WO2013031753A1 - Colored resin composition and resin black matrix substrate - Google Patents

Colored resin composition and resin black matrix substrate Download PDF

Info

Publication number
WO2013031753A1
WO2013031753A1 PCT/JP2012/071651 JP2012071651W WO2013031753A1 WO 2013031753 A1 WO2013031753 A1 WO 2013031753A1 JP 2012071651 W JP2012071651 W JP 2012071651W WO 2013031753 A1 WO2013031753 A1 WO 2013031753A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
black
pigment
black matrix
colored resin
Prior art date
Application number
PCT/JP2012/071651
Other languages
French (fr)
Japanese (ja)
Inventor
井上欣彦
相原涼介
岡沢徹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147000842A priority Critical patent/KR101846977B1/en
Priority to JP2012540196A priority patent/JP5234230B1/en
Priority to CN201280042371.5A priority patent/CN103765254B/en
Publication of WO2013031753A1 publication Critical patent/WO2013031753A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0751Silicon-containing compounds used as adhesion-promoting additives or as means to improve adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a colored resin composition and a resin black matrix substrate using the same.
  • light-shielding materials are used for various purposes, and in flat panel displays (FPD) such as liquid crystal displays (hereinafter abbreviated as LCD) and plasma display panels (hereinafter abbreviated as PDP), in order to improve display characteristics, It is used for providing a light-shielded image on the interval portion of the coloring pattern, the edge of the peripheral portion of the display area, and the outside light side of the TFT.
  • FPD flat panel displays
  • LCD liquid crystal displays
  • PDP plasma display panels
  • color filters for LCD usually, a different color of red, green, and blue is sequentially formed in a striped or mosaic color pattern on the surface of a transparent substrate such as glass or plastic sheet on which a black matrix is formed. It is manufactured.
  • the black matrix used as the light-shielding film plays a role of preventing a decrease in contrast and color purity due to light leakage between pixels.
  • a black matrix is similarly formed as a light shielding film, and it is generally formed by printing ink on a cover glass or a cover film facing the sensor substrate.
  • a cover glass is formed by printing ink on a cover glass or a cover film facing the sensor substrate.
  • there is an increasing demand for weight reduction of the touch panel and technological development for simultaneously forming a light-shielding film and a touch sensor on a cover glass is progressing.
  • high adhesion and chemical resistance are required in addition to high insulation.
  • non-alkali glass is used as a glass substrate in color filter applications, whereas a soda glass substrate containing a large amount of ionic impurities is generally used as a glass substrate in touch panel applications. Higher adhesion is required.
  • Patent Document 2 a technique of adding at least one selected from an amine-based silane compound, a ketimine-based silane compound and an isocyanate-based silane compound (Patent Document 2), and a ureido group A technique for adding a silane coupling agent is known (Patent Document 3).
  • soda glass is used as the substrate, sufficient adhesion cannot be obtained, and there is a problem that peeling occurs due to high-temperature and high-humidity treatment of the black matrix substrate or chemical treatment such as aqua regia or amine-based stripping solution. It was.
  • silane coupling agents having an imide group Patent Documents 4 and 5 have been proposed to improve adhesion in hard coating agents that do not contain color pigments. In terms of sex, the effect was insufficient.
  • the present invention was devised in view of the drawbacks of the prior art, and the object of the invention is a black matrix that has excellent adhesion to the substrate surface made of metal or inorganic material and has high chemical resistance. It is in providing the colored resin composition which can form easily. By using such a colored resin composition, a resin black matrix and a touch panel substrate excellent in reliability can be obtained.
  • the problems of the present invention can be solved by using a silane coupling agent having a specific structure as described below as an adhesion improving agent. I found it.
  • Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may further have a substituent.
  • N represents 0 or 1.
  • R 2 represents carbon.
  • R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, or a phenoxy group.
  • a group other than the hydroxyl group may further have a substituent.
  • the colored resin composition of the present invention By using the colored resin composition of the present invention, a resin black matrix having high adhesion and high chemical resistance can be easily obtained, and a black matrix substrate having excellent reliability can be obtained.
  • the colored resin composition of the present invention comprises at least (A) a color pigment, (B) an alkali-soluble resin, (C) an adhesion improver and (D) an organic solvent, and (C) has at least a specific structure as the adhesion improver. It contains the silane coupling agent which has.
  • the silane coupling agent has a structure represented by the following general formula (1).
  • Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may further have a substituent.
  • N represents 0 or 1.
  • R 2 represents carbon.
  • R 3 s may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, or a phenoxy group.
  • those other than the hydroxyl group may further have a substituent.
  • R 1 a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group and an ethyl group are particularly preferable from the viewpoint of obtaining raw materials.
  • R 1 may have a substituent such as an alkoxy group, an aryl group, a phenoxy group, or a halogen group.
  • R 2 is more preferably a trivalent organic group having 3 to 10 carbon atoms from the viewpoint of solubility in an organic solvent.
  • Examples of the silane coupling agent represented by the general formula (1) include 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isopropylamino) -2-oxoethyl) -5 -(Trimethoxysilyl) pentanoic acid, 3- (isobutylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isoptylamino) -2-oxoethyl) -5- (trimethoxysilyl) Pentanoic acid, 3- (tert-pentyl
  • the silane coupling agent having these specific structures When the silane coupling agent having these specific structures is added to the colored resin composition as the (C) adhesion improver, it may be used alone, but a known silane coupling agent may be used in combination. preferable. In order to improve the adhesion of the coating film to the base substrate and the chemical resistance, it can be achieved by increasing the amount of the silane coupling agent described above. Problems such as missing patterns and reduced resolution are likely to occur. Therefore, it is preferable to use two or more silane coupling agents in combination from the viewpoint of improving adhesion to the base during development.
  • the silane coupling agent used in combination is not particularly limited, and examples include silane coupling agents having a functional group such as a vinyl group, an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, and an amino group. It is not limited to these.
  • silane coupling agents As a method for producing these silane coupling agents, a method of producing by reacting a silane coupling agent containing an acid anhydride with an alkylamine is preferable from the viewpoint of ease of production.
  • a silane coupling agent containing an acid anhydride two types of silane coupling agents are generated simultaneously. However, it is possible to use them as a mixture without separation and purification.
  • oligomer or the like can be replicated in this synthesis method, it does not significantly affect the adhesion improving effect and need not be considered.
  • the addition amount is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, based on the total amount of solid components of the colored resin composition, that is, the total of (A) the color pigment and (B) the alkali-soluble resin. If the amount is less than 1% by weight, the effect of improving the adhesion is not sufficient. If the amount is more than 15% by weight, a fine pattern is lost in alkali development and the resolution is lowered.
  • a black resin composition using a black light shielding material as a coloring pigment is a printing ink, inkjet ink, photomask preparation material, printing proof preparation material, etching resist, solder resist, It can be used for production of PDP partition walls, dielectric patterns, electrode (conductor circuit) patterns, wiring patterns of electronic components, light-shielding images such as conductive pastes, conductive films, and black matrices.
  • a light-shielded image (including a black matrix) is provided on the interval portion of the coloring pattern, the peripheral portion, and the outside light side of the TFT. It can be suitably used for a light shielding film for a touch panel.
  • a liquid crystal display device a plasma display device, an EL display device equipped with an inorganic EL, a CRT display device, a black edge provided at the periphery of a display device equipped with a touch panel, red, blue, green It is suitably used as a black matrix formed in a lattice-like or striped black portion between colored pixels, more preferably in a color filter for a liquid crystal display device, or on a cover glass for a touch panel.
  • the black matrix that is formed on the cover glass for touch panels has a role as a frame that shields light leaking from the LCD panel, but in order to improve the design, a colored matrix formed by a colored resin composition other than black is used.
  • a frame may be formed, and the colored resin composition of the present invention can be suitably used.
  • the (A) colored pigment of the colored resin composition of the present invention either an organic pigment or an inorganic pigment can be suitably used.
  • the pigments those having strong coloring power and excellent light resistance, heat resistance, and chemical resistance are particularly preferable.
  • color index (CI) numbers the following are preferably used, but they are not limited to these.
  • red pigments examples include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, etc. are used.
  • PR Pigment Red
  • orange pigments examples include pigment orange (hereinafter abbreviated as PO) 13, PO36, PO38, PO43, PO51, PO55, PO59, PO61, PO64, PO65, PO71, and the like.
  • yellow pigments examples include pigment yellow (hereinafter abbreviated as PY) PY12, PY13, PY17, PY20, PY24, PY83, PY86, PY93, PY95, PY109, PY110, PY117, PY125, PY129, PY137, PY138, PY139, PY147. , PY148, PY150, PY153, PY154, PY166, PY168, PY185, etc. are used.
  • PY pigment yellow
  • pigment violet (hereinafter abbreviated as PV) 19, PV23, PV29, PV30, PV32, PV37, PV40, PV50, and the like are used.
  • pigment blue (hereinafter abbreviated as PB) 15, PB15: 3, PB15: 4, PB15: 6, PB22, PB60, PB64 and the like are used.
  • pigment green hereinafter abbreviated as PG 7
  • PG10 PG36
  • PG58 PG58
  • black pigments black organic pigments, mixed color organic pigments, inorganic pigments, and the like can be used.
  • Carbon black, perylene black, aniline black, etc. are used as black organic pigments, and at least two kinds of pigments selected from red, blue, green, purple, yellow, magenta, cyan, etc. are mixed as mixed color organic pigments.
  • Pseudo-blackened as inorganic pigments include graphite and fine metal particles such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, metal oxide, composite oxide, metal sulfide Products, metal nitrides, metal oxynitrides and the like. These may be used alone or in combination of two or more.
  • carbon black and titanium nitride are preferably used because of their high light shielding properties.
  • white pigments include titanium dioxide, barium carbonate, zirconium oxide, calcium carbonate, barium sulfate, alumina white, silicon dioxide and the like.
  • the titanium nitride includes titanium nitride as a main component, and usually includes titanium oxide TiO 2 , Ti n O 2n-1 (1 ⁇ n ⁇ 20) as subcomponents, and low-order titanium oxide and TiN x O. It contains titanium oxynitride represented by y (0 ⁇ x ⁇ 2.0, 0.1 ⁇ y ⁇ 2.0).
  • the peak diffraction angle 2 ⁇ derived from the (200) plane when the CuK ⁇ ray of titanium nitride used in the present invention is an X-ray source is preferably 42.5 ° to 43.2 °, Further, it is preferably 42.5 ° to 42.8 °, more preferably 42.5 ° to 42.7 °.
  • a titanium compound having a crystal structure having nitrogen atoms and oxygen atoms has the strongest peak in the diffraction angle 2 ⁇ range of 42.5 ° to 43.4 °, and is in a crystalline state containing a large amount of oxygen atoms. The more the peak position is shifted to the higher angle side with respect to 42.5 °.
  • titanium oxynitride with insufficient nitriding reduction obtained by nitriding titanium oxide the strongest peak is confirmed at a diffraction angle 2 ⁇ of 42.9 ° to 43.2 ° (Japanese Patent Laid-Open No. 2006-209102). Publication).
  • the crystallite size constituting the titanium nitride particles can be obtained from the half width of the X-ray diffraction peak, and is calculated using the Scherrer equation shown in the following equations (2) and (3).
  • K 0.9
  • wavelength of X-ray (0.15418 nm)
  • ⁇ e half width of diffraction peak
  • ⁇ o correction value of half width (0.12 °).
  • ⁇ , ⁇ e and ⁇ o are calculated in radians.
  • the crystallite size is preferably 10 nm or more, further preferably 10 to 50 nm, and more preferably 10 to 30 nm.
  • titanium nitride particles having a crystallite size of less than 10 nm are used, there arises a problem that the light blocking property of the black matrix is lowered and further the dispersibility is deteriorated.
  • the thickness exceeds 50 nm, the light shielding property is lowered, and further, sedimentation is likely to occur, and the storage stability is deteriorated.
  • the smaller the crystallite size the lower the light-shielding property, but the reflection color approaches an achromatic color. Therefore, in the present invention, a reasonably small one is preferable.
  • the specific surface area of the titanium nitride particles used in the present invention can be determined by the BET method, and the value is preferably 5 to 100 m 2 / g, more preferably 10 to 100 m 2 / g, more preferably 30. ⁇ 100 m 2 / g. Further, from the specific surface area obtained by the BET method, the particle diameter when the particles are assumed to be perfect spheres and the particle diameter is uniform can be obtained by the following equation (4).
  • BET equivalent average particle diameter (nm) 6 / (S ⁇ d ⁇ 1000) (4)
  • S specific surface area (m 2 / g)
  • d density (g / cm 3 )
  • d 5.24 (g / cm 3 ) for titanium nitride
  • d 4 for titanium oxynitride .3 (g / cm 3 ).
  • the specific surface area is small, that is, when the primary particle size is large, it is difficult to finely disperse the particles, the particles settle during storage, the flatness of the resin black matrix decreases, or the glass adheres closely. There arises a problem that the performance is lowered.
  • the specific surface area is large, that is, when the primary particle size is small, the particles are likely to re-aggregate during dispersion, so that the dispersion stability tends to deteriorate, or when the resin black matrix is used, there is sufficient concealment as a light shielding material. This is not preferable because the OD value is lowered without being obtained.
  • the primary particles of the particles are a collection of several crystallites
  • the primary particles are preferably composed of a single crystallite. That is, the relationship between the crystallite size obtained from the half width of the X-ray diffraction peak and the particle diameter obtained from the specific surface area is preferably in the range of the following formula (5).
  • the titanium nitride particles used in the present invention contain TiN as a main component, and are usually noticeable when oxygen is mixed during synthesis, especially when the particle size is small, but partly due to oxidation of the particle surface, etc. Contains oxygen atoms. A smaller amount of oxygen is preferable because a higher OD value can be obtained, and it is particularly preferable not to contain TiO 2 as a subcomponent. However, the smaller the oxygen content, the red the color of the reflection, and therefore it is preferable that oxygen atoms are appropriately contained.
  • the oxygen atom content is 5 to 20% by weight, more preferably 8 to 20% by weight.
  • Titanium atom content is analyzed by ICP emission spectroscopy, nitrogen atom content is analyzed by inert gas melting-thermal conductivity method, and oxygen atom content is analyzed by inert gas melting-infrared absorption method. can do.
  • a gas phase reaction method is generally used to synthesize titanium nitride, and examples include an electric furnace method and a thermal plasma method, but thermal plasma with little contamination, easy particle size, and high productivity. Synthesis by the method is preferred. Specifically, the primary particles of titanium nitride synthesized by the thermal plasma method are formed from almost single crystallites, and are lower by using titanium nitride synthesized by the thermal plasma method. This is preferable because a black matrix having a dielectric constant can be formed.
  • Examples of the method for generating thermal plasma include direct current arc discharge, multiphase arc discharge, radio frequency (RF) plasma, hybrid plasma, and the like, and high frequency plasma in which impurities from the electrode are less mixed is more preferable.
  • Specific methods for producing titanium nitride fine particles by the thermal plasma method include a method in which titanium tetrachloride and ammonia gas are reacted in a plasma flame (Japanese Patent Laid-Open No. 2-22110), or titanium powder is evaporated by high-frequency thermal plasma.
  • a method of introducing nitrogen as a carrier gas and nitriding and synthesizing it in the cooling process Japanese Patent Laid-Open No.
  • the present invention is not limited to these, and the production method is not limited as long as titanium nitride particles having desired physical properties can be obtained.
  • Various titanium nitride particles are commercially available, and a plurality of particles satisfying the diffraction angle and the oxygen atom amount defined in the present invention, and further satisfying the preferred crystallite size and specific surface area described above are also commercially available. ing. In the present invention, those commercially available products can be preferably used.
  • the carbon black used in the present invention it is preferable to use carbon black that has been surface-treated in order to improve insulation.
  • No. 249678 wet oxidation treatment on the surface (Japanese Patent No. 4464081), surface modification with an organic group composed of a non-polymer group (Japanese Patent Publication No. 2008-517330), and the like are known.
  • it is particularly preferable to use carbon black whose surface is modified with an organic group composed of a non-polymer group because a resin black matrix having high insulation can be obtained even after high-temperature heat treatment.
  • it is preferable to use carbon black whose surface is modified with an organic compound having a sulfonic acid group since it is possible to suppress a decrease in insulation properties due to high insulation properties and high-temperature treatment.
  • the carbon atom ratio must be 95% or less, the sulfur atom ratio must be 0.5% or more, and the carbon atom ratio is 95% or less.
  • the sulfur atom ratio is preferably 1.0% or more, more preferably the carbon atom ratio is 90% or less, and the sulfur atom ratio is 1.0% or more. The higher the proportion of sulfur atoms in the carbon black surface, the more effectively the binder resin is adsorbed to the carbon black, thereby making it possible to suppress contact between the carbon blacks due to steric hindrance and improving the insulation of the resin black matrix. To do.
  • the sulfur atom component present on the surface of the carbon black used in the present invention exists in the form of disulfide, carbon disulfide, and oxide, but in order to obtain higher insulation properties, It is desirable to exist in a state, specifically, it is desirable to exist in a state of SO and SOx (2 ⁇ x ⁇ 4).
  • the state of S atoms on the surface of carbon black can be confirmed by X-ray photoelectron spectroscopy (XPS), and the S2p peak component is assigned to components belonging to CS and SS, SO and SOx (2 ⁇ x ⁇
  • the abundance ratio can also be confirmed by dividing into the components belonging to 4).
  • the ratio of the sulfur atom component present on the surface to a component derived from SO and SOx is preferably 70% or more, and more preferably 80% or more. More preferred.
  • the mechanism by which higher insulation and thermal stability are obtained due to the large amount of components derived from SO and SOx is unknown, but it is presumed that the adsorption of the binder resin to carbon black becomes stronger.
  • the ratio of the sulfur atom component existing on the surface to a component derived from SO and SOx is 70% or less, and the surface state is It can be said that it is completely different.
  • the specific surface area of the carbon black used in the present invention is not particularly limited, it is preferable that the value measured at the BET method of nitrogen adsorption, is 10 ⁇ 600m 2 / g, more 20 ⁇ 200m 2 / g is preferable, and 20 to 100 m 2 / g is more preferable.
  • the specific surface area is large, that is, when the primary particle size is small, the particles are likely to aggregate, so that it becomes difficult to stabilize the dispersion and storage stability is deteriorated.
  • the specific surface area is small, that is, when the primary particle diameter is large, the light shielding property is lowered, or the carbon blacks are in contact with each other in the resin coating film.
  • titanium nitride and / or carbon black as the color pigment (A), and (A) ratio of titanium nitride in the total weight of the light shielding material Is preferably 20 to 80% by weight, more preferably 30 to 70% by weight.
  • the proportion of titanium nitride is small, the reflection color is achromatic, but in order to obtain a desired light-shielding property, it is necessary to increase the proportion of the pigment in the resin composition, resulting in a decrease in adhesion. And further, the insulating property is lowered, which is not preferable.
  • the decrease in insulation due to high-temperature heat history becomes significant, and the dielectric constant also increases, which is not preferable.
  • the greater the proportion of titanium nitride the higher the insulation and light shielding properties.
  • the reflection color is reddish, the above range is preferable.
  • an alkali-soluble resin is an essential component, but it acts as a binder for the pigment and is soluble in an alkali developer during the development process when forming a pattern such as a black matrix. If it is, it will not specifically limit. Either photosensitive or non-photosensitive can be used. Specifically, an epoxy resin, an acrylic resin, a siloxane polymer resin, a polyimide resin, or the like is preferably used. In particular, an acrylic resin or a polyimide resin is excellent in terms of the heat resistance of the coating film and the storage stability of the colored resin composition, and is preferably used. Furthermore, in forming a pattern such as a black matrix, a photosensitive alkali-soluble resin is preferably used because the process of forming the pattern becomes simpler by using a photosensitive resin.
  • photosensitive alkali-soluble resin examples include but are not limited thereto.
  • the photosensitive alkali-soluble resin is composed of at least an alkali-soluble polymer, a reactive monomer, and a photopolymerization initiator. These quantitative ratios are usually 10/90 to 90/10 as the weight composition ratio of the alkali-soluble polymer and the reactive monomer, and the addition amount of the photopolymerization initiator is 1 to 20 with respect to the total weight of the polymer and the monomer. It is about wt%.
  • An alkali-soluble polymer having a carboxyl group is preferred, and a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound can be preferably used.
  • the unsaturated carboxylic acid include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid and vinyl acetic acid, dicarboxylic acids such as itaconic acid, maleic acid and fumaric acid, or acid anhydrides thereof, phthalic acid mono (2 And (meth) acryloyloxyethyl) polycarboxylic acid monoesters.
  • an acrylic polymer containing a structural unit derived from (meth) acrylic acid is preferable, and a carboxylic acid contained in the structural unit is reacted with a compound containing an ethylenically unsaturated group and an epoxy group.
  • a carboxylic acid contained in the structural unit is reacted with a compound containing an ethylenically unsaturated group and an epoxy group.
  • an ethylenically unsaturated group an acryl group and a methacryl group are preferable.
  • copolymerizable ethylenically unsaturated compounds examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, methacrylic acid.
  • an acrylic polymer containing (meth) acrylic acid and benzyl (meth) acrylate is particularly preferable from the viewpoints of dispersion stability and pattern processability.
  • the acrylic polymer When the acrylic polymer is added in an amount of 5 to 50%, preferably 7 to 40%, based on the pigment at the time of dispersing the pigment, a highly disperse pigment dispersion can be obtained.
  • the side chain is ethylenic.
  • An acrylic polymer having an unsaturated group can be preferably used. Specific examples include a copolymer described in Japanese Patent No. 3120476 and JP-A-8-262221, or a photocurable resin “Cyclomer (registered trademark) P” (Daicel), which is a commercially available acrylic polymer. Chemical Industry Co., Ltd.), alkali-soluble cardo resin and the like.
  • the weight average molecular weight (Mw) of the alkali-soluble polymer is preferably 5,000 to 40,000 (measured by gel permeation chromatography using tetrahydrofuran as a carrier and converted using a standard polystyrene calibration curve). Furthermore, a polymer having a weight average molecular weight of 8,000 to 40,000 and an acid value of 60 to 150 (mgKOH / g) has a photosensitive property, solubility in an ester solvent, solubility in an alkali developer, and residue control. Most preferable from the viewpoint.
  • a polyfunctional or monofunctional acrylic monomer or oligomer can be used as the reactive monomer.
  • the polyfunctional monomer include bisphenol A diglycidyl ether (meth) acrylate, poly (meth) acrylate carbamate, modified bisphenol A epoxy (meth) acrylate, adipic acid 1,6-hexanediol (meth) acrylic acid ester, anhydrous Phthalic acid propylene oxide (meth) acrylic acid ester, trimellitic acid diethylene glycol (meth) acrylic acid ester, rosin-modified epoxy di (meth) acrylate, alkyd-modified (meth) acrylate, Japanese Patent No. 3621533 and Japanese Patent Laid-Open No.
  • a compound having a functional group of 3 or more, more preferably 5 or more dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and acid-modified products thereof are used. preferable.
  • an unsaturated group-containing alkali-soluble monomer obtained by reacting a polybasic carboxylic acid or its acid anhydride with a reaction product of an epoxy compound having two glycidyl ether groups and methacrylic acid is also developable and processed.
  • (meth) acrylate having a fluorene ring having a large amount of aromatic rings and high water repellency in the molecule is preferable because the pattern can be controlled to a desired shape during development.
  • the photopolymerization initiator is not particularly limited, but preferably contains an alkylphenone-based and / or oxime ester-based photopolymerization initiator.
  • alkylphenone photopolymerization initiator examples include ⁇ -aminoalkylphenone and ⁇ -hydroxyalkylphenone, and ⁇ -aminoalkylphenone is particularly preferred from the viewpoint of high sensitivity.
  • ⁇ -aminoalkylphenone is particularly preferred from the viewpoint of high sensitivity.
  • “Irgacure (registered trademark)” 369 A 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, Ciba Specialty Chemicals Co., Ltd.
  • 1,2-octanedione 1- [4- (phenylthio) -2- (O, which is Ciba Specialty Chemical Co., Ltd. “Irgacure (registered trademark)” OXE01 -Benzoyloxime)], an etanone that is “Irgacure®” OXE02, Ciba Specialty Chemicals Co., Ltd., 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -, 1- (0-acetyloxime), “Adeka (registered trademark) Optomer” N-1818, N-1919, “Adeka Cruz” NCI-831 manufactured by Asahi Denka Kogyo Co., Ltd.
  • photopolymerization initiators inorganic compounds such as benzophenone compounds, oxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, carbazole compounds, triazine compounds, phosphorus compounds or titanates
  • Known photopolymerization initiators such as system photopolymerization initiators can also be used in combination.
  • benzophenone N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, benzoin, benzoin methyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, ⁇ -hydroxyisobutylphenone, Thioxanthone, 2-chlorothioxanthone, t-butylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 2-ethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthate Laquinone, 1,2-benzoanthraquinone, 1,4-dimethylanthraquinone, 2-phenylanthraquinone, 2- (o-chlorophenyl
  • the organic solvent used in the colored resin composition of the present invention is not particularly limited, and esters, aliphatic alcohols, ketones and the like can be used.
  • esters include benzyl acetate (boiling point 214 ° C.), ethyl benzoate (boiling point 213 ° C.), ⁇ -butyrolactone (boiling point 204 ° C.), methyl benzoate (boiling point 200 ° C.), diethyl malonate (boiling point 199 ° C.), 2-ethylhexyl acetate (bp 199 ° C.), 2-butoxyethyl acetate (bp 192 ° C.), 3-methoxy-3-methyl-butyl acetate (bp 188 ° C.), diethyl oxalate (bp 185 ° C.), ethyl acetoacetate ( Boiling point 181 ° C.), cyclohexyl acetate (bp 174 ° C.), 3-methoxy-butyl acetate (bp 173 ° C.), methyl ace
  • acetate-type or propionate-type solvents are 3-methoxy-3-methyl-butyl acetate, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether propionate, 3-methoxy-butyl. Particularly preferred are acetate and propylene glycol monomethyl ether acetate.
  • propylene glycol monomethyl ether (boiling point 120 ° C.), propylene glycol monoethyl ether (boiling point 133 ° C.), propylene glycol tertiary butyl ether (boiling point 153 ° C.), dipropylene glycol monomethyl ether (boiling point 188 ° C.)
  • Aliphatic ethers such as propylene glycol derivatives, etc., aliphatic esters other than those described above, for example, ethyl acetate (boiling point 77 ° C.), butyl acetate (boiling point 126 ° C.), isopentyl acetate (boiling point 142 ° C.), or butanol ( 118 ° C.), aliphatic alcohols such as 3-methyl-2-butanol (bp 112 ° C.), 3-methyl-3-methoxybutanol (bp 174
  • a mixed solvent of two or more components in order to achieve appropriate volatility and drying properties.
  • the boiling points of all the solvents constituting the mixed solvent are 150 ° C. or less, the film thickness uniformity cannot be obtained, the film thickness of the coating end part is increased, the pigment is applied to the base part for discharging the coating liquid from the slit. Aggregates are formed, causing many problems that streaks occur in the coating film.
  • the mixed solvent contains a large amount of solvent having a boiling point of 200 ° C. or higher, the surface of the coating film becomes sticky and sticking occurs. Accordingly, a mixed solvent containing 30 to 75% by weight of a solvent having a boiling point of 150 to 200 ° C. is desirable.
  • pigment dispersants include polyester polymer pigment dispersants, acrylic polymer pigment dispersants, polyurethane polymer pigment dispersants, polyallylamine polymer dispersants, pigment derivatives, cationic surfactants, and nonionic interfaces.
  • pigment dispersants include an activator, an anionic surfactant, and a carbodiimide pigment dispersant. These pigment dispersants are appropriately selected and used according to the type of pigment.
  • these pigment dispersants may be used alone or in combination of two or more. Since these polymer dispersants do not have photosensitivity, there is a concern that the photosensitivity of the target color resist may be deteriorated if added in a large amount. Therefore, an appropriate addition amount considering dispersion stability and photosensitivity is required. Is desirable. Addition of 1 to 50 (% by weight), more preferably 3 to 30 (% by weight) with respect to the pigment is even more preferable because it has the effect of highly stabilizing dispersion without deteriorating the photosensitive performance.
  • a surfactant may be added to the colored resin composition of the present invention for the purpose of preventing the coating property, the smoothness of the colored coating, and Benard cell.
  • the addition amount of the surfactant is usually 0.001 to 10% by weight of the pigment, preferably 0.01 to 1% by weight. If the amount added is too small, the coating properties, smoothness of the colored coating and Benard cell are not effective, and if too large, the physical properties of the coating film may be poor.
  • the surfactant examples include anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine, cationic surfactants such as stearylamine acetate and lauryltrimethylammonium chloride, lauryldimethylamine oxide, Amphoteric surfactants such as lauryl carboxymethyl hydroxyethyl imidazolium betaine, nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, sorbitan monostearate, and silicones based on polydimethylsiloxane Surfactants, fluorosurfactants and the like can be mentioned. In this invention, it is not limited to these, Surfactant can use 1 type (s) or 2 or more types.
  • the pigment composition / resin component weight composition ratio is preferably in the range of 80/20 to 40/60 in order to obtain a coating having a high OD value.
  • the pigment component is (A) the sum of the light shielding material and the color pigment for adjusting chromaticity
  • the resin component is (B) an alkali-soluble resin composed of a polymer, a monomer, etc., and an oligomer or photopolymerization is started. It is the total of additives such as additives and polymer dispersants. If the amount of the resin component is too small, the adhesion of the black film to the substrate becomes poor. On the other hand, if the amount of the pigment component is too small, the optical density per unit thickness (OD value / ⁇ m) becomes low, causing a problem.
  • the solid content concentration of the resin component and the pigment component is preferably 2 to 30%, more preferably 5 to 20%, from the viewpoints of coating properties and drying properties.
  • the colored resin composition of the present invention preferably consists essentially of a solvent, a resin component and a pigment component, and the total amount of the resin component and the colored pigment is preferably 2 to 30%, more preferably 5%. ⁇ 20% with the balance being solvent.
  • a surfactant may be further contained at the concentration described above.
  • a method of dispersing a pigment directly in a resin solution using a disperser a pigment dispersion is prepared by dispersing a pigment in water or an organic solvent using a disperser, Thereafter, it is manufactured by a method of mixing with a resin solution.
  • a method for dispersing the pigment there are no particular limitations on the method for dispersing the pigment, and various methods such as a ball mill, a sand grinder, a three-roll mill, and a high-speed impact mill can be used, but a bead mill is preferred from the viewpoint of dispersion efficiency and fine dispersion.
  • a coball mill, a basket mill, a pin mill, a dyno mill or the like can be used.
  • the beads of the bead mill titania beads, zirconia beads, zircon beads and the like are preferably used.
  • the bead diameter used for dispersion is preferably 0.01 to 5.0 mm, more preferably 0.03 to 1.0 mm.
  • the primary particle diameter of the pigment and the secondary particles formed by aggregating the primary particles are small, it is preferable to use fine dispersed beads of 0.03 to 0.10 mm.
  • dispersing a pigment containing coarse particles of about submicron it is preferable to use dispersed beads of 0.10 mm or more because sufficient pulverization force can be obtained and the pigment can be finely dispersed.
  • a method for producing a resin black matrix substrate by a die coating apparatus using the colored resin composition of the present invention will be described.
  • a transparent substrate such as soda glass, non-alkali glass, or quartz glass is usually used, but is not particularly limited thereto.
  • the die coating apparatus include a single wafer coating apparatus disclosed in Japanese Patent No. 3139358 and Japanese Patent No. 3139359. By this apparatus, the colored resin composition (coating liquid) of the present invention is discharged from the die and the substrate is moved, whereby the colored resin composition can be applied onto the substrate.
  • the coating defects are eliminated and the base is removed.
  • the rate is improved.
  • a solvent is removed by air drying, reduced pressure drying, heat drying, etc., and the coating film of a colored resin composition is formed.
  • additional heating and drying in an oven or a hot plate eliminates coating defects caused by convection and improves the yield.
  • the drying under reduced pressure is preferably carried out in the range of room temperature to 100 ° C., 5 seconds to 10 minutes, and a degree of vacuum of 500 to 10 (Pa), more preferably 150 to 50 (Pa).
  • the drying by heating is preferably carried out in the range of 50 to 120 ° C. for 10 seconds to 30 minutes using an oven or a hot plate.
  • an alkaline developer it is preferable to use an alkaline developer to which a surfactant such as a nonionic surfactant is added in an amount of 0.1 to 5% because a better pattern can be obtained.
  • the alkaline substance used in the alkaline developer is not particularly limited.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n- Primary amines such as propylamine, secondary amines such as diethylamine and di-n-propylamine, tertiary amines such as triethylamine and methyldiethylamine, and tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH) , Quaternary ammonium salts such as choline, alcoholic amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol, diethylaminoethanol, pyrrole, piperidine, 1,8-dia Bicyclo [5,4,0] -7-undecene, 1,5-diazabicyclo [4,3,0] -5-nonane, organic alkalis such as
  • the concentration of the alkaline substance is 0.01 to 50% by weight.
  • the amount is preferably 0.02 to 10% by weight, more preferably 0.02 to 1% by weight.
  • a water-soluble organic solvent such as ethanol, ⁇ -butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone and the like may be appropriately added to the developer.
  • an aqueous developer of an alkaline aqueous solution is preferable from the viewpoint of working environment and waste developer treatment.
  • the development method is not particularly limited, although an immersion method, a spray method, a paddle method, or the like is used. After the development, a washing process with pure water or the like is added.
  • the coating pattern of the obtained colored resin composition is then patterned by heat treatment (post-bake).
  • the heat treatment is usually performed continuously or stepwise for 0.25 to 5 hours at a temperature of 150 to 300 ° C., preferably 180 to 250 ° C. in air, in a nitrogen atmosphere, or in a vacuum. Is called.
  • the optical density (Optical Density, OD value) of the resin black matrix obtained from the colored resin composition of the present invention is 2.5 or more per 1.0 ⁇ m thickness in the visible light range of 380 to 700 nm. More preferably, it is preferably 3.0 or more, and more preferably 4.0 or more.
  • OD value can be calculated
  • I OD value log 10 (I 0 / I) (6)
  • I 0 incident light intensity
  • I transmitted light intensity
  • the reflection chromaticity of the resin black matrix is measured from the surface of the transparent substrate, and is calculated by the CIE L * a * b * color system using the reflection spectrum for the standard C light source according to the method of JIS Z8729.
  • the chromaticity values (a *, b *) are both preferably ⁇ 2.0 to 2.0, and more preferably ⁇ 1.0 to 1.0.
  • the chromaticity value (a *, b *) is smaller than ⁇ 2.0, the image on the film surface is colored blue and green when the resin black matrix is viewed through the transparent substrate. If the value exceeds 2.0, there is a problem that an image reflected on the film surface is colored red and yellow and is visually recognized.
  • the surface resistance value ⁇ s ( ⁇ / ⁇ ) of the resin black matrix is preferably 10 10 ( ⁇ / ⁇ ) or more, and more preferably 10 12 ( ⁇ / ⁇ ) or more.
  • the surface resistance value can be obtained by measuring according to the method of JIS K6911.
  • the relative dielectric constant ⁇ r of the resin black matrix is preferably 10 or less at 1 MHz, more preferably 8 or less, and even more preferably 6 or less. If the relative dielectric constant of the resin black matrix is greater than 10, the electric field in the touch panel may become non-uniform and the sensitivity of the sensor electrode may be reduced.
  • the relative dielectric constant of the resin black matrix is preferably as small as possible, and the lower limit thereof is not particularly limited, but is usually 2 or more at 1 MHz.
  • the specific surface area of the particles is the adsorption isotherm at a liquid nitrogen temperature (77 K) of N 2 gas after vacuum degassing at 100 ° C. using a high precision fully automatic gas adsorption device (“BELSORP” 36) manufactured by Nippon Bell Co., Ltd.
  • BELSORP fully automatic gas adsorption device
  • the isotherm was analyzed by the BET method to determine the specific surface area.
  • the BET conversion particle diameter was calculated
  • X-ray diffraction X-ray diffraction was measured by a wide-angle X-ray diffraction method (RU-200R manufactured by Rigaku Corporation) with a powder sample packed in an aluminum standard sample holder.
  • the X-ray source is CuK ⁇ ray
  • the output is 50 kV / 200 mA
  • the slit system is 1 ° -1 ° -0.15 mm-0.45 mm
  • the measurement step (2 ⁇ ) is 0.02 °
  • the scan speed is It was 2 ° / min.
  • the crystallite size constituting the particles was determined using the Scherrer formulas of the above formulas (2) and (3).
  • composition analysis The content of titanium atoms was measured by ICP emission spectroscopic analysis (ICP emission spectroscopic analyzer SPS3000 manufactured by Seiko Instruments Inc.). The content of oxygen and nitrogen atoms is measured using an oxygen / nitrogen analyzer EMGA-620W / C manufactured by Horiba, Ltd., and the oxygen atoms are converted into inert gases by the infrared absorption method. The nitrogen atom was determined by the method.
  • Adhesion test A resin black matrix having a film thickness of 1.0 ⁇ m was formed on the soda glass, and the adhesion between the soda glass and the cured film was evaluated according to the JIS K5400 8.5.2 (1990) cross-cut tape method. On the surface of the cured film on the glass substrate, 11 parallel straight lines of 11 vertical and horizontal directions were drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife, and 100 squares of 1 mm ⁇ 1 mm were produced. .
  • the adhesion was also evaluated in the same manner as described above for the black matrix substrate treated with PCT (Pressure Cooker Test).
  • the conditions for the PCT treatment were a temperature of 121 ° C., a humidity of 100%, 2 atmospheres, and 12 hours.
  • the surface resistivity was measured in the same manner after the black matrix was heat-treated in an oven at 250 ° C. for 30 minutes.
  • a resin black matrix with a film thickness of 1.0 ⁇ m is formed on a soda glass with a thickness of 1.1 mm, and reflected from the glass surface using an ultraviolet / visible / near infrared spectrophotometer (Shimadzu spectrophotometer UV-2500PC).
  • the chromaticity was measured (measurement conditions were a measurement wavelength region; 300 to 780 nm, a sampling pitch: 1.0 nm, a scan speed; a low speed, a slit width; 2.0 nm).
  • Synthesis Example 1 Synthesis of Silane Coupling Agent Mixed Solution (a-1) To 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine were added. In addition, after stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the obtained solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- ( A mixed solution (a-1) of tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid was obtained.
  • Synthesis Example 2 Synthesis of silane coupling agent mixed solution (a-2) 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of t-pentylamine was added and stirred at room temperature for a while, and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • silane coupling agent mixed solution (a-2) 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of t-pentylamine was added and stirred at room temperature for a while, and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 2- (2- (t-pentylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid was obtained. , 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid mixed solution (a-2) was obtained.
  • Synthesis Example 3 Synthesis of Silane Coupling Agent Mixed Solution (a-3) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of isopropylamine. The mixture was stirred at room temperature for a while and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 2- (2- (isopropylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3
  • a mixed solution (a-3) of-(tert-isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 4 Synthesis of Silane Coupling Agent Mixed Solution (a-4) 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of n-propylamine was added and stirred at room temperature for a while, and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 2- (2-oxo-2- (propylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, A mixed solution (a-4) of 3- (propylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 5 Synthesis of Silane Coupling Agent Mixed Solution (a-5) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 14.90 g (160 mmol) of aniline. After stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 2- (2-oxo-2- (phenylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, A mixed solution (a-5) of 3- (phenylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 6 Synthesis of Silane Coupling Agent Mixed Solution (a-6) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 7.37 g (160 mmol) of ethanol. After stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 4-ethoxy-4-oxo-2- (trimethoxysilyl) butanoic acid, 4-ethoxy-4-oxo- A mixed solution (a-6) of 3- (trimethoxysilyl) butanoic acid was obtained.
  • Synthesis Example 7 Synthesis of Silane Coupling Agent Solution (a-7) To 400 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine. The mixture was stirred at room temperature for a while and then stirred at 60 ° C. for 2 hours. Then, it heated up to 140 degreeC and made it react for 6 hours, azeotropically propylene glycol monomethyl ether acetate and water.
  • the resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and a 1- (tert-butyl) -3-trimethoxysilylpyrrolidine-2,5-dione solution (a-7) Got.
  • Synthesis Example 8 Synthesis of acrylic polymer (P-1) After synthesis of methyl methacrylate / methacrylic acid / styrene copolymer (weight composition ratio 30/40/30) by the method described in Example 1 of Japanese Patent No. 3120476 An acrylic polymer having an average molecular weight (Mw) of 15,000 and an acid value of 110 (mgKOH / g) was added by adding 40 parts by weight of glycidyl methacrylate, reprecipitation with purified water, filtration and drying (P-1 ) A powder was obtained.
  • Mw average molecular weight
  • mgKOH / g acid value of 110
  • This carbon black CB-Bk1 200 g
  • propylene glycol monomethyl ether acetate 40 wt% solution 94 g
  • acrylic polymer P-1
  • Big Chemie Japan LPN21116 as a polymer dispersant
  • 40 wt% solution 31 g
  • Propylene glycol monomethyl ether acetate 675 g was charged into a tank and stirred with a homomixer (manufactured by Tokushu Kika) for 1 hour to obtain a preliminary dispersion.
  • the preliminary dispersion was supplied to an ultra apex mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% 0.05 mm ⁇ zirconia beads (manufactured by Nikkato, YTZ ball), and dispersed for 2 hours at a rotational speed of 8 m / s.
  • Titanium Black Dispersion Peak derived from the (200) plane of titanium nitride particles (Ti-BK1, manufactured by Nisshin Engineering Co., Ltd., TiN UFP Lot 13209010202) produced by the thermal plasma method
  • the diffraction angle 2 ⁇ was 42.62 °
  • the crystallite size determined from the half width of this peak was 21.9 nm
  • the BET specific surface area was 85.0 m 2 / g.
  • the titanium content was 70.4% by weight
  • the nitrogen content was 19.9% by weight
  • the oxygen content was 8.86% by weight.
  • no X-ray diffraction peak attributed to TiO 2 was observed.
  • Titanium nitride Ti-Bk1 200 g
  • propylene glycol monomethyl ether acetate 40 wt% solution 94 g
  • acrylic polymer P-1
  • Big Chemie Japan LPN21116 as polymer dispersant
  • 40 wt% solution 31 g
  • propylene Glycol monomethyl ether acetate 675 g was charged into a tank and stirred for 1 hour with a homomixer (manufactured by Tokushu Kika) to obtain Preliminary dispersion 1.
  • the pre-dispersed liquid was supplied to an ultra apex mill (manufactured by Kotobuki Industries) equipped with a centrifugal separator filled with 75% 0.05 mm ⁇ zirconia beads (manufactured by Neturen, YTZ balls), and dispersed for 3 hours at a rotational speed of 8 m / s.
  • an ultra apex mill manufactured by Kotobuki Industries
  • a centrifugal separator filled with 75% 0.05 mm ⁇ zirconia beads manufactured by Neturen, YTZ balls
  • Yellow Pigment Dispersion (Y-1) Yellow Pigment Dispersion was conducted in the same manner as Red Pigment Dispersion R-1, except that organic pigment organic pigment PY139 (Y-1, manufactured by Clariant) was used as the pigment. Liquid Y-1 was obtained.
  • Example 1 Carbon Black Dispersion CB-1 (267.9 g) and Titanium Black Dispersion TB-1 (267.9 g) were mixed, and a 40 wt% solution of acrylic polymer (P-1) in propylene glycol monomethyl ether acetate (122.1 g) ), 50% by weight propylene glycol monomethyl ether acetate solution (94.6 g) of dipentaerythritol hexaacrylate (DPHA manufactured by Nippon Kayaku Co., Ltd.) as a polyfunctional monomer, and ADEKA Co., Ltd.
  • “Adeka Cruz” as a photopolymerization initiator NCI-831 (11.8 g), silane coupling agent mixed solution (a-1) (37.5 g) as an adhesion improver, 10% by weight solution of propylene glycol monomethyl ether acetate (4.0 g) of silicone surfactant A propylene glycol monomethyl ether It was added a solution of the acetate (194.0 g), total solid concentration of 25 wt%, the black resin composition 1 the pigment / resin (weight ratio) 45/55 was obtained.
  • This black resin composition 1 was applied onto a soda glass substrate with a spinner 1H-DS manufactured by Mikasa Co., Ltd., and prebaked at 100 ° C. for 10 minutes to prepare a coating film.
  • a mask aligner PEM-6M manufactured by Union Optical Co., Ltd. exposure (200 mJ / cm 2 ) through a photomask, development using a 0.045 wt% KOH aqueous solution, and subsequent pure water cleaning, A patterned substrate was obtained. Furthermore, it was cured at 230 ° C. for 30 minutes. In this way, a black matrix 1 having a thickness of 1.00 ⁇ m was prepared.
  • Example 2 A black resin composition 2 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 2 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 2 in the same manner as in Example 1.
  • Example 3 A black resin composition 3 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 3 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 3 in the same manner as in Example 1.
  • Example 4 A black resin composition 4 was prepared in the same manner as in Example 1, except that the addition amount of the silane coupling agent mixed solution (a-1) was 6.3 g, and the addition amount of propylene glycol monomethyl ether acetate was 225.2 g. Got.
  • a black matrix 4 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 4 in the same manner as in Example 1.
  • Example 5 The black resin composition 5 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 12.5 g and the addition amount of propylene glycol monomethyl ether acetate was 219.0 g. Got.
  • a black matrix 5 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 5 in the same manner as in Example 1.
  • Example 6 A black resin composition 6 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 62.5 g and the addition amount of propylene glycol monomethyl ether acetate was 169.0 g. Got.
  • a black matrix 6 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 6 in the same manner as in Example 1.
  • Example 7 A black resin composition 7 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 187.5 g and the addition amount of propylene glycol monomethyl ether acetate was 44.0 g. Got.
  • a black matrix 7 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 7 in the same manner as in Example 1.
  • Example 8 Other than adding 7.5 g of 3-methacryloxypropyltrimethoxysilane (a-8) in addition to the silane coupling agent mixture (a-1), and the addition amount of propylene glycol monomethyl ether acetate being 186.5 g Obtained a black resin composition 8 in the same manner as in Example 1.
  • a black matrix 8 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 8 in the same manner as in Example 1.
  • Example 9 A black resin composition 9 was prepared in the same manner as in Example 8, except that the addition amount of the silane coupling agent mixture (a-1) was 12.5 g and the addition amount of propylene glycol monomethyl ether acetate was 211.5 g. Got.
  • a black matrix 9 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 9 in the same manner as in Example 1.
  • Example 10 A black resin composition 10 was prepared in the same manner as in Example 8 except that the addition amount of the silane coupling agent mixture (a-1) was 62.5 g and the addition amount of propylene glycol monomethyl ether acetate was 161.5 g. Got.
  • a black matrix 10 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 10 in the same manner as in Example 1.
  • Example 11 A black resin composition 11 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 0 g and the addition amount of the titanium black dispersion TB-1 was 534.8 g.
  • a black matrix 11 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 11 in the same manner as in Example 1.
  • Example 12 A black resin composition 12 was obtained in the same manner as in Example 8, except that the amount of carbon black dispersion CB-1 added was 134.0 g and the amount of titanium black dispersion TB-1 added was 401.9 g.
  • a black matrix 12 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 12 in the same manner as in Example 1.
  • Example 13 A black resin composition 13 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 401.9 g and the addition amount of the titanium black dispersion TB-1 was 134.0 g.
  • a black matrix 13 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 13 in the same manner as in Example 1.
  • Example 14 A black resin composition 14 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 534.8 g and the addition amount of the titanium black dispersion TB-1 was 0 g.
  • a black matrix 14 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 14 in the same manner as in Example 1.
  • Example 15 The red pigment dispersion R-1 (160.2 g), the blue pigment dispersion B-1 (320.4 g) and the yellow pigment dispersion Y-1 (320.4 g) were mixed, and the acrylic polymer (P-1) Propylene glycol monomethyl ether acetate 40 wt% solution (64.8 g), dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd. DPHA) as a polyfunctional monomer 50 wt% solution (38.7 g), ADEKA Co., Ltd.
  • P-1 Propylene glycol monomethyl ether acetate 40 wt% solution (64.8 g), dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd. DPHA) as a polyfunctional monomer 50 wt% solution (38.7 g), ADEKA Co., Ltd.
  • a pseudo black resin composition 15 was obtained.
  • a black matrix 15 having a thickness of 1.00 ⁇ m was prepared using the pseudo black resin composition 15 in the same manner as in Example 1.
  • a black matrix 16 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 16 in the same manner as in Example 1.
  • Comparative Example 2 A black resin composition 17 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 17 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 17 in the same manner as in Example 1.
  • Comparative Example 3 A black resin composition 18 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 18 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 18 in the same manner as in Example 1.
  • Comparative Example 4 A black resin composition 19 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-6) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 19 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 19 in the same manner as in Example 1.
  • Comparative Example 5 A black resin composition 20 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1).
  • a black matrix 20 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 20 in the same manner as in Example 1.
  • a black matrix 21 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 21 in the same manner as in Example 1.
  • Comparative Example 7 Except for adding 7.5 g of 3-aminopropyltriethoxysilane (a-10) instead of the silane coupling agent mixed solution (a-1) and changing the addition amount of propylene glycol monomethyl ether acetate to 224.0 g In the same manner as in Example 1, a black resin composition 22 was obtained.
  • a black matrix 22 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 22 in the same manner as in Example 1.
  • Comparative Example 8 Except for adding 7.5 g of 3-ureidopropyltriethoxysilane (a-11) in place of the silane coupling agent mixture (a-1) and adding 224.0 g of propylene glycol monomethyl ether acetate. In the same manner as in Example 1, a black resin composition 23 was obtained.
  • a black matrix 23 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 23 in the same manner as in Example 1.
  • a black matrix 24 having a thickness of 1.00 ⁇ m was prepared using the black resin composition 24 in the same manner as in Example 1.
  • Evaluation results are shown in Table 1. It can be seen that the black matrix formed using the resin composition shown in the examples has high adhesion and excellent chemical resistance, and does not easily peel off even after wet heat treatment or chemical immersion.
  • the colored resin composition of the present invention can be used for a black matrix of a color filter substrate for a liquid crystal display device.

