WO2011114995A1 - Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component - Google Patents

Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component Download PDF

Info

Publication number
WO2011114995A1
WO2011114995A1 PCT/JP2011/055680 JP2011055680W WO2011114995A1 WO 2011114995 A1 WO2011114995 A1 WO 2011114995A1 JP 2011055680 W JP2011055680 W JP 2011055680W WO 2011114995 A1 WO2011114995 A1 WO 2011114995A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
silane coupling
coupling agent
negative photosensitive
Prior art date
Application number
PCT/JP2011/055680
Other languages
French (fr)
Japanese (ja)
Inventor
岡沢徹
荒木斉
諏訪充史
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020127024097A priority Critical patent/KR101839397B1/en
Priority to SG2012068672A priority patent/SG184100A1/en
Priority to JP2011526326A priority patent/JP5459315B2/en
Priority to CN201180014187.5A priority patent/CN102803274B/en
Publication of WO2011114995A1 publication Critical patent/WO2011114995A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/085Photosensitive compositions characterised by adhesion-promoting non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a resin composition for forming a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film such as a touch panel sensor element, or an interlayer insulating film of a semiconductor element.
  • TFT thin film transistor
  • the present invention relates to a silane coupling agent suitable for the above.
  • it is related with the negative photosensitive composition using the same, the cured film formed from it, and the member for touch panels which has the cured film.
  • hard coat materials there are various uses for hard coat materials. For example, it is used to improve the surface hardness of automobile parts, containers for cosmetics, sheets, films, optical disks, thin displays, and the like. Properties required for the hard coat material include heat resistance, weather resistance, adhesiveness, etc. in addition to hardness and scratch resistance.
  • a radical polymerization type UV curable hard coat material for example, see Non-Patent Document 1.
  • the composition of the hard coat material is a polymerizable group-containing oligomer, monomer, photopolymerization initiator, and other additives.
  • Oligomer and monomer are cross-linked by radical polymerization by UV irradiation to obtain a high hardness film. Since this hard coat material requires a short time for curing, use of this hard coat material improves productivity. Furthermore, since a negative photosensitive material having a general radical polymerization mechanism can be used, there is an advantage that the manufacturing cost is reduced.
  • the capacitive touch panel which has been attracting attention in recent years, is one of the uses of hard coat materials.
  • the capacitance type touch panel has a pattern made of an ITO (Indium Tin Oxide) film on glass.
  • ITO Indium Tin Oxide
  • a film having high hardness is required.
  • a method of adding a silane coupling agent is well known.
  • a silane coupling agent having an imide group see Patent Document 1 and Patent Document 2
  • Patent Document 3 a silane coupling agent suitable for the heat resistant resin precursor composition
  • a compound having a carboxyl group and an ester group or a carboxyl group and an amide group see Patent Document 3
  • organosilicon compound having an amic acid structure has a structure in which an amino group-containing silane coupling agent is added to an aromatic ring anhydride.
  • This organosilicon compound is strongly colored and is not suitable for touch panel applications, and the adhesion-improving curing is not sufficient.
  • An object of the present invention is to provide a cured film having excellent adhesion to a substrate surface composed of metal or inorganic material, high hardness, and excellent resolution. Furthermore, another object of the present invention is to provide a cured film having a low curing shrinkage rate and good flatness.
  • the present invention has the following configuration. That is, it is a silane coupling agent represented by the following general formula (1).
  • Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may further have a substituent.
  • N represents 0 or 1.
  • R 2 represents carbon.
  • R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, and phenoxy (In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.)
  • the cured film containing the silane coupling agent of the present invention has the effect of improving the adhesion with the substrate surface made of metal or inorganic material, having high hardness and excellent resolution. Furthermore, the cured film containing the silane coupling agent of the present invention has an effect that the curing shrinkage rate is low and the flatness is good.
  • the silane coupling agent of the present invention has a structure represented by the following general formula (1).
  • Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may further have a substituent.
  • N represents 0 or 1.
  • R 2 represents carbon. Represents a trivalent organic group having 3 to 30.
  • R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, and phenoxy (In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.)
  • R 1 a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group and an ethyl group are particularly preferable from the viewpoint of obtaining raw materials.
  • R 1 may have a substituent such as an alkoxy group, an aryl group, a phenoxy group, or a halogen group.
  • R 2 is preferably a trivalent organic group having 3 to 30 carbon atoms, and more preferably a trivalent organic group having 3 to 10 carbon atoms from the viewpoint of solubility in an organic solvent.
  • silane coupling agent represented by the general formula (1) of the present invention examples include 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butyl).
  • silane coupling agents When these silane coupling agents are added to the negative photosensitive resin, they may be used alone or mixed.
  • silane coupling agents As a method for producing these silane coupling agents, a method of producing by reacting a silane coupling agent containing an acid anhydride with an alkylamine is preferable from the viewpoint of ease of production.
  • a silane coupling agent containing an acid anhydride two types of silane coupling agents of the present invention are generated simultaneously.
  • a small amount of oligomer or the like can be replicated in this synthesis method, it does not significantly affect the adhesion improving effect and need not be considered.
  • the addition amount is preferably 1 to 15% by mass, preferably 3 to 10% by mass with respect to the total amount of the resin component of the negative photosensitive resin composition, that is, (B) alkali-soluble resin and (C) polyfunctional acrylic monomer. % Is more preferable. If the amount is less than 1% by mass, the effect of improving the adhesiveness is not sufficient.
  • the negative photosensitive resin composition using the silane coupling agent of the present invention comprises at least (A) a silane coupling agent represented by the general formula (1), (B) an alkali-soluble resin, and (C) a polyfunctional acrylic. It contains a monomer and (D) a photoradical polymerization initiator.
  • the negative photosensitive composition of the present invention contains (B) an alkali-soluble resin.
  • the alkali-soluble resin By having the alkali-soluble resin, the negative photosensitive resin composition is excellent in alkali solubility (developability), and a good pattern can be formed while suppressing the residue after development. Moreover, by having an ethylenically unsaturated double bond group, a crosslinking density can be improved and the hardness of a cured film can be improved.
  • alkali-soluble resin examples include polysiloxane, acrylic resin, vinyl ether resin, polyhydroxystyrene, novolac resin, polyimide, polyamide, and the like.
  • alkali-soluble resin it is preferable that at least a part of the ethylenically unsaturated double bond group is introduced in order to increase the hardness of the cured film.
  • polysiloxanes and acrylic resins are more preferred because of the ease of introduction of ethylenically unsaturated double bond groups. Moreover, you may contain 2 or more types of these polymers.
  • alkali-soluble resin it is not limited to this.
  • a reaction product obtained by hydrolyzing and condensing a trifunctional alkoxysilane compound is particularly preferable.
  • the following are mentioned as a trifunctional alkoxysilane compound.
  • the ethylenically unsaturated double bond group can be easily introduced into the polysiloxane, and the hardness of the cured film is increased. Is more preferable.
  • (Meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, (meth) acrylic acid Cyclohexyl, cyclohexenyl (meth) acrylate, 4-methoxycyclohexyl (meth) acrylate, 2-cyclopropyloxycarbonylethyl (meth) acrylate, 2-cyclopentyloxycarbonylethyl (meth) acrylate, (meth) acrylic acid 2-cyclohexyloxycarbonylethyl, (meth) acrylic acid 2-cyclohexenyloxycarbonylethyl, (meth) acrylic acid 2- (4-methoxycyclohexyl)
  • Aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, and ⁇ -methylstyrene may be copolymerized with the above (meth) acrylic acid or (meth) acrylic acid ester. .
  • an ethylenically unsaturated double bond group can be introduced by addition reaction of an epoxy compound having an ethylenically unsaturated double bond group with (meth) acrylic acid.
  • an epoxy compound having an ethylenically unsaturated double bond group include the following compounds.
  • the content of the (B) alkali-soluble resin is not particularly limited, and can be arbitrarily selected depending on the desired film thickness and application.
  • the alkali-soluble resin is preferably added in an amount of 10 to 60% by mass based on the solid content of the negative photosensitive resin composition.
  • the negative photosensitive composition of the present invention contains (C) a polyfunctional monomer.
  • the polyfunctional monomer refers to a compound having at least two ethylenically unsaturated double bonds in the molecule. Considering the ease of radical polymerization, a multi-sensitive monomer having an acrylic group is preferable.
  • Specific examples include bisphenol A diglycidyl ether (meth) acrylate, poly (meth) acrylate carbamate, modified bisphenol A epoxy (meth) acrylate, adipic acid 1,6-hexanediol (meth) acrylic acid ester, propylene phthalate anhydride Oxide (meth) acrylic acid ester, trimellitic acid diethylene glycol (meth) acrylic acid ester, rosin modified epoxy di (meth) acrylate, oligomer such as alkyd modified (meth) acrylate, or tripropylene glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythrine Ritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dip
  • the negative photosensitive resin composition of the present invention contains (D) a photo radical polymerization initiator.
  • a photo radical polymerization initiator Any radical photopolymerization initiator may be used as long as it is decomposed and / or reacted by light (including ultraviolet rays and electron beams) to generate radicals.
  • light including ultraviolet rays and electron beams
  • ⁇ -aminoalkylphenone compounds include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1 -(4-morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and the like.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-( 2,4,4-trimethylpentyl) -phosphine oxide and the like.
  • oxime ester compound examples include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (O -Benzoyloxime)], 1-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime, ethanone, 1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime) and the like.
  • benzophenone compound having an amino group examples include 4,4-bis (dimethylamino) benzophenone and 4,4-bis (diethylamino) benzophenone.
  • benzoic acid ester compound having an amino group examples include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate and the like.
  • the content of the radical photopolymerization initiator is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more in the solid content of the negative photosensitive resin composition. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable. By setting it as the said range, radical hardening can fully be advanced and elution of the residual radical polymerization initiator etc. can be prevented and solvent resistance can be ensured.
  • the negative photosensitive resin composition of the present invention may contain a polymerization inhibitor.
  • a polymerization inhibitor By containing a polymerization inhibitor, the storage stability of the composition is improved, and the resolution after development is improved in applications requiring pattern processing.
  • Specific examples of the polymerization inhibitor include phenol, catechol, resorcinol, hydroquinone, 4-t-butylcatechol, 2,6-di (t-butyl) -p-cresol, phenothiazine, 4-methoxyphenol and the like.
  • the content of the polymerization inhibitor is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more in the solid content of the negative photosensitive resin composition.
  • it is preferably 5% by mass or less, and more preferably 1% by mass or less.
  • the negative photosensitive resin composition of the present invention may contain a thermal acid generator.
  • the effect of improving the adhesion of the silane coupling agent can be further enhanced by the thermal acid generator.
  • Specific examples of the thermal acid generator preferably used include triphenylsulfonium, 4-hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl- Examples include 4-acetylphenylmethylsulfonium, 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium, methanesulfonate, trifluoromethanesulfonate, camphorsulfonate, p-toluenesulfonate, and the like.
  • SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-200, SI-60L, SI-80L, SI-100L, SI-110L, SI-145L, SI -150L, SI-160L, SI-180L are also preferably used. Two or more of these may be contained.
  • the content of the thermal acid generator is preferably 0.1 to 3% by mass based on the total amount of the resin component of the negative photosensitive resin composition, that is, (B) alkali-soluble resin and (C) polyfunctional acrylic monomer. . If the amount is less than 0.1% by mass, the effect of improving the adhesiveness is small. If the amount is more than 3% by mass, the pattern becomes larger than the mask pattern and the resolution is lowered.
  • the siloxane resin composition of the present invention may contain an ultraviolet absorber.
  • an ultraviolet absorber By containing the ultraviolet absorber, the light resistance of the resulting cured film is improved, and the resolution after development is improved in applications that require pattern processing.
  • a ultraviolet absorber There is no limitation in particular as a ultraviolet absorber, A well-known thing can be used.
  • benzotriazole compounds benzophenone compounds, and triazine compounds are preferably used.
  • ultraviolet absorbers for benzotriazole compounds include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-t-pentylphenol, 2- (2H Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, 2- (2 And '-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole.
  • UV absorbers for benzophenone compounds include 2-hydroxy-4-methoxybenzophenone.
  • Examples of the ultraviolet absorber of the triazine compound include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
  • the negative photosensitive resin composition of the present invention may contain a solvent.
  • a compound having an alcoholic hydroxyl group or a cyclic compound having a carbonyl group is preferably used in that each component can be dissolved uniformly and the transparency of the resulting coating film can be improved. Two or more of these may be contained. Further, a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is more preferable.
  • boiling point By setting the boiling point to 110 ° C. or higher, drying proceeds moderately at the time of coating, and a good coating without uneven coating can be obtained. On the other hand, when the boiling point is 250 ° C. or lower, the amount of residual solvent in the film can be reduced, and film shrinkage during thermosetting can be further reduced, so that better flatness can be obtained.
  • Specific examples of the compound having an alcoholic hydroxyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2- Butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl Examples include ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, 3-methoxy-1-butanol, and 3-methyl-3-methoxy-1-butanol.
  • diacetone alcohol is preferable from the viewpoint of storage stability
  • propylene glycol mono t-butyl ether is preferable from the viewpoint of step coverage.
  • cyclic compound having a carbonyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, propylene carbonate, N-methylpyrrolidone, cyclohexanone, Examples include cycloheptanone. Among these, ⁇ -butyrolactone is preferable.
  • the negative photosensitive resin composition of the present invention may contain various solvents such as acetates, ketones and ethers other than those described above.
  • the content of the solvent is not particularly limited, and any amount can be used depending on the coating method.
  • the amount of solvent is generally 50 to 95% by mass of the entire negative photosensitive resin composition.
  • the negative photosensitive resin composition of the present invention may contain various curing agents that accelerate the curing of the resin composition or facilitate the curing.
  • the curing agent is not particularly limited and known ones can be used. Specific examples include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, methylolated melamine derivatives, and methylolated urea derivatives. Two or more of these may be contained. Of these, metal chelate compounds, methylolated melamine derivatives, and methylolated urea derivatives are preferably used in view of the stability of the curing agent and the processability of the obtained coating film.
  • the negative photosensitive resin composition of the present invention may contain various surfactants such as a fluorine-based surfactant and a silicone-based surfactant in order to improve the flowability during coating.
  • various surfactants such as a fluorine-based surfactant and a silicone-based surfactant in order to improve the flowability during coating.
  • a fluorine-type surfactant, a silicone type surfactant, a polyalkylene oxide type surfactant, a poly (meth) acrylate type surfactant etc. can be used. Two or more of these may be used.
  • fluorosurfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (above, Dainippon Ink & Chemicals, Inc.) NBX-15 and FTX-218 (manufactured by Neos) are preferably used.
  • silicone surfactants BYK-333, BYK-301, BYK-331, BYK-345, BYK-307 (manufactured by BYK Japan Japan Co., Ltd.) are preferably used.
  • a typical method for producing the negative photosensitive resin composition of the present invention will be described.
  • a silane coupling agent represented by the general formula (1) (B) an alkali-soluble resin, (C) a polyfunctional acrylic monomer, (D) a photoradical polymerization initiator, and other additives as necessary. Is added to an arbitrary solvent and dissolved by stirring, and then the resulting solution is filtered to obtain a negative photosensitive resin composition.
  • the method for forming a cured film using the negative photosensitive resin composition of the present invention will be described with an example.
  • the negative photosensitive resin composition of the present invention is applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, Pre-bake with a heating device such as an oven. Pre-baking is performed in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 ⁇ m.
  • exposure is performed using an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA).
  • the exposure intensity is about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion), and this light is irradiated through or without a desired mask.
  • the exposure light source is not limited, and ultraviolet rays such as i-line, g-line, and h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed portion can be dissolved by development to obtain a negative pattern.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates, borates, amines such as 2-diethylaminoethanol, monoethanolamine, and diethanolamine, tetramethylammonium hydroxide. And aqueous solutions containing one or more quaternary ammonium salts such as choline. After development, it is preferable to rinse with water, followed by drying and baking in the range of 50 to 150 ° C.
  • this film is heated in a range of 150 to 450 ° C. for about 20 minutes to 1 hour with a heating device such as a hot plate or an oven.
  • the cured film obtained by curing the negative photosensitive resin composition of the present invention is used as a touch panel protective film, a touch panel insulating film, various hard coat materials, an antireflection film, and an optical filter. Further, since it has negative photosensitivity, it is suitably used for TFT flattening films, insulating films, antireflection films, color filter overcoats, column materials, etc. for liquid crystal and organic EL displays. Among these, in particular, it can be suitably used as a touch panel protective film or a touch panel insulating film that requires adhesion after heat treatment and chemical treatment to a substrate not containing Si, such as ITO or molybdenum.
  • Examples of the touch panel system include a resistance film type, an optical type, an electromagnetic induction type, and a capacitance type. Since especially high hardness is calculated
  • the hardness is preferably 4H or more
  • the transmittance is 95% or more
  • the resolution is preferably 20 ⁇ m or less.
  • the hardness and transmittance can be adjusted by selecting the exposure amount and the thermosetting temperature.
  • PGMEA propylene glycol monomethyl ether acetate
  • DAA diacetone alcohol
  • Synthesis Example 1 Synthesis of Silane Coupling Agent Mixed Solution (a-1) To 200 g of PGMEA was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine, and the mixture was allowed to warm to room temperature for a while. And stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) ) -2-Oxoethyl) -5- (trimethoxysilyl) pentanoic acid mixed solution (a-1) was obtained.
  • Synthesis Example 2 Synthesis of Silane Coupling Agent Mixed Solution (a-2) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of t-pentylamine were added for a while at room temperature. And then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2- (t-pentylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- ( A mixed solution (a-2) of tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 3 Synthesis of Silane Coupling Agent Mixed Solution (a-3) To 200 g of PGMEA were added 41.97 g (160 mmol) of 3-trimethoxysilylpropylsuccinic anhydride and 9.45 g (160 mmol) of isopropylamine at room temperature for a while. After stirring, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2- (isopropylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert- A mixed solution (a-3) of isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 4 Synthesis of Silane Coupling Agent Mixed Solution (a-4) To 200 g of PGMEA was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of n-propylamine for a while at room temperature. And then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2-oxo-2- (propylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (propyl A mixed solution (a-4) of carbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 5 Synthesis of Silane Coupling Agent Mixed Solution (a-5) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 14.90 g (160 mmol) of aniline were added and stirred at room temperature for a while. Then, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2-oxo-2- (phenylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (phenyl A mixed solution (a-5) of carbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
  • Synthesis Example 6 Synthesis of Silane Coupling Agent Mixed Solution (a-6) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 7.37 g (160 mmol) of ethanol were added and stirred at room temperature for a while. Then, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours.
  • the resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 4-ethoxy-4-oxo-2- (trimethoxysilyl) butanoic acid, 4-ethoxy-4-oxo-3- (tri A mixed solution (a-6) of methoxysilyl) butanoic acid was obtained.
  • Synthesis Example 7 Synthesis of Silane Coupling Agent Solution (a-7) 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine were added to 400 g of PGMEA at room temperature for a while. After stirring, the mixture was stirred at 60 ° C. for 2 hours. Then, it heated up to 140 degreeC and made it react for 6 hours, azeotropically boiling PGMEA and water. The resulting solution was diluted with PGMEA so that the solid content concentration was 20% to obtain a 1- (tert-butyl) -3-trimethoxysilylpyrrolidine-2,5-dione solution (a-7).
  • Synthesis Example 8 Synthesis of Siloxane Resin Solution (b-1) 13.62 g (0.1 mol) of methyltrimethoxysilane, 118.98 g (0.6 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic acid 39 .39 g (0.15 mol), ⁇ -methacryloxypropyltrimethoxysilane 35.16 g, and DAA 140.87 g were added to a 500 ml three-necked flask.
  • ITO substrate A cured film having a film thickness of 1.5 ⁇ m produced on this substrate (hereinafter referred to as ITO substrate) is made of ITO and a cured film according to JIS “K5400” 8.5.2 (1990) cross-cut tape method. Adhesion was evaluated. On the surface of the cured film on the glass substrate, 11 parallel straight lines of 11 vertical and horizontal directions were drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife, and 100 squares of 1 mm ⁇ 1 mm were produced. .
  • Example 1 Under a yellow light, 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (trade name “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd. (hereinafter referred to as IC907) .)) 1.557 g, 4,4-bis (diethylamino) benzophenone (hereinafter referred to as EK) 0.173 g was dissolved in 21.618 g DAA and 34.489 g PGMEA. To this solution, dipentaerythritol hexaacrylate (trade name “Kayarad DPHA”, Shin Nippon Kayaku Co., Ltd.
  • DPHA silane coupling agent mixed solution
  • a-1 silane coupling agent mixed solution
  • b-1 siloxane resin solution
  • BYK-333 which is a silicone surfactant (manufactured by BYK Japan Japan Co., Ltd.) 1.500 g of a 1% by weight PGMEA solution was added and stirred, followed by filtration with a 0.45 ⁇ m filter to obtain a negative photosensitive resin composition (N-1).
  • the obtained negative photosensitive resin composition (N-1) was spin-coated on a glass substrate and an ITO substrate using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number. Thereafter, these substrates were pre-baked for 2 minutes at 110 ° C. using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a film having a thickness of 1.5 ⁇ m.
  • the mask Using the parallel light mask aligner (PLA-501F manufactured by Canon Inc.) as the light source and the ultrahigh pressure mercury lamp as the light source, the mask having a one-to-one width of 5, 10, 20, 30, 40, 50 ⁇ m width
  • the exposure was performed at an exposure amount of 200 mJ (i-line) and a mask gap of 100 ⁇ m.
  • an automatic developing device AD-2000, manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed for 90 seconds with a 0.4% by mass tetramethylammonium hydroxide aqueous solution ELM-D (Mitsubishi Gas Chemical Co., Ltd.).
  • ELM-D Mitsubishi Gas Chemical Co., Ltd.
  • rinsed with water for 30 seconds.
  • a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). About the obtained cured film, hardness, adhesiveness, and resolution were evaluated by the said method.
  • Example 2 A negative photosensitive resin composition (N-2) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-2).
  • Example 3 A negative photosensitive resin composition (N-3) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1). Obtained. The obtained negative photosensitive resin composition (N-3) was evaluated in the same manner as in Example 1.
  • Example 4 A negative photosensitive resin composition (Example 1) was carried out in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was changed to 0.433 g and the addition amount of PGMEA was changed to 38.382 g. N-4) was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-4).
  • Example 5 The negative photosensitive resin composition (N-1) was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 1.730 g and the addition amount of PGMEA was 37.085 g. -5) was obtained. Using the obtained negative photosensitive resin composition (N-5), evaluation was performed in the same manner as in Example 1.
  • Example 6 A negative photosensitive resin composition (N) was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 10.382 g and the addition amount of PGMEA was 28.433 g. -6) was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-6).
  • Negative photosensitive resin composition (N-1) was carried out in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 14.708 g and the addition amount of PGMEA was 24.107 g. -7) was obtained. Evaluation was carried out in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-7).
  • Example 8 The negative photosensitive resin composition (N-1) (30.000 g) is triphenylsulfonium trifluoromethanesulfonate (trade name “WPAG-281”, manufactured by Big Chemie Japan Co., Ltd. (hereinafter referred to as WPAG-281). 0.052 g) was added and stirred to obtain a negative photosensitive resin composition (N-8), and the obtained negative photosensitive resin composition (N-8) was used as an example. Evaluation was performed in the same manner as in Example 1.
  • WPAG-281 triphenylsulfonium trifluoromethanesulfonate
  • Example 9 The negative photosensitive resin composition (N-9) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-1) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-9).
  • Example 10 Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (21.629 g). In this solution, DPHA 8.652 g, silane coupling agent mixed solution (a-1) 4.326 g, 4-t-butylcatechol PGMEA 1% by mass solution 8.652 g, acrylic resin solution (b-2) 21.629 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Subsequently, filtration was performed with a 0.45 ⁇ m filter to obtain a negative photosensitive resin composition (N-10). Evaluation was carried out in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-10).
  • Example 11 A negative photosensitive resin composition (N-11) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-11).
  • Example 12 A negative photosensitive resin composition (N-12) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Using the obtained negative photosensitive resin composition (N-12), evaluation was performed in the same manner as in Example 1.
  • Example 13 Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (24.108 g).
  • DPHA 10.382 g silane coupling agent mixed solution (a-1) 4.326 g, 4-tert-butylcatechol PGMEA 1% by mass solution 8.652 g, acrylic resin solution (b-2) 17.303 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Next, filtration was performed with a 0.45 ⁇ m filter to obtain a negative photosensitive resin composition (N-13). Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-13).
  • Example 14 A negative photosensitive resin composition (N-14) was obtained in the same manner as in Example 13, except that 0.052 g of WPAG-281 was added to 30.000 g of the negative photosensitive resin composition (N-13). . Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-14).
  • Example 15 Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (18.917 g). In this solution, DPHA 6.921 g, silane coupling agent mixed solution (a-1) 4.326 g, 4-t-butylcatechol PGMEA 1 mass% solution 8.652 g, acrylic resin solution (b-2) 25.955 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Next, filtration was performed with a 0.45 ⁇ m filter to obtain a negative photosensitive resin composition (N-15). Evaluation was performed in the same manner as in Example 1 by using the obtained negative photosensitive resin composition (N-15).
  • Example 16 Under a yellow light, 1.730 g of the quinonediazide compound (q-1) was dissolved in 6.045 g of DAA and 43.141 g of PGMEA. In this solution, 4.326 g of the silane coupling agent mixed solution (a-1), 43.258 g of the siloxane resin solution (b-1), BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Next, filtration was performed with a 0.45 ⁇ m filter to obtain a positive photosensitive resin composition (P-1).
  • a-1 silane coupling agent mixed solution
  • b-1 siloxane resin solution
  • BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Next,
  • the obtained positive photosensitive resin composition (P-1) was spin-coated on a glass substrate and an ITO substrate using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number. Thereafter, these substrates were pre-baked for 2 minutes at 110 ° C. using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a film having a thickness of 1.5 ⁇ m.
  • the mask Using the parallel light mask aligner (PLA-501F manufactured by Canon Inc.) as the light source and the ultrahigh pressure mercury lamp as the light source, the mask having a one-to-one width of 5, 10, 20, 30, 40, 50 ⁇ m width
  • the exposure was performed at an exposure amount of 200 mJ (i line) and a mask gap of 100 ⁇ m.
  • an unexposed portion having a sufficient area for hardness and adhesion measurement was secured.
  • an automatic developing device AD-2000, manufactured by Takizawa Sangyo Co., Ltd.
  • shower development was performed for 90 seconds with a 0.4% by mass tetramethylammonium hydroxide aqueous solution ELM-D (Mitsubishi Gas Chemical Co., Ltd.).
  • a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). About the obtained cured film, hardness, adhesiveness, and resolution were evaluated by the said method.
  • Example 17 It was dissolved in 6.045 g of DAA and 44.871 g of PGMEA. In this solution, 4.326 g of the silane coupling agent mixed solution (a-1), 43.258 g of the siloxane resin solution (b-1), BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Subsequently, filtration was performed with a 0.45 ⁇ m filter to obtain a thermosetting resin composition (U-1).
  • a-1 silane coupling agent mixed solution
  • b-1 siloxane resin solution
  • BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Subsequently, filtration was performed with a 0.45 ⁇ m filter to obtain
  • thermosetting resin composition (U-1) was spin-coated on a glass substrate and an ITO substrate, respectively, using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary number of revolutions. A 5 ⁇ m film was prepared. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a cured film was produced by curing in an air at 260 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). Curing shrinkage was calculated by the above method, and hardness and adhesion were evaluated.
  • Comparative Example 2 A negative photosensitive resin composition (N-17) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1). Obtained. The obtained negative photosensitive resin composition (N-17) was used for evaluation in the same manner as in Example 1.
  • Comparative Example 3 A negative photosensitive resin composition (N-18) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-18).
  • Comparative Example 4 The negative photosensitive resin composition (N-19) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-17) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-19).
  • the negative photosensitive resin composition (N-20) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-16) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-20).
  • Example 9 A negative photosensitive resin composition (N-24) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Using the obtained negative photosensitive resin composition (N-24), evaluation was performed in the same manner as in Example 1.
  • Comparative Example 10 A negative photosensitive resin composition (N-25) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-25).
  • Comparative Example 11 A negative photosensitive resin composition (N-26) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-6) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-26).
  • Comparative Example 12 A negative photosensitive resin composition (N-27) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 by using the obtained negative photosensitive resin composition (N-27).
  • Comparative Example 13 A positive photosensitive resin composition (P-2) was prepared in the same manner as in Example 16 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 16 using the obtained positive photosensitive resin composition (P-2).
  • thermosetting resin composition (U-2) was obtained in the same manner as in Example 17 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). It was. Evaluation was performed in the same manner as in Example 17 using the obtained thermosetting resin composition (U-2).
  • Reference example 1 A negative photosensitive resin composition (N-1 (using a silane coupling agent (a-1))) is applied to a silicon wafer substrate with a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation speed. Spin coated. Thereafter, prebaking was performed at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a film having a thickness of 1.5 ⁇ m. The produced film was exposed at an exposure amount of 200 mJ (i-line) using a parallel light mask aligner (PLA-501F manufactured by Canon Inc.) and an ultrahigh pressure mercury lamp as a light source.
  • N-1 using a silane coupling agent (a-1)
  • a spin coater (1H-360S manufactured by Mikasa Co., Ltd.)
  • prebaking was performed at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen M
  • Reference example 2 A positive photosensitive resin composition (P-1 (using silane coupling agent (a-1))) is applied to a silicon wafer substrate with a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary number of rotations. A film having a thickness of 1.5 ⁇ m was formed by spin coating. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.).
  • SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.
  • the curing shrinkage rate was calculated by the above method, and the planarization ability was evaluated. As a result, the curing shrinkage ratio was 16%, and the planarization ability was poor. Evaluation was performed in the same manner as described above except that (P-2) was used instead of the positive photosensitive resin composition (P-1). As a result, the curing shrinkage ratio was 13% and the planarization ability was good.
  • the planarization performance tends to be lowered particularly by adding the silane coupling agent (a-1) of the present invention instead of the conventional silane coupling agent. It was seen.
  • thermosetting resin composition (U-1 (using silane coupling agent (a-1))) on a silicon wafer substrate at an arbitrary rotation speed using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.).
  • a film having a thickness of 1.5 ⁇ m was prepared by coating. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a cured film was produced by curing in an air at 260 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222).
  • the curing shrinkage rate was calculated by the above method, and the planarization ability was evaluated. As a result, the cure shrinkage ratio was 18%, and the planarization ability was poor.
  • thermosetting resin composition by adding the silane coupling agent (a-1) of the present invention instead of the conventional silane coupling agent, the curing shrinkage rate and the planarization performance are lowered. There was a trend.
  • the present invention is suitably used for a silane coupling agent, a negative photosensitive resin composition containing the same, a cured film using the same, and a touch panel device having the same.

