WO2013031406A1 - Module for adjusting battery temperature - Google Patents

Module for adjusting battery temperature Download PDF

Info

Publication number
WO2013031406A1
WO2013031406A1 PCT/JP2012/068210 JP2012068210W WO2013031406A1 WO 2013031406 A1 WO2013031406 A1 WO 2013031406A1 JP 2012068210 W JP2012068210 W JP 2012068210W WO 2013031406 A1 WO2013031406 A1 WO 2013031406A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat
battery cell
conducting material
temperature control
Prior art date
Application number
PCT/JP2012/068210
Other languages
French (fr)
Japanese (ja)
Inventor
花田 知之
下野園 均
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013031406A1 publication Critical patent/WO2013031406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery temperature control module capable of adjusting the temperature of a battery.
  • Japanese Patent Application Laid-Open No. 2001-23703 discloses a battery temperature control in which a heat transfer plate is provided between battery cells and brazed to a heat exchanging portion provided below the heat transfer plate to release the heat of the battery to the outside. An apparatus is disclosed.
  • the heat transfer substrate is thermally conducted using a thin heat transfer plate, so the heat passage cross-sectional area is small, so the thermal resistance is large, and the heat generated in the battery cell is efficiently generated. It cannot be transferred to the heat exchanger.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a battery temperature control module capable of efficiently exchanging heat.
  • One embodiment of the present invention is a battery temperature adjustment module including a battery module in which a plurality of batteries are stacked, a heat conductive material, and a heat exchange unit.
  • the heat exchanging unit is in close contact with or integrated with the heat conducting material, and performs heat exchange by circulating a fluid inside.
  • the heat conductive material is arranged along the gap shape around the battery formed when the batteries are stacked.
  • FIG. 1 is a system configuration diagram illustrating a vehicle temperature control system including a battery temperature control module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic perspective view showing the configuration of the vehicle driving battery in the first embodiment.
  • FIG. 3 is a characteristic diagram showing the heat transfer performance of the first embodiment.
  • FIG. 4 is a schematic diagram showing a configuration of a battery pack according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic perspective view showing the configuration of the vehicle driving battery in the second embodiment.
  • FIG. 6 is a schematic perspective view showing the configuration of the vehicle drive battery according to the third embodiment of the present invention.
  • FIG. 7 is a schematic perspective view showing a configuration of a battery pack according to Embodiment 4 of the present invention.
  • FIG. 1 is a system configuration diagram illustrating a vehicle temperature control system including a battery temperature control module according to Embodiment 1 of the present invention.
  • the vehicle according to the first embodiment is, for example, an electric vehicle that uses a battery and a motor as drive sources.
  • This vehicle includes a vehicle air-conditioning system 13, a vehicle drive battery 5 that houses a plurality of battery cells 1 and serves as a drive source, and a temperature control fluid (heat medium) (hereinafter referred to as temperature control) that is necessary to control the temperature of the battery 5.
  • a temperature control mechanism 20 that generates a fluid).
  • the vehicle air conditioning system 13 includes a condenser 14, a refrigerant compressor 15, a fan 16 necessary for releasing heat from the condenser 14, a refrigerant evaporator 18 having decompression means, and an air conditioning refrigerant pipe connecting them. Etc.
  • the flow path switching valve 17 is incorporated in the vehicle air conditioning system 13 and is provided downstream of the cold fluid generator 21. The flow path switching valve 17 switches the flow of the air-conditioning refrigerant cooled by the condenser 14 to the refrigerant evaporator 18 or the cold fluid generator 21.
  • a refrigerant stop valve 19 is provided downstream of the cold fluid generator 21 of the vehicle air conditioning system 13.
  • the refrigerant stop valve 19 operates when the air conditioning refrigerant is flowing to the refrigerant evaporator 18 by the flow path switching valve 17, and the air conditioning refrigerant flows back from the outlet of the refrigerant evaporator 18 to the cold fluid generator 21. To prevent.
  • the cold fluid generator 21 is incorporated across both the vehicle air conditioning system 13 and the temperature control mechanism 20.
  • the vehicle air-conditioning system 13 and the temperature control mechanism 20 are independent circuits, respectively. Air-conditioning refrigerant flows on the vehicle air-conditioning system 13 side, and fluid flows on the temperature control mechanism 20 side.