Abstract

Provided is a colored resin composition with which it is possible to easily form a resin black matrix having strong adhesiveness and good chemical resistance. It is possible to obtain a black matrix substrate having excellent reliability by using the colored resin composition of the present invention. The present invention provides a colored resin composition comprising at least (A) a coloring pigment, (B) an alkali-soluble resin, (C) an agent for improving adhesiveness, and (D) an organic solvent, wherein the colored rein composition contains a predetermined silane coupling agent as the agent for improving adhesiveness (C).

Description

着色樹脂組成物及び樹脂ブラックマトリクス基板Colored resin composition and resin black matrix substrate
 本発明は、着色樹脂組成物及びこれを用いた樹脂ブラックマトリクス基板に関する。 The present invention relates to a colored resin composition and a resin black matrix substrate using the same.
 現在、遮光材料の用途は多岐にわたり、液晶ディスプレイ(以下LCDと略す)、プラズマディスプレイパネル(以下PDPと略す)等のフラットパネルディスプレイ(FPD)においては、表示特性向上のために、表示領域内の着色パターンの間隔部や表示領域周辺部分の縁、及びTFTの外光側等に遮光画像を設けるために用いられている。 At present, light-shielding materials are used for various purposes, and in flat panel displays (FPD) such as liquid crystal displays (hereinafter abbreviated as LCD) and plasma display panels (hereinafter abbreviated as PDP), in order to improve display characteristics, It is used for providing a light-shielded image on the interval portion of the coloring pattern, the edge of the peripheral portion of the display area, and the outside light side of the TFT.
 LCD用のカラーフィルターでは、通常、ブラックマトリクスを形成したガラス、プラスチックシート等の透明基板表面に、赤、緑、青の異なる色相を順次、ストライプ状あるいはモザイク状等の色パターンで形成する方法で製造されている。この遮光性膜として用いられるブラックマトリクスは画素間の光漏れによるコントラスト及び色純度の低下を防止する役割を果たしている。 In color filters for LCD, usually, a different color of red, green, and blue is sequentially formed in a striped or mosaic color pattern on the surface of a transparent substrate such as glass or plastic sheet on which a black matrix is formed. It is manufactured. The black matrix used as the light-shielding film plays a role of preventing a decrease in contrast and color purity due to light leakage between pixels.
 また、タッチパネル用基板においても、同様に遮光膜としてブラックマトリクスが形成されており、センサー基板に対向するカバーガラスやカバーフィルム上に印刷インクにより形成することが一般的になされている。一方、タッチパネル軽量化への要求が高まっており、カバーガラス上に遮光膜とタッチセンサーを同時に形成する技術開発が進んでいる。そのような場合、カバーガラス上にブラックマトリクスを形成した後に電極等を形成する必要があるため、高い絶縁性に加え、高い密着性や耐薬品性が要求される。特に、カラーフィルター用途においてはガラス基板として無アルカリガラスが使用されているのに対し、タッチパネル用途においてはガラス基板としてイオン性不純物を多量に含有するソーダガラス基板を用いることが一般的であり、ガラスとのより高い密着性が必要となっている。 Also, in the touch panel substrate, a black matrix is similarly formed as a light shielding film, and it is generally formed by printing ink on a cover glass or a cover film facing the sensor substrate. On the other hand, there is an increasing demand for weight reduction of the touch panel, and technological development for simultaneously forming a light-shielding film and a touch sensor on a cover glass is progressing. In such a case, since it is necessary to form an electrode after forming a black matrix on the cover glass, high adhesion and chemical resistance are required in addition to high insulation. In particular, non-alkali glass is used as a glass substrate in color filter applications, whereas a soda glass substrate containing a large amount of ionic impurities is generally used as a glass substrate in touch panel applications. Higher adhesion is required.
 従来、ブラックマトリクスとして、クロム、ニッケル、アルミニウム等の金属あるいは金属化合物の蒸着膜が用いられてきたが、その工程が複雑でかつ高価であり、また金属薄膜の表面が高反射性である等の問題点がある。そこで、この問題を解決するものとして、顔料を分散した樹脂組成物を用いる顔料分散法が現在主流となっている。 Conventionally, vapor deposition films of metals or metal compounds such as chromium, nickel, and aluminum have been used as the black matrix, but the process is complicated and expensive, and the surface of the metal thin film is highly reflective. There is a problem. Therefore, as a solution to this problem, a pigment dispersion method using a resin composition in which a pigment is dispersed is currently mainstream.
 顔料分散法には、ネガ型とポジ型があるが、アクリルポリマー、アクリル系多官能モノマーあるいはオリゴマー、光開始剤、溶剤及び顔料を主成分とするネガ型の感光性組成物が広く用いられている。遮光材としては、カーボンブラック、低次酸化チタンや酸窒化チタン等のチタンブラック、酸化鉄等の金属酸化物、その他有機顔料混色系が使用されているが、カーボンブラック及び酸窒化チタンが主流となっている。高い絶縁性を有するブラックマトリクスを得るためには、遮光材としてチタンブラックや樹脂等により表面処理したカーボンブラック、あるいは有機顔料を混合したものが使用されている(特許文献1)。 There are negative and positive pigment dispersion methods, but negative photosensitive compositions mainly composed of acrylic polymers, acrylic polyfunctional monomers or oligomers, photoinitiators, solvents and pigments are widely used. Yes. As the light shielding material, carbon black, titanium black such as low-order titanium oxide and titanium oxynitride, metal oxides such as iron oxide, and other organic pigment mixed colors are used, but carbon black and titanium oxynitride are the mainstream. It has become. In order to obtain a black matrix having high insulation, carbon black surface-treated with titanium black, resin, or the like, or a mixture of organic pigments is used as a light shielding material (Patent Document 1).
 ブラックマトリクスの基板との密着性を向上させるために、アミン系シラン化合物、ケチミン系シラン化合物及びイソシアネート系シラン化合物から選択される少なくとも1種を添加する技術(特許文献2)や、ウレイド基を含有するシランカップリング剤を添加する技術(特許文献3)が知られている。しかし、基板としてソーダガラスを用いた場合には、十分な密着性が得られず、ブラックマトリクス基板の高温高湿処理や王水やアミン系剥離液等の薬液処理により剥がれが生じるという問題があった。一方、着色顔料を含まないハードコート剤において、密着性を向上させるためにイミド基を有するシランカップリング剤(特許文献4、特許文献5)が提案されているが、タッチパネル用ソーダガラスへの密着性においては効果が不十分であった。 In order to improve the adhesion of the black matrix to the substrate, a technique of adding at least one selected from an amine-based silane compound, a ketimine-based silane compound and an isocyanate-based silane compound (Patent Document 2), and a ureido group A technique for adding a silane coupling agent is known (Patent Document 3). However, when soda glass is used as the substrate, sufficient adhesion cannot be obtained, and there is a problem that peeling occurs due to high-temperature and high-humidity treatment of the black matrix substrate or chemical treatment such as aqua regia or amine-based stripping solution. It was. On the other hand, silane coupling agents having an imide group (Patent Documents 4 and 5) have been proposed to improve adhesion in hard coating agents that do not contain color pigments. In terms of sex, the effect was insufficient.
特開2008-260927号公報JP 2008-260927 A 特開2006-330209号公報JP 2006-330209 A 特開2010-102086号公報JP 2010-102086 A 国際公開第2008/065944号International Publication No. 2008/065944 国際公開第2009/096050号International Publication No. 2009/096050
 本発明は、かかる従来技術の欠点に鑑み創案されたもので、その目的とするところは、金属や無機物で構成される基板表面との密着性に優れ、更には高い耐薬品性を有するブラックマトリクスを容易に形成することが可能な着色樹脂組成物を提供することにある。このような着色樹脂組成物を用いることにより、信頼性に優れた樹脂ブラックマトリクス及びタッチパネル用基板が得られる。 The present invention was devised in view of the drawbacks of the prior art, and the object of the invention is a black matrix that has excellent adhesion to the substrate surface made of metal or inorganic material and has high chemical resistance. It is in providing the colored resin composition which can form easily. By using such a colored resin composition, a resin black matrix and a touch panel substrate excellent in reliability can be obtained.
 本発明者らは、従来技術の課題を解決するために鋭意検討した結果、密着改良剤として以下のように特定の構造を有するシランカップリング剤を用いることにより、本発明の課題を解決できることを見いだした。 As a result of intensive studies to solve the problems of the prior art, the present inventors have found that the problems of the present invention can be solved by using a silane coupling agent having a specific structure as described below as an adhesion improving agent. I found it.
 すなわち、かかる本発明の目的は以下の構成により達成される。
(1) 少なくとも(A)着色顔料、(B)アルカリ可溶性樹脂、(C)密着改良剤及び(D)有機溶剤を含有する着色樹脂組成物であって、上記(C)密着改良剤として少なくとも下記一般式(1)で表されるシランカップリング剤を含有する、着色樹脂組成物。
That is, the object of the present invention is achieved by the following configuration.
(1) A colored resin composition containing at least (A) a color pigment, (B) an alkali-soluble resin, (C) an adhesion improver, and (D) an organic solvent, and at least the following (C) adhesion improver: The coloring resin composition containing the silane coupling agent represented by General formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していてもよい。nは0又は1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基又はフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していてもよい。)
(2) 上記(C)密着改良剤が、上記一般式(1)においてn=0で表されるシランカップリング剤である、上記(1)に記載の着色樹脂組成物。
(3) 上記(C)密着改良剤として、少なくとも2種以上のシランカップリング剤を含有する、上記(1)又は(2)のいずれかに記載の着色樹脂組成物。
(4) 上記(A)着色顔料が、黒色遮光材である、上記(1)~(3)のいずれかに記載の着色樹脂組成物。
(5) 上記黒色遮光材として、少なくともチタン窒化物粒子及び/又はカーボンブラックを含有する、上記(1)~(4)のいずれかに記載の着色樹脂組成物。
(6) 上記黒色遮光材の総重量和に占める上記チタン窒化物粒子の重量比率が、20~80重量%である、上記(5)に記載の着色樹脂組成物。
(7) 上記(4)~(6)のいずれかに記載の着色樹脂組成物を透明基板上に塗布し、パターン形成して得られる、樹脂ブラックマトリックス基板。
(Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having a number of 3 to 30. R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, or a phenoxy group. In addition, among these groups of R 3, a group other than the hydroxyl group may further have a substituent.
(2) The colored resin composition according to (1), wherein the (C) adhesion improving agent is a silane coupling agent represented by n = 0 in the general formula (1).
(3) The colored resin composition according to any one of (1) or (2) above, which contains at least two or more silane coupling agents as the (C) adhesion improver.
(4) The colored resin composition according to any one of the above (1) to (3), wherein the (A) colored pigment is a black light shielding material.
(5) The colored resin composition according to any one of (1) to (4), wherein the black light shielding material contains at least titanium nitride particles and / or carbon black.
(6) The colored resin composition according to (5), wherein a weight ratio of the titanium nitride particles in the total weight of the black light shielding material is 20 to 80% by weight.
(7) A resin black matrix substrate obtained by applying the colored resin composition according to any one of (4) to (6) above onto a transparent substrate and forming a pattern.
 本発明の着色樹脂組成物を用いることにより、高い密着性、及び高い耐薬品性を有する樹脂ブラックマトリクスが簡便に得られ、信頼性に優れたブラックマトリクス基板を得ることができる。 By using the colored resin composition of the present invention, a resin black matrix having high adhesion and high chemical resistance can be easily obtained, and a black matrix substrate having excellent reliability can be obtained.
 以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 本発明の着色樹脂組成物は、少なくとも(A)着色顔料、(B)アルカリ可溶性樹脂、(C)密着改良剤及び(D)有機溶剤からなり、(C)密着改良剤として少なくとも特定の構造を有するシランカップリング剤を含有することを特徴とする。 The colored resin composition of the present invention comprises at least (A) a color pigment, (B) an alkali-soluble resin, (C) an adhesion improver and (D) an organic solvent, and (C) has at least a specific structure as the adhesion improver. It contains the silane coupling agent which has.
 上記シランカップリング剤は下記一般式(1)で表される構造を有している。 The silane coupling agent has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していてもよい。nは0又は1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基又はフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していてもよい。)
 ここで、Rとしては、メチル基、エチル基、ブチル基が好ましく、特に原料入手の点からメチル基、エチル基が好ましい。Rはアルコキシ基、アリール基、フェノキシ基、ハロゲン基等の置換基を有していてもよい。Rとしては、有機溶剤への溶解性の点からは炭素数3~10の3価の有機基がより好ましい。
(Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having 3 to 30. R 3 s may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, or a phenoxy group. In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.
Here, as R 1 , a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group and an ethyl group are particularly preferable from the viewpoint of obtaining raw materials. R 1 may have a substituent such as an alkoxy group, an aryl group, a phenoxy group, or a halogen group. R 2 is more preferably a trivalent organic group having 3 to 10 carbon atoms from the viewpoint of solubility in an organic solvent.
 上記一般式(1)で表されるシランカップリング剤としては、例えば、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(イソプロピルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(イソプチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ペンチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリエトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリエトキシシリル)ペンタン酸、6-(ジメトキシ(メチル)シリル)-3-(tert-ブチルカルバモイル)へキサン酸、5-(ジメトキシ(メチル)シリル-2-(2-(tert-ブチルアミノ)-2-オキソエチル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)ペンタン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ブタン酸、2-(tert-ブチルカルバモイル)-4-(2-(トリメトキシシリル)エチル)シクロヘキサンカルボン酸、2-(tert-ブチルカルバモイル)-5-(2-(トリメトキシシリル)エチル)シクロヘキサンカルボン酸等が挙げられる。 Examples of the silane coupling agent represented by the general formula (1) include 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isopropylamino) -2-oxoethyl) -5 -(Trimethoxysilyl) pentanoic acid, 3- (isobutylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isoptylamino) -2-oxoethyl) -5- (trimethoxysilyl) Pentanoic acid, 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-pen Ruamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (triethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino)- 2-oxoethyl) -5- (triethoxysilyl) pentanoic acid, 6- (dimethoxy (methyl) silyl) -3- (tert-butylcarbamoyl) hexanoic acid, 5- (dimethoxy (methyl) silyl-2- (2 -(Tert-butylamino) -2-oxoethyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) pentanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) butanoic acid, 2- (tert-butylcarbamoyl) -4- (2- (trimethoxysilyl) ) Ethyl) cyclohexanecarboxylic acid, 2- (tert-butylcarbamoyl) -5- (2- (trimethoxysilyl) ethyl) cyclohexanecarboxylic acid and the like.
 これらの中でも特に、上記一般式(1)においてn=0である化合物が、ソーダガラスやITO接着性向上の効果が高くなる点から好ましい。 Among these, a compound in which n = 0 in the general formula (1) is particularly preferable from the viewpoint of enhancing the effect of improving soda glass and ITO adhesion.
 具体的には、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ペンチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリエトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリエトキシシリル)ペンタン酸、6-(ジメトキシ(メチル)シリル)-3-(tert-ブチルカルバモイル)へキサン酸、5-(ジメトキシ(メチル)シリル-2-(2-(tert-ブチルアミノ)-2-オキソエチル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)ペンタン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ブタン酸、2-(tert-ブチルカルバモイル)-4-(2-(トリメトキシシリル)エチル)シクロヘキサンへキサンカルボン酸、2-(tert-ブチルカルバモイル)-5-(2-(トリメトキシシリル)エチル)シクロヘキサンへキサンカルボン酸が該当する。 Specifically, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentane Acid, 3- (isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-pentylamino) ) -2-Oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (triethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2 -Oxoethyl) -5- (triethoxysilyl) pentanoic acid, 6- (dimethoxy (methyl) silyl) -3- (tert-butyl carbonate) Vamoyl) hexanoic acid, 5- (dimethoxy (methyl) silyl-2- (2- (tert-butylamino) -2-oxoethyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) Pentanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) butanoic acid, 2- (tert-butylcarbamoyl) -4- (2- (trimethoxysilyl) ethyl ) Cyclohexanehexanecarboxylic acid, 2- (tert-butylcarbamoyl) -5- (2- (trimethoxysilyl) ethyl) cyclohexanehexanecarboxylic acid.
 これらの特定の構造を有するシランカップリング剤を(C)密着改良剤として着色樹脂組成物に添加する際は、単独で使用してもよいが、公知のシランカップリング剤を併用することがより好ましい。塗膜の下地基板への密着性や耐薬品性を向上させるためには、前述のシランカップリング剤の添加量を増量することにより達成可能であるが、塗膜をアルカリ現像する際に微細なパターンが欠落し解像度が低下するといった問題が発生しやすい。よって、現像時の下地への密着性を向上させる観点から、2種以上のシランカップリング剤を併用することが好ましい。 When the silane coupling agent having these specific structures is added to the colored resin composition as the (C) adhesion improver, it may be used alone, but a known silane coupling agent may be used in combination. preferable. In order to improve the adhesion of the coating film to the base substrate and the chemical resistance, it can be achieved by increasing the amount of the silane coupling agent described above. Problems such as missing patterns and reduced resolution are likely to occur. Therefore, it is preferable to use two or more silane coupling agents in combination from the viewpoint of improving adhesion to the base during development.
 混合して併用されるシランカップリング剤としては、特に制限は無く、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基等の官能基を有するシランカップリング剤が挙げられるが、これらに限定されるものではない。具体的には、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-メルカプトプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、p-スリチルトリメトキシシラン等が好ましい。 The silane coupling agent used in combination is not particularly limited, and examples include silane coupling agents having a functional group such as a vinyl group, an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, and an amino group. It is not limited to these. Specifically, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, N- ( 2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3 -A Nopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 3-mercaptopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-Isocyanatopropyltriethoxysilane, p-trityltrimethoxysilane and the like are preferable.
 これらのシランカップリング剤の製造方法としては、酸無水物を含有するシランカップリング剤とアルキルアミンとの反応によって製造する方法が、製造の容易さから好ましい。この場合、酸無水物を含有するシランカップリング剤の構造によっては、シランカップリング剤が2種類同時に生成することになる。しかし、特にこれらを分離、精製することなく混合体として使用することが可能である。また、この合成方法では少量のオリゴマー等の複製も考えられるが、密着性改良効果に大きく影響を及ぼすものでなく、考慮する必要はない。 As a method for producing these silane coupling agents, a method of producing by reacting a silane coupling agent containing an acid anhydride with an alkylamine is preferable from the viewpoint of ease of production. In this case, depending on the structure of the silane coupling agent containing an acid anhydride, two types of silane coupling agents are generated simultaneously. However, it is possible to use them as a mixture without separation and purification. In addition, although a small amount of oligomer or the like can be replicated in this synthesis method, it does not significantly affect the adhesion improving effect and need not be considered.
 添加量としては、着色樹脂組成物の固形成分全量、つまり(A)着色顔料と(B)アルカリ可溶性樹脂との総和に対して1~15重量%が好ましく、2~10重量%がより好ましい。1重量%より少ないと密着性改良効果が十分ではなく、15重量%より多いと、アルカリ現像において微細なパターンが欠落し、解像度が低下してしまう。 The addition amount is preferably 1 to 15% by weight, more preferably 2 to 10% by weight, based on the total amount of solid components of the colored resin composition, that is, the total of (A) the color pigment and (B) the alkali-soluble resin. If the amount is less than 1% by weight, the effect of improving the adhesion is not sufficient. If the amount is more than 15% by weight, a fine pattern is lost in alkali development and the resolution is lowered.
 本発明の着色樹脂組成物のうち、とりわけ着色顔料として黒色遮光材を用いた黒色樹脂組成物は、印刷インク、インクジェットインク、フォトマスク作製材料、印刷用プルーフ作製用材料、エッチングレジスト、ソルダーレジスト、PDPの隔壁、誘電体パターン、電極(導体回路)パターン、電子部品の配線パターン、導電ペースト、導電フィルム、ブラックマトリックス等の遮光画像等の作製に用いることができる。好ましくは、カラー液晶表示装置等に用いるカラーフィルターの表示特性向上のために、着色パターンの間隔部、周辺部分、及びTFTの外光側等に遮光画像(ブラックマトリックスを含む。)を設けるためや、タッチパネル用遮光膜に好適に用いることができる。 Among the colored resin compositions of the present invention, a black resin composition using a black light shielding material as a coloring pigment, in particular, is a printing ink, inkjet ink, photomask preparation material, printing proof preparation material, etching resist, solder resist, It can be used for production of PDP partition walls, dielectric patterns, electrode (conductor circuit) patterns, wiring patterns of electronic components, light-shielding images such as conductive pastes, conductive films, and black matrices. Preferably, in order to improve the display characteristics of a color filter used in a color liquid crystal display device or the like, a light-shielded image (including a black matrix) is provided on the interval portion of the coloring pattern, the peripheral portion, and the outside light side of the TFT. It can be suitably used for a light shielding film for a touch panel.
 特に好ましくは、液晶表示装置、プラズマディスプレイ表示装置、無機ELを備えたEL表示装置、CRT表示装置、タッチパネルを具備した表示装置の周辺部に設けられた黒色の縁や、赤、青、緑の着色画素間の格子状やストライプ状の黒色の部分、更に好ましくは液晶表示装置用のカラーフィルターにおいて形成されるブラックマトリクスや、タッチパネル用カバーガラス上に形成されるブラックマトリックスとして好適に用いられる。 Particularly preferably, a liquid crystal display device, a plasma display device, an EL display device equipped with an inorganic EL, a CRT display device, a black edge provided at the periphery of a display device equipped with a touch panel, red, blue, green It is suitably used as a black matrix formed in a lattice-like or striped black portion between colored pixels, more preferably in a color filter for a liquid crystal display device, or on a cover glass for a touch panel.
 タッチパネル用カバーガラスに形成されるブラックマトリクスはLCDパネルからの漏れ光を遮光する額縁としての役割を有しているが、意匠性を高めるため、黒色以外の着色樹脂組成により形成された着色マトリクスにより額縁を形成してもよく、本発明の着色樹脂組成物を好適に用いることができる。 The black matrix that is formed on the cover glass for touch panels has a role as a frame that shields light leaking from the LCD panel, but in order to improve the design, a colored matrix formed by a colored resin composition other than black is used. A frame may be formed, and the colored resin composition of the present invention can be suitably used.
  本発明の着色樹脂組成物の(A)着色顔料としては、有機顔料、無機顔料のいずれも好適に用いることができる。顔料のうち、着色力が強く、耐光性、耐熱性、耐薬品性に優れたものは特に好ましい。代表的な顔料の具体的な例をカラーインデックス(CI)ナンバーで示すと、次のようなものが好ましく使用されるが、いずれもこれらに限定されるものではない。 As the (A) colored pigment of the colored resin composition of the present invention, either an organic pigment or an inorganic pigment can be suitably used. Of the pigments, those having strong coloring power and excellent light resistance, heat resistance, and chemical resistance are particularly preferable. When specific examples of typical pigments are indicated by color index (CI) numbers, the following are preferably used, but they are not limited to these.
 赤色顔料の例としては、ピグメントレッド(以下PRと略す)9、PR48、PR97、PR122、PR123、PR144、PR149、PR166、PR168、PR177、PR179、PR180、PR192、PR209、PR215、PR216、PR217、PR220、PR223、PR224、PR226、PR227、PR228、PR240、PR254等が使用される。 Examples of red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR48, PR97, PR122, PR123, PR144, PR149, PR166, PR168, PR177, PR179, PR180, PR192, PR209, PR215, PR216, PR217, PR220. , PR223, PR224, PR226, PR227, PR228, PR240, PR254, etc. are used.
 オレンジ色顔料の例としては、ピグメントオレンジ(以下POと略す)13、PO36、PO38、PO43、PO51、PO55、PO59、PO61、PO64、PO65、PO71等が使用される。 Examples of orange pigments include pigment orange (hereinafter abbreviated as PO) 13, PO36, PO38, PO43, PO51, PO55, PO59, PO61, PO64, PO65, PO71, and the like.
 黄色顔料の例としては、ピグメントイエロー(以下PYと略す)PY12、PY13、PY17、PY20、PY24、PY83、PY86、PY93、PY95、PY109、PY110、PY117、PY125、PY129、PY137、PY138、PY139、PY147、PY148、PY150、PY153、PY154、PY166、PY168、PY185等が使用される。 Examples of yellow pigments include pigment yellow (hereinafter abbreviated as PY) PY12, PY13, PY17, PY20, PY24, PY83, PY86, PY93, PY95, PY109, PY110, PY117, PY125, PY129, PY137, PY138, PY139, PY147. , PY148, PY150, PY153, PY154, PY166, PY168, PY185, etc. are used.
 また、紫色顔料の例としては、ピグメントバイオレット(以下PVと略す)19、PV23、PV29、PV30、PV32、PV37、PV40、PV50等が使用される。 As examples of purple pigments, pigment violet (hereinafter abbreviated as PV) 19, PV23, PV29, PV30, PV32, PV37, PV40, PV50, and the like are used.
 また、青色顔料の例としては、ピグメントブルー(以下PBと略す)15、PB15:3、PB15:4、PB15:6、PB22、PB60、PB64等が使用される。 As examples of blue pigments, pigment blue (hereinafter abbreviated as PB) 15, PB15: 3, PB15: 4, PB15: 6, PB22, PB60, PB64 and the like are used.
 また、緑色顔料の例としては、ピグメントグリーン(以下PGと略す)7、PG10、PG36、PG58等が使用される。 As examples of the green pigment, pigment green (hereinafter abbreviated as PG) 7, PG10, PG36, PG58, and the like are used.