Abstract

Disclosed is a silane coupling agent represented by the general formula (1). Specifically disclosed is a silane coupling agent superior in improving the adhesive properties with substrate surfaces constituted of metals and inorganic materials and a composition using the same. (Each R1 may be the same or different from the others and represents a C1-6 alkyl group.) The alkyl group may have further substituents. n represents 0 or 1. R2 is a C3-30 trivalent organic group. Each R3 may be the same or different from the others and represents a C1-6 alkyl group, C1-6 alkoxy group, phenyl group, hydroxyl group and phenoxy group. Moreover, except for the hydroxyl group, these groups for R3 may be further substituted.)

Description

シランカップリング剤、ネガ型感光性樹脂組成物、硬化膜、およびタッチパネル用部材Silane coupling agent, negative photosensitive resin composition, cured film, and touch panel member
 本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、タッチパネルセンサー素子などの保護膜や絶縁膜、半導体素子の層間絶縁膜、を形成するための樹脂組成物に適したシランカップリング剤に関する。また、それを用いたネガ型感光性組成物、それから形成された硬化膜、およびその硬化膜を有するタッチパネル用部材に関する。 The present invention relates to a resin composition for forming a flattening film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, a protective film or insulating film such as a touch panel sensor element, or an interlayer insulating film of a semiconductor element. The present invention relates to a silane coupling agent suitable for the above. Moreover, it is related with the negative photosensitive composition using the same, the cured film formed from it, and the member for touch panels which has the cured film.
 現在、ハードコート材料の用途は多岐にわたる。例えば、自動車部品、化粧品などの容器、シート、フィルム、光学ディスク、薄型ディスプレイなどの表面硬度向上に用いられている。ハードコート材料に求められる特性としては、硬度、耐擦傷性の他に耐熱性、耐候性、接着性などが挙げられる。ハードコート材料の代表例としては、ラジカル重合型のUV硬化型ハードコート材料がある(例えば、非特許文献1参照)。ハードコート材料の構成は、重合性基含有オリゴマー、モノマ、光重合開始剤、およびその他添加剤である。 Currently, there are various uses for hard coat materials. For example, it is used to improve the surface hardness of automobile parts, containers for cosmetics, sheets, films, optical disks, thin displays, and the like. Properties required for the hard coat material include heat resistance, weather resistance, adhesiveness, etc. in addition to hardness and scratch resistance. As a typical example of the hard coat material, there is a radical polymerization type UV curable hard coat material (for example, see Non-Patent Document 1). The composition of the hard coat material is a polymerizable group-containing oligomer, monomer, photopolymerization initiator, and other additives.
 UV照射によりオリゴマーおよびモノマがラジカル重合することで架橋し、高硬度な膜を得る。このハードコート材料は硬化に必要な時間が短いため、これを用いると生産性が向上する。さらに一般的なラジカル重合機構によるネガ型感光性材料を用いることができるため、製造コストが安価になるという利点を持つ。 ∙ Oligomer and monomer are cross-linked by radical polymerization by UV irradiation to obtain a high hardness film. Since this hard coat material requires a short time for curing, use of this hard coat material improves productivity. Furthermore, since a negative photosensitive material having a general radical polymerization mechanism can be used, there is an advantage that the manufacturing cost is reduced.
 近年注目を浴びている静電容量式タッチパネルは、ハードコート材料の用途の一つである。静電容量式タッチパネルは、ガラス上にITO(Indium Tin Oxide)膜で作成したパターンを有する。このITOを保護するために高い硬度を持つ膜が求められる。しかしながら、高い硬度とITOへの良好な接着性を両立することは困難であり、この問題を解決するハードコート材料が求められていた。 The capacitive touch panel, which has been attracting attention in recent years, is one of the uses of hard coat materials. The capacitance type touch panel has a pattern made of an ITO (Indium Tin Oxide) film on glass. In order to protect this ITO, a film having high hardness is required. However, it is difficult to achieve both high hardness and good adhesion to ITO, and a hard coat material that solves this problem has been demanded.
 接着性を改善する手法としては、シランカップリング剤を添加する方法が良く知られている。例えば、シランカップリング剤として、イミド基を有するシランカップリング剤(特許文献1ならびに特許文献2参照)が提案されている。これらの文献においては、良好な平坦性を有したまま密着性を向上させるために、アミド酸構造ではなくイミド基を有する化合物を用いることが推奨されている。また、耐熱性樹脂前駆体組成物に適したシランカップリング剤として、カルボキシル基とエステル基、あるいは、カルボキシル基とアミド基を有する化合物(特許文献3参照)が提案されている。 As a method for improving adhesiveness, a method of adding a silane coupling agent is well known. For example, a silane coupling agent having an imide group (see Patent Document 1 and Patent Document 2) has been proposed as a silane coupling agent. In these documents, it is recommended to use a compound having an imide group instead of an amic acid structure in order to improve adhesion while maintaining good flatness. Further, as a silane coupling agent suitable for the heat resistant resin precursor composition, a compound having a carboxyl group and an ester group or a carboxyl group and an amide group (see Patent Document 3) has been proposed.
 しかしながら、何れのシランカップリング剤もタッチパネル用のハードコート剤として用いた場合には接着性改良効果が十分では無かった。 However, when any silane coupling agent is used as a hard coat agent for a touch panel, the effect of improving the adhesiveness is not sufficient.
 また、ポリイミド樹脂組成物にアミド酸構造を有する有機ケイ素化合物を添加すること(特許文献4)も提案されている。しかし、この有機ケイ素化合物は、芳香族環の無水和物にアミノ基含有シランカップリング剤が付加した構造をしている。この有機ケイ素化合物は、着色が強くタッチパネル用途には適しておらず、接着性改良硬化も十分ではない。 It has also been proposed to add an organosilicon compound having an amic acid structure to the polyimide resin composition (Patent Document 4). However, this organosilicon compound has a structure in which an amino group-containing silane coupling agent is added to an aromatic ring anhydride. This organosilicon compound is strongly colored and is not suitable for touch panel applications, and the adhesion-improving curing is not sufficient.
WO2008-065944号公報WO2008-065944 WO2009-096050号公報WO2009-096050 特開2006-316032号公報JP 2006-316032 A 特開平9-222729号公報JP-A-9-222729
 本発明の課題は、金属や無機物で構成される基板表面との接着性に優れ、硬度が高く、解像度に優れた硬化膜を提供することにある。さらに、本発明の別の課題は、硬化収縮率が低く平坦性の良好な硬化膜を提供することである。 An object of the present invention is to provide a cured film having excellent adhesion to a substrate surface composed of metal or inorganic material, high hardness, and excellent resolution. Furthermore, another object of the present invention is to provide a cured film having a low curing shrinkage rate and good flatness.
 上記課題を解決するため、本発明は以下の構成からなる。
すなわち、下記一般式(1)で表されるシランカップリング剤である。
In order to solve the above problems, the present invention has the following configuration.
That is, it is a silane coupling agent represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していても良い。nは0あるいは1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基、およびフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していても良い。) (Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having 3 to 30. R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, and phenoxy (In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.)
 本発明のシランカップリング剤を含有する硬化膜は、金属や無機物で構成される基板表面との接着性改善に優れ、硬度が高く、解像度に優れるという効果を有する。さらに、本発明のシランカップリング剤を含有する硬化膜は、硬化収縮率が低く、平坦性が良好であるという効果も有する。 The cured film containing the silane coupling agent of the present invention has the effect of improving the adhesion with the substrate surface made of metal or inorganic material, having high hardness and excellent resolution. Furthermore, the cured film containing the silane coupling agent of the present invention has an effect that the curing shrinkage rate is low and the flatness is good.
 本発明のシランカップリング剤は下記一般式(1)で表される構造を有している。 The silane coupling agent of the present invention has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していても良い。nは0あるいは1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基、およびフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していても良い。)
 ここで、Rとしては、メチル基、エチル基、ブチル基が好ましく、特に原料入手の点からメチル基、エチル基が好ましい。Rはアルコキシ基、アリール基、フェノキシ基、ハロゲン基などの置換基を有していても良い。Rとしては、炭素数3~30の3価の有機基が好ましく、有機溶剤への溶解性の点からは炭素数3~10の3価の有機基がより好ましい。
(Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having 3 to 30. R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, and phenoxy (In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.)
Here, as R 1 , a methyl group, an ethyl group, and a butyl group are preferable, and a methyl group and an ethyl group are particularly preferable from the viewpoint of obtaining raw materials. R 1 may have a substituent such as an alkoxy group, an aryl group, a phenoxy group, or a halogen group. R 2 is preferably a trivalent organic group having 3 to 30 carbon atoms, and more preferably a trivalent organic group having 3 to 10 carbon atoms from the viewpoint of solubility in an organic solvent.
 本発明の一般式(1)で表されるシランカップリング剤としては、例えば、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(イソプロピルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(イソプチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ペンチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリエトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリエトキシシリル)ペンタン酸、6-(ジメトキシ(メチル)シリル)-3-(tert-ブチルカルバモイル)へキサン酸、5-(ジメトキシ(メチル)シリル-2-(2-(tert-ブチルアミノ)―2-オキソエチル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)ペンタン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ブタン酸、2-(tert-ブチルカルバモイル)-4-(2-(トリメトキシシリル)エチル)シクロヘキサンカルボン酸、2-(tert-ブチルカルバモイル)-5-(2-(トリメトキシシリル)エチル)シクロヘキサンカルボン酸などが挙げられる。 Examples of the silane coupling agent represented by the general formula (1) of the present invention include 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butyl). Amino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isopropylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (isobutylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (isoptylamino) -2-oxoethyl) -5- (trimethoxy Silyl) pentanoic acid, 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert- Nthylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (triethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino)- 2-oxoethyl) -5- (triethoxysilyl) pentanoic acid, 6- (dimethoxy (methyl) silyl) -3- (tert-butylcarbamoyl) hexanoic acid, 5- (dimethoxy (methyl) silyl-2- (2 -(Tert-butylamino) -2-oxoethyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) pentanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) butanoic acid, 2- (tert-butylcarbamoyl) -4- (2- (trimethoxy Lil) ethyl) cyclohexanecarboxylic acid, etc. 2- (tert-butylcarbamoyl) -5- (2- (trimethoxysilyl) ethyl) cyclohexanecarboxylic acid.
 これらの中でも特に、上記一般式(1)においてn=0である化合物が、ITO接着性向上の効果が高くなる点から好ましい。 Among these, a compound in which n = 0 in the general formula (1) is particularly preferable from the viewpoint that the effect of improving the ITO adhesiveness is enhanced.
 具体的には、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ペンチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリエトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリエトキシシリル)ペンタン酸、6-(ジメトキシ(メチル)シリル)-3-(tert-ブチルカルバモイル)へキサン酸、5-(ジメトキシ(メチル)シリル-2-(2-(tert-ブチルアミノ)―2-オキソエチル)ペンタン酸、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)ペンタン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ブタン酸、2-(tert-ブチルカルバモイル)-4-(2-(トリメトキシシリル)エチル)シクロヘキサンへキサンカルボン酸、2-(tert-ブチルカルバモイル)-5-(2-(トリメトキシシリル)エチル)シクロヘキサンへキサンカルボン酸が該当する。 Specifically, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentane Acid, 3- (isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 3- (tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-pentylamino) ) -2-Oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (triethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) -2 -Oxoethyl) -5- (triethoxysilyl) pentanoic acid, 6- (dimethoxy (methyl) silyl) -3- (tert-butyl carbonate) Vamoyl) hexanoic acid, 5- (dimethoxy (methyl) silyl-2- (2- (tert-butylamino) -2-oxoethyl) pentanoic acid, 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) Pentanoic acid, 2- (2- (tert-butylamino) -2-oxoethyl) -5- (trimethoxysilyl) butanoic acid, 2- (tert-butylcarbamoyl) -4- (2- (trimethoxysilyl) ethyl ) Cyclohexanehexanecarboxylic acid, 2- (tert-butylcarbamoyl) -5- (2- (trimethoxysilyl) ethyl) cyclohexanehexanecarboxylic acid.
 これらのシランカップリング剤をネガ型感光性樹脂に添加する際は、単独で使用してもよいし、混合しても良い。 When these silane coupling agents are added to the negative photosensitive resin, they may be used alone or mixed.
 これらのシランカップリング剤の製造方法としては、酸無水物を含有するシランカップリング剤とアルキルアミンとの反応によって製造する方法が、製造の容易さから好ましい。この場合、酸無水物を含有するシランカップリング剤の構造によっては、本発明のシランカップリング剤が2種類同時に生成することになる。しかし、特にこれらを分離、精製することなく混合体として使用することが可能である。また、この合成方法では少量のオリゴマー等の複製も考えられるが、密着性改良効果に大きく影響を及ぼすものでなく、考慮する必要はない。 As a method for producing these silane coupling agents, a method of producing by reacting a silane coupling agent containing an acid anhydride with an alkylamine is preferable from the viewpoint of ease of production. In this case, depending on the structure of the silane coupling agent containing an acid anhydride, two types of silane coupling agents of the present invention are generated simultaneously. However, it is possible to use them as a mixture without separation and purification. In addition, although a small amount of oligomer or the like can be replicated in this synthesis method, it does not significantly affect the adhesion improving effect and need not be considered.
 添加量としては、ネガ型感光性樹脂組成物の樹脂成分、つまり(B)アルカリ可溶性樹脂、および(C)多官能アクリルモノマの合計量に対して1~15質量%が好ましく、3~10質量%がより好ましい。1質量%より少ないと接着性改良効果が十分ではなく、15質量%より多いと、アルカリ現像において微細なパターンが欠落し、解像度が低下してしまう。 The addition amount is preferably 1 to 15% by mass, preferably 3 to 10% by mass with respect to the total amount of the resin component of the negative photosensitive resin composition, that is, (B) alkali-soluble resin and (C) polyfunctional acrylic monomer. % Is more preferable. If the amount is less than 1% by mass, the effect of improving the adhesiveness is not sufficient.
 本発明のシランカップリング剤を用いたネガ型感光性樹脂組成物は、少なくとも(A)一般式(1)で表されるシランカップリング剤、(B)アルカリ可溶性樹脂、(C)多官能アクリルモノマ、(D)光ラジカル重合開始剤、を含有することを特徴とする。 The negative photosensitive resin composition using the silane coupling agent of the present invention comprises at least (A) a silane coupling agent represented by the general formula (1), (B) an alkali-soluble resin, and (C) a polyfunctional acrylic. It contains a monomer and (D) a photoradical polymerization initiator.
 以下、本発明のシランカップリング剤を用いたネガ型感光性樹脂組成物の各構成成分について説明する。 Hereinafter, each component of the negative photosensitive resin composition using the silane coupling agent of the present invention will be described.
 本発明のネガ型感光性組成物は、(B)アルカリ可溶性樹脂を含有する。アルカリ可溶性樹脂を有することにより、ネガ型感光性樹脂組成物のアルカリ溶解性(現像性)に優れ、現像後の残さを抑制して良好なパターンを形成することできる。また、エチレン性不飽和二重結合基を有することにより、架橋密度を向上させ、硬化膜の硬度を向上させることができる。 The negative photosensitive composition of the present invention contains (B) an alkali-soluble resin. By having the alkali-soluble resin, the negative photosensitive resin composition is excellent in alkali solubility (developability), and a good pattern can be formed while suppressing the residue after development. Moreover, by having an ethylenically unsaturated double bond group, a crosslinking density can be improved and the hardness of a cured film can be improved.
 (B)アルカリ可溶性樹脂としては、ポリシロキサン、アクリル樹脂、ビニルエーテル樹脂、ポリヒドロキシスチレン、ノボラック樹脂、ポリイミド、ポリアミド等が挙げられる。(B)アルカリ可溶性樹脂においては、少なくとも一部にはエチレン性不飽和二重結合基が導入されていることが、硬化膜の硬度を高くするのに好ましい。これら重合体のうち、エチレン性不飽和二重結合基の導入の容易さから、ポリシロキサン、アクリル樹脂がより好ましい。また、これら重合体を2種以上含有してもよい。(B)アルカリ可溶性樹脂として好ましい例を以下に挙げるが、これに限定されない。 (B) Examples of the alkali-soluble resin include polysiloxane, acrylic resin, vinyl ether resin, polyhydroxystyrene, novolac resin, polyimide, polyamide, and the like. In the (B) alkali-soluble resin, it is preferable that at least a part of the ethylenically unsaturated double bond group is introduced in order to increase the hardness of the cured film. Of these polymers, polysiloxanes and acrylic resins are more preferred because of the ease of introduction of ethylenically unsaturated double bond groups. Moreover, you may contain 2 or more types of these polymers. (B) Although a preferable example is given below as alkali-soluble resin, it is not limited to this.
 ポリシロキサンとしては、3官能性アルコキシシラン化合物を加水分解・縮合反応させて得られる反応生成物が特に好ましい。3官能性アルコキシシラン化合物としては、以下のものが挙げられる。 As the polysiloxane, a reaction product obtained by hydrolyzing and condensing a trifunctional alkoxysilane compound is particularly preferable. The following are mentioned as a trifunctional alkoxysilane compound.