  • a heat exchanger (not shown) is provided inside the cold fluid generator 21. In this heat exchanger, heat exchange is performed between the air-conditioning refrigerant cooled by the condenser 14 and the fluid flowing in the temperature adjustment mechanism 20, so that the fluid flowing in the temperature adjustment mechanism 20 can be cooled.
  • the temperature adjustment mechanism 20 includes a cold fluid generation device 21 necessary for cooling the battery cell 1, an electric heater 22 necessary for heating the battery cell 1, and the temperature of the fluid flowing in the temperature adjustment mechanism 20. It comprises a fluid temperature detector 23 to detect, a fluid transport pump 24 for transporting fluid, and fluid piping connecting these.
  • the fluid pipe is connected to a pipe 12 provided in the heat transfer section 10 of the battery 5.
  • the electric heater 22 is incorporated in the temperature adjustment mechanism 20 and increases the temperature of the fluid flowing in the temperature adjustment mechanism 20 in order to heat the battery cell 1.
  • the fluid transport pump 24 has a function of transporting a fluid necessary for controlling the temperature of the battery cell 1 to the heat transfer unit 10.
  • the temperature detector 25 is provided in the battery cell 1 and detects the temperature of the battery cell 1.
  • the control device 100 determines cooling or heating based on the temperature of the battery cell 1 detected by the temperature detector 25 and outputs a control signal to each of the above-described elements. Specifically, when cooling is required, the control device 100 heats the air-conditioning refrigerant generated in the vehicle air-conditioning system 13 and the fluid flowing in the temperature adjustment mechanism 20 in the cold-fluid generating device 21. The fluid in the temperature control mechanism 20 is cooled by exchanging. Then, the control device 100 supplies the cooled fluid to the heat transfer unit 10 of the battery 5 by the fluid transport pump 24. On the other hand, when the heating is necessary, the control device 100 heats the fluid by the electric heater 22 incorporated in the temperature adjustment mechanism 20 based on the fluid temperature detected by the fluid temperature detector 23. Then, the control device 100 supplies the heated fluid to the heat transfer unit 10 of the battery 5 by the fluid transport pump 24.
  • FIG. 2 is a schematic perspective view showing the configuration of the vehicle driving battery according to the first embodiment.
  • the battery cell 1 is, for example, a substantially flat laminated battery in which a power generation element formed by laminating a positive electrode plate and a negative electrode plate and an electrolytic solution are sealed (laminate pack) in an outer layer material using a laminate film. is there.
  • the electrode terminal 4 is led out from a part of the exterior material of the battery cell 1.
  • the battery cell 1 has a substantially rectangular shape in plan view.
  • a thin welded portion 2 is formed by welding a laminate film as an exterior material.
  • the battery cell 1 has the center part 2a which has a thick plate shape in the center part (main surface direction center part).
  • the center portion 2 a is surrounded by the welded portion 2 in the plan view of the battery cell 1.
  • the surface of the central portion 2 a extends substantially parallel to the main surface of the battery cell 1.
  • the battery cell 1 has the inclined part 3 formed between the welding part 2 and the center part 2a. The surface of the inclined portion 3 is inclined in the thickness direction of the battery cell 1 from the outer peripheral edge of the center portion 2 a to the inner peripheral edge of the welded portion 2.
  • the battery 5 houses a battery pack formed by stacking a plurality of battery cells 1.
  • a plurality of battery cells 1 are stacked so as to be in direct surface contact with the battery cells 1 adjacent to each other in the stacking direction at the center 2a.
  • the battery cells 1 may be stacked so as not to be in direct contact with the battery cells 1 adjacent to each other in the stacking direction according to the required heat dissipation amount.
  • a heat sink may be sandwiched. Note that the heat transfer unit 10 extends along one of the side surfaces of the battery pack parallel to the stacking direction of the battery cells 1.
  • a heat conductive material 7 is sandwiched between the battery cells 1.
  • the shape of the heat conductive material 7 is formed in accordance with the shape of a gap (hereinafter also referred to as a gap or a space) 6 formed between the battery cells 1 adjacent in the stacking direction. That is, the heat conductive material 7 is defined by the welded portion 2 and the inclined portion 3 of the battery cell 1 adjacent to each other in the stacking direction in a cross section parallel to the stacking direction of the battery cell 1 and perpendicular to the main surface of the heat transfer section 10.