 また、黒色顔料の例としては、黒色有機顔料、混色有機顔料、及び無機顔料等から用いることができる。黒色有機顔料としては、カーボンブラック、ペリレンブラック、アニリンブラック等が、混色有機顔料としては、赤、青、緑、紫、黄色、マゼンダ、シアン等から選ばれる少なくとも2種類以上の顔料を混合して疑似黒色化されたものが、無機顔料としては、グラファイト、及びチタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀等の金属微粒子、金属酸化物、複合酸化物、金属硫化物、金属窒化物、金属酸窒化物等が挙げられる。これらは、1種単独で用いても、2種以上を混合して用いてもよい。 As examples of black pigments, black organic pigments, mixed color organic pigments, inorganic pigments, and the like can be used. Carbon black, perylene black, aniline black, etc. are used as black organic pigments, and at least two kinds of pigments selected from red, blue, green, purple, yellow, magenta, cyan, etc. are mixed as mixed color organic pigments. Pseudo-blackened as inorganic pigments include graphite and fine metal particles such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, metal oxide, composite oxide, metal sulfide Products, metal nitrides, metal oxynitrides and the like. These may be used alone or in combination of two or more.
 とりわけ、高い遮光性を有することから、カーボンブラック及びチタン窒化物が好ましく用いられる。 In particular, carbon black and titanium nitride are preferably used because of their high light shielding properties.
 また、白色顔料の例としては、二酸化チタン、炭酸バリウム、酸化ジルコニウム、炭酸カルシウム、硫酸バリウム、アルミナホワイト、二酸化珪素等が挙げられる。 Also, examples of white pigments include titanium dioxide, barium carbonate, zirconium oxide, calcium carbonate, barium sulfate, alumina white, silicon dioxide and the like.
 以下に、着色顔料としてチタン窒化物粒子を用いた際に、好ましい特性について詳述する。ここで、チタン窒化物とは、主成分として窒化チタンを含み、通常、副成分として酸化チタンTiO、Ti2n-1(1≦n≦20)で表せる低次酸化チタン及びTiN(0<x<2.0,0.1<y<2.0)で表せる酸窒化チタンを含有するものである。 Hereinafter, preferable characteristics when titanium nitride particles are used as the color pigment will be described in detail. Here, the titanium nitride includes titanium nitride as a main component, and usually includes titanium oxide TiO 2 , Ti n O 2n-1 (1 ≦ n ≦ 20) as subcomponents, and low-order titanium oxide and TiN x O. It contains titanium oxynitride represented by y (0 <x <2.0, 0.1 <y <2.0).
 本発明で使用されるチタン窒化物のCuKα線をX線源とした場合の(200)面に由来するピークの回折角2θとしては、42.5°~43.2°であることが好ましく、更には42.5°~42.8°であることが好ましく、より好ましくは42.5°~42.7°である。回折角θがこの範囲となるチタン窒化物粒子を遮光材として用いることにより、黒色樹脂組成中の遮光材濃度を低く保ったまま、高いOD値を達成することが可能となり、更には、高い紫外線透過率を有するため、高精細かつテーパー形状の良好な樹脂ブラックマトリクスを容易に形成できるようになる。 The peak diffraction angle 2θ derived from the (200) plane when the CuKα ray of titanium nitride used in the present invention is an X-ray source is preferably 42.5 ° to 43.2 °, Further, it is preferably 42.5 ° to 42.8 °, more preferably 42.5 ° to 42.7 °. By using titanium nitride particles having a diffraction angle θ in this range as a light shielding material, it becomes possible to achieve a high OD value while keeping the concentration of the light shielding material in the black resin composition low. Since it has a transmittance, it is possible to easily form a resin black matrix having a high definition and a good taper shape.
 チタン化合物のX線回折スペクトルはCuKα線をX線源とした場合、最も強度の強いピークとしてTiNは(200)面に由来するピークが2θ=42.5°近傍に、TiOは(200)面に由来するピークが2θ=43.4°近傍にみられる。一方、最も強度の強いピークではないがアナターゼ型TiOは(200)面に由来するピークは2θ=48.1°近傍に、ルチル型TiOは(200)面に由来するピークは2θ=39.2°近傍に観測される。よって、窒素原子及び酸素原子を有する結晶構造をとるチタン化合物は回折角2θが42.5°から43.4°の範囲において最も強度の強いピークがみられ、酸素原子を多く含有する結晶状態であるほどピーク位置は42.5°に対して高角度側にシフトする。酸化チタンを窒化して得られる、窒化還元が不十分な酸窒化チタンにおいては回折角2θとして42.9°から43.2°に最も強度の強いピークが確認される(特開2006-209102号公報)。 The X-ray diffraction spectrum of the titanium compound shows that when CuKα ray is used as the X-ray source, TiN has a peak derived from the (200) plane as the strongest peak, and 2θ = 42.5 ° in the vicinity of TiO and (200) plane of TiO The peak derived from is seen in the vicinity of 2θ = 43.4 °. On the other hand, although not the strongest peak, the peak derived from the (200) plane of anatase TiO 2 is in the vicinity of 2θ = 48.1 °, and the peak derived from the (200) plane of rutile TiO 2 is 2θ = 39. Observed around 2 °. Therefore, a titanium compound having a crystal structure having nitrogen atoms and oxygen atoms has the strongest peak in the diffraction angle 2θ range of 42.5 ° to 43.4 °, and is in a crystalline state containing a large amount of oxygen atoms. The more the peak position is shifted to the higher angle side with respect to 42.5 °. In titanium oxynitride with insufficient nitriding reduction obtained by nitriding titanium oxide, the strongest peak is confirmed at a diffraction angle 2θ of 42.9 ° to 43.2 ° (Japanese Patent Laid-Open No. 2006-209102). Publication).
 また、副成分として酸化チタンTiOを含有する場合、最も強度の強いピークとしてアナターゼ型TiO(101)に由来するピークが2θ=25.3°近傍に、ルチル型TiO(110)に由来するピークが2θ=27.4°近傍に見られる。しかし、TiOは白色でありブラックマトリクスの遮光性を低下させる要因となるため、ピークとして観察されない程度に低減されていることが好ましい。 When titanium oxide TiO 2 is contained as an accessory component, the peak derived from anatase TiO 2 (101) as the strongest peak is in the vicinity of 2θ = 25.3 ° and derived from rutile TiO 2 (110). A peak is observed in the vicinity of 2θ = 27.4 °. However, since TiO 2 is white and causes a reduction in the light shielding properties of the black matrix, it is preferably reduced to such an extent that it is not observed as a peak.
 X線回折ピークの半値幅よりチタン窒化物粒子を構成する結晶子サイズを求めることができ、下式(2)、(3)に示すシェラーの式を用いて算出される。 The crystallite size constituting the titanium nitride particles can be obtained from the half width of the X-ray diffraction peak, and is calculated using the Scherrer equation shown in the following equations (2) and (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、K=0.9、λ:X線の波長(0.15418nm)、β:回折ピークの半値幅、β:半値幅の補正値(0.12°)である。但し、β、β及びβはラジアンで計算される。 Here, K = 0.9, λ: wavelength of X-ray (0.15418 nm), β e : half width of diffraction peak, β o : correction value of half width (0.12 °). However, β, β e and β o are calculated in radians.
 結晶子サイズとしては10nm以上であることが好ましく、更には10~50nmであることが好ましく、より好ましくは10~30nmである。結晶子サイズが10nm未満のチタン窒化物粒子を用いると、ブラックマトリクスの遮光性が低下し、更には、分散性が悪化するという問題が生じる。一方、50nmを越えると遮光性が低下し、更には沈降しやすくなり保存安定性が悪化するという問題が生じる。但し、結晶子サイズが小さい方が、遮光性は低下するものの、反射の色目は無彩色に近づくため、本発明においては、適度に小さい方が好ましい。 The crystallite size is preferably 10 nm or more, further preferably 10 to 50 nm, and more preferably 10 to 30 nm. When titanium nitride particles having a crystallite size of less than 10 nm are used, there arises a problem that the light blocking property of the black matrix is lowered and further the dispersibility is deteriorated. On the other hand, when the thickness exceeds 50 nm, the light shielding property is lowered, and further, sedimentation is likely to occur, and the storage stability is deteriorated. However, the smaller the crystallite size, the lower the light-shielding property, but the reflection color approaches an achromatic color. Therefore, in the present invention, a reasonably small one is preferable.
 本発明に使用されるチタン窒化物粒子の比表面積はBET法により求めることができ、その値としては5~100m/gが好ましく、更には10~100m/gが好ましく、より好ましくは30~100m/gである。また、BET法により求めた比表面積より、粒子が完全な球体であり粒子径が均一であると仮定した場合の粒子径を下式(4)により求めることができる。 The specific surface area of the titanium nitride particles used in the present invention can be determined by the BET method, and the value is preferably 5 to 100 m 2 / g, more preferably 10 to 100 m 2 / g, more preferably 30. ~ 100 m 2 / g. Further, from the specific surface area obtained by the BET method, the particle diameter when the particles are assumed to be perfect spheres and the particle diameter is uniform can be obtained by the following equation (4).
 BET換算平均粒径(nm) = 6/(S×d×1000) ・・・ (4)
 ここで、S;比表面積(m/g)、d;密度(g/cm)であり、窒化チタンの場合d=5.24(g/cm)、酸窒化チタンの場合d=4.3(g/cm)となる。
BET equivalent average particle diameter (nm) = 6 / (S × d × 1000) (4)
Here, S: specific surface area (m 2 / g), d: density (g / cm 3 ), d = 5.24 (g / cm 3 ) for titanium nitride, d = 4 for titanium oxynitride .3 (g / cm 3 ).
 比表面積が小さい、つまり一次粒子径が大きい場合、粒子を微細に分散することが困難であり、保管時に粒子が沈降したり、樹脂ブラックマトリクスとした際の平坦性が低下したりガラスとの密着性が低下するといった問題が生じる。一方、比表面積が大きい、つまり一次粒子径が小さいと分散時に粒子が再凝集し易いため分散安定性が悪くなる傾向があったり、樹脂ブラックマトリクスとした際に遮光材としての十分な隠蔽性が得られずにOD値が低下するといった問題が生じるため好ましくない。 When the specific surface area is small, that is, when the primary particle size is large, it is difficult to finely disperse the particles, the particles settle during storage, the flatness of the resin black matrix decreases, or the glass adheres closely. There arises a problem that the performance is lowered. On the other hand, when the specific surface area is large, that is, when the primary particle size is small, the particles are likely to re-aggregate during dispersion, so that the dispersion stability tends to deteriorate, or when the resin black matrix is used, there is sufficient concealment as a light shielding material. This is not preferable because the OD value is lowered without being obtained.
 また、粒子の一次粒子は結晶子がいくつか集まったものと言えるが、より単一な結晶子から構成されていることが好ましい。つまり、X線回折ピークの半値幅より求めた結晶子サイズと比表面積より求めた粒子径の関係としては、以下の式(5)の範囲となることが好ましい。 Moreover, although it can be said that the primary particles of the particles are a collection of several crystallites, the primary particles are preferably composed of a single crystallite. That is, the relationship between the crystallite size obtained from the half width of the X-ray diffraction peak and the particle diameter obtained from the specific surface area is preferably in the range of the following formula (5).
 BET換算平均粒径(nm) < 結晶子サイズ(nm)×2 ・・・ (5)
 本発明で使用されるチタン窒化物粒子は主成分としてTiNを含み、通常、その合成時における酸素の混入や、特に粒子径が小さい場合に顕著となるが、粒子表面の酸化等により、一部酸素原子を含有している。含有する酸素量が少ない方がより高いOD値が得られるため好ましく、とりわけ副成分としてTiOを含有しないことが好ましい。しかしながら、酸素含有量が少ない程、反射の色味としては赤みを呈するため、適度に酸素原子を含有していることが好ましい。その酸素原子の含有量としては5~20重量%であり、更には8~20重量%であることがより好ましい。
BET equivalent average particle diameter (nm) <crystallite size (nm) × 2 (5)
The titanium nitride particles used in the present invention contain TiN as a main component, and are usually noticeable when oxygen is mixed during synthesis, especially when the particle size is small, but partly due to oxidation of the particle surface, etc. Contains oxygen atoms. A smaller amount of oxygen is preferable because a higher OD value can be obtained, and it is particularly preferable not to contain TiO 2 as a subcomponent. However, the smaller the oxygen content, the red the color of the reflection, and therefore it is preferable that oxygen atoms are appropriately contained. The oxygen atom content is 5 to 20% by weight, more preferably 8 to 20% by weight.
 チタン原子の含有量はICP発光分光分析法により分析し、窒素原子の含有量は不活性ガス融解-熱伝導度法により分析し、酸素原子の含有量は不活性ガス融解-赤外線吸収法により分析することができる。 Titanium atom content is analyzed by ICP emission spectroscopy, nitrogen atom content is analyzed by inert gas melting-thermal conductivity method, and oxygen atom content is analyzed by inert gas melting-infrared absorption method. can do.
 チタン窒化物の合成には一般的に気相反応法が用いられ、電気炉法や熱プラズマ法等が挙げられるが、不純物の混入が少なく、粒子径が揃いやすく、また生産性も高い熱プラズマ法による合成が好ましい。具体的には、熱プラズマ法により合成されたチタン窒化物の一次粒子はほぼ単一な結晶子から形成されており、また、熱プラズマ法により合成されたチタン窒化物を用いることにより、より低い誘電率を有するブラックマトリクスを形成することが可能となるため好ましい。 A gas phase reaction method is generally used to synthesize titanium nitride, and examples include an electric furnace method and a thermal plasma method, but thermal plasma with little contamination, easy particle size, and high productivity. Synthesis by the method is preferred. Specifically, the primary particles of titanium nitride synthesized by the thermal plasma method are formed from almost single crystallites, and are lower by using titanium nitride synthesized by the thermal plasma method. This is preferable because a black matrix having a dielectric constant can be formed.
 熱プラズマを発生させる方法としては、直流アーク放電、多相アーク放電、高周波(RF)プラズマ、ハイブリッドプラズマ等が挙げられ、電極からの不純物の混入が少ない高周波プラズマがより好ましい。熱プラズマ法による窒化チタン微粒子の具体的な製造方法としては、プラズマ炎中で四塩化チタンとアンモニアガスを反応させる方法(特開平2-22110号公報)や、チタン粉末を高周波熱プラズマにより蒸発させ窒素をキャリアーガスとして導入し冷却過程にて窒化させ合成する方法(特開昭61-11140号公報)や、プラズマの周縁部にアンモニアガスを吹き込む方法(特開昭63-85007号)等が挙げられるがこれらに限定されるものではなく、所望とする物性を有するチタン窒化物粒子にできれば製造方法は問わない。なお、チタン窒化物粒子は種々のものが市販されており、本発明で規定される上記回折角及び上記酸素原子量、さらには、上記した好ましい結晶子サイズ及び比表面積を満足するものも複数市販されている。本発明において、それらの市販品を好ましく用いることができる。 Examples of the method for generating thermal plasma include direct current arc discharge, multiphase arc discharge, radio frequency (RF) plasma, hybrid plasma, and the like, and high frequency plasma in which impurities from the electrode are less mixed is more preferable. Specific methods for producing titanium nitride fine particles by the thermal plasma method include a method in which titanium tetrachloride and ammonia gas are reacted in a plasma flame (Japanese Patent Laid-Open No. 2-22110), or titanium powder is evaporated by high-frequency thermal plasma. A method of introducing nitrogen as a carrier gas and nitriding and synthesizing it in the cooling process (Japanese Patent Laid-Open No. 61-11140), a method of blowing ammonia gas into the peripheral edge of plasma (Japanese Patent Laid-Open No. 63-85007), etc. However, the present invention is not limited to these, and the production method is not limited as long as titanium nitride particles having desired physical properties can be obtained. Various titanium nitride particles are commercially available, and a plurality of particles satisfying the diffraction angle and the oxygen atom amount defined in the present invention, and further satisfying the preferred crystallite size and specific surface area described above are also commercially available. ing. In the present invention, those commercially available products can be preferably used.
 以下に、着色顔料としてカーボンブラック用いた際に、好ましい特性について詳述する。 Hereinafter, preferable characteristics when carbon black is used as a coloring pigment will be described in detail.
 本発明で使用するカーボンブラックとしては、絶縁性を高めるために表面処理されたカーボンブラックを用いることが好ましく、絶縁性を高めるための処理としては、一般的に、樹脂による表面被覆(特開2002-249678号公報)や表面の湿式酸化処理(特許第4464081号公報)、及び非ポリマー基からなる有機基による表面修飾(特表2008-517330号公報)等が知られている。この中でも特に、非ポリマー基からなる有機基によって表面修飾されたカーボンブラックを用いることにより、高温熱処理後にておいても高い絶縁性を有する樹脂ブラックマトリクスを得ることができるようになることから好ましい。とりわけ、スルホン酸基を有する有機により表面修飾されたカーボンブラックを用いることにより、高い絶縁性と高温処理における絶縁性の低下を抑制させることができるため好ましい。 As the carbon black used in the present invention, it is preferable to use carbon black that has been surface-treated in order to improve insulation. No. 249678), wet oxidation treatment on the surface (Japanese Patent No. 4464081), surface modification with an organic group composed of a non-polymer group (Japanese Patent Publication No. 2008-517330), and the like are known. Among these, it is particularly preferable to use carbon black whose surface is modified with an organic group composed of a non-polymer group because a resin black matrix having high insulation can be obtained even after high-temperature heat treatment. In particular, it is preferable to use carbon black whose surface is modified with an organic compound having a sulfonic acid group, since it is possible to suppress a decrease in insulation properties due to high insulation properties and high-temperature treatment.
 本発明で使用されるカーボンブラックの表面組成としては炭素原子比率が95%以下であり、かつ硫黄原子比率が0.5%以上あることが必要であり、更には炭素原子比率が95%以下であり、かつ硫黄原子比率が1.0%以上であることが好ましく、より好ましくは、炭素原子比率が90%以下であり、かつ硫黄原子比率が1.0%以上である。カーボンブラック表面に占める硫黄原子比率が高い程、バインダー樹脂がカーボンブラックへ効果的に吸着することで、立体障害によりカーボンブラック同士の接触を抑制することが可能となり、樹脂ブラックマトリクスの絶縁性が向上する。 As the surface composition of the carbon black used in the present invention, the carbon atom ratio must be 95% or less, the sulfur atom ratio must be 0.5% or more, and the carbon atom ratio is 95% or less. And the sulfur atom ratio is preferably 1.0% or more, more preferably the carbon atom ratio is 90% or less, and the sulfur atom ratio is 1.0% or more. The higher the proportion of sulfur atoms in the carbon black surface, the more effectively the binder resin is adsorbed to the carbon black, thereby making it possible to suppress contact between the carbon blacks due to steric hindrance and improving the insulation of the resin black matrix. To do.
 本発明で使用されるカーボンブラックの表面に存在する硫黄原子成分は、二硫化物、二硫化炭素、及び酸化物の状態で存在しているが、より高い絶縁性を得るためは、酸化物の状態で存在していることが望ましく、具体的にはSO及びSOx(2≦x≦4)の状態で存在していることが望ましい。カーボンブラック表面のS原子の状態はX線光電子分光法(XPS)により確認することができ、S2pピーク成分をC-S及びS-Sに帰属される成分と、SO及びSOx(2≦x≦4)に帰属される成分に分割することにより、その存在比も確認することができる。本発明で使用されるカーボンブラックとしては、その表面に存在する硫黄原子成分が、SO及びSOxに由来する成分である比率が70%以上であることが好ましく、さらには80%以上であることがより好ましい。 The sulfur atom component present on the surface of the carbon black used in the present invention exists in the form of disulfide, carbon disulfide, and oxide, but in order to obtain higher insulation properties, It is desirable to exist in a state, specifically, it is desirable to exist in a state of SO and SOx (2 ≦ x ≦ 4). The state of S atoms on the surface of carbon black can be confirmed by X-ray photoelectron spectroscopy (XPS), and the S2p peak component is assigned to components belonging to CS and SS, SO and SOx (2 ≦ x ≦ The abundance ratio can also be confirmed by dividing into the components belonging to 4). As the carbon black used in the present invention, the ratio of the sulfur atom component present on the surface to a component derived from SO and SOx is preferably 70% or more, and more preferably 80% or more. More preferred.
 表面に存在する硫黄原子成分が、SO及びSOxに由来する成分である比率が高い程、高い絶縁性を示し、さらには高温処理における絶縁性の低下が少なく、好ましい。SO及びSOxに由来する成分が多いことにより、より高い絶縁性及び熱安定性が得られるメカニズムについては不明であるが、バインダー樹脂のカーボンブラックへの吸着がより強固なものとなるためと推測される。一方、従来の表面酸化処理されたカーボンブラックの表面状態を同様に分析すると、その表面に存在する硫黄原子成分が、SO及びSOxに由来する成分である比率が70%以下であり、表面状態が全く異なると言える。 The higher the ratio of the sulfur atom component present on the surface to the component derived from SO and SOx, the higher the insulating property, and the lower the insulating property during high temperature treatment, which is preferable. The mechanism by which higher insulation and thermal stability are obtained due to the large amount of components derived from SO and SOx is unknown, but it is presumed that the adsorption of the binder resin to carbon black becomes stronger. The On the other hand, when the surface state of the conventional surface-oxidized carbon black is similarly analyzed, the ratio of the sulfur atom component existing on the surface to a component derived from SO and SOx is 70% or less, and the surface state is It can be said that it is completely different.
 本発明で使用されるカーボンブラックの比表面積としては、特に限定されないが、窒素吸着のBET法にて測定した値が、10~600m/gであることが好ましく、更には20~200m/gであることが好ましく、より好ましくは20~100m/gである。比表面積が大きい、すなわち一次粒子径が小さい場合、粒子が凝集し易いため、分散安定化が困難となり、保存安定性が悪化する。一方、比表面積が小さい、すなわち一次粒子径が大きい場合、遮光性が低下したり、樹脂塗膜中においてカーボンブラック同士が接触することにより黒色樹脂塗膜の絶縁性が低下するため好ましくない。 The specific surface area of the carbon black used in the present invention is not particularly limited, it is preferable that the value measured at the BET method of nitrogen adsorption, is 10 ~ 600m 2 / g, more 20 ~ 200m 2 / g is preferable, and 20 to 100 m 2 / g is more preferable. When the specific surface area is large, that is, when the primary particle size is small, the particles are likely to aggregate, so that it becomes difficult to stabilize the dispersion and storage stability is deteriorated. On the other hand, when the specific surface area is small, that is, when the primary particle diameter is large, the light shielding property is lowered, or the carbon blacks are in contact with each other in the resin coating film.
 本発明の効果を顕著なものとするため、 上記(A)着色顔料として、チタン窒化物及び/又はカーボンブラックを用いることが好ましく、(A)遮光材の総重量和に占めるチタン窒化物の比率としては、20~80重量%であることが好ましく、更には30~70重量%であることが好ましい。チタン窒化物の占める割合が小さいと、反射の色目は無彩色を呈するが、所望の遮光性を得るためには樹脂組成物に占める着顔料の比率が高くする必要があるため、密着性が低下したり、更には絶縁性が低下するため好ましくない。特に、高温熱履歴による絶縁性低下が顕著となり、さらには誘電率も高くなるため好ましくない。一方、チタン窒化物の占める割合が大きくなるほど、絶縁性及び遮光性は高くなるが、反射の色目が赤みを呈するため、上記範囲とすることが好ましい。 In order to make the effect of the present invention remarkable, it is preferable to use titanium nitride and / or carbon black as the color pigment (A), and (A) ratio of titanium nitride in the total weight of the light shielding material Is preferably 20 to 80% by weight, more preferably 30 to 70% by weight. When the proportion of titanium nitride is small, the reflection color is achromatic, but in order to obtain a desired light-shielding property, it is necessary to increase the proportion of the pigment in the resin composition, resulting in a decrease in adhesion. And further, the insulating property is lowered, which is not preferable. In particular, the decrease in insulation due to high-temperature heat history becomes significant, and the dielectric constant also increases, which is not preferable. On the other hand, the greater the proportion of titanium nitride, the higher the insulation and light shielding properties. However, since the reflection color is reddish, the above range is preferable.
 本発明では、(B)アルカリ可溶性樹脂を必須成分とするが、顔料に対してバインダーとして作用し、かつブラックマトリクス等のパターンを形成する際に、その現像工程においてアルカリ現像液に可溶するものであれば、特に限定されるものではない。感光性、非感光性のいずれも使用でき、具体的にはエポキシ樹脂、アクリル樹脂、シロキサンポリマ系樹脂、ポリイミド樹脂等が好ましく用いられる。とくに、アクリル樹脂またはポリイミド樹脂が塗膜の耐熱性、着色樹脂組成物の貯蔵安定性等の面で優れており、好適に用いられる。更には、ブラックマトリクス等のパターンを形成するに当たり、感光性の樹脂を用いることで、パターンを形成する工程がより簡便となることから、感光性アルカリ可溶性樹脂が好適に用いられる。 In the present invention, (B) an alkali-soluble resin is an essential component, but it acts as a binder for the pigment and is soluble in an alkali developer during the development process when forming a pattern such as a black matrix. If it is, it will not specifically limit. Either photosensitive or non-photosensitive can be used. Specifically, an epoxy resin, an acrylic resin, a siloxane polymer resin, a polyimide resin, or the like is preferably used. In particular, an acrylic resin or a polyimide resin is excellent in terms of the heat resistance of the coating film and the storage stability of the colored resin composition, and is preferably used. Furthermore, in forming a pattern such as a black matrix, a photosensitive alkali-soluble resin is preferably used because the process of forming the pattern becomes simpler by using a photosensitive resin.
 感光性アルカリ可溶性樹脂についての例を以下に示すが、これらに限定されるものではない。 Examples of the photosensitive alkali-soluble resin are shown below, but are not limited thereto.
 感光性アルカリ可溶性樹脂は、少なくとも、アルカリ可溶性ポリマー、反応性モノマー、光重合開始剤から構成されるものである。これらの量比は、通常、アルカリ可溶性ポリマーと反応性モノマーの重量組成比として10/90~90/10であり、光重合開始剤の添加量としてポリマーとモノマーの重量和に対して1~20重量%程度である。 The photosensitive alkali-soluble resin is composed of at least an alkali-soluble polymer, a reactive monomer, and a photopolymerization initiator. These quantitative ratios are usually 10/90 to 90/10 as the weight composition ratio of the alkali-soluble polymer and the reactive monomer, and the addition amount of the photopolymerization initiator is 1 to 20 with respect to the total weight of the polymer and the monomer. It is about wt%.
 カルボキシル基を有するアルカリ可溶性ポリマーが好ましく、不飽和カルボン酸とエチレン性不飽和化合物の共重合体を好ましく用いることができる。不飽和カルボン酸の例としては、例えばアクリル酸、メタクリル酸、クロトン酸、ビニル酢酸等のモノカルボン酸類、イタコン酸、マレイン酸、フマル酸等のジカルボン酸またはその酸無水物、フタル酸モノ(2-(メタ)アクリロイロキシエチル)等の多価カルボン酸モノエステル類等が挙げられる。特に(メタ)アクリル酸から導かれる構成単位を含んでなるアクリル系ポリマーが好ましく、さらに、構成単位に含まれるカルボン酸に、エチレン性不飽和基とエポキシ基を含有してなる化合物を反応させて得られたアクリル系ポリマーを用いると、露光、現像の際の感度がよくなるので好ましく用いることができる。エチレン性不飽和基としては、アクリル基、メタクリル基が好ましい。 An alkali-soluble polymer having a carboxyl group is preferred, and a copolymer of an unsaturated carboxylic acid and an ethylenically unsaturated compound can be preferably used. Examples of the unsaturated carboxylic acid include monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid and vinyl acetic acid, dicarboxylic acids such as itaconic acid, maleic acid and fumaric acid, or acid anhydrides thereof, phthalic acid mono (2 And (meth) acryloyloxyethyl) polycarboxylic acid monoesters. In particular, an acrylic polymer containing a structural unit derived from (meth) acrylic acid is preferable, and a carboxylic acid contained in the structural unit is reacted with a compound containing an ethylenically unsaturated group and an epoxy group. When the obtained acrylic polymer is used, the sensitivity during exposure and development is improved, so that it can be preferably used. As an ethylenically unsaturated group, an acryl group and a methacryl group are preferable.