 例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ナフチルトリメトキシシラン、アントラセニルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシラン、3-グリシドキシシプロピルトリメトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、α-グリシドキシエチルトリメトキシシラン、α-グリシドキシエチルトリエトキシシラン、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、α-グリシドキシプロピルトリメトキシシラン、α-グリシドキシプロピルトリエトキシシラン、β-グリシドキシプロピルトリメトキシシラン、β-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシシラン、γ-グリシドキシプロピルトリイソプロポキシシシラン、γ-グリシドキシプロピルトリブトキシシラン、α-グリシドキシブチルトリメトキシシラン、α-グリシドキシブチルトリエトキシシラン、β-グリシドキシブチルトリメトキシシラン、β-グリシドキシブチルトリエトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシブチルトリエトキシシラン、δ-グリシドキシブチルトリメトキシシラン、δ-グリシドキシブチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリプロポキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリブトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリエトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリメトキシシラン、4-(3,4-エポキシシクロヘキシル)ブチルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシランなどである。 For example, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, hexyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, naphthyltrimethoxysilane, anthracenyltri Methoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane, 3-glycidoxysipropyltri Methoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, α-glycidoxyethyltrimethoxysilane, α-glycidoxyethyltriethoxysilane, β-g Sidoxyethyltrimethoxysilane, β-glycidoxyethyltriethoxysilane, α-glycidoxypropyltrimethoxysilane, α-glycidoxypropyltriethoxysilane, β-glycidoxypropyltrimethoxysilane, β-glycidyl Cidoxypropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltripropoxysilane, γ-glycidoxypropyltriisopropoxysilane, γ-glycidoxypropyl tributoxysilane, α-glycidoxybutyltrimethoxysilane, α-glycidoxybutyltriethoxysilane, β-glycidoxybutyltrimethoxysilane, β-glycidoxybutyltriethoxysilane, γ-glycidoxybutyl Limethoxysilane, γ-glycidoxybutyltriethoxysilane, δ-glycidoxybutyltrimethoxysilane, δ-glycidoxybutyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3, 4-epoxycyclohexyl) methyltriethoxysilane, (3,4-epoxycyclohexyl) methyltrimethoxysilane, (3,4-epoxycyclohexyl) methyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltripropoxysilane 2- (3,4-epoxycyclohexyl) ethyltributoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (3 , 4-epoxy Rohexyl) propyltrimethoxysilane, 3- (3,4-epoxycyclohexyl) propyltriethoxysilane, 4- (3,4-epoxycyclohexyl) butyltrimethoxysilane, 4- (3,4-epoxycyclohexyl) butyltriethoxy Silane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, and the like.
 さらに、エチレン性不飽和二重結合基を含有する3官能性アルコキシシランを用いることにより、ポリシロキサンにエチレン性不飽和二重結合基を容易に導入することができ、硬化膜の硬度を上げることができるため、より好ましい。 Furthermore, by using a trifunctional alkoxysilane containing an ethylenically unsaturated double bond group, the ethylenically unsaturated double bond group can be easily introduced into the polysiloxane, and the hardness of the cured film is increased. Is more preferable.
 具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリルオキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリルオキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリエトキシシランなどである。 Specifically, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropyltriethoxysilane Etc.
 アクリル樹脂としては、(メタ)アクリル酸、(メタ)アクリル酸エステルをラジカル重合したものが好ましい。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸シクロプロピル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキセニル、(メタ)アクリル酸4-メトキシシクロヘキシル、(メタ)アクリル酸2-シクロプロピルオキシカルボニルエチル、(メタ)アクリル酸2-シクロペンチルオキシカルボニルエチル、(メタ)アクリル酸2-シクロヘキシルオキシカルボニルエチル、(メタ)アクリル酸2-シクロヘキセニルオキシカルボニルエチル、(メタ)アクリル酸2-(4-メトキシシクロヘキシル)オキシカルボニルエチル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸テトラシクロデカニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸アダマンチルメチル、(メタ)アクリル酸1-メチルアダマンチル等が用いられる。スチレン、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物を、上記の(メタ)アクリル酸や(メタ)アクリル酸エステルと共重合しても良い。 As the acrylic resin, those obtained by radical polymerization of (meth) acrylic acid and (meth) acrylic acid ester are preferable. (Meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, cyclopropyl (meth) acrylate, cyclopentyl (meth) acrylate, (meth) acrylic acid Cyclohexyl, cyclohexenyl (meth) acrylate, 4-methoxycyclohexyl (meth) acrylate, 2-cyclopropyloxycarbonylethyl (meth) acrylate, 2-cyclopentyloxycarbonylethyl (meth) acrylate, (meth) acrylic acid 2-cyclohexyloxycarbonylethyl, (meth) acrylic acid 2-cyclohexenyloxycarbonylethyl, (meth) acrylic acid 2- (4-methoxycyclohexyl) oxycarbonylethyl, (meth) acrylic acid norbornyl, (meth) acrylic Isobornyl, tricyclodecanyl (meth) acrylate, tetracyclodecanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, adamantyl (meth) acrylate, adamantylmethyl (meth) acrylate, (meth) acrylic The acid 1-methyladamantyl and the like are used. Aromatic vinyl compounds such as styrene, p-methylstyrene, o-methylstyrene, m-methylstyrene, and α-methylstyrene may be copolymerized with the above (meth) acrylic acid or (meth) acrylic acid ester. .
 また、エチレン性不飽和二重結合基を有するエポキシ化合物を(メタ)アクリル酸に付加反応することによりエチレン性不飽和二重結合基を導入することができる。エチレン性不飽和二重結合基を有するエポキシ化合物としては、以下の化合物が挙げられる。 Further, an ethylenically unsaturated double bond group can be introduced by addition reaction of an epoxy compound having an ethylenically unsaturated double bond group with (meth) acrylic acid. Examples of the epoxy compound having an ethylenically unsaturated double bond group include the following compounds.
 具体的には、(メタ)アクリル酸グリシジル、(メタ)アクリル酸α-エチルグリシジル、(メタ)アクリル酸α-n-プロピルグリシジル、(メタ)アクリル酸α-n-ブチルグリシジル、(メタ)アクリル酸3,4-エポキシブチル、(メタ)アクリル酸3,4-エポキシヘプチル、(メタ)アクリル酸α-エチル-6,7-エポキシヘプチル、アリルグリシジルエーテル、ビニルグリシジルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ジグリシジルオキシメチルスチレン、2,4-ジグリシジルオキシメチルスチレン、2,5-ジグリシジルオキシメチルスチレン、2,6-ジグリシジルオキシメチルスチレン、2,3,4-トリグリシジルオキシメチルスチレン、2,3,5-トリグリシジルオキシメチルスチレン、2,3,6-トリグリシジルオキシメチルスチレン、3,4,5-トリグリシジルオキシメチルスチレン、2,4,6-トリグリシジルオキシメチルスチレン等である。 Specifically, glycidyl (meth) acrylate, α-ethylglycidyl (meth) acrylate, α-n-propyl glycidyl (meth) acrylate, α-n-butylglycidyl (meth) acrylate, (meth) acrylic 3,4-epoxybutyl acid, 3,4-epoxyheptyl (meth) acrylate, α-ethyl-6,7-epoxyheptyl (meth) acrylate, allyl glycidyl ether, vinyl glycidyl ether, o-vinylbenzyl glycidyl ether M-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, α-methyl-o-vinylbenzyl glycidyl ether, α-methyl-m-vinylbenzyl glycidyl ether, α-methyl-p-vinylbenzyl glycidyl ether, 2, 3-Diglycidyloxymethylstyrene 2,4-diglycidyloxymethylstyrene, 2,5-diglycidyloxymethylstyrene, 2,6-diglycidyloxymethylstyrene, 2,3,4-triglycidyloxymethylstyrene, 2,3,5-tri Examples thereof include glycidyloxymethyl styrene, 2,3,6-triglycidyloxymethyl styrene, 3,4,5-triglycidyloxymethyl styrene, 2,4,6-triglycidyloxymethyl styrene and the like.
 本発明のネガ型感光性樹脂組成物において、(B)アルカリ可溶性樹脂の含有量に特に制限はなく、所望の膜厚や用途により任意に選ぶことができる。(B)アルカリ可溶性樹脂は、ネガ型感光性樹脂組成物の固形分に対して10~60質量%加えるのが好ましい。 In the negative photosensitive resin composition of the present invention, the content of the (B) alkali-soluble resin is not particularly limited, and can be arbitrarily selected depending on the desired film thickness and application. (B) The alkali-soluble resin is preferably added in an amount of 10 to 60% by mass based on the solid content of the negative photosensitive resin composition.
 本発明のネガ型感光性組成物は、(C)多官能モノマを含有する。多官能モノマとは、分子中に少なくとも2つ以上のエチレン性不飽和二重結合を有する化合物をいう。ラジカル重合性のしやすさを考えると、アクリル基を有する多感能モノマが好ましい。 The negative photosensitive composition of the present invention contains (C) a polyfunctional monomer. The polyfunctional monomer refers to a compound having at least two ethylenically unsaturated double bonds in the molecule. Considering the ease of radical polymerization, a multi-sensitive monomer having an acrylic group is preferable.
 具体例としては、ビスフェノールAジグリシジルエーテル(メタ)アクリレート、ポリ(メタ)アクリレートカルバメート、変性ビスフェノールAエポキシ(メタ)アクリレート、アジピン酸1,6-ヘキサンジオール(メタ)アクリル酸エステル、無水フタル酸プロピレンオキサイド(メタ)アクリル酸エステル、トリメリット酸ジエチレングリコール(メタ)アクリル酸エステル、ロジン変性エポキシジ(メタ)アクリレート、アルキッド変性(メタ)アクリレートのようなオリゴマー、あるいはトリプロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリルホルマール、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、[9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレンなどがあげられる。 Specific examples include bisphenol A diglycidyl ether (meth) acrylate, poly (meth) acrylate carbamate, modified bisphenol A epoxy (meth) acrylate, adipic acid 1,6-hexanediol (meth) acrylic acid ester, propylene phthalate anhydride Oxide (meth) acrylic acid ester, trimellitic acid diethylene glycol (meth) acrylic acid ester, rosin modified epoxy di (meth) acrylate, oligomer such as alkyd modified (meth) acrylate, or tripropylene glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythrine Ritol tri (meth) acrylate, triacryl formal, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, tripentaerythritol hepta (meth) acrylate, tripentaerythritol octa ( And (meth) acrylate and [9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene.
 本発明のネガ型感光性樹脂組成物は、(D)光ラジカル重合開始剤を含有する。(D)光ラジカル重合開始剤は、光(紫外線、電子線を含む)により分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。硬化膜の硬度をより高くするためには、α-アミノアルキルフェノン化合物、アシルホスフィンオキサイド化合物、オキシムエステル化合物、アミノ基を有するベンゾフェノン化合物またはアミノ基を有する安息香酸エステル化合物を用いることが好ましい。また、これらの化合物を2種以上含有してもよい。 The negative photosensitive resin composition of the present invention contains (D) a photo radical polymerization initiator. (D) Any radical photopolymerization initiator may be used as long as it is decomposed and / or reacted by light (including ultraviolet rays and electron beams) to generate radicals. In order to further increase the hardness of the cured film, it is preferable to use an α-aminoalkylphenone compound, an acylphosphine oxide compound, an oxime ester compound, a benzophenone compound having an amino group, or a benzoic acid ester compound having an amino group. Moreover, you may contain 2 or more types of these compounds.
 α-アミノアルキルフェノン化合物の具体例としては、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1等が挙げられる。 Specific examples of α-aminoalkylphenone compounds include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1 -(4-morpholin-4-yl-phenyl) -butan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and the like.
 アシルホスフィンオキサイド化合物の具体例としては、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-フォスフィンオキサイド等が挙げられる。 Specific examples of the acylphosphine oxide compound include 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-( 2,4,4-trimethylpentyl) -phosphine oxide and the like.
 オキシムエステル化合物の具体例としては、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等が挙げられる。 Specific examples of the oxime ester compound include 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, 1,2-octanedione, 1- [4- (phenylthio) -2- (O -Benzoyloxime)], 1-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1,3-diphenylpropanetrione-2- (o-ethoxycarbonyl) oxime, ethanone, 1- [9 -Ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime) and the like.
 アミノ基を有するベンゾフェノン化合物の具体例としては、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。 Specific examples of the benzophenone compound having an amino group include 4,4-bis (dimethylamino) benzophenone and 4,4-bis (diethylamino) benzophenone.
 アミノ基を有する安息香酸エステル化合物の具体例としては、p-ジメチルアミノ安息香酸エチル、2-エチルヘキシル-p-ジメチルアミノベンゾエート、p-ジエチルアミノ安息香酸エチル等が挙げられる。 Specific examples of the benzoic acid ester compound having an amino group include ethyl p-dimethylaminobenzoate, 2-ethylhexyl-p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate and the like.
 (D)光ラジカル重合開始剤の含有量は、ネガ型感光性樹脂組成物の固形分中0.01質量%以上が好ましく、0.1質量%以上がより好ましい。また、20質量%以下が好ましく、10質量%以下がより好ましい。上記範囲とすることで、ラジカル硬化を十分に進めることができ、かつ残留したラジカル重合開始剤の溶出等を防ぎ耐溶剤性を確保することができる。 (D) The content of the radical photopolymerization initiator is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more in the solid content of the negative photosensitive resin composition. Moreover, 20 mass% or less is preferable and 10 mass% or less is more preferable. By setting it as the said range, radical hardening can fully be advanced and elution of the residual radical polymerization initiator etc. can be prevented and solvent resistance can be ensured.
 本発明のネガ型感光性樹脂組成物は、重合禁止剤を含有してもよい。重合禁止剤を含有することで、組成物の保存安定性が向上し、パターン加工を必要とする用途では現像後の解像度が向上する。重合禁止剤の具体例としては、フェノール、カテコール、レゾルシノール、ハイドロキノン、4-t-ブチルカテコール、2,6-ジ(t-ブチル)-p-クレゾール、フェノチアジン、4-メトキシフェノール等が挙げられる。 The negative photosensitive resin composition of the present invention may contain a polymerization inhibitor. By containing a polymerization inhibitor, the storage stability of the composition is improved, and the resolution after development is improved in applications requiring pattern processing. Specific examples of the polymerization inhibitor include phenol, catechol, resorcinol, hydroquinone, 4-t-butylcatechol, 2,6-di (t-butyl) -p-cresol, phenothiazine, 4-methoxyphenol and the like.
 重合禁止剤の含有量は、ネガ型感光性樹脂組成物の固形分中0.01質量%以上が好ましく、0.1質量%以上がより好ましい。一方、硬化膜の硬度を高く保つ観点からは5質量%以下が好ましく、1質量%以下がより好ましい。 The content of the polymerization inhibitor is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more in the solid content of the negative photosensitive resin composition. On the other hand, from the viewpoint of keeping the hardness of the cured film high, it is preferably 5% by mass or less, and more preferably 1% by mass or less.
 本発明のネガ型感光性樹脂組成物は、熱酸発生剤を含有してもよい。熱酸発生剤によりシランカップリング剤の接着性向上効果をより高めることができる。好ましく用いられる熱酸発生剤の具体例としては、トリフェニルスルホニウム、4-ヒドロキシフェニルジメチルスルホニウム、ベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-ヒドロキシフェニルメチルスルホニウム、2-メチルベンジル-4-アセチルフェニルメチルスルホニウム、2-メチルベンジル-4-ベンゾイルオキシフェニルメチルスルホニウム、これらのメタンスルホン酸塩、トリフルオロメタンスルホン酸塩、カンファースルホン酸塩、p-トルエンスルホン酸塩等が挙げられる。 The negative photosensitive resin composition of the present invention may contain a thermal acid generator. The effect of improving the adhesion of the silane coupling agent can be further enhanced by the thermal acid generator. Specific examples of the thermal acid generator preferably used include triphenylsulfonium, 4-hydroxyphenyldimethylsulfonium, benzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl-4-hydroxyphenylmethylsulfonium, 2-methylbenzyl- Examples include 4-acetylphenylmethylsulfonium, 2-methylbenzyl-4-benzoyloxyphenylmethylsulfonium, methanesulfonate, trifluoromethanesulfonate, camphorsulfonate, p-toluenesulfonate, and the like.
 またSI-60、SI-80、SI-100、SI-110、SI-145、SI-150、SI-200、SI-60L、SI-80L、SI-100L、SI-110L、SI-145L、SI-150L、SI-160L、SI-180L(いずれも、三新化学工業(株)製)も好ましく用いられる。これらを2種以上含有してもよい。 SI-60, SI-80, SI-100, SI-110, SI-145, SI-150, SI-200, SI-60L, SI-80L, SI-100L, SI-110L, SI-145L, SI -150L, SI-160L, SI-180L (all from Sanshin Chemical Industry Co., Ltd.) are also preferably used. Two or more of these may be contained.
 熱酸発生剤の含有量は、ネガ型感光性樹脂組成物の樹脂成分、つまり(B)アルカリ可溶性樹脂、(C)多官能アクリルモノマの合計量に対して0.1~3質量%が好ましい。0.1質量%より少ないと接着性向上効果は少なく、3質量%より多いと、パターンがマスクパターンより大きくなってしまい、解像度が低下してしまう。 The content of the thermal acid generator is preferably 0.1 to 3% by mass based on the total amount of the resin component of the negative photosensitive resin composition, that is, (B) alkali-soluble resin and (C) polyfunctional acrylic monomer. . If the amount is less than 0.1% by mass, the effect of improving the adhesiveness is small. If the amount is more than 3% by mass, the pattern becomes larger than the mask pattern and the resolution is lowered.
 本発明のシロキサン樹脂組成物は、紫外線吸収剤を含有してもよい。紫外線吸収剤を含有することで、得られる硬化膜の耐光性が向上し、パターン加工を必要とする用途では現像後の解像度が向上する。紫外線吸収剤としては特に限定はなく公知のものが使用できる。 The siloxane resin composition of the present invention may contain an ultraviolet absorber. By containing the ultraviolet absorber, the light resistance of the resulting cured film is improved, and the resolution after development is improved in applications that require pattern processing. There is no limitation in particular as a ultraviolet absorber, A well-known thing can be used.
 透明性、非着色性の面から、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物が好ましく用いられる。 From the viewpoint of transparency and non-coloring properties, benzotriazole compounds, benzophenone compounds, and triazine compounds are preferably used.
 ベンゾトリアゾール系化合物の紫外線吸収剤としては、2-(2Hベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-t-ペンチルフェノール、2-(2Hベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール等が挙げられる。 Examples of ultraviolet absorbers for benzotriazole compounds include 2- (2H benzotriazol-2-yl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-t-pentylphenol, 2- (2H Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, 2 (2H-benzotriazol-2-yl) -6-dodecyl-4-methylphenol, 2- (2 And '-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole.
 ベンゾフェノン系化合物の紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノン等が挙げられる。 Examples of UV absorbers for benzophenone compounds include 2-hydroxy-4-methoxybenzophenone.
 トリアジン系化合物の紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール等が挙げられる。 Examples of the ultraviolet absorber of the triazine compound include 2- (4,6-diphenyl-1,3,5 triazin-2-yl) -5-[(hexyl) oxy] -phenol.
 本発明のネガ型感光性樹脂組成物は、溶媒を含有してもよい。各成分を均一に溶解し、得られる塗布膜の透明性を向上させることができる点で、アルコール性水酸基を有する化合物またはカルボニル基を有する環状化合物が好ましく用いられる。これらを2種以上含有してもよい。また、大気圧下の沸点が110~250℃である化合物がより好ましい。 The negative photosensitive resin composition of the present invention may contain a solvent. A compound having an alcoholic hydroxyl group or a cyclic compound having a carbonyl group is preferably used in that each component can be dissolved uniformly and the transparency of the resulting coating film can be improved. Two or more of these may be contained. Further, a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure is more preferable.
 沸点を110℃以上とすることで、塗膜時に適度に乾燥が進み、塗布ムラのない良好な塗膜が得られる。一方、沸点を250℃以下とした場合、膜中の残存溶剤量を少なく抑えることができ、熱硬化時の膜収縮をより低減できるため、より良好な平坦性が得られる。 By setting the boiling point to 110 ° C. or higher, drying proceeds moderately at the time of coating, and a good coating without uneven coating can be obtained. On the other hand, when the boiling point is 250 ° C. or lower, the amount of residual solvent in the film can be reduced, and film shrinkage during thermosetting can be further reduced, so that better flatness can be obtained.
