 커버(400)의 내측면에 장착부(410)가 형성되어 센싱 조립체(300)가 장착될 수 있으며, 상기 내측면이 전극 리드 접합체(111A)와 대면하도록 절연 커버(400)가 위치할 수 있다. 한편, 절연 커버(400)는 일종의 바스켓 모양으로 이루어져 전지셀 적층체(200)의 상기 전면 및 상기 후면을 덮도록 전지셀 적층체(200)에 결합될 수 있다.
이때, 절연 커버(400)는 개구부(420)를 포함할 수 있고, 상기 LV 연결 단계는 개구부(420)를 통해 접합부재(330)와 전극 리드 접합체(111A)를 접합하는 단계를 더 포함할 수 있다. 이를 위해, 개구부(420)는 접합부재(330)가 전극 리드(111)에 접합된 부분과 대응하는 위치에 형성되는 것이 바람직하다. 또한, 절연 커버(400)는 개구부(420)에 대해 개폐 구조를 형성하는 덮개부(430)를 더 포함할 수 있다. 접합부재(330)와 전극 리드 접합체(111A)를 접합한 이후에는 덮개부(430)를 닫아 폐쇄된 상태를 유지할 수 있다.
한편, 상기 LV 연결 단계 이전에, 전지 모듈(100)의 강성을 보완하기 위해 전지셀 적층체(200)의 양 측면에 판상형의 측면 플레이트(600)를 배치하는 단계가 이루어질 수 있다.
또한, 상기 LV 연결 단계 이전에, 전지셀 적층체(200)의 상면, 하면 및 양 측면을 홀딩 밴드(700)로 감싸는 단계가 이루어질 수 있다. 이때 홀딩 밴드(700)는 전지셀 적층체(200)뿐만 아니라 그 양 측면에 배치된 측면 플레이트(600)를 함께 감쌀 수 있다. 홀딩 밴드(700)를 통해 전지셀 적층체(200)에 포함된 전지셀(110)들 및 측면 플레이트(600)를 고정함으로써, 절연 커버(400)가 전지셀 적층체(200)의 전면 및 후면에 수월하게 결합될 수 있다.
본 실시예에서 전, 후, 좌, 우, 상, 하와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있다.
앞에서 설명한 본 실시예에 따른 하나 또는 그 이상의 전지 모듈은, BMS(Battery Management System), 냉각 시스템 등의 각종 제어 및 보호 시스템과 함께 장착되어 전지팩을 형성할 수 있다.
상기 전지 모듈이나 전지팩은 다양한 디바이스에 적용될 수 있다. 구체적으로는, 전기 자전거, 전기 자동차, 하이브리드 등의 운송 수단에 적용될 수 있으나 이에 제한되지 않고 이차 전지를 사용할 수 있는 다양한 디바이스에 적용 가능하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
100: 전지 모듈
111A: 전극 리드 접합체
200: 전지셀 적층체
300: 센싱 조립체
400: 절연 커버

Claims (14)