 これらは単独で用いてもよいが、他の共重合可能なエチレン性不飽和化合物と組み合わせて用いてもよい。共重合可能なエチレン性不飽和化合物としては、具体的には、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、アクリル酸n-ブチル、メタクリル酸n-ブチル、アクリル酸sec-ブチル、メタクリル酸sec-ブチル、アクリル酸イソ-ブチル、メタクリル酸イソ-ブチル、アクリル酸tert-ブチル、メタクリル酸tert-ブチル、アクリル酸n-ペンチル、メタクリル酸n-ペンチル、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ベンジルアクリレート、ベンジルメタクリレート等の不飽和カルボン酸アルキルエステル、スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン等の芳香族ビニル化合物、トリシクロデカニル(メタ)アクリレート等の(架橋)環式炭化水素基、アミノエチルアクリレート等の不飽和カルボン酸アミノアルキルエステル、グリシジルアクリレート、グリシジルメタクリレート等の不飽和カルボン酸グリシジルエステル、酢酸ビニル、プロピオン酸ビニル等のカルボン酸ビニルエステル、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル等のシアン化ビニル化合物、1,3-ブタジエン、イソプレン等の脂肪族共役ジエン、それぞれ末端にアクリロイル基、あるいはメタクリロイル基を有するポリスチレン、ポリメチルアクリレート、ポリメチルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート等が挙げられるが、これらに限定されるものではない。 These may be used alone or in combination with other copolymerizable ethylenically unsaturated compounds. Specific examples of the copolymerizable ethylenically unsaturated compound include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-propyl acrylate, isopropyl acrylate, n-propyl methacrylate, methacrylic acid. Isopropyl acrylate, n-butyl acrylate, n-butyl methacrylate, sec-butyl acrylate, sec-butyl methacrylate, iso-butyl acrylate, iso-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate N-pentyl acrylate, n-pentyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, benzyl acrylate, benzyl methacrylate and other unsaturated carboxylic acid alkyl esters, styrene, p-methylstyrene , Aromatic vinyl compounds such as o-methylstyrene, m-methylstyrene, α-methylstyrene, (crosslinked) cyclic hydrocarbon groups such as tricyclodecanyl (meth) acrylate, and unsaturated carboxylic acids such as aminoethyl acrylate Acid aminoalkyl esters, unsaturated glycidyl esters such as glycidyl acrylate and glycidyl methacrylate, carboxylic acid vinyl esters such as vinyl acetate and vinyl propionate, vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and α-chloroacrylonitrile, 1 Aliphatic conjugated dienes such as 1,3-butadiene and isoprene, polystyrene, polymethyl acrylate, polymethyl methacrylate, polybutyl acrylate, polybutyl acrylate having an acryloyl group or methacryloyl group at each end. Methacrylate and the like, but not limited thereto.
 特に(メタ)アクリル酸及びベンジル(メタ)アクリレートを含んでなるアクリル系ポリマーは、分散安定性、パターン加工性の各観点から特に好ましい。 In particular, an acrylic polymer containing (meth) acrylic acid and benzyl (meth) acrylate is particularly preferable from the viewpoints of dispersion stability and pattern processability.
 上記アクリル系ポリマーを、顔料分散時に顔料に対して5~50%、好ましくは7~40%添加すると、高度に分散が安定した顔料分散体が得られる。 When the acrylic polymer is added in an amount of 5 to 50%, preferably 7 to 40%, based on the pigment at the time of dispersing the pigment, a highly disperse pigment dispersion can be obtained.
 また、上記記載の構成単位に含まれる(メタ)アクリル酸に、エチレン性不飽和基とエポキシ基を含有してなる化合物を反応させて得られたアクリル系ポリマー以外にも、側鎖にエチレン性不飽和基を有するアクリル系ポリマーを好ましく用いることができる。具体例としては、特許第3120476号公報、特開平8-262221号公報に記載されている共重合体、あるいは市販のアクリル系ポリマーである光硬化性樹脂「サイクロマー(登録商標)P」(ダイセル化学工業(株))、アルカリ可溶性カルド樹脂等が挙げられる。 In addition to the acrylic polymer obtained by reacting (meth) acrylic acid contained in the structural unit described above with a compound containing an ethylenically unsaturated group and an epoxy group, the side chain is ethylenic. An acrylic polymer having an unsaturated group can be preferably used. Specific examples include a copolymer described in Japanese Patent No. 3120476 and JP-A-8-262221, or a photocurable resin “Cyclomer (registered trademark) P” (Daicel), which is a commercially available acrylic polymer. Chemical Industry Co., Ltd.), alkali-soluble cardo resin and the like.
 アルカリ可溶性ポリマーの重量平均分子量(Mw)としては、5千~4万(テトラヒドロフランをキャリヤーとしてゲルパーミェーションクロマトグラフィーで測定し、標準ポリスチレンによる検量線を用いて換算したもの)のものが好ましく、さらには重量平均分子量が8千~4万であり、かつ酸価60~150(mgKOH/g)のポリマーが感光特性、エステル系溶剤に対する溶解性、アルカリ現像液に対する溶解性、残渣抑制の各観点から最も好ましい。 The weight average molecular weight (Mw) of the alkali-soluble polymer is preferably 5,000 to 40,000 (measured by gel permeation chromatography using tetrahydrofuran as a carrier and converted using a standard polystyrene calibration curve). Furthermore, a polymer having a weight average molecular weight of 8,000 to 40,000 and an acid value of 60 to 150 (mgKOH / g) has a photosensitive property, solubility in an ester solvent, solubility in an alkali developer, and residue control. Most preferable from the viewpoint.
 反応性モノマーとしては、多官能、単官能のアクリル系モノマーあるいはオリゴマーを用いることができる。多官能モノマーとしては、例えば、ビスフェノールAジグリシジルエーテル(メタ)アクリレート、ポリ(メタ)アクリレートカルバメート、変性ビスフェノールAエポキシ(メタ)アクリレート、アジピン酸1,6-ヘキサンジオール(メタ)アクリル酸エステル、無水フタル酸プロピレンオキサイド(メタ)アクリル酸エステル、トリメリット酸ジエチレングリコール(メタ)アクリル酸エステル、ロジン変性エポキシジ(メタ)アクリレート、アルキッド変性(メタ)アクリレート、特許第3621533号公報や特開平8-278630号公報に記載されているようなフルオレンジアクリレート系オリゴマー、あるいはトリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート及びその酸変性体、ジペンタエリスリトールヘキサ(メタ)アクリレート及びその酸変性体、ジペンタエリスリトールペンタ(メタ)アクリレート及びその酸変性体、2,2-ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]メタン、ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]スルホン、ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]エーテル、4,4′-ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]シクロヘキサン、9,9-ビス[4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[3-メチル-4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、9,9-ビス[3-クロロ-4-(3-アクリロキシ-2-ヒドロキシプロポキシ)フェニル]フルオレン、ビスフェノキシエタノールフルオレンジアクリレート、ビスフェノキシエタノールフルオレンジメタアクリレート、ビスクレゾールフルオレンジアクリレート、ビスクレゾールフルオレンジメタアクリレート、等が挙げられる。これらは単独または混合して用いることができる。 As the reactive monomer, a polyfunctional or monofunctional acrylic monomer or oligomer can be used. Examples of the polyfunctional monomer include bisphenol A diglycidyl ether (meth) acrylate, poly (meth) acrylate carbamate, modified bisphenol A epoxy (meth) acrylate, adipic acid 1,6-hexanediol (meth) acrylic acid ester, anhydrous Phthalic acid propylene oxide (meth) acrylic acid ester, trimellitic acid diethylene glycol (meth) acrylic acid ester, rosin-modified epoxy di (meth) acrylate, alkyd-modified (meth) acrylate, Japanese Patent No. 3621533 and Japanese Patent Laid-Open No. 8-278630 Full orange acrylate oligomers, or tripropylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, bisphenol Nord A diglycidyl ether di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate and its acid-modified product, dipentaerythritol hexa ( (Meth) acrylate and its acid-modified product, dipentaerythritol penta (meth) acrylate and its acid-modified product, 2,2-bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] propane, bis [4- ( 3-acryloxy-2-hydroxypropoxy) phenyl] methane, bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] sulfone, bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl Ether, 4,4′-bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] cyclohexane, 9,9-bis [4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, 9,9 -Bis [3-methyl-4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, 9,9-bis [3-chloro-4- (3-acryloxy-2-hydroxypropoxy) phenyl] fluorene, bis Examples thereof include phenoxyethanol full orange acrylate, bisphenoxyethanol full orange methacrylate, biscresol full orange acrylate, and biscresol full orange methacrylate. These can be used alone or in combination.
 これらの多官能モノマーやオリゴマーの選択と組み合わせにより、レジストの感度や加工性の特性をコントロールすることが可能である。とくに感度を上げるためには、官能基が3以上、より好ましくは5以上ある化合物の使用が望ましく、とくにジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート及びその酸変性体が好ましい。また、2個のグリシジルエーテル基を有するエポキシ化合物とメタアクリル酸との反応物に多塩基酸カルボン酸又はその酸無水物を反応させて得られた不飽和基含有アルカリ可溶性モノマーも現像性、加工性の観点から好ましく用いられる。さらに、分子中に芳香環を多く含み撥水性が高いフルオレン環を有する(メタ)アクリレートの併用が現像時にパターンを望ましい形状にコントロールできるので好ましい。 It is possible to control resist sensitivity and processability characteristics by selecting and combining these polyfunctional monomers and oligomers. In particular, in order to increase sensitivity, it is desirable to use a compound having a functional group of 3 or more, more preferably 5 or more. In particular, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate and acid-modified products thereof are used. preferable. In addition, an unsaturated group-containing alkali-soluble monomer obtained by reacting a polybasic carboxylic acid or its acid anhydride with a reaction product of an epoxy compound having two glycidyl ether groups and methacrylic acid is also developable and processed. It is preferably used from the viewpoint of sex. Further, the combined use of (meth) acrylate having a fluorene ring having a large amount of aromatic rings and high water repellency in the molecule is preferable because the pattern can be controlled to a desired shape during development.
 光重合開始剤としては、特に制限はないが、アルキルフェノン系及び/又はオキシムエステル系光重合開始剤を含有することが好ましい。 The photopolymerization initiator is not particularly limited, but preferably contains an alkylphenone-based and / or oxime ester-based photopolymerization initiator.
 アルキルフェノン系光重合開始剤として、α-アミノアルキルフェノン系あるいはα-ヒドロキシアルキルフェノン系等が挙げられるが、特にα-アミノアルキルフェノン系が高感度の観点から好ましい。例えば、2,2-ジエトキシアセトフェノン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、チバ・スペシャルティ・ケミカル(株)“イルガキュア(登録商標)”369である2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、チバ・スペシャルティ・ケミカル(株)“イルガキュア(登録商標)”379である2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホルニル)フェニル]-1-ブタノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられる。 Examples of the alkylphenone photopolymerization initiator include α-aminoalkylphenone and α-hydroxyalkylphenone, and α-aminoalkylphenone is particularly preferred from the viewpoint of high sensitivity. For example, 2,2-diethoxyacetophenone, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, Ciba Specialty Chemicals Co., Ltd. “Irgacure (registered trademark)” 369 A 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, Ciba Specialty Chemicals Co., Ltd. “Irgacure®” 379 2- (dimethylamino) -2- [ (4-Methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, etc. Is mentioned.
 オキシムエステル系光重合開始剤の具体例として、チバ・スペシャルティ・ケミカル(株)“イルガキュア(登録商標)”OXE01である1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、チバ・スペシャルティ・ケミカル(株)“イルガキュア(登録商標)”OXE02であるエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、旭電化工業(株)製の“アデカ(登録商標)オプトマー”N-1818、N-1919、“アデカクルーズ”NCI-831等が挙げられる。 As a specific example of the oxime ester photopolymerization initiator, 1,2-octanedione, 1- [4- (phenylthio) -2- (O, which is Ciba Specialty Chemical Co., Ltd. “Irgacure (registered trademark)” OXE01 -Benzoyloxime)], an etanone that is “Irgacure®” OXE02, Ciba Specialty Chemicals Co., Ltd., 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -, 1- (0-acetyloxime), “Adeka (registered trademark) Optomer” N-1818, N-1919, “Adeka Cruz” NCI-831 manufactured by Asahi Denka Kogyo Co., Ltd.
 また、これらの光重合開始剤に加えて、ベンゾフェノン系化合物、オキサントン系化合物、イミダゾール系化合物、ベンゾチアゾール系化合物、ベンゾオキサゾール系化合物、カルバゾール系化合物、トリアジン系化合物、リン系化合物あるいはチタネート等の無機系光重合開始剤等公知の光重合開始剤を併用して用いることもできる。例えば、ベンゾフェノン、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、α-ヒドロキシイソブチルフェノン、チオキサントン、2-クロロチオキサントン、t-ブチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロル-2-メチルアントラキノン、2-エチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、1,2-ベンゾアントラキノン、1,4-ジメチルアントラキノン、2-フェニルアントラキノン、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、4-(p-メトキシフェニル)-2,6-ジ-(トリクロロメチル)-s-トリアジン等が挙げられる。 In addition to these photopolymerization initiators, inorganic compounds such as benzophenone compounds, oxanthone compounds, imidazole compounds, benzothiazole compounds, benzoxazole compounds, carbazole compounds, triazine compounds, phosphorus compounds or titanates Known photopolymerization initiators such as system photopolymerization initiators can also be used in combination. For example, benzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone, benzoin, benzoin methyl ether, benzoin isobutyl ether, benzyl dimethyl ketal, α-hydroxyisobutylphenone, Thioxanthone, 2-chlorothioxanthone, t-butylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 2-ethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthate Laquinone, 1,2-benzoanthraquinone, 1,4-dimethylanthraquinone, 2-phenylanthraquinone, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2-mer Hept benzothiazole, 2-mercaptobenzoxazole, 4-(p-methoxyphenyl) -2,6-- (trichloromethyl) -s-triazine.
 本発明の着色樹脂組成物に用いられる(D)有機溶剤としては、特に限定されるものではなく、エステル類、脂肪族アルコール類、ケトン類等が使用できる。 (D) The organic solvent used in the colored resin composition of the present invention is not particularly limited, and esters, aliphatic alcohols, ketones and the like can be used.
 具体的なエステル類としては、ベンジルアセテート(沸点214℃)、エチルベンゾエート(沸点213℃)、γ-ブチロラクトン(沸点204℃)、メチルベンゾエート(沸点200℃)、マロン酸ジエチル(沸点199℃)、2-エチルヘキシルアセテート(沸点199℃)、2-ブトキシエチルアセテート(沸点192℃)、3-メトキシ-3-メチル-ブチルアセテート(沸点188℃)、シュウ酸ジエチル(沸点185℃)、アセト酢酸エチル(沸点181℃)、シクロヘキシルアセテート(沸点174℃)、3-メトキシ-ブチルアセテート(沸点173℃)、アセト酢酸メチル(沸点172℃)、エチル-3-エトキシプロピオネート(沸点170℃)、2-エチルブチルアセテート(沸点162℃)、イソペンチルプロピオネート(沸点160℃)、プロピレングリコールモノメチルエーテルプロピオネート(沸点160℃)、プロピレングリコールモノエチルエーテルアセテート(沸点158℃)、酢酸ペンチル(沸点150℃)、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)等が挙げられるがこれらに限定されない。 Specific esters include benzyl acetate (boiling point 214 ° C.), ethyl benzoate (boiling point 213 ° C.), γ-butyrolactone (boiling point 204 ° C.), methyl benzoate (boiling point 200 ° C.), diethyl malonate (boiling point 199 ° C.), 2-ethylhexyl acetate (bp 199 ° C.), 2-butoxyethyl acetate (bp 192 ° C.), 3-methoxy-3-methyl-butyl acetate (bp 188 ° C.), diethyl oxalate (bp 185 ° C.), ethyl acetoacetate ( Boiling point 181 ° C.), cyclohexyl acetate (bp 174 ° C.), 3-methoxy-butyl acetate (bp 173 ° C.), methyl acetoacetate (bp 172 ° C.), ethyl-3-ethoxypropionate (bp 170 ° C.), 2- Ethyl butyl acetate (boiling point 162 ° C), isopentyl propylene Nate (boiling point 160 ° C), propylene glycol monomethyl ether propionate (boiling point 160 ° C), propylene glycol monoethyl ether acetate (boiling point 158 ° C), pentyl acetate (boiling point 150 ° C), propylene glycol monomethyl ether acetate (boiling point 146 ° C) However, it is not limited to these.
 これらの溶剤のなかで、酢酸エステル系又はプロピオン酸エステル系の溶剤で、3-メトキシ-3-メチル-ブチルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、3-メトキシ-ブチルアセテート、プロピレングリコールモノメチルエーテルアセテートがとくに好ましい。 Among these solvents, acetate-type or propionate-type solvents are 3-methoxy-3-methyl-butyl acetate, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether propionate, 3-methoxy-butyl. Particularly preferred are acetate and propylene glycol monomethyl ether acetate.
 また、上記以外の溶剤として、プロピレングリコールモノメチルエーテル(沸点120℃)、プロピレングリコールモノエチルエーテル(沸点133℃)、プロピレングリコールターシャリーブチルエーテル(沸点153℃)、ジプロピレングリコールモノメチルエーテル(沸点188℃)等のプロピレングリコール誘導体等の脂肪族エーテル類、上記以外の脂肪族エステル類、例えば、酢酸エチル(沸点77℃)、酢酸ブチル(沸点126℃)、酢酸イソペンチル(沸点142℃)、あるいは、ブタノール(沸点118℃)、3-メチル-2-ブタノール(沸点112℃)、3-メチル-3-メトキシブタノール(沸点174℃)等の脂肪族アルコール類、シクロペンタノン、シクロヘキサノン等のケトン類、キシレン(沸点144℃)、エチルベンゼン(沸点136℃)、ソルベントナフサ(石油留分:沸点165~178℃)等の溶剤を併用することも可能である。 In addition to the above solvents, propylene glycol monomethyl ether (boiling point 120 ° C.), propylene glycol monoethyl ether (boiling point 133 ° C.), propylene glycol tertiary butyl ether (boiling point 153 ° C.), dipropylene glycol monomethyl ether (boiling point 188 ° C.) Aliphatic ethers such as propylene glycol derivatives, etc., aliphatic esters other than those described above, for example, ethyl acetate (boiling point 77 ° C.), butyl acetate (boiling point 126 ° C.), isopentyl acetate (boiling point 142 ° C.), or butanol ( 118 ° C.), aliphatic alcohols such as 3-methyl-2-butanol (bp 112 ° C.), 3-methyl-3-methoxybutanol (bp 174 ° C.), ketones such as cyclopentanone and cyclohexanone, xylene ( Boiling point 144 ° C) Ethylbenzene (boiling point 136 ° C.), solvent naphtha: It is also possible to use a solvent (petroleum fractions boiling 165 ~ 178 ° C.) and the like.
 さらに基板の大型化に伴いダイコーティング装置による塗布が主流になってきているので、適度の揮発性、乾燥性を実現するため、2成分以上の混合溶剤から構成するのが好ましい。該混合溶剤を構成する全ての溶剤の沸点が150℃以下の場合、膜厚の均一性が得られない、塗布終了部の膜厚が厚くなる、塗液をスリットから吐出する口金部に顔料の凝集物が生じ、塗膜にスジが発生するという多くの問題を生じる。一方、該混合溶剤の沸点が200℃以上の溶剤を多く含む場合、塗膜表面が粘着性となり、スティッキングを生じる。したがって沸点が150~200℃の溶剤を30~75重量%含有する混合溶剤が望ましい。 Furthermore, since application by a die coating apparatus has become mainstream as the size of the substrate increases, it is preferable to use a mixed solvent of two or more components in order to achieve appropriate volatility and drying properties. When the boiling points of all the solvents constituting the mixed solvent are 150 ° C. or less, the film thickness uniformity cannot be obtained, the film thickness of the coating end part is increased, the pigment is applied to the base part for discharging the coating liquid from the slit. Aggregates are formed, causing many problems that streaks occur in the coating film. On the other hand, when the mixed solvent contains a large amount of solvent having a boiling point of 200 ° C. or higher, the surface of the coating film becomes sticky and sticking occurs. Accordingly, a mixed solvent containing 30 to 75% by weight of a solvent having a boiling point of 150 to 200 ° C. is desirable.
 本発明の着色樹脂組成物において、着色顔料を樹脂溶液中に均一にかつ安定に分散させるために顔料分散剤を添加することが好ましい。顔料分散剤としては、ポリエステル系高分子顔料分散剤、アクリル系高分子顔料分散剤、ポリウレタン系高分子顔料分散剤、ポリアリルアミン系高分子分散剤、顔料誘導体、カチオン系界面活性剤、ノニオン系界面活性剤、アニオン系界面活性剤、カルボジイミド系顔料分散剤等が挙げられる。これらの顔料分散剤は、顔料の種類に応じて、適宜選択されて使用される。 In the colored resin composition of the present invention, it is preferable to add a pigment dispersant in order to disperse the colored pigment uniformly and stably in the resin solution. Examples of pigment dispersants include polyester polymer pigment dispersants, acrylic polymer pigment dispersants, polyurethane polymer pigment dispersants, polyallylamine polymer dispersants, pigment derivatives, cationic surfactants, and nonionic interfaces. Examples thereof include an activator, an anionic surfactant, and a carbodiimide pigment dispersant. These pigment dispersants are appropriately selected and used according to the type of pigment.
 また、これらの顔料分散剤は、単独で用いてもよく、また、2種類以上組み合わせて用いてもよい。これらの高分子分散剤は感光性を有していないため、多量に添加すると目的のカラーレジストの感光性能を悪化させる懸念があり、分散安定性、感光性能を加味した適正な添加量にすることが望ましい。顔料に対して1~50(重量%)添加、さらに好ましくは3~30(重量%)添加すると、感光性能を悪化させずに、高度に分散を安定化させる効果があり、より一層好ましい。 Also, these pigment dispersants may be used alone or in combination of two or more. Since these polymer dispersants do not have photosensitivity, there is a concern that the photosensitivity of the target color resist may be deteriorated if added in a large amount. Therefore, an appropriate addition amount considering dispersion stability and photosensitivity is required. Is desirable. Addition of 1 to 50 (% by weight), more preferably 3 to 30 (% by weight) with respect to the pigment is even more preferable because it has the effect of highly stabilizing dispersion without deteriorating the photosensitive performance.
 また、本発明の着色樹脂組成物には、塗布性、着色被膜の平滑性やベナードセルを防止する目的で、界面活性剤を添加することもできる。界面活性剤の添加量は通常、顔料の0.001~10重量%、好ましくは0.01~1重量%である。添加量が少なすぎると塗布性、着色被膜の平滑性やベナードセルを防止効果がなく、多すぎると逆に塗膜物性が不良となる場合がある。 In addition, a surfactant may be added to the colored resin composition of the present invention for the purpose of preventing the coating property, the smoothness of the colored coating, and Benard cell. The addition amount of the surfactant is usually 0.001 to 10% by weight of the pigment, preferably 0.01 to 1% by weight. If the amount added is too small, the coating properties, smoothness of the colored coating and Benard cell are not effective, and if too large, the physical properties of the coating film may be poor.
 界面活性剤の具体例としては、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等の陰イオン界面活性剤、ステアリルアミンアセテート、ラウリルトリメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルアミンオキサイド、ラウリルカルボキシメチルヒドロキシエチルイミダゾリウムベタイン等の両性界面活性剤、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ソルビタンモノステアレート等の非イオン界面活性剤、ポリジメチルシロキサン等を主骨格とするシリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。本発明では、これらに限定されずに、界面活性剤を1種又は2種以上用いることができる。 Specific examples of the surfactant include anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene alkyl ether sulfate triethanolamine, cationic surfactants such as stearylamine acetate and lauryltrimethylammonium chloride, lauryldimethylamine oxide, Amphoteric surfactants such as lauryl carboxymethyl hydroxyethyl imidazolium betaine, nonionic surfactants such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, sorbitan monostearate, and silicones based on polydimethylsiloxane Surfactants, fluorosurfactants and the like can be mentioned. In this invention, it is not limited to these, Surfactant can use 1 type (s) or 2 or more types.
 本発明の着色樹脂組成物において、顔料成分/樹脂成分の重量組成比は、80/20~40/60の範囲であることが、高OD値の被膜を得るために好ましい。ここで、顔料成分とは(A)遮光材と色度調整用の着色顔料との総和とし、樹脂成分とは、ポリマー、モノマー等からなる(B)アルカリ可溶性樹脂に加え、オリゴマーや光重合開始剤、高分子分散剤等の添加剤の合計とする。樹脂成分の量が少なすぎると、黒色被膜の基板との密着性が不良となり、逆に顔料成分の量が少なすぎると厚み当たりの光学濃度(OD値/μm)が低くなり問題となる。 In the colored resin composition of the present invention, the pigment composition / resin component weight composition ratio is preferably in the range of 80/20 to 40/60 in order to obtain a coating having a high OD value. Here, the pigment component is (A) the sum of the light shielding material and the color pigment for adjusting chromaticity, and the resin component is (B) an alkali-soluble resin composed of a polymer, a monomer, etc., and an oligomer or photopolymerization is started. It is the total of additives such as additives and polymer dispersants. If the amount of the resin component is too small, the adhesion of the black film to the substrate becomes poor. On the other hand, if the amount of the pigment component is too small, the optical density per unit thickness (OD value / μm) becomes low, causing a problem.
 本発明の着色樹脂組成物において樹脂成分と顔料成分をあわせた固形分濃度としては、塗工性・乾燥性の観点から2~30%が好ましく、更には5~20%であることが好ましい。従って、本発明の着色樹脂組成物は、好ましくは、溶剤と、樹脂成分と顔料成分とから本質的に成り、樹脂成分と着色顔料との合計量が好ましくは2~30%、さらに好ましくは5~20%であり、残部が溶剤である。上記のとおり、界面活性剤をさらに上記した濃度で含有していてもよい。 In the colored resin composition of the present invention, the solid content concentration of the resin component and the pigment component is preferably 2 to 30%, more preferably 5 to 20%, from the viewpoints of coating properties and drying properties. Accordingly, the colored resin composition of the present invention preferably consists essentially of a solvent, a resin component and a pigment component, and the total amount of the resin component and the colored pigment is preferably 2 to 30%, more preferably 5%. ~ 20% with the balance being solvent. As described above, a surfactant may be further contained at the concentration described above.