 アルコール性水酸基を有し、大気圧下の沸点が110~250℃である化合物の具体例としては、アセトール、3-ヒドロキシ-3-メチル-2-ブタノン、4-ヒドロキシ-3-メチル-2-ブタノン、5-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn-プロピルエーテル、プロピレングリコールモノn-ブチルエーテル、プロピレングリコールモノt-ブチルエーテル、3-メトキシ-1-ブタノール、3-メチル-3-メトキシ-1-ブタノール等が挙げられる。これらの中でも、保存安定性の観点からはジアセトンアルコールが好ましく、段差被覆性の点からはプロピレングリコールモノt-ブチルエーテルが好ましい。 Specific examples of the compound having an alcoholic hydroxyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2- Butanone, 5-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl Examples include ether, propylene glycol mono n-butyl ether, propylene glycol mono t-butyl ether, 3-methoxy-1-butanol, and 3-methyl-3-methoxy-1-butanol. Among these, diacetone alcohol is preferable from the viewpoint of storage stability, and propylene glycol mono t-butyl ether is preferable from the viewpoint of step coverage.
 カルボニル基を有し、大気圧下の沸点が110~250℃である環状化合物の具体例としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、炭酸プロピレン、N-メチルピロリドン、シクロヘキサノン、シクロヘプタノン等が挙げられる。これらの中でも、γ-ブチロラクトンが好ましい。 Specific examples of the cyclic compound having a carbonyl group and having a boiling point of 110 to 250 ° C. under atmospheric pressure include γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, N-methylpyrrolidone, cyclohexanone, Examples include cycloheptanone. Among these, γ-butyrolactone is preferable.
 また、本発明のネガ型感光性樹脂組成物は、上記以外のアセテート類、ケトン類、エーテル類などの各種溶媒を含有してもよい。 Further, the negative photosensitive resin composition of the present invention may contain various solvents such as acetates, ketones and ethers other than those described above.
 溶媒の含有量に特に制限はなく、塗布方法などに応じて任意の量用いることができる。例えば、スピンコーティングにより膜形成を行う場合には、溶媒量をネガ型感光性樹脂組成物全体の50~95質量%とするのが一般的である。 The content of the solvent is not particularly limited, and any amount can be used depending on the coating method. For example, when film formation is performed by spin coating, the amount of solvent is generally 50 to 95% by mass of the entire negative photosensitive resin composition.
 本発明のネガ型感光性樹脂組成物は、樹脂組成物の硬化を促進させる、あるいは硬化を容易にする各種の硬化剤を含有してもよい。硬化剤としては特に限定はなく公知のものが使用できる。具体例としては、窒素含有有機物、シリコーン樹脂硬化剤、各種金属アルコレート、各種金属キレート化合物、イソシアネート化合物およびその重合体、メチロール化メラミン誘導体、メチロール化尿素誘導体などがある。これらを2種以上含有してもよい。なかでも、硬化剤の安定性、得られた塗布膜の加工性などから、金属キレート化合物、メチロール化メラミン誘導体、メチロール化尿素誘導体が好ましく用いられる。 The negative photosensitive resin composition of the present invention may contain various curing agents that accelerate the curing of the resin composition or facilitate the curing. The curing agent is not particularly limited and known ones can be used. Specific examples include nitrogen-containing organic substances, silicone resin curing agents, various metal alcoholates, various metal chelate compounds, isocyanate compounds and polymers thereof, methylolated melamine derivatives, and methylolated urea derivatives. Two or more of these may be contained. Of these, metal chelate compounds, methylolated melamine derivatives, and methylolated urea derivatives are preferably used in view of the stability of the curing agent and the processability of the obtained coating film.
 本発明のネガ型感光性樹脂組成物は、塗布時のフロー性向上のために、フッ素系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を含有してもよい。界面活性剤の種類に特に制限はなく、例えば、フッ素系界面活性剤、シリコーン系界面活性剤、ポリアルキレンオキシド系界面活性剤、ポリ(メタ)アクリレート系界面活性剤などを用いることができる。これらを2種以上用いてもよい。 The negative photosensitive resin composition of the present invention may contain various surfactants such as a fluorine-based surfactant and a silicone-based surfactant in order to improve the flowability during coating. There is no restriction | limiting in particular in the kind of surfactant, For example, a fluorine-type surfactant, a silicone type surfactant, a polyalkylene oxide type surfactant, a poly (meth) acrylate type surfactant etc. can be used. Two or more of these may be used.
 フッ素系界面活性剤の市販品としては、“メガファック”(登録商標)F142D、同F172、同F173、同F183、同F445、同F470、同F475、同F477(以上、大日本インキ化学工業(株)製)、NBX-15、FTX-218((株)ネオス製)が好ましく用いられる。シリコーン系界面活性剤の市販品としては、BYK-333、BYK-301、BYK-331、BYK-345、BYK-307(ビックケミー・ジャパン(株)製)が好ましく用いられる。 Commercially available fluorosurfactants include “Megafac” (registered trademark) F142D, F172, F173, F183, F445, F470, F475, F477 (above, Dainippon Ink & Chemicals, Inc.) NBX-15 and FTX-218 (manufactured by Neos) are preferably used. As commercially available silicone surfactants, BYK-333, BYK-301, BYK-331, BYK-345, BYK-307 (manufactured by BYK Japan Japan Co., Ltd.) are preferably used.
 本発明のネガ型感光性樹脂組成物の代表的な製造方法について説明する。例えば、(A)一般式(1)で表されるシランカップリング剤、(B)アルカリ可溶性樹脂、(C)多官能アクリルモノマ、(D)光ラジカル重合開始剤、および必要によりその他の添加剤を任意の溶媒に加え、撹拌して溶解させた後、得られた溶液を濾過し、ネガ型感光性樹脂組成物が得られる。 A typical method for producing the negative photosensitive resin composition of the present invention will be described. For example, (A) a silane coupling agent represented by the general formula (1), (B) an alkali-soluble resin, (C) a polyfunctional acrylic monomer, (D) a photoradical polymerization initiator, and other additives as necessary. Is added to an arbitrary solvent and dissolved by stirring, and then the resulting solution is filtered to obtain a negative photosensitive resin composition.
 本発明のネガ型感光性樹脂組成物を用いた硬化膜の形成方法について、例を挙げて説明する。本発明のネガ型感光性樹脂組成物を、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50~150℃の範囲で30秒~30分間行い、プリベーク後の膜厚は、0.1~15μmとすることが好ましい。 The method for forming a cured film using the negative photosensitive resin composition of the present invention will be described with an example. The negative photosensitive resin composition of the present invention is applied on a base substrate by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, Pre-bake with a heating device such as an oven. Pre-baking is performed in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 μm.
 プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの露光機を用いて露光する。露光強度は10~4000J/m程度(波長365nm露光量換算)で、この光を所望のマスクを介してあるいは介さずに照射する。露光光源に制限はなく、i線、g線、h線等の紫外線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザー等を用いることができる。 After pre-baking, exposure is performed using an exposure machine such as a stepper, a mirror projection mask aligner (MPA), or a parallel light mask aligner (PLA). The exposure intensity is about 10 to 4000 J / m 2 (wavelength 365 nm exposure amount conversion), and this light is irradiated through or without a desired mask. The exposure light source is not limited, and ultraviolet rays such as i-line, g-line, and h-line, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次に、現像により露光部を溶解させ、ネガ型のパターンを得ることができる。現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、テトラメチルアンモニウムヒドロキサイド、コリン等の4級アンモニウム塩を1種あるいは2種以上含む水溶液等が挙げられる。現像後、水でリンスすることが好ましく、つづいて50~150℃の範囲で乾燥ベークを行うこともできる。 Next, the exposed portion can be dissolved by development to obtain a negative pattern. As a developing method, it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates, borates, amines such as 2-diethylaminoethanol, monoethanolamine, and diethanolamine, tetramethylammonium hydroxide. And aqueous solutions containing one or more quaternary ammonium salts such as choline. After development, it is preferable to rinse with water, followed by drying and baking in the range of 50 to 150 ° C.
 その後、この膜をホットプレート、オーブンなどの加熱装置で150~450℃の範囲で20分~1時間程度加熱する。 Thereafter, this film is heated in a range of 150 to 450 ° C. for about 20 minutes to 1 hour with a heating device such as a hot plate or an oven.
 本発明のネガ型感光性樹脂組成物を硬化して得られる硬化膜は、タッチパネル保護膜、タッチパネル絶縁膜、各種ハードコート材、反射防止フィルム、光学フィルターとして用いられる。また、ネガ型感光性を有することから、液晶や有機ELディスプレイのTFT用平坦化膜、絶縁膜、反射防止膜、カラーフィルター用オーバーコート、柱材などに好適に用いられる。これらの中でも、特に、ITOやモリブデンなど、Siを有しない基板と熱処理後および薬品処理後の接着性が求められるタッチパネル保護膜やタッチパネル絶縁膜として好適に用いることができる。タッチパネルの方式としては、抵抗膜式、光学式、電磁誘導式、静電容量式等が挙げられる。静電容量式タッチパネルは特に高い硬度が求められることから、本発明の硬化膜を好適に用いることができる。 The cured film obtained by curing the negative photosensitive resin composition of the present invention is used as a touch panel protective film, a touch panel insulating film, various hard coat materials, an antireflection film, and an optical filter. Further, since it has negative photosensitivity, it is suitably used for TFT flattening films, insulating films, antireflection films, color filter overcoats, column materials, etc. for liquid crystal and organic EL displays. Among these, in particular, it can be suitably used as a touch panel protective film or a touch panel insulating film that requires adhesion after heat treatment and chemical treatment to a substrate not containing Si, such as ITO or molybdenum. Examples of the touch panel system include a resistance film type, an optical type, an electromagnetic induction type, and a capacitance type. Since especially high hardness is calculated | required by an electrostatic capacitance type touch panel, the cured film of this invention can be used suitably.
 本発明の硬化膜をタッチパネル用保護膜として用いる場合、膜厚1.5μmの際に硬度が4H以上、透過率が95%以上、解像度は、20μm以下であることが好ましい。硬度や透過率は、露光量、熱硬化温度の選択によって調整することができる。 When the cured film of the present invention is used as a protective film for a touch panel, when the film thickness is 1.5 μm, the hardness is preferably 4H or more, the transmittance is 95% or more, and the resolution is preferably 20 μm or less. The hardness and transmittance can be adjusted by selecting the exposure amount and the thermosetting temperature.
 以下、実施例を挙げて、本発明をさらに具体的に説明する。本発明はこれら実施例に限定されない。合成例および実施例に用いた化合物のうち、略語を使用しているものについて、以下に示す。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. Of the compounds used in the synthesis examples and examples, those using abbreviations are shown below.
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 DAA:ジアセトンアルコール。
PGMEA: propylene glycol monomethyl ether acetate DAA: diacetone alcohol.
 合成例1 シランカップリング剤混合溶液(a-1)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ブチルアミン11.70g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、3-(tert-ブチルカルバモイル)-6-(トリメトキシシリル)へキサン酸、2-(2-(tert-ブチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸の混合溶液(a-1)を得た。
Synthesis Example 1 Synthesis of Silane Coupling Agent Mixed Solution (a-1) To 200 g of PGMEA was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine, and the mixture was allowed to warm to room temperature for a while. And stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 3- (tert-butylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid, 2- (2- (tert-butylamino) ) -2-Oxoethyl) -5- (trimethoxysilyl) pentanoic acid mixed solution (a-1) was obtained.
 合成例2 シランカップリング剤混合溶液(a-2)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ペンチルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、2-(2-(t-ペンチルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-ペンチルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-2)を得た。
Synthesis Example 2 Synthesis of Silane Coupling Agent Mixed Solution (a-2) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of t-pentylamine were added for a while at room temperature. And then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2- (t-pentylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- ( A mixed solution (a-2) of tert-pentylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例3 シランカップリング剤混合溶液(a-3)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とイソプロピルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、2-(2-(イソプロピルアミノ)―2-オキソエチル)-5-(トリメトキシシリル)ペンタン酸、3-(tert-イソプロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-3)を得た。
Synthesis Example 3 Synthesis of Silane Coupling Agent Mixed Solution (a-3) To 200 g of PGMEA were added 41.97 g (160 mmol) of 3-trimethoxysilylpropylsuccinic anhydride and 9.45 g (160 mmol) of isopropylamine at room temperature for a while. After stirring, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2- (isopropylamino) -2-oxoethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (tert- A mixed solution (a-3) of isopropylcarbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例4 シランカップリング剤混合溶液(a-4)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とn-プロピルアミン9.45g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、2-(2-オキソ-2-(プロピルアミノ)エチル)-5-(トリメトキシシリル)ペンタン酸、3-(プロピルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-4)を得た。
Synthesis Example 4 Synthesis of Silane Coupling Agent Mixed Solution (a-4) To 200 g of PGMEA was added 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 9.45 g (160 mmol) of n-propylamine for a while at room temperature. And then stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2-oxo-2- (propylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (propyl A mixed solution (a-4) of carbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例5 シランカップリング剤混合溶液(a-5)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とアニリン14.90g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、2-(2-オキソ-2-(フェニルアミノ)エチル)-5-(トリメトキシシリル)ペンタン酸、3-(フェニルカルバモイル)-6-(トリメトキシシリル)へキサン酸の混合溶液(a-5)を得た。
Synthesis Example 5 Synthesis of Silane Coupling Agent Mixed Solution (a-5) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 14.90 g (160 mmol) of aniline were added and stirred at room temperature for a while. Then, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 2- (2-oxo-2- (phenylamino) ethyl) -5- (trimethoxysilyl) pentanoic acid, 3- (phenyl A mixed solution (a-5) of carbamoyl) -6- (trimethoxysilyl) hexanoic acid was obtained.
 合成例6 シランカップリング剤混合溶液(a-6)の合成
PGMEA200gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とエタノール7.37g(160mmol)を加えてしばらく室温にて撹拌した後、40℃にて2時間撹拌した。その後、80℃まで昇温し、6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、4-エトキシ-4-オキソ-2-(トリメトキシシリル)ブタン酸、4-エトキシ-4-オキソ-3-(トリメトキシシリル)ブタン酸の混合溶液(a-6)を得た。
Synthesis Example 6 Synthesis of Silane Coupling Agent Mixed Solution (a-6) To 200 g of PGMEA, 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 7.37 g (160 mmol) of ethanol were added and stirred at room temperature for a while. Then, the mixture was stirred at 40 ° C. for 2 hours. Then, it heated up to 80 degreeC and made it react for 6 hours. The resulting solution was diluted with PGMEA so that the solid concentration was 20%, and 4-ethoxy-4-oxo-2- (trimethoxysilyl) butanoic acid, 4-ethoxy-4-oxo-3- (tri A mixed solution (a-6) of methoxysilyl) butanoic acid was obtained.
 合成例7 シランカップリング剤溶液(a-7)の合成
PGMEA400gに3-トリメトキシシリルプロピルコハク酸無水物41.97g(160mmol)とt-ブチルアミン11.70g(160mmol)を加えてしばらく室温にて撹拌した後、60℃にて2時間撹拌した。その後、140℃まで昇温し、PGMEAと水を共沸しながら6時間反応させた。得られた溶液を固形分濃度が20%になるようにPGMEAで希釈し、1-(tert-ブチル)-3-トリメトキシシリルピロリジン-2,5-ジオン溶液(a-7)を得た。
Synthesis Example 7 Synthesis of Silane Coupling Agent Solution (a-7) 41.97 g (160 mmol) of 3-trimethoxysilylpropyl succinic anhydride and 11.70 g (160 mmol) of t-butylamine were added to 400 g of PGMEA at room temperature for a while. After stirring, the mixture was stirred at 60 ° C. for 2 hours. Then, it heated up to 140 degreeC and made it react for 6 hours, azeotropically boiling PGMEA and water. The resulting solution was diluted with PGMEA so that the solid content concentration was 20% to obtain a 1- (tert-butyl) -3-trimethoxysilylpyrrolidine-2,5-dione solution (a-7).
 合成例8 シロキサン樹脂溶液(b-1)の合成
メチルトリメトキシシラン13.62g(0.1モル)、フェニルトリメトキシシラン118.98g(0.6モル)、3-トリメトキシシリルプロピルコハク酸39.39g(0.15モル)、γ-メタクリルオキシプロピルトリメトキシシラン35.16g、DAA140.87gを500mlの三口フラスコに加えた。その後、混合液を室温で攪拌しながら、水59.4gにリン酸0.106g(仕込みモノマに対して0.05質量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、さらに45分加熱攪拌した(内温は100~110℃)。反応中に副生成物であるメタノール、水が合計89g留出した。得られたポリシロキサンのDAA溶液に対し、ポリマー濃度が40質量%となるようにDAAを加えてシロキサン樹脂溶液(b-1)を得た。得られたポリマーの重量平均分子量は7500であった。
Synthesis Example 8 Synthesis of Siloxane Resin Solution (b-1) 13.62 g (0.1 mol) of methyltrimethoxysilane, 118.98 g (0.6 mol) of phenyltrimethoxysilane, 3-trimethoxysilylpropyl succinic acid 39 .39 g (0.15 mol), γ-methacryloxypropyltrimethoxysilane 35.16 g, and DAA 140.87 g were added to a 500 ml three-necked flask. Thereafter, an aqueous phosphoric acid solution in which 0.106 g of phosphoric acid (0.05% by mass with respect to the charged monomer) was dissolved in 59.4 g of water was added over 30 minutes while the mixture was stirred at room temperature. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and further heated and stirred for 45 minutes (the internal temperature was 100 to 110 ° C.). During the reaction, 89 g of methanol and water as by-products were distilled out. DAA was added to the obtained polysiloxane DAA solution so that the polymer concentration was 40% by mass to obtain a siloxane resin solution (b-1). The weight average molecular weight of the obtained polymer was 7500.
 合成例9 アクリル樹脂溶液(b-2)の合成
 500mlのフラスコに2,2’-アゾビス(イソブチロニトリル)を3g、PGMEA(プロピレングリコールメチルエーテルアセテート)を50g仕込んだ。その後、メタクリル酸を30g、スチレンを22.48g、シクロヘキシルメタクリレートを25.13g加えた。その後、混合液を室温でしばらく攪拌し、フラスコ内を窒素置換した後、70℃で5時間加熱攪拌した。次に、得られた溶液にメタクリル酸グリシジルを15g、ジメチルベンジルアミンを1g、p-メトキシフェノールを0.2g、PGMEAを100g添加し、90℃で4時間加熱攪拌した。得られたアクリル樹脂溶液の固形分濃度が40質量%になるようにPGMEAを加え、アクリル樹脂溶液(b-2)を得た。アクリル樹脂の重量平均分子量は13500、酸価は100mgKOH/gであった。