  • the shape of the gap 6 is substantially the same.
  • the heat conducting material 7 is in direct surface contact with the welded portion 2 and the inclined portion 3 of each battery cell 1 to increase the heat passage cross-sectional area between the battery cell 1 and the heat transfer portion 10.
  • the heat conducting material 7 is not in contact with the central portion 2 a of the battery cell 1. That is, the heat conductive material 7 is not disposed between the central portions 2 a of the adjacent battery cells 1. For this reason, it is possible to reduce the size of the battery pack while improving the temperature control efficiency.
  • the heat conducting material 7 is provided on the base material 70 formed in a plate shape with an aluminum material having good heat conductivity, a core material 8a formed to project upward from the base material 70, and the surface of the core material 8a. And an adhesive portion 8b.
  • the adhesive portion 8b is heat conductive silicon having thermal conductivity and viscoelasticity coated on the surface of the core material 8a in order to improve adhesion between the battery cell 1 and the heat conductive material 7.
  • this adhesion part 8b is also an insulating material, it also becomes possible to arrange
  • the heat conducting material 7 has a water jacket inside, thereby improving the cooling performance of the heat transfer section 10.
  • this water jacket only the type PT1 provided with a water jacket 7a in which a flow path is formed in the base material 70 and a water jacket 7b in which a flow path is formed in the core 8a, only the water jacket 7a is provided.
  • Type PT2 and the like are conceivable.
  • the configuration of the water jacket can be appropriately set according to the performance, strength, cost, and the like required for the battery 5.
  • FIG. 3 is a characteristic diagram showing the heat transfer performance of Embodiment 1 in comparison with the heat transfer performance of a comparative example.
  • the comparative example is an example in which the heat conducting material 7 is not provided in the heat transfer section 10. The battery cell contracts by about 10% when discharged. For this reason, in the comparative example, an air layer is formed between the discharged battery cell 1 and the heat transfer unit 10. In this case, since heat conduction between the heat transfer section 10 and the battery cell 1 is performed through this air layer, the thermal resistance is also increased.
  • the heat conducting material 7 having the adhesive portion 8b is provided, and the adhesive portion 8b elastically deforms following the contraction of the battery cell 1, whereby the battery cell 1 of the heat conducting material 7 is provided.
  • the surface contact with the inclined portion 3 and the welded portion 2 is maintained.
  • the heat conduction between the battery cell 1 and the heat transfer part 10 is ensured, and the thermal resistance between them is also reduced.
  • the degree of adhesion between the battery cell 1 and the heat transfer unit 10 it is possible to improve the battery performance by about 20% by providing the heat transfer member 7 in the heat transfer unit 10.
  • the adhesion part 8b is comprised with the insulating material, it also becomes possible to install the heat conductive material 7 in the electrode terminal 4 vicinity. Thereby, the heat dissipation effect can be further improved, and the battery performance can be further improved.
  • the following effects can be obtained.
  • Heat conduction arranged along a gap shape between a vehicle driving battery 5 (battery module) in which a plurality of battery cells 1 (batteries) are stacked and a battery peripheral portion formed when the battery cells 1 are stacked.
  • the heat transfer part 10 heat exchange part which heat-exchanges by adhering or integrating
  • the heat conductive material 7 matched with the clearance gap shape of a battery peripheral part was provided, a heat passage cross-sectional area can be enlarged and thermal resistance can be suppressed. Thereby, the heat generated in the battery cell 1 can be transferred to the heat transfer section 10 with high efficiency, and the temperature of the battery cell 1 can be controlled efficiently.
  • the battery cell 1 is a laminate type having a thin welded portion 2 (peripheral portion), a thick central portion 2a, and an inclined portion 3 connecting the welded portion 2 and the central portion 2a. It is a battery cell. And the heat conductive material 7 is arrange
  • the heat conductive material 7 since heat conduction is performed via the inclined portion 3 of the battery cell 1, the heat passage cross-sectional area can be increased. Thereby, thermal resistance can be suppressed and the battery cell 1 can be temperature-controlled efficiently. Moreover, since the heat conductive material 7 is not disposed between the central portions 2a of the adjacent battery cells 1, the temperature control efficiency can be increased without increasing the size of the battery pack.