 本発明での着色樹脂組成物では、分散機を用いて樹脂溶液中に直接顔料を分散させる方法や、分散機を用いて水又は有機溶剤中に顔料を分散して顔料分散液を作製し、その後樹脂溶液と混合する方法等により製造される。顔料の分散方法には特に限定はなく、ボールミル、サンドグラインダー、3本ロールミル、高速度衝撃ミル等、種々の方法をとりうるが、分散効率と微分散化からビーズミルが好ましい。ビーズミルとしては、コボールミル、バスケットミル、ピンミル、ダイノーミル等を用いることができる。ビーズミルのビーズとしては、チタニアビーズ、ジルコニアビーズ、ジルコンビーズ等を用いるのが好ましい。 In the colored resin composition in the present invention, a method of dispersing a pigment directly in a resin solution using a disperser, a pigment dispersion is prepared by dispersing a pigment in water or an organic solvent using a disperser, Thereafter, it is manufactured by a method of mixing with a resin solution. There are no particular limitations on the method for dispersing the pigment, and various methods such as a ball mill, a sand grinder, a three-roll mill, and a high-speed impact mill can be used, but a bead mill is preferred from the viewpoint of dispersion efficiency and fine dispersion. As the bead mill, a coball mill, a basket mill, a pin mill, a dyno mill or the like can be used. As the beads of the bead mill, titania beads, zirconia beads, zircon beads and the like are preferably used.
 分散に用いるビーズ径としては0.01~5.0mmが好ましく、更に好ましくは0.03~1.0mmである。顔料の一次粒子径及び一次粒子が凝集して形成された二次粒子の粒子径が小さい場合には、0.03~0.10mmといった微小な分散ビーズを用いる事が好ましい。この場合、微小な分散ビーズと分散液とを分離することが可能な遠心分離方式によるセパレーターを有するビーズミルを用いて分散することが好ましい。一方、サブミクロン程度の粗大な粒子を含む顔料を分散させる際には、0.10mm以上の分散ビーズを用いる事により十分な粉砕力が得られ顔料を微細に分散できるため好ましい。 The bead diameter used for dispersion is preferably 0.01 to 5.0 mm, more preferably 0.03 to 1.0 mm. When the primary particle diameter of the pigment and the secondary particles formed by aggregating the primary particles are small, it is preferable to use fine dispersed beads of 0.03 to 0.10 mm. In this case, it is preferable to disperse using a bead mill having a centrifugal separator capable of separating fine dispersion beads and dispersion. On the other hand, when dispersing a pigment containing coarse particles of about submicron, it is preferable to use dispersed beads of 0.10 mm or more because sufficient pulverization force can be obtained and the pigment can be finely dispersed.
 本発明の着色樹脂組成物を用いたダイコーティング装置による樹脂ブラックマトリクス基板の製造方法の例を説明する。基板としては通常、ソーダガラス、無アルカリガラス、石英ガラス等の透明基板等が用いられるが、特にこれらに限定されない。ダイコーティング装置としては、例えば特許第3139358号公報、特許第3139359号公報等に開示されている枚葉塗布装置を挙げることができる。この装置により、本発明の着色樹脂組成物(塗液)を口金から吐出させ、基板を移動させることにより、基板上に着色樹脂組成物を塗布することができる。この場合、基板は枚葉で多数枚塗布されるため、長時間運転すると、塗液をスリットから吐出する口金部に顔料の凝集物が生じ、これが塗布欠点となり収率低下を招くことがある。 An example of a method for producing a resin black matrix substrate by a die coating apparatus using the colored resin composition of the present invention will be described. As the substrate, a transparent substrate such as soda glass, non-alkali glass, or quartz glass is usually used, but is not particularly limited thereto. Examples of the die coating apparatus include a single wafer coating apparatus disclosed in Japanese Patent No. 3139358 and Japanese Patent No. 3139359. By this apparatus, the colored resin composition (coating liquid) of the present invention is discharged from the die and the substrate is moved, whereby the colored resin composition can be applied onto the substrate. In this case, since a large number of substrates are applied in a single sheet, when the apparatus is operated for a long time, agglomerates of pigments are formed in the base part for discharging the coating liquid from the slits, which may cause a coating defect and reduce the yield.
 この場合、該装置の吐出口である口金を上記150℃以上の沸点を有するエステル系の溶剤を全溶剤に対して40重量%以上含む溶剤で拭き取る工程を設けることにより、塗布欠点が解消され収率が向上する。上記により、基板上に着色樹脂組成物を塗布した後、風乾、減圧乾燥、加熱乾燥等により、溶剤を除去し、着色樹脂組成物の塗膜を形成する。とくに減圧乾燥工程を設けた後、オーブンあるいはホットプレートで追加の加熱乾燥することにより、対流によって生じる塗布欠点が解消され収率が向上する。減圧乾燥は常温~100℃、5秒~10分、減圧度500~10(Pa)、より好ましくは減圧度150~50(Pa)の範囲で行うのが好ましい。加熱乾燥はオーブン、ホットプレート等を使用し、50~120℃の範囲で10秒~30分行うのが好ましい。 In this case, by providing a step of wiping the base, which is a discharge port of the apparatus, with a solvent containing 40% by weight or more of the ester solvent having a boiling point of 150 ° C. or higher, the coating defects are eliminated and the base is removed. The rate is improved. After applying a colored resin composition on a board | substrate by the above, a solvent is removed by air drying, reduced pressure drying, heat drying, etc., and the coating film of a colored resin composition is formed. In particular, after providing a vacuum drying step, additional heating and drying in an oven or a hot plate eliminates coating defects caused by convection and improves the yield. The drying under reduced pressure is preferably carried out in the range of room temperature to 100 ° C., 5 seconds to 10 minutes, and a degree of vacuum of 500 to 10 (Pa), more preferably 150 to 50 (Pa). The drying by heating is preferably carried out in the range of 50 to 120 ° C. for 10 seconds to 30 minutes using an oven or a hot plate.
 続いて該被膜上にマスクを置き、露光装置を用いて紫外線を照射する。ついでアルカリ性現像液で現像を行う。非イオン系界面活性剤等の界面活性剤を0.1~5%添加したアルカリ性現像液を使用すると、より良好なパターンが得られて好ましい。アルカリ性現像液に用いるアルカリ性物質としては特に限定はしないが、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の1級アミン類、ジエチルアミン、ジ-n-プロピルアミン等の2級アミン類、トリエチルアミン、メチルジエチルアミン等の3級アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類、コリン等の4級アンモニウム塩、トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール等のアルコールアミン類、ピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン、モルホリン等の環状アミン類等の有機アルカリ類が挙げられる。 Subsequently, a mask is placed on the coating and irradiated with ultraviolet rays using an exposure apparatus. Next, development is performed with an alkaline developer. It is preferable to use an alkaline developer to which a surfactant such as a nonionic surfactant is added in an amount of 0.1 to 5% because a better pattern can be obtained. The alkaline substance used in the alkaline developer is not particularly limited. For example, inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n- Primary amines such as propylamine, secondary amines such as diethylamine and di-n-propylamine, tertiary amines such as triethylamine and methyldiethylamine, and tetraalkylammonium hydroxides such as tetramethylammonium hydroxide (TMAH) , Quaternary ammonium salts such as choline, alcoholic amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol, diethylaminoethanol, pyrrole, piperidine, 1,8-dia Bicyclo [5,4,0] -7-undecene, 1,5-diazabicyclo [4,3,0] -5-nonane, organic alkalis such as cyclic amines such as morpholine.
 アルカリ性物質の濃度は0.01~50重量%である。好ましくは0.02~10重量%、さらに好ましくは0.02~1重量%である。また現像液がアルカリ水溶液の場合、現像液にエタノール、γーブチロラクトン、ジメチルホルムアミド、N-メチル-2-ピロリドン等の水溶性有機溶剤を適宜加えてもよい。 The concentration of the alkaline substance is 0.01 to 50% by weight. The amount is preferably 0.02 to 10% by weight, more preferably 0.02 to 1% by weight. In the case where the developer is an alkaline aqueous solution, a water-soluble organic solvent such as ethanol, γ-butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone and the like may be appropriately added to the developer.
 これら現像液の中では作業環境、廃現像液処理の点から、アルカリ水溶液の水系現像液が好ましい。 Among these developers, an aqueous developer of an alkaline aqueous solution is preferable from the viewpoint of working environment and waste developer treatment.
 現像方式は浸漬法、スプレー法、パドル法等を用いるが特に限定しない。現像後、純水等による洗浄工程を加える。 The development method is not particularly limited, although an immersion method, a spray method, a paddle method, or the like is used. After the development, a washing process with pure water or the like is added.
 得られた着色樹脂組成物の塗膜パターンは、その後、加熱処理(ポストベーク)することによってパターンニングされる。加熱処理は通常、空気中、窒素雰囲気中、あるいは、真空中等で、150~300℃、好ましくは180~250℃の温度のもとで、0.25~5時間、連続的又は段階的に行われる。 The coating pattern of the obtained colored resin composition is then patterned by heat treatment (post-bake). The heat treatment is usually performed continuously or stepwise for 0.25 to 5 hours at a temperature of 150 to 300 ° C., preferably 180 to 250 ° C. in air, in a nitrogen atmosphere, or in a vacuum. Is called.
 このように、本発明の着色樹脂組成物から得られた樹脂ブラックマトリクスの光学濃度(Optical Density、OD値)としては、波長380~700nmの可視光域において膜厚1.0μmあたり2.5以上であることが好ましく、より好ましくは3.0以上、更には4.0以上であることが好ましい。なお、OD値は顕微分光器(大塚電子製MCPD2000)を用いて測定を行い、下記の関係式(6)より求めることができる。 As described above, the optical density (Optical Density, OD value) of the resin black matrix obtained from the colored resin composition of the present invention is 2.5 or more per 1.0 μm thickness in the visible light range of 380 to 700 nm. More preferably, it is preferably 3.0 or more, and more preferably 4.0 or more. In addition, OD value can be calculated | required from the following relational expression (6), measuring using a microspectroscope (MCPD2000 by Otsuka Electronics).
 OD値 = log10(I/I) ・・・ (6)
ここで、I;入射光強度、I;透過光強度となる。
OD value = log 10 (I 0 / I) (6)
Here, I 0 is incident light intensity, and I is transmitted light intensity.
 また、樹脂ブラックマトリクスの反射色度としては、透明基板の面より測定を行い、JIS Z8729の方法に従って、標準C光源に対する反射スペクトルを用いて、CIE L*a*b*表色系により計算された色度値(a*、b*)が共に-2.0~2.0となることが好ましく、さらには-1.0~1.0であることが好ましい。色度値(a*、b*)が、-2.0よりも小さいと、透明基板を介して樹脂ブラックマトリクスを見た場合に、膜面に映った像が青及び緑色に着色して視認されるという問題があり、2.0を越えると膜面に映った像が赤及び黄色に着色して視認されるという問題がある。 The reflection chromaticity of the resin black matrix is measured from the surface of the transparent substrate, and is calculated by the CIE L * a * b * color system using the reflection spectrum for the standard C light source according to the method of JIS Z8729. The chromaticity values (a *, b *) are both preferably −2.0 to 2.0, and more preferably −1.0 to 1.0. When the chromaticity value (a *, b *) is smaller than −2.0, the image on the film surface is colored blue and green when the resin black matrix is viewed through the transparent substrate. If the value exceeds 2.0, there is a problem that an image reflected on the film surface is colored red and yellow and is visually recognized.
 また、樹脂ブラックマトリクスの表面抵抗値ρs(Ω/□)としては、1010(Ω/□)以上が好ましく、更には1012(Ω/□)以上であることが好ましい。表面抵抗値はJIS K6911の方法により測定を行い、求めることができる。 Further, the surface resistance value ρs (Ω / □) of the resin black matrix is preferably 10 10 (Ω / □) or more, and more preferably 10 12 (Ω / □) or more. The surface resistance value can be obtained by measuring according to the method of JIS K6911.
 樹脂ブラックマトリクスの比誘電率εrとしては、1MHzにて10以下が好ましく、更には8以下が好ましく、より好ましくは6以下である。樹脂ブラックマトリクスの比誘電率が10よりも大きいと、タッチパネルにおいて、電場不均一の要因となりセンサー電極の感度が低下する恐れがある。樹脂ブラックマトリクスの比誘電率は小さい程好ましく、その下限は特に制限無いが、通常1MHzにて2以上である。 The relative dielectric constant εr of the resin black matrix is preferably 10 or less at 1 MHz, more preferably 8 or less, and even more preferably 6 or less. If the relative dielectric constant of the resin black matrix is greater than 10, the electric field in the touch panel may become non-uniform and the sensitivity of the sensor electrode may be reduced. The relative dielectric constant of the resin black matrix is preferably as small as possible, and the lower limit thereof is not particularly limited, but is usually 2 or more at 1 MHz.
 以下、実施例及び比較例を用いて、本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail using examples and comparative examples, but the present invention is not limited to the following examples.
 <評価方法>
 [表面元素組成]
 カーボンブラックの表面元素は、X線光電子分光法(XPS)により測定を行った。測定装置としてはESCALAB220iXL(商品名)を用い、測定条件としては励起X線として、monochromatic AlKα1,2線(1486.6eV)を用い、X線径は1mm、光電子脱出角度は90°とした。
<Evaluation method>
[Surface element composition]
The surface element of carbon black was measured by X-ray photoelectron spectroscopy (XPS). ESCALAB220iXL (trade name) was used as the measuring device, monochromatic AlKα1,2 wire (1486.6 eV) was used as the excitation X-ray as measurement conditions, the X-ray diameter was 1 mm, and the photoelectron escape angle was 90 °.
 [比表面積]
 粒子の比表面積は、日本ベル(株)製高精度全自動ガス吸着装置(“BELSORP”36)を用い、100℃で真空脱気後、Nガスの液体窒素温度(77K)における吸着等温線を測定し、この等温線をBET法で解析し比表面積を求めた。また、この比表面積の値より、前述の式(4)を用いて、BET換算粒子径を求めた。この際、チタン窒化物粒子については比重としてd=5.24(g/cm)を用い、カーボンブラックについては比重としてd=1.80(g/cm)を用いた。
[Specific surface area]
The specific surface area of the particles is the adsorption isotherm at a liquid nitrogen temperature (77 K) of N 2 gas after vacuum degassing at 100 ° C. using a high precision fully automatic gas adsorption device (“BELSORP” 36) manufactured by Nippon Bell Co., Ltd. The isotherm was analyzed by the BET method to determine the specific surface area. Moreover, the BET conversion particle diameter was calculated | required from the value of this specific surface area using the above-mentioned formula (4). At this time, d = 5.24 (g / cm 3 ) was used as the specific gravity for titanium nitride particles, and d = 1.80 (g / cm 3 ) was used as the specific gravity for carbon black.
 「X線回折」
 X線回折は粉末試料をアルミ製標準試料ホルダーに詰め、広角X線回折法(理学電機社製 RU-200R)により測定した。測定条件としては、X線源はCuKα線とし、出力は50kV/200mA、スリット系は1°-1°-0.15mm-0.45mm、測定ステップ(2θ)は0.02°、スキャン速度は2°/分とした。回折角2θ=46°付近に観察される(200)面に由来するピークの回折角を測定した。更に、この(200)面に由来するピークの半値幅より、前述の式(2)、(3)のシェラーの式を用いて、粒子を構成する結晶子サイズを求めた。
"X-ray diffraction"
X-ray diffraction was measured by a wide-angle X-ray diffraction method (RU-200R manufactured by Rigaku Corporation) with a powder sample packed in an aluminum standard sample holder. As measurement conditions, the X-ray source is CuKα ray, the output is 50 kV / 200 mA, the slit system is 1 ° -1 ° -0.15 mm-0.45 mm, the measurement step (2θ) is 0.02 °, and the scan speed is It was 2 ° / min. The diffraction angle of the peak derived from the (200) plane observed near the diffraction angle 2θ = 46 ° was measured. Furthermore, from the half width of the peak derived from the (200) plane, the crystallite size constituting the particles was determined using the Scherrer formulas of the above formulas (2) and (3).
 [組成分析」
 チタン原子の含有量はICP発光分光分析法(セイコーインスツルメンツ社製 ICP発光分光分析装置SPS3000)により測定した。酸素原子及び窒素原子の含有量は(堀場製作所製 酸素・窒素分析装置 EMGA-620W/C)用いて測定し、不活性ガス融解-赤外線吸収法により酸素原子を、不活性ガス融解-熱伝導度法により窒素原子を求めた。
[Composition analysis]
The content of titanium atoms was measured by ICP emission spectroscopic analysis (ICP emission spectroscopic analyzer SPS3000 manufactured by Seiko Instruments Inc.). The content of oxygen and nitrogen atoms is measured using an oxygen / nitrogen analyzer EMGA-620W / C manufactured by Horiba, Ltd., and the oxygen atoms are converted into inert gases by the infrared absorption method. The nitrogen atom was determined by the method.
 [密着性試験]
 ソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させ、JIS K5400 8.5.2(1990年)碁盤目テープ法に準じてソーダガラスと硬化膜との密着性を評価した。ガラス基板上の硬化膜表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られた硬化膜表面にセロハン粘着テ-プ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させた。そして、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって評価した。マス目の剥離面積により以下のように判定した。
5:剥離面積 0%
4:剥離面積 1~<5%
3:剥離面積 5~<15%
2:剥離面積 15~<35%
1:剥離面積 35~<65%
0:剥離面積 65~100%
 また、湿熱処理後の密着性を評価するため、PCT(Pressure Cooker Test)処理したブラックマトリクス基板についても上記と同様に密着性を評価した。ここで、PCT処理の条件は、温度121℃、湿度100%、2気圧、12時間とした。
[Adhesion test]
A resin black matrix having a film thickness of 1.0 μm was formed on the soda glass, and the adhesion between the soda glass and the cured film was evaluated according to the JIS K5400 8.5.2 (1990) cross-cut tape method. On the surface of the cured film on the glass substrate, 11 parallel straight lines of 11 vertical and horizontal directions were drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife, and 100 squares of 1 mm × 1 mm were produced. . A cellophane adhesive tape (width = 18 mm, adhesive strength = 3.7 N / 10 mm) was attached to the cut surface of the cured film, and rubbed with an eraser (JIS S6050-accepted product) for adhesion. Then, one end of the tape was held, and the number of cells remaining when the tape was instantaneously peeled off was evaluated by visual observation. The determination was made as follows according to the peeled area of the cells.
5: peeling area 0%
4: Peeling area 1 to <5%
3: Peeling area 5 to <15%
2: Stripped area 15- <35%
1: Peeling area 35- <65%
0: peeling area 65 to 100%
In addition, in order to evaluate the adhesion after the wet heat treatment, the adhesion was also evaluated in the same manner as described above for the black matrix substrate treated with PCT (Pressure Cooker Test). Here, the conditions for the PCT treatment were a temperature of 121 ° C., a humidity of 100%, 2 atmospheres, and 12 hours.
 [耐薬品性試験]
 ソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させ、王水及び有機アルカリ溶液に浸浸させた後に、上記と同様に密着性を評価した。ここで、王水処理の条件は、塩酸/硝酸/蒸留水=25/3/72重量%の混合溶液に、50℃、5分間とした。有機アルカリ処理の条件は、MEA(モノエタノールアミン)/BDG(ブチルジグリコール)=30/70重量%の混合溶液に、80℃、5分間とした。
[Chemical resistance test]
A resin black matrix having a film thickness of 1.0 μm was formed on soda glass and immersed in aqua regia and an organic alkali solution, and then the adhesion was evaluated in the same manner as described above. Here, the conditions for the aqua regia treatment were 50 ° C. and 5 minutes in a mixed solution of hydrochloric acid / nitric acid / distilled water = 25/3/72% by weight. The organic alkali treatment was performed at 80 ° C. for 5 minutes in a mixed solution of MEA (monoethanolamine) / BDG (butyl diglycol) = 30/70 wt%.
 [解像度]
 ソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させる際に、1対1の幅のラインアンドスペースパターンマスクを使用し、最小パターンを形成可能なマスクパターンの幅を測定した。
[resolution]
When forming a resin black matrix having a film thickness of 1.0 μm on soda glass, a line and space pattern mask having a one-to-one width was used, and the width of a mask pattern capable of forming a minimum pattern was measured.
 [OD値]
 ソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させ、顕微分光器(大塚電子製MCPD2000)を用いて上述の式(6)より求めた。
[OD value]
A resin black matrix having a film thickness of 1.0 μm was formed on soda glass, and obtained from the above formula (6) using a microspectroscope (MCPD2000 manufactured by Otsuka Electronics Co., Ltd.).
 [表面抵抗]
 ソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させ、高抵抗抵抗率計(三菱化学製ハイレスタUP)によって表面抵抗率(Ω/□)を測定した。
[Surface resistance]
A resin black matrix having a film thickness of 1.0 μm was formed on soda glass, and the surface resistivity (Ω / □) was measured with a high resistivity meter (Hiresta UP, manufactured by Mitsubishi Chemical Corporation).
 また、ブラックマトリクスを250℃のオーブンで30分間加熱処理した後にも、同様に表面抵抗率を測定した。 The surface resistivity was measured in the same manner after the black matrix was heat-treated in an oven at 250 ° C. for 30 minutes.
 [反射色度]
 厚み1.1mmのソーダガラス上に膜厚1.0μmの樹脂ブラックマトリクスを形成させ、紫外・可視・近赤外分光光時計(島津分光光度計UV-2500PC)を用いて、ガラス面からの反射色度を測定した(測定条件は、測定波長領域;300~780nm、サンプリングピッチ;1.0nm、スキャン速度;低速、スリット幅;2.0nm。)。
[Reflection chromaticity]
A resin black matrix with a film thickness of 1.0 μm is formed on a soda glass with a thickness of 1.1 mm, and reflected from the glass surface using an ultraviolet / visible / near infrared spectrophotometer (Shimadzu spectrophotometer UV-2500PC). The chromaticity was measured (measurement conditions were a measurement wavelength region; 300 to 780 nm, a sampling pitch: 1.0 nm, a scan speed; a low speed, a slit width; 2.0 nm).
 合成例1 シランカップリング剤混合溶液(a-1)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ブチルアミン11.70g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸の混合溶液(a-1)を得た。
Synthesis Example 1 Synthesis of Silane Coupling Agent Mixed Solution (a-1) To 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine were added. In addition, after stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The obtained solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- ( A mixed solution (a-1) of tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid was obtained.
 合成例2 シランカップリング剤混合溶液(a-2)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ペンチルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、2-(2-(t-ペンチルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-2)を得た。
Synthesis Example 2 Synthesis of silane coupling agent mixed solution (a-2) 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of t-pentylamine Was added and stirred at room temperature for a while, and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 2- (2- (t-pentylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid was obtained. , 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid mixed solution (a-2) was obtained.
 合成例3 シランカップリング剤混合溶液(a-3)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とイソプロピルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、2-(2-(イソプロピルアミノ)-2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-3)を得た。
Synthesis Example 3 Synthesis of Silane Coupling Agent Mixed Solution (a-3) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of isopropylamine. The mixture was stirred at room temperature for a while and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 2- (2- (isopropylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3 A mixed solution (a-3) of-(tert-isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例4 シランカップリング剤混合溶液(a-4)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とn-プロピルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、2-(2-オキソ-2-(プロピルアミノ)エチル)-5-(トリメトキシシリル)ペンタン酸、3-(プロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-4)を得た。
Synthesis Example 4 Synthesis of Silane Coupling Agent Mixed Solution (a-4) 200 g of propylene glycol monomethyl ether acetate, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of n-propylamine Was added and stirred at room temperature for a while, and then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 2- (2-oxo-2- (propylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, A mixed solution (a-4) of 3- (propylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例5 シランカップリング剤混合溶液(a-5)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とアニリン14.90g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、2-(2-オキソ-2-(フェニルアミノ)エチル)-5-(トリメトキシシリル)ペンタン酸、3-(フェニルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-5)を得た。
Synthesis Example 5 Synthesis of Silane Coupling Agent Mixed Solution (a-5) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 14.90 g (160 mmol) of aniline. After stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid concentration was 20%, and 2- (2-oxo-2- (phenylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, A mixed solution (a-5) of 3- (phenylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例6 シランカップリング剤混合溶液(a-6)の合成
 プロピレングリコールモノメチルエーテルアセテート200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とエタノール7.37g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、4-エトキシ-4-オキソ-2-(トリメトキシシリル)ブタン酸、4-エトキシ-4-オキソ-3-(トリメトキシシリル)ブタン酸の混合溶液(a-6)を得た。
Synthesis Example 6 Synthesis of Silane Coupling Agent Mixed Solution (a-6) To 200 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 7.37 g (160 mmol) of ethanol. After stirring at room temperature for a while, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and 4-ethoxy-4-oxo-2- (trimethoxysilyl) butanoic acid, 4-ethoxy-4-oxo- A mixed solution (a-6) of 3- (trimethoxysilyl) butanoic acid was obtained.
 合成例7 シランカップリング剤溶液(a-7)の合成
 プロピレングリコールモノメチルエーテルアセテート400gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ブチルアミン11.70g(160mmol)を加えてしばらく室温にて撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、プロピレングリコールモノメチルエーテルアセテートと水を共沸しながら6時間反応させた。得られた溶液を固形分濃度が20%になるようにプロピレングリコールモノメチルエーテルアセテートで希釈し、1-(tert-ブチル)-3-トリメトキシシリルピロリジン-2,5-ジオン溶液(a-7)を得た。
Synthesis Example 7 Synthesis of Silane Coupling Agent Solution (a-7) To 400 g of propylene glycol monomethyl ether acetate was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine. The mixture was stirred at room temperature for a while and then stirred at 60 ° C. for 2 hours. Then, it heated up to 140 degreeC and made it react for 6 hours, azeotropically propylene glycol monomethyl ether acetate and water. The resulting solution was diluted with propylene glycol monomethyl ether acetate so that the solid content concentration was 20%, and a 1- (tert-butyl) -3-trimethoxysilylpyrrolidine-2,5-dione solution (a-7) Got.