Synthesis Example 9 Synthesis of Acrylic Resin Solution (b-2) A 500 ml flask was charged with 3 g of 2,2′-azobis (isobutyronitrile) and 50 g of PGMEA (propylene glycol methyl ether acetate). Thereafter, 30 g of methacrylic acid, 22.48 g of styrene, and 25.13 g of cyclohexyl methacrylate were added. Thereafter, the mixture was stirred at room temperature for a while, and the atmosphere in the flask was replaced with nitrogen, followed by heating and stirring at 70 ° C. for 5 hours. Next, 15 g of glycidyl methacrylate, 1 g of dimethylbenzylamine, 0.2 g of p-methoxyphenol and 100 g of PGMEA were added to the resulting solution, and the mixture was heated and stirred at 90 ° C. for 4 hours. PGMEA was added so that the solid content concentration of the obtained acrylic resin solution was 40% by mass to obtain an acrylic resin solution (b-2). The weight average molecular weight of the acrylic resin was 13500, and the acid value was 100 mgKOH / g.
 合成例10 キノンジアジド化合物(q-1)の合成
乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.23g(0.05mol)と5-ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4-ジオキサン450gに溶解させ、室温にした。この溶液に、1,4-ジオキサン50gと混合したトリエチルアミン15.58g(0.154mol)を、系内が35℃以上にならないように滴下した。滴下終了後、30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、キノンジアジド化合物(q-1)を得た。
Synthesis Example 10 Synthesis of quinonediazide compound (q-1) Under a dry nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 5-naphthoquinonediazidesulfonyl acid chloride 37. 62 g (0.14 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. To this solution, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system did not exceed 35 ° C. After completion of dropping, the mixture was stirred at 30 ° C. for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (q-1).
 各実施例・比較例における評価方法を以下に示す。
(1)硬度の測定
 5cm角のガラス基板上に作製した膜厚1.5μmの硬化膜について、「JIS K5600-5-4(1999年)」に準拠して鉛筆硬度を測定した。ただし、負荷加重を500gとした。
The evaluation methods in each example and comparative example are shown below.
(1) Measurement of hardness Pencil hardness was measured on a cured film having a thickness of 1.5 μm produced on a 5 cm square glass substrate in accordance with “JIS K5600-5-4 (1999)”. However, the load weight was 500 g.
 (2)ITO接着性の評価
 無アルカリガラス基板(ガラス厚み0.7mm)上にITOを膜厚200オングストローム、抵抗値100Ω/□となるように基板を形成した。この基板(以下、ITO基板と記載する)上に作製した膜厚1.5μmの硬化膜について、JIS「K5400」8.5.2(1990年)碁盤目テープ法に準じてITOと硬化膜の接着性を評価した。ガラス基板上の硬化膜表面に、カッターナイフでガラス板の素地に到達するように、直交する縦横11本ずつの平行な直線を1mm間隔で引いて、1mm×1mmのマス目を100個作製した。切られた硬化膜表面にセロハン粘着テ-プ(幅=18mm、粘着力=3.7N/10mm)を張り付け、消しゴム(JIS S6050合格品)で擦って密着させた。そして、テープの一端を持ち、板に直角に保ち瞬間的に剥離した際のマス目の残存数を目視によって評価した。マス目の剥離面積により以下のように判定した。
5:剥離面積 0%
4:剥離面積 0~<5%
3:剥離面積 5~15%
2:剥離面積 15~35%
1:剥離面積 35~65%
0:剥離面積 65~100%。
(2) Evaluation of ITO Adhesion A substrate was formed on an alkali-free glass substrate (glass thickness 0.7 mm) so that ITO had a thickness of 200 Å and a resistance value of 100Ω / □. A cured film having a film thickness of 1.5 μm produced on this substrate (hereinafter referred to as ITO substrate) is made of ITO and a cured film according to JIS “K5400” 8.5.2 (1990) cross-cut tape method. Adhesion was evaluated. On the surface of the cured film on the glass substrate, 11 parallel straight lines of 11 vertical and horizontal directions were drawn at 1 mm intervals so as to reach the substrate of the glass plate with a cutter knife, and 100 squares of 1 mm × 1 mm were produced. . A cellophane adhesive tape (width = 18 mm, adhesive strength = 3.7 N / 10 mm) was attached to the cut surface of the cured film, and rubbed with an eraser (JIS S6050-accepted product) for adhesion. Then, one end of the tape was held, and the number of cells remaining when the tape was instantaneously peeled off was evaluated by visual observation. The determination was made as follows according to the peeled area of the cells.
5: peeling area 0%
4: Stripping area 0 to <5%
3: Peeling area 5-15%
2: Peeling area 15-35%
1: Peeling area 35-65%
0: Peeling area 65 to 100%.
 (3)解像度
 1対1の幅のラインアンドスペースパターンマスクを使用し、最小パターンを形成可能なマスクパターンの幅を測定した。
(3) Resolution Using a line-and-space pattern mask having a width of 1: 1, the width of a mask pattern capable of forming a minimum pattern was measured.
 (4)平坦化性能の評価
 前記(1)記載の方法でシリコンウエハ上に作製した硬化膜について、キュア前後の硬化収縮率を算出した。この値が0~15%の場合、平坦化性能は良好といえる。硬化収縮率は以下の式に従って算出した。
硬化収縮率(%)=(1-キュアで得られた硬化膜の膜厚÷現像後の膜厚)×100
ただし、非感光性樹脂組成物の硬化収縮率を算出する場合は、現像工程を行わないため、「現像後の膜厚」を「プリベーク後の膜厚」として算出した。膜厚測定にはラムダエースSTM-602(商品名 大日本スクリーン製造(株)製)を用いた。屈折率は測定物によらず1.52とし、プリベーク後の膜厚、現像後の膜厚、およびキュアで得られた硬化膜の膜厚を測定した。
(4) Evaluation of planarization performance About the cured film produced on the silicon wafer by the method of said (1), the cure shrinkage rate before and behind hardening was computed. When this value is 0 to 15%, the planarization performance is good. The cure shrinkage was calculated according to the following formula.
Curing shrinkage (%) = (1−cured film thickness obtained by curing ÷ film thickness after development) × 100
However, in the case of calculating the curing shrinkage rate of the non-photosensitive resin composition, since the development step was not performed, “film thickness after development” was calculated as “film thickness after pre-baking”. Lambda Ace STM-602 (trade name, manufactured by Dainippon Screen Mfg. Co., Ltd.) was used for film thickness measurement. The refractive index was 1.52, irrespective of the measured object, and the film thickness after pre-baking, the film thickness after development, and the film thickness of the cured film obtained by curing were measured.
 実施例1
 黄色灯下にて2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(商品名「イルガキュア907」チバスペシャリティケミカル(株)社製、(以下、IC907と記載する。))1.557g、4,4-ビス(ジエチルアミノ)ベンゾフェノン(以下、EKと記載する。)0.173gをDAA21.618g、PGMEA34.489gに溶解させた。この溶液に、ジペンタエリスリトールヘキサアクリレート(商品名「カヤラッド DPHA」新日本化薬(株)社製(以下、DPHAと記載する。)10.382g、シランカップリング剤混合溶液(a-1)4.326g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、シロキサン樹脂溶液(b-1)17.303g、シリコーン系界面活性剤であるBYK-333(ビックケミー・ジャパン(株)製)のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-1)を得た。
Example 1
Under a yellow light, 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (trade name “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd. (hereinafter referred to as IC907) .)) 1.557 g, 4,4-bis (diethylamino) benzophenone (hereinafter referred to as EK) 0.173 g was dissolved in 21.618 g DAA and 34.489 g PGMEA. To this solution, dipentaerythritol hexaacrylate (trade name “Kayarad DPHA”, Shin Nippon Kayaku Co., Ltd. (hereinafter referred to as DPHA) 10.382 g, silane coupling agent mixed solution (a-1) 4 .326 g, 8.652 g of a 1% by weight PGMEA solution of 4-t-butylcatechol, 17.303 g of a siloxane resin solution (b-1), BYK-333 which is a silicone surfactant (manufactured by BYK Japan Japan Co., Ltd.) 1.500 g of a 1% by weight PGMEA solution was added and stirred, followed by filtration with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-1).
 得られたネガ型感光性樹脂組成物(N-1)をガラス基板、およびITO基板にそれぞれスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートした。その後、これらの基板をホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークし、膜厚1.5μmの膜を作製した。 The obtained negative photosensitive resin composition (N-1) was spin-coated on a glass substrate and an ITO substrate using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number. Thereafter, these substrates were pre-baked for 2 minutes at 110 ° C. using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a film having a thickness of 1.5 μm.
 作製した膜をパラレルライトマスクアライナー(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源とし、5、10、20、30、40、50μm幅の1対1の幅を持つマスクを用い、露光量200mJ(i線)、マスクギャップ100μmで露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.4質量%水酸化テトラメチルアンモニウム水溶液ELM-D(三菱ガス化学(株)製)で90秒間シャワー現像し、次いで水で30秒間リンスした。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。得られた硬化膜について、前記方法で硬度、接着性、解像度を評価した。 Using the parallel light mask aligner (PLA-501F manufactured by Canon Inc.) as the light source and the ultrahigh pressure mercury lamp as the light source, the mask having a one-to-one width of 5, 10, 20, 30, 40, 50 μm width The exposure was performed at an exposure amount of 200 mJ (i-line) and a mask gap of 100 μm. Then, using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 90 seconds with a 0.4% by mass tetramethylammonium hydroxide aqueous solution ELM-D (Mitsubishi Gas Chemical Co., Ltd.). Then rinsed with water for 30 seconds. Finally, a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). About the obtained cured film, hardness, adhesiveness, and resolution were evaluated by the said method.
 実施例2
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-2)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-2)を得た。得られたネガ型感光性樹脂組成物(N-2)を用いて、実施例1と同様にして評価を行った。
Example 2
A negative photosensitive resin composition (N-2) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-2).
 実施例3
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-3)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-3)を得た。得られたネガ型感光性樹脂組成物(N-3)を用いて、実施例1と同様にして評価を行った。
Example 3
A negative photosensitive resin composition (N-3) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1). Obtained. The obtained negative photosensitive resin composition (N-3) was evaluated in the same manner as in Example 1.
 実施例4
 シランカップリング剤混合溶液(a-1)の添加量を0.433gに、およびPGMEAの添加量を38.382gに変更する以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-4)を得た。得られたネガ型感光性樹脂組成物(N-4)を用いて、実施例1と同様にして評価を行った。
Example 4
A negative photosensitive resin composition (Example 1) was carried out in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was changed to 0.433 g and the addition amount of PGMEA was changed to 38.382 g. N-4) was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-4).
 実施例5
 シランカップリング剤混合溶液(a-1)の添加量を1.730gに、およびPGMEAの添加量を37.085gにする以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-5)を得た。得られたネガ型感光性樹脂組成物(N-5)を用いて、実施例1と同様にして評価を行った。
Example 5
The negative photosensitive resin composition (N-1) was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 1.730 g and the addition amount of PGMEA was 37.085 g. -5) was obtained. Using the obtained negative photosensitive resin composition (N-5), evaluation was performed in the same manner as in Example 1.
 実施例6
 シランカップリング剤混合溶液(a-1)の添加量を10.382gに、およびPGMEAの添加量を28.433gにする以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-6)を得た。得られたネガ型感光性樹脂組成物(N-6)を用いて、実施例1と同様にして評価を行った。
Example 6
A negative photosensitive resin composition (N) was prepared in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 10.382 g and the addition amount of PGMEA was 28.433 g. -6) was obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-6).
 実施例7
 シランカップリング剤混合溶液(a-1)の添加量を14.708gに、およびPGMEAの添加量を24.107gにする以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-7)を得た。得られたネガ型感光性樹脂組成物(N-7)を用いて、実施例1と同様にして評価を行った。
Example 7
Negative photosensitive resin composition (N-1) was carried out in the same manner as in Example 1 except that the addition amount of the silane coupling agent mixed solution (a-1) was 14.708 g and the addition amount of PGMEA was 24.107 g. -7) was obtained. Evaluation was carried out in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-7).
 実施例8
 ネガ型感光性樹脂組成物(N-1)30.000gにトリフェニルスルホニウムトリフルオロメタンスルホン酸塩(商品名「WPAG-281」ビックケミー・ジャパン(株)社製(以下、WPAG-281と記載する。)を0.052g添加し、攪拌することで、ネガ型感光性樹脂組成物(N-8)を得た。得られたネガ型感光性樹脂組成物(N-8)を用いて、実施例1と同様にして評価を行った。
Example 8
The negative photosensitive resin composition (N-1) (30.000 g) is triphenylsulfonium trifluoromethanesulfonate (trade name “WPAG-281”, manufactured by Big Chemie Japan Co., Ltd. (hereinafter referred to as WPAG-281). 0.052 g) was added and stirred to obtain a negative photosensitive resin composition (N-8), and the obtained negative photosensitive resin composition (N-8) was used as an example. Evaluation was performed in the same manner as in Example 1.
 実施例9
 ネガ型感光性樹脂組成物(N-1)30.000gにWPAG-281を0.208g添加し、攪拌することで、ネガ型感光性樹脂組成物(N-9)を得た。得られたネガ型感光性樹脂組成物(N-9)を用いて、実施例1と同様にして評価を行った。
Example 9
The negative photosensitive resin composition (N-9) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-1) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-9).
 実施例10
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA 21.629gに溶解させた。この溶液に、DPHA 8.652g、シランカップリング剤混合溶液(a-1)4.326g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)21.629g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-10)を得た。得られたネガ型感光性樹脂組成物(N-10)を用いて、実施例1と同様にして評価を行った。
Example 10
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (21.629 g). In this solution, DPHA 8.652 g, silane coupling agent mixed solution (a-1) 4.326 g, 4-t-butylcatechol PGMEA 1% by mass solution 8.652 g, acrylic resin solution (b-2) 21.629 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Subsequently, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-10). Evaluation was carried out in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-10).
 実施例11
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-2)を用いる以外は実施例10と同様に行い、ネガ型感光性樹脂組成物(N-11)を得た。得られたネガ型感光性樹脂組成物(N-11)を用いて、実施例1と同様にして評価を行った。
Example 11
A negative photosensitive resin composition (N-11) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-2) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-11).
 実施例12
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-3)を用いる以外は実施例10と同様に行い、ネガ型感光性樹脂組成物(N-12)を得た。得られたネガ型感光性樹脂組成物(N-12)を用いて、実施例1と同様にして評価を行った。
Example 12
A negative photosensitive resin composition (N-12) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-3) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Using the obtained negative photosensitive resin composition (N-12), evaluation was performed in the same manner as in Example 1.
 実施例13
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA24.108gに溶解させた。この溶液に、DPHA 10.382g、シランカップリング剤混合溶液(a-1)4.326g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)17.303g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-13)を得た。得られたネガ型感光性樹脂組成物(N-13)を用いて、実施例1と同様にして評価を行った。
Example 13
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (24.108 g). In this solution, DPHA 10.382 g, silane coupling agent mixed solution (a-1) 4.326 g, 4-tert-butylcatechol PGMEA 1% by mass solution 8.652 g, acrylic resin solution (b-2) 17.303 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-13). Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-13).
 実施例14
 ネガ型感光性樹脂組成物(N-13)30.000gにWPAG-281を0.052g添加する以外は実施例13と同様に行い、ネガ型感光性樹脂組成物(N-14)を得た。得られたネガ型感光性樹脂組成物(N-14)を用いて、実施例1と同様にして評価を行った。
Example 14
A negative photosensitive resin composition (N-14) was obtained in the same manner as in Example 13, except that 0.052 g of WPAG-281 was added to 30.000 g of the negative photosensitive resin composition (N-13). . Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-14).
 実施例15
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA 18.917gに溶解させた。この溶液に、DPHA 6.921g、シランカップリング剤混合溶液(a-1)4.326g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)25.955g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-15)を得た。得られたネガ型感光性樹脂組成物(N-15)を用いて、実施例1と同様にして評価を行った。
Example 15
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (18.917 g). In this solution, DPHA 6.921 g, silane coupling agent mixed solution (a-1) 4.326 g, 4-t-butylcatechol PGMEA 1 mass% solution 8.652 g, acrylic resin solution (b-2) 25.955 g , 1.500 g of a 1 wt% PGMEA solution of BYK-333 was added and stirred. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-15). Evaluation was performed in the same manner as in Example 1 by using the obtained negative photosensitive resin composition (N-15).
 実施例16
 黄色灯下にてキノンジアジド化合物(q-1)1.730gをDAA 6.045g、PGMEA 43.141gに溶解させた。この溶液に、シランカップリング剤混合溶液(a-1)4.326g、シロキサン樹脂溶液(b-1)43.258g、シリコーン系界面活性剤であるBYK-333(ビックケミー・ジャパン(株)製)のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ポジ型感光性樹脂組成物(P-1)を得た。
得られたポジ型感光性樹脂組成物(P-1)をガラス基板、およびITO基板にそれぞれスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートした。その後、これらの基板をホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークし、膜厚1.5μmの膜を作製した。
Example 16
Under a yellow light, 1.730 g of the quinonediazide compound (q-1) was dissolved in 6.045 g of DAA and 43.141 g of PGMEA. In this solution, 4.326 g of the silane coupling agent mixed solution (a-1), 43.258 g of the siloxane resin solution (b-1), BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Next, filtration was performed with a 0.45 μm filter to obtain a positive photosensitive resin composition (P-1).
The obtained positive photosensitive resin composition (P-1) was spin-coated on a glass substrate and an ITO substrate using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation number. Thereafter, these substrates were pre-baked for 2 minutes at 110 ° C. using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to produce a film having a thickness of 1.5 μm.