  1. 전극 리드를 포함하는 복수의 전지셀이 적층된 전지셀 적층체; 및
    상기 전지셀의 전압 정보 전달을 위한 센싱 조립체를 포함하고,
    상기 센싱 조립체는, 커넥터, 상기 커넥터와 상기 전극 리드를 연결하는 연결부재 및 상기 연결부재의 일단에 위치하여 상기 전극 리드에 접합되는 접합부재를 포함하며,
    적어도 2개의 상기 전극 리드끼리 구부러지고 접합되어 전극 리드 접합체를 형성하고,
    상기 전극 리드 접합체에 상기 접합부재가 접합되는 전지 모듈.
  2. 제1항에서,
    상기 전극 리드 접합체의 일면은, 상기 전지셀으로부터 상기 전극 리드가 돌출되는 방향과 수직인 전지 모듈.
  3. 제1항에서,
    상기 전극 리드는 양극 리드 및 음극 리드를 포함하고,
    하나의 전지셀을 기준으로, 상기 양극 리드와 상기 음극 리드가 서로 대향하는 방향으로 돌출되는 전지 모듈.
  4. 제1항에서,
    상기 전극 리드들이 돌출된 상기 전지셀 적층체의 전면 및 후면을 덮는 절연 커버를 더 포함하고,
    상기 센싱 조립체는, 상기 절연 커버의 내측면에 장착되어 상기 전극 리드와 연결되는 전지 모듈.
  5. 제4항에서,
    상기 절연 커버의 상기 내측면은 상기 전극 리드와 대면하고,
    상기 절연 커버의 상기 내측면에 상기 센싱 조립체가 장착될 수 있도록 만입된 장착부가 형성된 전지 모듈.
  6. 제5항에서,
    상기 절연 커버는, 개구부를 포함하고,
    상기 개구부는 상기 접합부재가 상기 전극 리드에 접합된 부분과 대응하는 위치에 형성되는 전지 모듈.
  7. 제6항에서,
    상기 절연 커버는, 상기 개구부를 덮는 덮개부를 포함하고,
    상기 덮개부는 상기 개구부에 대해 개폐 구조를 형성하는 전지 모듈.
  8. 제1항에 따른 전지 모듈;
    상기 전지 모듈을 수납하는 팩 프레임; 및
    상기 전지 모듈과 팩 프레임의 바닥부 사이에 위치하는 열전도성 수지층을 포함하는 전지팩.
  9. 복수의 전지셀들을 적층하여 전지셀 적층체를 형성하는 단계;
    상기 전지셀들 중 인접한 적어도 2개의 전지셀로부터 돌출된 전극 리드들을 접합하여 전극 리드 접합체를 형성하는 단계; 및
    상기 전극 리드 접합체에 센싱 조립체를 연결하는 LV 연결 단계를 포함하고,
    상기 센싱 조립체는, 커넥터, 상기 커넥터와 상기 전극 리드 접합체를 연결하는 연결부재 및 상기 연결부재의 일단에 위치하는 접합부재를 포함하며,
    상기 LV 연결 단계는, 상기 접합부재를 상기 전극 리드 접합체에 접합하는 단계를 포함하는 전지 모듈의 제조 방법.
  10. 제9항에서,
    상기 LV 연결 단계는,
    상기 센싱 조립체를 절연 커버의 내측면에 장착하는 단계 및 상기 전지셀 적층체의 전면과 후면에 상기 센싱 조립체가 장착된 상기 절연 커버를 위치시키는 단계를 포함하는 전지 모듈의 제조 방법.
  11. 제10항에서,
    상기 절연 커버는 개구부를 포함하고,
    상기 LV 연결 단계는, 상기 개구부를 통해 상기 접합부재와 상기 전극 리드 접합체를 접합하는 단계를 더 포함하는 전지 모듈의 제조 방법.
  12. 제11항에서,
    상기 절연 커버는 상기 개구부에 대해 개폐 구조를 형성하는 덮개부를 포함하는 전지 모듈의 제조 방법.
  13. 제9항에서,
    상기 전지셀 적층체를 형성하는 단계는,
    접착제를 인접한 전지셀 사이에 도포하여 상기 인접한 전지셀을 서로 부착하는 단계 및 상기 인접한 전지셀 각각의 전극 리드를 구부리고 서로 접합하는 단계를 포함하는 전지 모듈의 제조 방법.
  14. 제9항에서,
    상기 LV 연결 단계 이전에,
    상기 전지셀 적층체의 상면, 하면 및 양 측면을 홀딩 밴드로 감싸는 단계가 이루어지는 전지 모듈의 제조 방법.
PCT/KR2021/008382 2020-07-02 2021-07-01 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법 WO2022005234A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022541863A JP2023509736A (ja) 2020-07-02 2021-07-01 電池モジュール、それを含む電池パックおよびその製造方法
US17/795,315 US20240014526A1 (en) 2020-07-02 2021-07-01 Battery Module, Battery Pack Including the Same and Manufacturing Method of the Same
EP21834607.0A EP4089792A4 (en) 2020-07-02 2021-07-01 BATTERY MODULE, BATTERY PACK COMPRISING THE SAME AND ITS MANUFACTURING METHOD
CN202180015167.3A CN115136382A (zh) 2020-07-02 2021-07-01 电池模块、包括该电池模块的电池组及该电池模块的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200081307A KR20220003729A (ko) 2020-07-02 2020-07-02 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
KR10-2020-0081307 2020-07-02

Publications (1)

Publication Number Publication Date
WO2022005234A1 true WO2022005234A1 (ko) 2022-01-06

Family

ID=79316637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008382 WO2022005234A1 (ko) 2020-07-02 2021-07-01 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20240014526A1 (ko)
EP (1) EP4089792A4 (ko)
JP (1) JP2023509736A (ko)
KR (1) KR20220003729A (ko)
CN (1) CN115136382A (ko)
WO (1) WO2022005234A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496522B2 (ja) * 2009-03-02 2014-05-21 三洋電機株式会社 バッテリシステム
KR20150054289A (ko) * 2013-11-11 2015-05-20 삼성전자주식회사 가요성 이차 전지
KR20170043928A (ko) * 2015-10-14 2017-04-24 주식회사 엘지화학 배터리 모듈 및 그 제조방법
KR20190134229A (ko) * 2018-05-25 2019-12-04 주식회사 엘지화학 열전도성 조성물
KR20200065193A (ko) * 2018-11-29 2020-06-09 주식회사 엘지화학 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140311B1 (ko) * 2017-04-07 2020-07-31 주식회사 엘지화학 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496522B2 (ja) * 2009-03-02 2014-05-21 三洋電機株式会社 バッテリシステム
KR20150054289A (ko) * 2013-11-11 2015-05-20 삼성전자주식회사 가요성 이차 전지
KR20170043928A (ko) * 2015-10-14 2017-04-24 주식회사 엘지화학 배터리 모듈 및 그 제조방법
KR20190134229A (ko) * 2018-05-25 2019-12-04 주식회사 엘지화학 열전도성 조성물
KR20200065193A (ko) * 2018-11-29 2020-06-09 주식회사 엘지화학 열 방출이 개선된 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089792A4 *

Also Published As

Publication number Publication date
JP2023509736A (ja) 2023-03-09
EP4089792A4 (en) 2023-10-25
EP4089792A1 (en) 2022-11-16
CN115136382A (zh) 2022-09-30
US20240014526A1 (en) 2024-01-11
KR20220003729A (ko) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019177275A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2020009484A1 (ko) 열수축성 튜브를 포함하는 배터리 모듈
WO2019245214A1 (ko) 이차 전지 및 버스바를 포함한 배터리 모듈
WO2021221300A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080908A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022149888A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149896A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022005233A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022149897A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2022211250A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022250287A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022158792A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022108145A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022005234A1 (ko) 전지 모듈, 이를 포함하는 전지팩 및 이의 제조 방법
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021096023A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022270732A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149900A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022164119A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022149887A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022240270A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215712A1 (ko) 전지 모듈 및 이를 포함하는 전지팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541863

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021834607

Country of ref document: EP

Effective date: 20220810

NENP Non-entry into the national phase

Ref country code: DE