 合成例8 アクリルポリマー(P-1)の合成
 特許第3120476号公報の実施例1に記載の方法により、メチルメタクリレート/メタクリル酸/スチレン共重合体(重量組成比30/40/30)を合成後、グリシジルメタクリレート40重量部を付加させ、精製水で再沈、濾過、乾燥することにより、平均分子量(Mw)15,000、酸価110(mgKOH/g)の特性を有するアクリルポリマー(P-1)粉末を得た。
Synthesis Example 8 Synthesis of acrylic polymer (P-1) After synthesis of methyl methacrylate / methacrylic acid / styrene copolymer (weight composition ratio 30/40/30) by the method described in Example 1 of Japanese Patent No. 3120476 An acrylic polymer having an average molecular weight (Mw) of 15,000 and an acid value of 110 (mgKOH / g) was added by adding 40 parts by weight of glycidyl methacrylate, reprecipitation with purified water, filtration and drying (P-1 ) A powder was obtained.
 製造例1 カーボンブラック分散液(CB-1)の製造
 特表2008-517330号公報に記載の方法により、スルホン酸基を表面に修飾したカーボンブラック(CB-Bk1)の表面元素組成としては(C:88%、O:7%、Na:3%、S:2%)であり、S元素の状態としては、S2pピーク成分のうちC-S及びS-Sに帰属される成分が90%、SO及びSOxに帰属される成分は10%であり、BET値は54m/gであった。
Production Example 1 Production of Carbon Black Dispersion (CB-1) According to the method described in JP-T-2008-517330, the surface element composition of carbon black (CB-Bk1) having sulfonic acid groups modified on the surface is (C : 88%, O: 7%, Na: 3%, S: 2%), and the state of the S element is 90% of the components attributed to CS and SS among the S2p peak components, The component attributed to SO and SOx was 10%, and the BET value was 54 m 2 / g.
 このカーボンブラックCB-Bk1を(200g)、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(94g)、高分子分散剤としてビックケミー・ジャパンLPN21116、40重量%溶液(31g)及びプロピレングリコールモノメチルエーテルアセテート(675g)をタンクに仕込み、ホモミキサー(特殊機化製)で1時間撹拌し、予備分散液を得た。その後、0.05mmφジルコニアビーズ(ニッカトー製、YTZボール)を70%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)に予備分散液を供給し、回転速度8m/sで2時間分散を行い、固形分濃度25重量%、顔料/樹脂(重量比)=80/20のカーボンブラック分散液CB-1を得た。 This carbon black CB-Bk1 (200 g), propylene glycol monomethyl ether acetate 40 wt% solution (94 g) of acrylic polymer (P-1), Big Chemie Japan LPN21116 as a polymer dispersant, 40 wt% solution (31 g) and Propylene glycol monomethyl ether acetate (675 g) was charged into a tank and stirred with a homomixer (manufactured by Tokushu Kika) for 1 hour to obtain a preliminary dispersion. Thereafter, the preliminary dispersion was supplied to an ultra apex mill (manufactured by Kotobuki Kogyo) equipped with a centrifugal separator filled with 70% 0.05 mmφ zirconia beads (manufactured by Nikkato, YTZ ball), and dispersed for 2 hours at a rotational speed of 8 m / s. To obtain a carbon black dispersion CB-1 having a solid content of 25% by weight and a pigment / resin (weight ratio) = 80/20.
 製造例2 チタンブラック分散液(TB-1)の製造
 熱プラズマ法により製造したチタン窒化物粒子(Ti-BK1、日清エンジニアリング(株)製、TiN UFP Lot1320910202)の(200)面に由来するピークの回折角2θは42.62°、このピークの半値幅より求めた結晶子サイズは21.9nm、BET比表面積は85.0m/gであった。また組成分析を行ったところ、チタン含有量は70.4重量%、窒素含有量は19.9重量%、酸素含有量は8.86重量%であった。また、TiOに起因するX線回折ピークは全く見られなかった。
Production Example 2 Production of Titanium Black Dispersion (TB-1) Peak derived from the (200) plane of titanium nitride particles (Ti-BK1, manufactured by Nisshin Engineering Co., Ltd., TiN UFP Lot 13209010202) produced by the thermal plasma method The diffraction angle 2θ was 42.62 °, the crystallite size determined from the half width of this peak was 21.9 nm, and the BET specific surface area was 85.0 m 2 / g. As a result of composition analysis, the titanium content was 70.4% by weight, the nitrogen content was 19.9% by weight, and the oxygen content was 8.86% by weight. Further, no X-ray diffraction peak attributed to TiO 2 was observed.
 チタン窒化物Ti-Bk1(200g)、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(94g)、高分子分散剤としてビックケミー・ジャパンLPN21116、40重量%溶液(31g)及びプロピレングリコールモノメチルエーテルアセテート(675g)をタンクに仕込み、ホモミキサー(特殊機化製)で1時間撹拌し、予備分散液1を得た。その後、0.05mmφジルコニアビーズ(ニッカトー製、YTZボール)を70%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)に予備分散液1を供給し、回転速度8m/sで2時間分散を行い、固形分濃度25重量%、顔料/樹脂(重量比)=80/20のチタンブラック分散液TB-1を得た。 Titanium nitride Ti-Bk1 (200 g), propylene glycol monomethyl ether acetate 40 wt% solution (94 g) of acrylic polymer (P-1), Big Chemie Japan LPN21116 as polymer dispersant, 40 wt% solution (31 g) and propylene Glycol monomethyl ether acetate (675 g) was charged into a tank and stirred for 1 hour with a homomixer (manufactured by Tokushu Kika) to obtain Preliminary dispersion 1. Thereafter, the preliminary dispersion 1 was supplied to an ultra apex mill (manufactured by Kotobuki Industries) equipped with a centrifugal separator filled with 70% 0.05 mmφ zirconia beads (manufactured by Nikkato, YTZ ball), and rotated for 2 hours at a rotational speed of 8 m / s. Dispersion was performed to obtain a titanium black dispersion TB-1 having a solid content concentration of 25% by weight and a pigment / resin (weight ratio) = 80/20.
 製造例3 赤色顔料分散液(R-1)の製造
 有機顔料PY254(R-1、BASF社製)を120g、アクリルポリマー(P-1)のプロピレングリコールモノエチルエーテルアセテート40重量%溶液を100g、高分子分散剤としてビックケミー・ジャパンLPN21116、40重量%溶液を100g及びプロピレングリコールモノエチルエーテルアセテート680gをタンクに仕込み、ホモミキサー(プライミクス製)で20分撹拌し、予備分散液を得た。その後、0.05mmφジルコニアビーズ(ネツレン製、YTZボール)を75%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)に予備分散液を供給し、回転速度8m/sで3時間分散を行い、固形分濃度20重量%、着色材/樹脂(重量比)=60/40の黄色顔料分散液Y-1を得た
 製造例4 青色顔料分散液(B-1)の製造
 顔料として有機顔料有機顔料PB15:6(B-1、東洋インキ社製)を用いた以外は赤色顔料分散液R-1と同様にして、青顔料分散液B-1を得た。
Production Example 3 Production of Red Pigment Dispersion Liquid (R-1) 120 g of organic pigment PY254 (R-1, manufactured by BASF), 100 g of a 40 wt% solution of acrylic polymer (P-1) in propylene glycol monoethyl ether acetate, As a polymer dispersant, Big Chemie Japan LPN21116, 100 g of a 40 wt% solution and 680 g of propylene glycol monoethyl ether acetate were charged in a tank, and stirred for 20 minutes with a homomixer (Primics) to obtain a preliminary dispersion. Thereafter, the pre-dispersed liquid was supplied to an ultra apex mill (manufactured by Kotobuki Industries) equipped with a centrifugal separator filled with 75% 0.05 mmφ zirconia beads (manufactured by Neturen, YTZ balls), and dispersed for 3 hours at a rotational speed of 8 m / s. To obtain a yellow pigment dispersion Y-1 having a solid content concentration of 20% by weight and a colorant / resin (weight ratio) = 60/40 Production Example 4 Production of Blue Pigment Dispersion (B-1) Organic as a Pigment A blue pigment dispersion B-1 was obtained in the same manner as the red pigment dispersion R-1, except that the pigment organic pigment PB15: 6 (B-1, manufactured by Toyo Ink Co., Ltd.) was used.
 製造例5 黄色顔料分散液(Y-1)の製造
 顔料として有機顔料有機顔料PY139(Y-1、Clariant社製)を用いた以外は赤色顔料分散液R-1と同様にして、黄顔料分散液Y-1を得た。
Production Example 5 Production of Yellow Pigment Dispersion (Y-1) Yellow Pigment Dispersion was conducted in the same manner as Red Pigment Dispersion R-1, except that organic pigment organic pigment PY139 (Y-1, manufactured by Clariant) was used as the pigment. Liquid Y-1 was obtained.
 実施例1
 カーボンブラック分散液CB-1(267.9g)とチタンブラック分散液TB-1(267.9g)を混合し、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(122.1g)、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製DPHA)のプロピレングリコールモノメチルエーテルアセテート50重量%溶液(94.6g)、光重合開始剤としてADEKA(株)“アデカクルーズ”NCI-831(11.8g)、密着改良剤としてシランカップリング剤混合液(a-1)(37.5g)、シリコーン系界面活性剤のプロピレングリコールモノメチルエーテルアセテート10重量%溶液(4.0g)を、プロピレングリコールモノメチルエーテルアセテート(194.0g)に溶解した溶液を添加し、全固形分濃度25重量%、顔料/樹脂(重量比)=45/55の黒色樹脂組成物1を得た。
Example 1
Carbon Black Dispersion CB-1 (267.9 g) and Titanium Black Dispersion TB-1 (267.9 g) were mixed, and a 40 wt% solution of acrylic polymer (P-1) in propylene glycol monomethyl ether acetate (122.1 g) ), 50% by weight propylene glycol monomethyl ether acetate solution (94.6 g) of dipentaerythritol hexaacrylate (DPHA manufactured by Nippon Kayaku Co., Ltd.) as a polyfunctional monomer, and ADEKA Co., Ltd. “Adeka Cruz” as a photopolymerization initiator NCI-831 (11.8 g), silane coupling agent mixed solution (a-1) (37.5 g) as an adhesion improver, 10% by weight solution of propylene glycol monomethyl ether acetate (4.0 g) of silicone surfactant A propylene glycol monomethyl ether It was added a solution of the acetate (194.0 g), total solid concentration of 25 wt%, the black resin composition 1 the pigment / resin (weight ratio) = 45/55 was obtained.
 この黒色樹脂組成物1をソーダガラス基板上にミカサ(株)製スピンナー1H-DSで塗布し、100℃で10分間プリベイクして塗膜を作製した。ユニオン光学(株)製マスクアライナーPEM-6Mを用い、フォトマスクを介して露光(200mJ/cm)し、0.045重量%KOH水溶液を用いて現像し、続いて純水洗浄することにより、パターンニング基板を得た。さらに、230℃で30分間キュアした。このようにして、厚みが1.00μmのブラックマトリクス1を作成した。 This black resin composition 1 was applied onto a soda glass substrate with a spinner 1H-DS manufactured by Mikasa Co., Ltd., and prebaked at 100 ° C. for 10 minutes to prepare a coating film. By using a mask aligner PEM-6M manufactured by Union Optical Co., Ltd., exposure (200 mJ / cm 2 ) through a photomask, development using a 0.045 wt% KOH aqueous solution, and subsequent pure water cleaning, A patterned substrate was obtained. Furthermore, it was cured at 230 ° C. for 30 minutes. In this way, a black matrix 1 having a thickness of 1.00 μm was prepared.
 実施例2
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-2)を用いた以外は実施例1と同様にして、黒色樹脂組成物2を得た。
Example 2
A black resin composition 2 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物2を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス2を作成した。 Further, a black matrix 2 having a thickness of 1.00 μm was prepared using the black resin composition 2 in the same manner as in Example 1.
 実施例3
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-3)を用いた以外は実施例1と同様にして、黒色樹脂組成物3を得た。
Example 3
A black resin composition 3 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物3を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス3を作成した。 Further, a black matrix 3 having a thickness of 1.00 μm was prepared using the black resin composition 3 in the same manner as in Example 1.
 実施例4
 シランカップリング剤混合液(a-1)の添加量を6.3gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を225.2gにする以外は実施例1と同様にして、黒色樹脂組成物4を得た。
Example 4
A black resin composition 4 was prepared in the same manner as in Example 1, except that the addition amount of the silane coupling agent mixed solution (a-1) was 6.3 g, and the addition amount of propylene glycol monomethyl ether acetate was 225.2 g. Got.
 また、黒色樹脂組成物4を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス4を作成した。 Further, a black matrix 4 having a thickness of 1.00 μm was prepared using the black resin composition 4 in the same manner as in Example 1.
 実施例5
 シランカップリング剤混合液(a-1)の添加量を12.5gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を219.0gにする以外は実施例1と同様にして、黒色樹脂組成物5を得た。
Example 5
The black resin composition 5 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 12.5 g and the addition amount of propylene glycol monomethyl ether acetate was 219.0 g. Got.
 また、黒色樹脂組成物5を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス5を作成した。 Further, a black matrix 5 having a thickness of 1.00 μm was prepared using the black resin composition 5 in the same manner as in Example 1.
 実施例6
 シランカップリング剤混合液(a-1)の添加量を62.5gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を169.0gにする以外は実施例1と同様にして、黒色樹脂組成物6を得た。
Example 6
A black resin composition 6 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 62.5 g and the addition amount of propylene glycol monomethyl ether acetate was 169.0 g. Got.
 また、黒色樹脂組成物6を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス6を作成した。 Further, a black matrix 6 having a thickness of 1.00 μm was prepared using the black resin composition 6 in the same manner as in Example 1.
 実施例7
 シランカップリング剤混合液(a-1)の添加量を187.5gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を44.0gにする以外は実施例1と同様にして、黒色樹脂組成物7を得た。
Example 7
A black resin composition 7 was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixture (a-1) was 187.5 g and the addition amount of propylene glycol monomethyl ether acetate was 44.0 g. Got.
 また、黒色樹脂組成物7を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス7を作成した。 Further, a black matrix 7 having a thickness of 1.00 μm was prepared using the black resin composition 7 in the same manner as in Example 1.
 実施例8
 シランカップリング剤混合液(a-1)に加えて3-メタクリロキシプロピルトリメトキシシラン(a-8)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を186.5gにする以外は実施例1と同様にして、黒色樹脂組成物8を得た。
Example 8
Other than adding 7.5 g of 3-methacryloxypropyltrimethoxysilane (a-8) in addition to the silane coupling agent mixture (a-1), and the addition amount of propylene glycol monomethyl ether acetate being 186.5 g Obtained a black resin composition 8 in the same manner as in Example 1.
 また、黒色樹脂組成物8を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス8を作成した。 Further, a black matrix 8 having a thickness of 1.00 μm was prepared using the black resin composition 8 in the same manner as in Example 1.
 実施例9
 シランカップリング剤混合液(a-1)の添加量を12.5gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を211.5gにする以外は実施例8と同様にして、黒色樹脂組成物9を得た。
Example 9
A black resin composition 9 was prepared in the same manner as in Example 8, except that the addition amount of the silane coupling agent mixture (a-1) was 12.5 g and the addition amount of propylene glycol monomethyl ether acetate was 211.5 g. Got.
 また、黒色樹脂組成物9を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス9を作成した。 Further, a black matrix 9 having a thickness of 1.00 μm was prepared using the black resin composition 9 in the same manner as in Example 1.
 実施例10
 シランカップリング剤混合液(a-1)の添加量を62.5gに、及びプロピレングリコールモノメチルエーテルアセテートの添加量を161.5gにする以外は実施例8と同様にして、黒色樹脂組成物10を得た。
Example 10
A black resin composition 10 was prepared in the same manner as in Example 8 except that the addition amount of the silane coupling agent mixture (a-1) was 62.5 g and the addition amount of propylene glycol monomethyl ether acetate was 161.5 g. Got.
 また、黒色樹脂組成物10を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス10を作成した。 Further, a black matrix 10 having a thickness of 1.00 μm was prepared using the black resin composition 10 in the same manner as in Example 1.
 実施例11
 カーボンブラック分散液CB-1の添加量を0g、チタンブラック分散液TB-1の添加量を534.8gとする以外は実施例8と同様にして、黒色樹脂組成物11を得た。
Example 11
A black resin composition 11 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 0 g and the addition amount of the titanium black dispersion TB-1 was 534.8 g.
 また、黒色樹脂組成物11を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス11を作成した。 Further, a black matrix 11 having a thickness of 1.00 μm was prepared using the black resin composition 11 in the same manner as in Example 1.
 実施例12
 カーボンブラック分散液CB-1の添加量を134.0g、チタンブラック分散液TB-1の添加量を401.9gとする以外は実施例8と同様にして、黒色樹脂組成物12を得た。
Example 12
A black resin composition 12 was obtained in the same manner as in Example 8, except that the amount of carbon black dispersion CB-1 added was 134.0 g and the amount of titanium black dispersion TB-1 added was 401.9 g.
 また、黒色樹脂組成物12を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス12を作成した。 Further, a black matrix 12 having a thickness of 1.00 μm was prepared using the black resin composition 12 in the same manner as in Example 1.
 実施例13
 カーボンブラック分散液CB-1の添加量を401.9g、チタンブラック分散液TB-1の添加量を134.0gとする以外は実施例8と同様にして、黒色樹脂組成物13を得た。
Example 13
A black resin composition 13 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 401.9 g and the addition amount of the titanium black dispersion TB-1 was 134.0 g.
 また、黒色樹脂組成物13を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス13を作成した。 Further, a black matrix 13 having a thickness of 1.00 μm was prepared using the black resin composition 13 in the same manner as in Example 1.
 実施例14
 カーボンブラック分散液CB-1の添加量を534.8g、チタンブラック分散液TB-1の添加量を0gとする以外は実施例8と同様にして、黒色樹脂組成物14を得た。
Example 14
A black resin composition 14 was obtained in the same manner as in Example 8, except that the addition amount of the carbon black dispersion CB-1 was 534.8 g and the addition amount of the titanium black dispersion TB-1 was 0 g.
 また、黒色樹脂組成物14用いて実施例1と同様に厚みが1.00μmのブラックマトリクス14を作成した。 Further, a black matrix 14 having a thickness of 1.00 μm was prepared using the black resin composition 14 in the same manner as in Example 1.
 実施例15
 赤色顔料分散液R-1(160.2g)、青色顔料分散液B-1(320.4g)と黄色顔料分散液Y-1(320.4g)を混合し、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート40重量%溶液(64.8g)、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製DPHA)のプロピレングリコールモノメチルエーテルアセテート50重量%溶液(38.7g)、光重合開始剤としてADEKA(株)“アデカクルーズ”NCI-831(9.7g)、密着改良剤としてシランカップリング剤混合液(a-1)(30.0g)と3-メタクリロキシプロピルトリメトキシシラン(a-8)(7.5g)、シリコーン系界面活性剤のプロピレングリコールモノメチルエーテルアセテート10重量%溶液(4.0g)を、プロピレングリコールモノメチルエーテルアセテート(44.3g)に溶解した溶液を添加し、全固形分濃度25重量%、顔料/樹脂(重量比)=40/60の疑似黒色樹脂組成物15を得た。
Example 15
The red pigment dispersion R-1 (160.2 g), the blue pigment dispersion B-1 (320.4 g) and the yellow pigment dispersion Y-1 (320.4 g) were mixed, and the acrylic polymer (P-1) Propylene glycol monomethyl ether acetate 40 wt% solution (64.8 g), dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd. DPHA) as a polyfunctional monomer 50 wt% solution (38.7 g), ADEKA Co., Ltd. “Adeka Cruz” NCI-831 (9.7 g) as a photopolymerization initiator, silane coupling agent mixed solution (a-1) (30.0 g) and 3-methacryloxypropyltrimethoxy as an adhesion improver Silane (a-8) (7.5 g), silicone surfactant propylene glycol monomethyl -A solution of 10% by weight of acetate acetate (4.0 g) dissolved in propylene glycol monomethyl ether acetate (44.3 g) was added, and the total solid content concentration was 25% by weight, pigment / resin (weight ratio) = 40/60. A pseudo black resin composition 15 was obtained.
 また、疑似黒色樹脂組成物15用いて実施例1と同様に厚みが1.00μmのブラックマトリクス15を作成した。 Further, a black matrix 15 having a thickness of 1.00 μm was prepared using the pseudo black resin composition 15 in the same manner as in Example 1.
 比較例1
 シランカップリング剤混合液(a-1)を添加せずに3-メタクリロキシプロピルトリメトキシシラン(a-8)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を224.0gとした以外は実施例1と同様にして、黒色樹脂組成物16を得た。
Comparative Example 1
Without adding the silane coupling agent mixture (a-1), 7.5 g of 3-methacryloxypropyltrimethoxysilane (a-8) was added, and the addition amount of propylene glycol monomethyl ether acetate was 224.0 g. A black resin composition 16 was obtained in the same manner as in Example 1 except that.
 また、黒色樹脂組成物16を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス16を作成した。 Further, a black matrix 16 having a thickness of 1.00 μm was prepared using the black resin composition 16 in the same manner as in Example 1.
 比較例2
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-4)を用いた以外は実施例1と同様にして、黒色樹脂組成物17を得た。
Comparative Example 2
A black resin composition 17 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物17を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス17を作成した。 Further, a black matrix 17 having a thickness of 1.00 μm was prepared using the black resin composition 17 in the same manner as in Example 1.
 比較例3
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-5)を用いた以外は実施例1と同様にして、黒色樹脂組成物18を得た。
Comparative Example 3
A black resin composition 18 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物18を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス18を作成した。 Further, a black matrix 18 having a thickness of 1.00 μm was prepared using the black resin composition 18 in the same manner as in Example 1.
 比較例4
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-6)を用いた以外は実施例1と同様にして、黒色樹脂組成物19を得た。
Comparative Example 4
A black resin composition 19 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-6) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物19を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス19を作成した。 Further, a black matrix 19 having a thickness of 1.00 μm was prepared using the black resin composition 19 in the same manner as in Example 1.
 比較例5
 シランカップリング剤混合液(a-1)の代わりにシランカップリング剤混合液(a-7)を用いた以外は実施例1と同様にして、黒色樹脂組成物20を得た。
Comparative Example 5
A black resin composition 20 was obtained in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1).
 また、黒色樹脂組成物20を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス20を作成した。 Further, a black matrix 20 having a thickness of 1.00 μm was prepared using the black resin composition 20 in the same manner as in Example 1.
 比較例6
 シランカップリング剤混合液(a-1)の代わりに3-メタクリロキシプロピルトリメトキシシラン(a-9)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を224.0gとした以外は実施例1と同様にして、黒色樹脂組成物21を得た。
Comparative Example 6
7.5 g of 3-methacryloxypropyltrimethoxysilane (a-9) was added in place of the silane coupling agent mixture (a-1), and the addition amount of propylene glycol monomethyl ether acetate was 224.0 g Obtained a black resin composition 21 in the same manner as in Example 1.
 また、黒色樹脂組成物21を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス21を作成した。 Further, a black matrix 21 having a thickness of 1.00 μm was prepared using the black resin composition 21 in the same manner as in Example 1.
 比較例7
 シランカップリング剤混合液(a-1)の代わりに3-アミノプロピルトリエトキシシラン(a-10)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を224.0gとした以外は実施例1と同様にして、黒色樹脂組成物22を得た。
Comparative Example 7
Except for adding 7.5 g of 3-aminopropyltriethoxysilane (a-10) instead of the silane coupling agent mixed solution (a-1) and changing the addition amount of propylene glycol monomethyl ether acetate to 224.0 g In the same manner as in Example 1, a black resin composition 22 was obtained.
 また、黒色樹脂組成物22を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス22を作成した。 Further, a black matrix 22 having a thickness of 1.00 μm was prepared using the black resin composition 22 in the same manner as in Example 1.
 比較例8
 シランカップリング剤混合液(a-1)の代わりに3-ウレイドプロピルトリエトキシシラン(a-11)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を224.0gとした以外は実施例1と同様にして、黒色樹脂組成物23を得た。
Comparative Example 8
Except for adding 7.5 g of 3-ureidopropyltriethoxysilane (a-11) in place of the silane coupling agent mixture (a-1) and adding 224.0 g of propylene glycol monomethyl ether acetate. In the same manner as in Example 1, a black resin composition 23 was obtained.
 また、黒色樹脂組成物23を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス23を作成した。 Further, a black matrix 23 having a thickness of 1.00 μm was prepared using the black resin composition 23 in the same manner as in Example 1.
 比較例9
 シランカップリング剤混合液(a-1)の代わりに3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(a-12)を7.5g添加し、及びプロピレングリコールモノメチルエーテルアセテートの添加量を224.0gとした以外は実施例1と同様にして、黒色樹脂組成物24を得た。
Comparative Example 9
7.5 g of 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (a-12) is added in place of the silane coupling agent mixture (a-1), and propylene glycol monomethyl ether A black resin composition 24 was obtained in the same manner as in Example 1 except that the amount of acetate added was 224.0 g.
 また、黒色樹脂組成物24を用いて実施例1と同様に厚みが1.00μmのブラックマトリクス24を作成した。 Further, a black matrix 24 having a thickness of 1.00 μm was prepared using the black resin composition 24 in the same manner as in Example 1.
 評価結果を表1に示す。実施例に示す樹脂組成物を用いて形成したブラックマトリクスは高い密着性や優れた耐薬品性を有しており、湿熱処理や薬品浸漬の後においても剥がれが生じにくくなっていることが判る。 Evaluation results are shown in Table 1. It can be seen that the black matrix formed using the resin composition shown in the examples has high adhesion and excellent chemical resistance, and does not easily peel off even after wet heat treatment or chemical immersion.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本発明の着色樹脂組成物は、液晶表示装置用カラーフィルター基板のブラックマトリックスに利用できる。 The colored resin composition of the present invention can be used for a black matrix of a color filter substrate for a liquid crystal display device.