 作製した膜をパラレルライトマスクアライナー(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源とし、5、10、20、30、40、50μm幅の1対1の幅を持つマスクを用い、露光量200mJ(i線)、マスクギャップ100μmで露光した。このとき、硬度および接着測定に十分な広さの未露光部を確保するようにした。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.4質量%水酸化テトラメチルアンモニウム水溶液ELM-D(三菱ガス化学(株)製)で90秒間シャワー現像し、次いで水で30秒間リンスした。次に、パラレルライトマスクアライナー(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源とし、露光量6000mJ(i線)で露光した。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。得られた硬化膜について、前記方法で硬度、接着性、解像度を評価した。 Using the parallel light mask aligner (PLA-501F manufactured by Canon Inc.) as the light source and the ultrahigh pressure mercury lamp as the light source, the mask having a one-to-one width of 5, 10, 20, 30, 40, 50 μm width The exposure was performed at an exposure amount of 200 mJ (i line) and a mask gap of 100 μm. At this time, an unexposed portion having a sufficient area for hardness and adhesion measurement was secured. Then, using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 90 seconds with a 0.4% by mass tetramethylammonium hydroxide aqueous solution ELM-D (Mitsubishi Gas Chemical Co., Ltd.). Then rinsed with water for 30 seconds. Next, using a parallel light mask aligner (PLA-501F manufactured by Canon Inc.), an ultrahigh pressure mercury lamp was used as a light source, and exposure was performed at an exposure amount of 6000 mJ (i line). Finally, a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). About the obtained cured film, hardness, adhesiveness, and resolution were evaluated by the said method.
 実施例17
 DAA 6.045g、PGMEA 44.871gに溶解させた。この溶液に、シランカップリング剤混合溶液(a-1)4.326g、シロキサン樹脂溶液(b-1)43.258g、シリコーン系界面活性剤であるBYK-333(ビックケミー・ジャパン(株)製)のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、熱硬化性樹脂組成物(U-1)を得た。
得られた熱硬化性樹脂組成物(U-1)をガラス基板、およびITO基板にそれぞれにスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートし膜厚1.5μmの膜を作製した。その後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークした。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中260℃で1時間キュアして硬化膜を作製した。前記方法で硬化収縮率を算出し、硬度、接着性を評価した。
Example 17
It was dissolved in 6.045 g of DAA and 44.871 g of PGMEA. In this solution, 4.326 g of the silane coupling agent mixed solution (a-1), 43.258 g of the siloxane resin solution (b-1), BYK-333 which is a silicone-based surfactant (manufactured by Big Chemie Japan Co., Ltd.) 1.500 g of a 1% by weight solution of PGMEA was added and stirred. Subsequently, filtration was performed with a 0.45 μm filter to obtain a thermosetting resin composition (U-1).
The obtained thermosetting resin composition (U-1) was spin-coated on a glass substrate and an ITO substrate, respectively, using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary number of revolutions. A 5 μm film was prepared. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a cured film was produced by curing in an air at 260 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). Curing shrinkage was calculated by the above method, and hardness and adhesion were evaluated.
 比較例1
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 21.618g、PGMEA 38.815gに溶解させた。この溶液に、DPHA 10.382g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、シロキサン樹脂溶液(b-1)17.303g、シリコーン系界面活性剤であるBYK-333(ビックケミー・ジャパン(株)製)のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-16)を得た。得られたネガ型感光性樹脂組成物(N-16)を用いて、実施例1と同様にして評価を行った。
Comparative Example 1
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (21.618 g) and PGMEA (38.815 g). To this solution, DPHA 10.382 g, 4-tert-butylcatechol PGMEA 1% by weight solution 8.652 g, siloxane resin solution (b-1) 17.303 g, silicone surfactant BYK-333 (BIC Chemie Japan) 1.500 g of 1 mass% PGMEA solution (manufactured by Co., Ltd.) was added and stirred. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-16). The obtained negative photosensitive resin composition (N-16) was used for evaluation in the same manner as in Example 1.
 比較例2
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-4)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-17)を得た。得られたネガ型感光性樹脂組成物(N-17)を用いて、実施例1と同様にして評価を行った。
Comparative Example 2
A negative photosensitive resin composition (N-17) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1). Obtained. The obtained negative photosensitive resin composition (N-17) was used for evaluation in the same manner as in Example 1.
 比較例3
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-5)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-18)を得た。得られたネガ型感光性樹脂組成物(N-18)を用いて、実施例1と同様にして評価を行った。
Comparative Example 3
A negative photosensitive resin composition (N-18) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-18).
 比較例4
 ネガ型感光性樹脂組成物(N-17)30.000gにWPAG-281を0.208g添加し、攪拌することで、ネガ型感光性樹脂組成物(N-19)を得た。得られたネガ型感光性樹脂組成物(N-19)を用いて、実施例1と同様にして評価を行った。
Comparative Example 4
The negative photosensitive resin composition (N-19) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-17) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-19).
 比較例5
 ネガ型感光性樹脂組成物(N-16)30.000gにWPAG-281を0.208g添加し、攪拌することで、ネガ型感光性樹脂組成物(N-20)を得た。得られたネガ型感光性樹脂組成物(N-20)を用いて、実施例1と同様にして評価を行った。
Comparative Example 5
The negative photosensitive resin composition (N-20) was obtained by adding 0.208 g of WPAG-281 to 30.000 g of the negative photosensitive resin composition (N-16) and stirring. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-20).
 比較例6
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA 25.955gに溶解させた。この溶液に、DPHA 8.652g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)21.629g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-21)を得た。得られたネガ型感光性樹脂組成物(N-21)を用いて、実施例1と同様にして評価を行った。
Comparative Example 6
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (25.955 g). To this solution, 8.652 g of DPHA, 8.652 g of PGMEA 1% by mass of 4-t-butylcatechol, 21.629 g of acrylic resin solution (b-2), 1.500 g of PGMEA 1% by mass of BYK-333 were added, Stir. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-21). Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-21).
 比較例7
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA 28.434gに溶解させた。この溶液に、DPHA 10.382g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)17.303g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-22)を得た。得られたネガ型感光性樹脂組成物(N-22)を用いて、実施例1と同様にして評価を行った。
Comparative Example 7
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (28.434 g). To this solution, 10.382 g of DPHA, 8.652 g of PGMEA 1 mass% solution of 4-t-butylcatechol, 17.303 g of acrylic resin solution (b-2), 1.500 g of PGMEA 1 mass% solution of BYK-333, Stir. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-22). Using the obtained negative photosensitive resin composition (N-22), evaluation was performed in the same manner as in Example 1.
 比較例8
 黄色灯下にて、IC907 1.557g、EK 0.173gをDAA 32.000g、PGMEA 23.243gに溶解させた。この溶液に、DPHA 6.921g、4-t-ブチルカテコールのPGMEA1質量%溶液8.652g、アクリル樹脂溶液(b-2)25.955g、BYK-333のPGMEA1質量%溶液1.500gを加え、撹拌した。次いで0.45μmのフィルターでろ過を行い、ネガ型感光性樹脂組成物(N-23)を得た。得られたネガ型感光性樹脂組成物(N-23)を用いて、実施例1と同様にして評価を行った。
Comparative Example 8
Under a yellow light, IC907 (1.557 g) and EK (0.173 g) were dissolved in DAA (32.000 g) and PGMEA (23.243 g). To this solution was added DPHA 6.921 g, 4-tert-butylcatechol PGMEA 1% by weight solution 8.652 g, acrylic resin solution (b-2) 25.955 g, BYK-333 1% by weight PGMEA 1% by weight solution, Stir. Next, filtration was performed with a 0.45 μm filter to obtain a negative photosensitive resin composition (N-23). Using the obtained negative photosensitive resin composition (N-23), evaluation was conducted in the same manner as in Example 1.
 比較例9
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-4)を用いる以外は実施例10と同様に行い、ネガ型感光性樹脂組成物(N-24)を得た。得られたネガ型感光性樹脂組成物(N-24)を用いて、実施例1と同様にして評価を行った。
Comparative Example 9
A negative photosensitive resin composition (N-24) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-4) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Using the obtained negative photosensitive resin composition (N-24), evaluation was performed in the same manner as in Example 1.
 比較例10
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-5)を用いる以外は実施例10と同様に行い、ネガ型感光性樹脂組成物(N-25)を得た。得られたネガ型感光性樹脂組成物(N-25)を用いて、実施例1と同様にして評価を行った。
Comparative Example 10
A negative photosensitive resin composition (N-25) was prepared in the same manner as in Example 10 except that the silane coupling agent mixed solution (a-5) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-25).
 比較例11
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-6)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-26)を得た。得られたネガ型感光性樹脂組成物(N-26)を用いて、実施例1と同様にして評価を行った。
Comparative Example 11
A negative photosensitive resin composition (N-26) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-6) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 using the obtained negative photosensitive resin composition (N-26).
 比較例12
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-7)を用いる以外は実施例1と同様に行い、ネガ型感光性樹脂組成物(N-27)を得た。得られたネガ型感光性樹脂組成物(N-27)を用いて、実施例1と同様にして評価を行った。
Comparative Example 12
A negative photosensitive resin composition (N-27) was prepared in the same manner as in Example 1 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 1 by using the obtained negative photosensitive resin composition (N-27).
 比較例13
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-7)を用いる以外は実施例16と同様に行い、ポジ型感光性樹脂組成物(P-2)を得た。得られたポジ型感光性樹脂組成物(P-2)を用いて、実施例16と同様にして評価を行った。
Comparative Example 13
A positive photosensitive resin composition (P-2) was prepared in the same manner as in Example 16 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). Obtained. Evaluation was performed in the same manner as in Example 16 using the obtained positive photosensitive resin composition (P-2).
 比較例14
 シランカップリング剤混合溶液(a-1)の代わりにシランカップリング剤混合溶液(a-7)を用いる以外は実施例17と同様に行い、熱硬化性樹脂組成物(U-2)を得た。得られた熱硬化性樹脂組成物(U-2)を用いて、実施例17と同様にして評価を行った。
Comparative Example 14
A thermosetting resin composition (U-2) was obtained in the same manner as in Example 17 except that the silane coupling agent mixed solution (a-7) was used instead of the silane coupling agent mixed solution (a-1). It was. Evaluation was performed in the same manner as in Example 17 using the obtained thermosetting resin composition (U-2).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明のシランカップリング剤を添加する樹脂組成物の種類によって、硬化収縮率と平坦化能にどのような差があるかを比較するため、以下の参考実験を行った。 In order to compare the difference in curing shrinkage and flattening ability depending on the type of resin composition to which the silane coupling agent of the present invention is added, the following reference experiment was conducted.
 参考例1
 ネガ型感光性樹脂組成物(N-1(シランカップリング剤(a-1)を使用))をシリコンウエハ基板にスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートした。その後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークし、膜厚1.5μmの膜を作製した。作製した膜をパラレルライトマスクアライナー(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源とし、露光量200mJ(i線)で露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.4質量%水酸化テトラメチルアンモニウム水溶液ELM-D(三菱ガス化学(株)製)で90秒間シャワー現像し、次いで水で30秒間リンスした。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。前記方法で硬化収縮率を算出し、平坦化能を評価した。その結果、硬化収縮率は11%で、平坦化能は良好であった。
Reference example 1
A negative photosensitive resin composition (N-1 (using a silane coupling agent (a-1))) is applied to a silicon wafer substrate with a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary rotation speed. Spin coated. Thereafter, prebaking was performed at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) to prepare a film having a thickness of 1.5 μm. The produced film was exposed at an exposure amount of 200 mJ (i-line) using a parallel light mask aligner (PLA-501F manufactured by Canon Inc.) and an ultrahigh pressure mercury lamp as a light source. Then, using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 90 seconds with a 0.4% by mass tetramethylammonium hydroxide aqueous solution ELM-D (Mitsubishi Gas Chemical Co., Ltd.). Then rinsed with water for 30 seconds. Finally, a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). The curing shrinkage rate was calculated by the above method, and the planarization ability was evaluated. As a result, the cure shrinkage ratio was 11% and the planarization ability was good.
 ネガ型感光性樹脂組成物(N-1)の代わりに(N-27)を用いる以外は、上記と同様にして評価を行った。その結果、硬化収縮率は9%で、平坦化能は良好であった。 Evaluation was performed in the same manner as described above except that (N-27) was used instead of the negative photosensitive resin composition (N-1). As a result, the cure shrinkage ratio was 9% and the planarization ability was good.
 すなわち、ネガ型感光性樹脂組成物に対しては、従来のシランカップリング剤に代えて本発明のシランカップリング剤(a-1)を添加することにより、硬化収縮率、平坦化能とも、ほとんど低下させることはなかった。 That is, with respect to the negative photosensitive resin composition, by adding the silane coupling agent (a-1) of the present invention instead of the conventional silane coupling agent, both the curing shrinkage rate and the flattening ability are obtained. There was almost no decrease.
 参考例2
 ポジ型感光性樹脂組成物(P-1(シランカップリング剤(a-1)を使用))をシリコンウエハ基板にスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートし、膜厚1.5μmの膜を作製した。その後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークした。自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.4質量%水酸化テトラメチルアンモニウム水溶液ELM-D(三菱ガス化学(株)製)で90秒間シャワー現像し、次いで水で30秒間リンスした。次に、パラレルライトマスクアライナー(キヤノン(株)製PLA-501F)を用いて超高圧水銀灯を光源とし、露光量6000mJ(i線)で露光した。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。前記方法で硬化収縮率を算出し、平坦化能を評価した。その結果、硬化収縮率は16%で、平坦化能は不良であった。
ポジ型感光性樹脂組成物(P-1)の代わりに(P-2)を用いる以外は、上記と同様にして評価を行った。その結果、硬化収縮率は13%で、平坦化能は良好であった。
Reference example 2
A positive photosensitive resin composition (P-1 (using silane coupling agent (a-1))) is applied to a silicon wafer substrate with a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) at an arbitrary number of rotations. A film having a thickness of 1.5 μm was formed by spin coating. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed for 90 seconds with a 0.4 mass% tetramethylammonium hydroxide aqueous solution ELM-D (manufactured by Mitsubishi Gas Chemical Co., Ltd.). Rinse with water for 30 seconds. Next, using a parallel light mask aligner (PLA-501F manufactured by Canon Inc.), an ultrahigh pressure mercury lamp was used as a light source, and exposure was performed at an exposure amount of 6000 mJ (i line). Finally, a cured film was prepared by curing in an air at 220 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). The curing shrinkage rate was calculated by the above method, and the planarization ability was evaluated. As a result, the curing shrinkage ratio was 16%, and the planarization ability was poor.
Evaluation was performed in the same manner as described above except that (P-2) was used instead of the positive photosensitive resin composition (P-1). As a result, the curing shrinkage ratio was 13% and the planarization ability was good.
 すなわち、ポジ型感光性樹脂組成物に対しては、従来のシランカップリング剤に代えて本発明のシランカップリング剤(a-1)を添加することにより、特に平坦化性能を低下させる傾向が見られた。 That is, for the positive photosensitive resin composition, the planarization performance tends to be lowered particularly by adding the silane coupling agent (a-1) of the present invention instead of the conventional silane coupling agent. It was seen.
 参考例3
 熱硬化性樹脂組成物(U-1(シランカップリング剤(a-1)を使用))をシリコンウエハ基板にスピンコーター(ミカサ(株)製1H-360S)を用いて任意の回転数でスピンコートし膜厚1.5μmの膜を作製した。その後、ホットプレート(大日本スクリーン製造(株)製SCW-636)を用いて110℃で2分間プリベークした。最後に、オーブン(エスペック(株)製IHPS-222)を用いて空気中260℃で1時間キュアして硬化膜を作製した。前記方法で硬化収縮率を算出し、平坦化能を評価した。その結果、硬化収縮率は18%で、平坦化能は不良であった。
Reference example 3
Spin the thermosetting resin composition (U-1 (using silane coupling agent (a-1))) on a silicon wafer substrate at an arbitrary rotation speed using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.). A film having a thickness of 1.5 μm was prepared by coating. Thereafter, it was prebaked at 110 ° C. for 2 minutes using a hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.). Finally, a cured film was produced by curing in an air at 260 ° C. for 1 hour using an oven (Espec Co., Ltd. IHPS-222). The curing shrinkage rate was calculated by the above method, and the planarization ability was evaluated. As a result, the cure shrinkage ratio was 18%, and the planarization ability was poor.
 熱硬化性樹脂組成物(U-1)の代わりに(U-2)を用いる以外は上記と同様にして評価を行った。その結果、硬化収縮率は14%で、平坦化能は良好であった。 Evaluation was performed in the same manner as described above except that (U-2) was used instead of the thermosetting resin composition (U-1). As a result, the curing shrinkage ratio was 14% and the planarization ability was good.
 すなわち、熱硬化性樹脂組成物に対しては、従来のシランカップリング剤に代えて本発明のシランカップリング剤(a-1)を添加することにより、硬化収縮率および平坦化性能を低下させる傾向が見られた。 That is, for the thermosetting resin composition, by adding the silane coupling agent (a-1) of the present invention instead of the conventional silane coupling agent, the curing shrinkage rate and the planarization performance are lowered. There was a trend.
 本発明は、シランカップリング剤、それを含有するネガ型感光性樹脂組成物、それを用いた硬化膜、およびそれを有するタッチパネル装置に好適に使用される。 The present invention is suitably used for a silane coupling agent, a negative photosensitive resin composition containing the same, a cured film using the same, and a touch panel device having the same.

Claims (7)

  1. 一般式(1)で表されるシランカップリング剤。
    Figure JPOXMLDOC01-appb-C000001
     (各Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基を表す。アルキル基はさらに置換基を有していても良い。nは0あるいは1を表す。Rは炭素数3~30の3価の有機基を表す。Rはそれぞれ同じでも異なってもよく、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、フェニル基、ヒドロキシル基、およびフェノキシ基を表す。なお、Rのこれらの基のうち、ヒドロキシル基以外はさらに置換基を有していても良い。)
    A silane coupling agent represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Each R 1 may be the same or different and represents an alkyl group having 1 to 6 carbon atoms. The alkyl group may further have a substituent. N represents 0 or 1. R 2 represents carbon. Represents a trivalent organic group having 3 to 30. R 3 may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, a hydroxyl group, and phenoxy (In addition, among these groups of R 3 , those other than the hydroxyl group may further have a substituent.)
  2. 一般式(1)においてn=0であることを特徴とする請求項1に記載のシランカップリング剤。 The silane coupling agent according to claim 1, wherein n = 0 in the general formula (1).
  3. 少なくとも(A)請求項1または2に記載のシランカップリング剤、(B)アルカリ可溶性樹脂、(C)多官能アクリルモノマ、(D)光ラジカル重合開始剤、を含有することを特徴とするネガ型感光性樹脂組成物。 A negative containing at least (A) the silane coupling agent according to claim 1, (B) an alkali-soluble resin, (C) a polyfunctional acrylic monomer, and (D) a photoradical polymerization initiator. Type photosensitive resin composition.
  4. (A)アルカリ可溶性樹脂がエチレン性不飽和基を有するシロキサン樹脂であることを特徴とする請求項3に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 3, wherein (A) the alkali-soluble resin is a siloxane resin having an ethylenically unsaturated group.
  5. (A)アルカリ可溶性樹脂がエチレン性不飽和基を有するアクリル樹脂であることを特徴とする請求項3に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 3, wherein the alkali-soluble resin (A) is an acrylic resin having an ethylenically unsaturated group.
  6. 請求項3~5のいずれかに記載のネガ型感光性樹脂組成物を硬化させてなる硬化膜。 A cured film obtained by curing the negative photosensitive resin composition according to any one of claims 3 to 5.
  7. 請求項6に記載の硬化膜を有するタッチパネル用部材。 The member for touchscreens which has the cured film of Claim 6.
PCT/JP2011/055680 2010-03-17 2011-03-10 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component WO2011114995A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127024097A KR101839397B1 (en) 2010-03-17 2011-03-10 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component
SG2012068672A SG184100A1 (en) 2010-03-17 2011-03-10 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component
JP2011526326A JP5459315B2 (en) 2010-03-17 2011-03-10 Silane coupling agent, negative photosensitive resin composition, cured film, and touch panel member
CN201180014187.5A CN102803274B (en) 2010-03-17 2011-03-10 Silane coupling agent, negative light-sensitive resin combination, cured film and touch panel component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010060298 2010-03-17
JP2010-060298 2010-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/627,663 Continuation US9191137B2 (en) 2010-03-30 2012-09-26 Transmission apparatus, reception apparatus, transmission method, and reception method