Claims (7)

  1.  少なくとも(A)着色顔料、(B)アルカリ可溶性樹脂、(C)密着改良剤及び(D)有機溶剤を含有する着色樹脂組成物であって、前記(C)密着改良剤として少なくとも下記一般式(1)で表されるシランカップリング剤を含有する、着色樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していてもよい。nは0又は1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基又はフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していてもよい。)
    A colored resin composition containing at least (A) a color pigment, (B) an alkali-soluble resin, (C) an adhesion improver, and (D) an organic solvent, wherein at least the following general formula (C) A colored resin composition containing the silane coupling agent represented by 1).
    Figure JPOXMLDOC01-appb-C000001
    (Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having 3 to 30. R 3 s may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, or a phenoxy group. In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.
  2.  前記(C)密着改良剤が、前記一般式(1)においてn=0で表されるシランカップリング剤である、請求項1に記載の着色樹脂組成物。 The colored resin composition according to claim 1, wherein the (C) adhesion improving agent is a silane coupling agent represented by n = 0 in the general formula (1).
  3.  前記(C)密着改良剤として、少なくとも2種以上のシランカップリング剤を含有する、請求項1又は2に記載の着色樹脂組成物。 The colored resin composition according to claim 1 or 2, which contains at least two or more silane coupling agents as the (C) adhesion improver.
  4.  前記(A)着色顔料が、黒色遮光材である、請求項1~3のいずれか一項に記載の着色樹脂組成物。 The colored resin composition according to any one of claims 1 to 3, wherein the (A) colored pigment is a black light shielding material.
  5.  前記黒色遮光材として、少なくともチタン窒化物粒子及び/又はカーボンブラックを含有する、請求項4に記載の着色樹脂組成物。 The colored resin composition according to claim 4, comprising at least titanium nitride particles and / or carbon black as the black light shielding material.
  6.  前記黒色遮光材の総重量和に占める前記チタン窒化物粒子の重量比率が20~80重量%である、請求項5に記載の着色樹脂組成物。 The colored resin composition according to claim 5, wherein a weight ratio of the titanium nitride particles in the total weight of the black light shielding material is 20 to 80% by weight.
  7.  請求項4~6のいずれか一項に記載の着色樹脂組成物を透明基板上に塗布し、パターン形成して得られる、樹脂ブラックマトリックス基板。 A resin black matrix substrate obtained by applying the colored resin composition according to any one of claims 4 to 6 on a transparent substrate and forming a pattern.
PCT/JP2012/071651 2011-08-29 2012-08-28 Colored resin composition and resin black matrix substrate WO2013031753A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147000842A KR101846977B1 (en) 2011-08-29 2012-08-28 Colored resin composition and resin black matrix substrate
JP2012540196A JP5234230B1 (en) 2011-08-29 2012-08-28 Colored resin composition and resin black matrix substrate
CN201280042371.5A CN103765254B (en) 2011-08-29 2012-08-28 Colored resin composition and resin black matrix substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-185668 2011-08-29
JP2011185668 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031753A1 true WO2013031753A1 (en) 2013-03-07