Publications (1)

Publication Number Publication Date
WO2011114995A1 true WO2011114995A1 (en) 2011-09-22

Family

ID=44649090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055680 WO2011114995A1 (en) 2010-03-17 2011-03-10 Silane coupling agent, negative-type photosensitive resin composition, curable film and touch panel component

Country Status (6)

Country Link
JP (1) JP5459315B2 (en)
KR (1) KR101839397B1 (en)
CN (1) CN102803274B (en)
SG (1) SG184100A1 (en)
TW (1) TWI505031B (en)
WO (1) WO2011114995A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031753A1 (en) * 2011-08-29 2013-03-07 東レ株式会社 Colored resin composition and resin black matrix substrate
WO2013151167A1 (en) * 2012-04-06 2013-10-10 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Negative photosensitive siloxane composition
JP2014005437A (en) * 2011-11-21 2014-01-16 Toyo Ink Sc Holdings Co Ltd Resin composition, and protective film and touch panel insulating film using the same
JP2014066809A (en) * 2012-09-25 2014-04-17 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2014137394A (en) * 2013-01-15 2014-07-28 Hitachi Chemical Co Ltd Photosensitive transparent material for protective film of touch panel electrode
WO2014126013A1 (en) * 2013-02-14 2014-08-21 東レ株式会社 Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
JP2015021029A (en) * 2013-07-17 2015-02-02 東レ株式会社 Composition, antireflection layer using the same and method for forming the same, glass having the same and solar cell module
JP2015137271A (en) * 2014-01-24 2015-07-30 信越化学工業株式会社 Silane coupling agent, method of making the same, primer composition, and coating composition
WO2015194639A1 (en) * 2014-06-20 2015-12-23 大阪有機化学工業株式会社 Photosensitive composition and cured film of same
WO2018021049A1 (en) * 2016-07-28 2018-02-01 日産化学工業株式会社 Resin composition
JP2019194709A (en) * 2019-06-05 2019-11-07 日立化成株式会社 Method for manufacturing base material for touch panel with cured film, photosensitive resin composition, photosensitive element and touch panel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI567498B (en) 2012-04-06 2017-01-21 Az電子材料盧森堡有限公司 Negative-type photosensitive siloxane composition
JP5519064B2 (en) * 2012-09-21 2014-06-11 日本合成化学工業株式会社 Laminate and its use
KR101418026B1 (en) * 2014-02-06 2014-08-08 동우 화인켐 주식회사 Thermosetting ink composition
CN104793384B (en) * 2015-04-03 2017-07-28 京东方科技集团股份有限公司 A kind of ultra-thin LCD and preparation method thereof
CN105237037A (en) * 2015-11-24 2016-01-13 烟台顺隆化工科技有限公司 Water-proofing agent for natural stone building
CN111373325B (en) * 2017-11-21 2023-10-17 东丽株式会社 Silicone resin composition, cured film, and display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316032A (en) * 2005-05-16 2006-11-24 Asahi Kasei Electronics Co Ltd Silane coupling agent
WO2009096050A1 (en) * 2008-01-28 2009-08-06 Toray Industries, Inc. Siloxane resin compositions
WO2010055154A1 (en) * 2008-11-17 2010-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dialkoxy- or dihydroxyphenyl radicals containing silanes, adhesives produced therefrom and method for producing silanes and adhesives

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062654A (en) * 2000-08-16 2002-02-28 Fuji Photo Film Co Ltd Positive type photoresist composition
TW584785B (en) * 2001-07-04 2004-04-21 Showa Denko Kk Curable flame-retardant resist composition and cured product thereof
DE102005056622A1 (en) * 2005-11-25 2007-05-31 Merck Patent Gmbh Modified zinc oxide nanoparticles are formed by method placing precursor and silica modifier on organic solvent and growing until spectral absorption edge reaches the desired value
US8409783B2 (en) * 2007-09-28 2013-04-02 Tokyo Ohka Kogyo Co., Ltd. Copolymer, resin composition, spacer for display panel, planarization film, thermosetting protective film, microlens, and process for producing copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006316032A (en) * 2005-05-16 2006-11-24 Asahi Kasei Electronics Co Ltd Silane coupling agent
WO2009096050A1 (en) * 2008-01-28 2009-08-06 Toray Industries, Inc. Siloxane resin compositions
WO2010055154A1 (en) * 2008-11-17 2010-05-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Dialkoxy- or dihydroxyphenyl radicals containing silanes, adhesives produced therefrom and method for producing silanes and adhesives

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234230B1 (en) * 2011-08-29 2013-07-10 東レ株式会社 Colored resin composition and resin black matrix substrate
WO2013031753A1 (en) * 2011-08-29 2013-03-07 東レ株式会社 Colored resin composition and resin black matrix substrate
JP2014005437A (en) * 2011-11-21 2014-01-16 Toyo Ink Sc Holdings Co Ltd Resin composition, and protective film and touch panel insulating film using the same
JPWO2013151167A1 (en) * 2012-04-06 2015-12-17 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ Negative photosensitive siloxane composition
WO2013151167A1 (en) * 2012-04-06 2013-10-10 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Negative photosensitive siloxane composition
CN104246612B (en) * 2012-04-06 2019-06-11 Az电子材料(卢森堡)有限公司 Negative-type photosensitive silicone composition
KR20140144275A (en) * 2012-04-06 2014-12-18 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Negative photosensitive siloxane composition
CN104246612A (en) * 2012-04-06 2014-12-24 Az电子材料(卢森堡)有限公司 Negative photosensitive siloxane composition
KR102002761B1 (en) 2012-04-06 2019-07-23 에이제트 일렉트로닉 머티어리얼스 (룩셈부르크) 에스.에이.알.엘. Negative photosensitive siloxane composition
JP2014066809A (en) * 2012-09-25 2014-04-17 Asahi Kasei E-Materials Corp Photosensitive resin composition
JP2014137394A (en) * 2013-01-15 2014-07-28 Hitachi Chemical Co Ltd Photosensitive transparent material for protective film of touch panel electrode
KR102145232B1 (en) * 2013-02-14 2020-08-18 도레이 카부시키가이샤 Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
CN104969126A (en) * 2013-02-14 2015-10-07 东丽株式会社 Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
KR20150118091A (en) * 2013-02-14 2015-10-21 도레이 카부시키가이샤 Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
CN104969126B (en) * 2013-02-14 2019-10-01 东丽株式会社 Negative-type photosensitive coloured composition, cured film, the manufacturing method of touch panel light-shielding pattern and touch panel
US9651865B2 (en) 2013-02-14 2017-05-16 Toray Industries, Inc. Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
JPWO2014126013A1 (en) * 2013-02-14 2017-02-02 東レ株式会社 Negative photosensitive coloring composition, cured film, light shielding pattern for touch panel, and method for manufacturing touch panel
WO2014126013A1 (en) * 2013-02-14 2014-08-21 東レ株式会社 Negative-type photosensitive coloring composition, cured film, light-shielding pattern for touch panel, and touch panel manufacturing method
JP2015021029A (en) * 2013-07-17 2015-02-02 東レ株式会社 Composition, antireflection layer using the same and method for forming the same, glass having the same and solar cell module
US9221849B2 (en) 2014-01-24 2015-12-29 Shin-Etsu Chemical Co., Ltd. Silane coupling agent, making method, primer composition, and coating composition
KR20150088733A (en) 2014-01-24 2015-08-03 신에쓰 가가꾸 고교 가부시끼가이샤 Silane coupling agent and method for preparing the same, primer composition, and coating composition
JP2015137271A (en) * 2014-01-24 2015-07-30 信越化学工業株式会社 Silane coupling agent, method of making the same, primer composition, and coating composition
JPWO2015194639A1 (en) * 2014-06-20 2017-05-25 大阪有機化学工業株式会社 Photosensitive composition and cured film thereof
TWI656407B (en) * 2014-06-20 2019-04-11 日商大阪有機化學工業股份有限公司 Photosensitive composition and cured film thereof
KR20170019371A (en) 2014-06-20 2017-02-21 오사카 유키가가쿠고교 가부시키가이샤 Photosensitive composition and cured film of same
WO2015194639A1 (en) * 2014-06-20 2015-12-23 大阪有機化学工業株式会社 Photosensitive composition and cured film of same
KR102053369B1 (en) 2014-06-20 2019-12-06 오사카 유키가가쿠고교 가부시키가이샤 Photosensitive composition and cured film of same
WO2018021049A1 (en) * 2016-07-28 2018-02-01 日産化学工業株式会社 Resin composition
JP2019194709A (en) * 2019-06-05 2019-11-07 日立化成株式会社 Method for manufacturing base material for touch panel with cured film, photosensitive resin composition, photosensitive element and touch panel

Also Published As

Publication number Publication date
JP5459315B2 (en) 2014-04-02
KR101839397B1 (en) 2018-03-16
CN102803274B (en) 2015-07-29
CN102803274A (en) 2012-11-28
JPWO2011114995A1 (en) 2013-06-27
TWI505031B (en) 2015-10-21
SG184100A1 (en) 2012-10-30
TW201142504A (en) 2011-12-01
KR20130061124A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5459315B2 (en) Silane coupling agent, negative photosensitive resin composition, cured film, and touch panel member
JP5867083B2 (en) Negative photosensitive resin composition and protective film using the same
JP5589387B2 (en) Siloxane resin composition and protective film for touch panel using the same
JP5504689B2 (en) Negative photosensitive resin composition and touch panel material using the same
JP5423004B2 (en) Negative photosensitive resin composition and touch panel material using the same
JP5327345B2 (en) Negative photosensitive resin composition, cured film, and touch panel member.
JP5407210B2 (en) Siloxane resin composition and cured film using the same
WO2013146130A1 (en) Silane coupling agent, light-sensitive resin composition, cured film, and touch panel member
WO2011129312A1 (en) Negative photosensitive resin composition, cured film, and member for touch panel
JP5671936B2 (en) Negative photosensitive resin composition and cured film using the same
JP7119390B2 (en) Negative photosensitive resin composition and cured film using the same
JP6489288B1 (en) Transparent resin composition, transparent film and transparent resin-coated glass substrate
JP2018120069A (en) Negative photosensitive resin composition, cured film and touch panel member
JP6458902B1 (en) Photosensitive siloxane resin composition, cured film and touch panel member
JPWO2019102655A1 (en) Siloxane resin composition, cured film and display device
JP2022064302A (en) Negative siloxane resin composition, cured film, and element
JP2020100819A (en) Resin composition, cured film and method for producing the same
JP2023136705A (en) Photosensitive resin composition, cured film and touch panel
JP2017187754A (en) Negative siloxane resin composition, photospacer, color filter substrate, and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014187.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011526326

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127024097

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756181

Country of ref document: EP

Kind code of ref document: A1