Family

ID=47756238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071651 WO2013031753A1 (en) 2011-08-29 2012-08-28 Colored resin composition and resin black matrix substrate

Country Status (5)

Country Link
JP (1) JP5234230B1 (en)
KR (1) KR101846977B1 (en)
CN (1) CN103765254B (en)
TW (1) TWI512403B (en)
WO (1) WO2013031753A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007687A (en) * 2013-06-25 2015-01-15 日油株式会社 Thermosetting resin composition for color filter protective film and color filter having the cured film
WO2015012228A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
JP2015093986A (en) * 2013-11-14 2015-05-18 東京応化工業株式会社 Photosensitive resin composition for forming black column spacer
KR20160071994A (en) 2014-12-12 2016-06-22 동우 화인켐 주식회사 Black photosensitive resin composition, black matrix and image display device comprising thereof
WO2016096073A1 (en) 2014-12-15 2016-06-23 Merck Patent Gmbh A polarized light emissive device
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
JPWO2018037913A1 (en) * 2016-08-22 2019-06-20 富士フイルム株式会社 Light-shielding composition, light-shielding film, solid-state imaging device, color filter, and liquid crystal display device
WO2021152411A1 (en) * 2020-01-29 2021-08-05 3M Innovative Properties Company Retroreflective element and retroreflective film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327345B2 (en) * 2012-02-23 2013-10-30 東レ株式会社 Negative photosensitive resin composition, cured film, and touch panel member.
KR20160078540A (en) 2014-12-24 2016-07-05 세명일렉트로닉스 주식회사 Paint composition for inkjet printing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165867A (en) * 2001-11-28 2003-06-10 Hitachi Chemical Dupont Microsystems Ltd Silane coupling agent
JP2006265349A (en) * 2005-03-23 2006-10-05 Lintec Corp Pressure-sensitive adhesive composition and optical member
JP2006316032A (en) * 2005-05-16 2006-11-24 Asahi Kasei Electronics Co Ltd Silane coupling agent
WO2008065944A1 (en) * 2006-11-30 2008-06-05 Toray Industries, Inc. Photosensitive siloxane composition, hardened film formed therefrom and device having the hardened film
WO2010055154A1 (en) * 2008-11-17 2010-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dialkoxy- or dihydroxyphenyl radicals containing silanes, adhesives produced therefrom and method for producing silanes and adhesives
WO2011114995A1 (en) * 2010-03-17 2011-09-22 東レ株式会社 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5281357B2 (en) 2008-10-23 2013-09-04 新日鉄住金化学株式会社 Photosensitive resin composition for black resist and color filter light-shielding film
JP5623886B2 (en) * 2009-12-09 2014-11-12 富士フイルム株式会社 Colored photosensitive composition, method for producing color filter, color filter, and liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165867A (en) * 2001-11-28 2003-06-10 Hitachi Chemical Dupont Microsystems Ltd Silane coupling agent
JP2006265349A (en) * 2005-03-23 2006-10-05 Lintec Corp Pressure-sensitive adhesive composition and optical member
JP2006316032A (en) * 2005-05-16 2006-11-24 Asahi Kasei Electronics Co Ltd Silane coupling agent
WO2008065944A1 (en) * 2006-11-30 2008-06-05 Toray Industries, Inc. Photosensitive siloxane composition, hardened film formed therefrom and device having the hardened film
WO2010055154A1 (en) * 2008-11-17 2010-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dialkoxy- or dihydroxyphenyl radicals containing silanes, adhesives produced therefrom and method for producing silanes and adhesives
WO2011114995A1 (en) * 2010-03-17 2011-09-22 東レ株式会社 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007687A (en) * 2013-06-25 2015-01-15 日油株式会社 Thermosetting resin composition for color filter protective film and color filter having the cured film
JPWO2015012228A1 (en) * 2013-07-25 2017-03-02 東レ株式会社 Negative photosensitive white composition for touch panel, touch panel and method for manufacturing touch panel
KR102082722B1 (en) * 2013-07-25 2020-02-28 도레이 카부시키가이샤 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
KR20160034907A (en) * 2013-07-25 2016-03-30 도레이 카부시키가이샤 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
WO2015012228A1 (en) * 2013-07-25 2015-01-29 東レ株式会社 Negative-type photosensitive white composition for touch panel, touch panel, and production method for touch panel
US9690197B2 (en) 2013-07-25 2017-06-27 Toray Industries, Inc. Negative-type photosensitive white composition for touch panel, touch panel and touch panel production method
CN104635423A (en) * 2013-11-14 2015-05-20 东京应化工业株式会社 Photosensitive resin composition used for forming black column-shaped distance pieces
JP2015093986A (en) * 2013-11-14 2015-05-18 東京応化工業株式会社 Photosensitive resin composition for forming black column spacer
KR20160071994A (en) 2014-12-12 2016-06-22 동우 화인켐 주식회사 Black photosensitive resin composition, black matrix and image display device comprising thereof
WO2016096073A1 (en) 2014-12-15 2016-06-23 Merck Patent Gmbh A polarized light emissive device
WO2017012688A1 (en) 2015-07-17 2017-01-26 Merck Patent Gmbh Luminescent particle, ink formulation, polymer composition, optical device, fabrication of thereof, and use of the luminescent particle
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2017167779A1 (en) 2016-03-31 2017-10-05 Merck Patent Gmbh A color conversion sheet and an optical device
JPWO2018037913A1 (en) * 2016-08-22 2019-06-20 富士フイルム株式会社 Light-shielding composition, light-shielding film, solid-state imaging device, color filter, and liquid crystal display device
WO2018114761A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh Optical medium and an optical device
WO2021152411A1 (en) * 2020-01-29 2021-08-05 3M Innovative Properties Company Retroreflective element and retroreflective film

Also Published As

Publication number Publication date
TWI512403B (en) 2015-12-11
KR101846977B1 (en) 2018-04-09
JPWO2013031753A1 (en) 2015-03-23
CN103765254B (en) 2016-04-06
TW201319753A (en) 2013-05-16
JP5234230B1 (en) 2013-07-10
CN103765254A (en) 2014-04-30
KR20140061346A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5234230B1 (en) Colored resin composition and resin black matrix substrate
JP5333670B2 (en) Black resin composition, resin black matrix substrate and touch panel
JP6119104B2 (en) Photosensitive black resin composition, resin black matrix substrate and touch panel using the same
JP5577659B2 (en) Photosensitive black resin composition, resin black matrix substrate, color filter substrate, and liquid crystal display device
JP2011227467A (en) Photosensitive black resin composition and resin black matrix substrate
JP5136139B2 (en) Black resin composition for resin black matrix, resin black matrix, color filter and liquid crystal display device
JP5967782B2 (en) Black composite fine particles, black resin composition, color filter substrate and liquid crystal display device
JP5099094B2 (en) Black resin composition, resin black matrix, color filter, and liquid crystal display device
TWI703192B (en) Colored resin composition
JP2010097214A (en) Color filter substrate for liquid crystal display apparatus and liquid crystal display apparatus
JP2010189628A (en) Black resin composition, resin black matrix, color filter and liquid crystal display device
JP2009058946A (en) Black resin composition, resin black matrix, color filter, and liquid crystal display
JP5157686B2 (en) Black resin composition, resin black matrix, color filter, and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280042371.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012540196

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147000842

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828104

Country of ref document: EP

Kind code of ref document: A1