  • the heat conductive material 7 is integrally formed with the heat transfer unit 10. Therefore, it is not necessary to combine the parts, and the number of parts and the number of assembly steps can be reduced. In addition, this makes it possible to form a flow path inside the core material 8a and further improve the temperature control performance.
  • the adhesion part 8b (elastic layer) which has heat conductivity and viscoelasticity is provided. Therefore, even if the battery cell 1 vibrates, the contact state between the battery cell 1 and the heat conducting material 7 can be ensured, and the thermal conductivity between them can be maintained. Further, even if there is a variation in the end shape of the battery cell 1 (the shape of the welded portion 2, the electrode terminal 4, etc.), the variation is absorbed by the deformation of the adhesive portion 8b, and the battery cell 1 and the heat conducting material 7 are absorbed. Can be secured.
  • FIG. 4 is a schematic view showing the configuration of the battery pack according to the second embodiment of the present invention
  • FIG. 5 is a schematic perspective view showing the configuration of the vehicle driving battery in the second embodiment.
  • a frame body 9 is interposed between a plurality of stacked battery cells 1.
  • the frame bodies 9 are arranged one by one between the battery cells 1 adjacent in the stacking direction, and cover the periphery of the central portion 2a of the battery cell 1 when viewed in the stacking direction.
  • the frame body 9 plays the same role as the heat conductive material 7 of the first embodiment, and is formed of an aluminum material having a good heat conductivity.
  • a core material 8a and an adhesive portion 8b are provided at the inner peripheral edge of each frame body 9.
  • the core material 8a is disposed in the gap 6 formed between the outer peripheral edge portions of the battery cells 1 adjacent in the stacking direction, and the adhesive portion 8b is provided on the inner peripheral side surface of the core material 8a.
  • the frame body 9 is in direct surface contact with the welded portion 2 and the inclined portion 3 on the entire circumference (the entire outer peripheral edge portion) of the battery cell 1 through the core material 8a and the adhesive portion 8b.
  • the frame body 9 is attached in close contact with the heat transfer section 10.
  • heat conduction is enabled over the entire outer peripheral edge of the battery cell 1. Therefore, in the second embodiment, a better heat conduction performance can be obtained as compared with the configuration in which the heat conducting material 7 is provided only on one side of the battery cell 1 as in the first embodiment, and efficient battery temperature control is achieved. Can be achieved.
  • the heat conductive material of Embodiment 2 is the frame 9 formed so that the perimeter of the battery cell 1 may be enclosed. Therefore, compared with the case where a heat conductive material is formed only on one side of the battery cell 1, the heat transfer efficiency can be improved.
  • FIG. 6 is a schematic perspective view showing the configuration of the vehicle drive battery according to the third embodiment of the present invention.
  • the frame body 9 is attached in close contact with the heat transfer section 10, but in the third embodiment, an extension portion 9 a is formed by extending one side of the frame body 9, and this extension portion is formed.
  • a through hole 11 was formed in 9a, and a pipe 12 was passed through the through hole 11 and held.
  • the pipe 12 that has passed through the through hole 11 passes through all the frames 9 arranged in the stacking direction.
  • each through-hole 11 is closely_contact
  • a through-hole 11 (pipe holding portion) that holds a pipe through which fluid flows is formed on one side of the frame body 9. Therefore, heat exchange between the frame 9 and the fluid can be achieved with a simple configuration.
  • FIG. 7 is a schematic perspective view showing a configuration of a battery pack according to Embodiment 4 of the present invention.
  • the through hole 11 is formed in the extending portion 9a and the pipe 12 is passed through the extended portion 9a.
  • a notch 11 ′ (pipe holding portion) is formed instead of the through hole 11. Then, heat conduction is performed by bringing the inner peripheral surface of the notch 11 ′ into close contact with the outer peripheral surface of the pipe 12.
  • the heat conducting material is provided in accordance with the shape of the gap formed in the battery periphery when the batteries are stacked.
  • a heat passage cross-sectional area can be enlarged and thermal resistance can be suppressed, and the heat generated in the battery can be efficiently transmitted to the heat exchanging unit, and the temperature of the battery can be efficiently controlled.
  • Battery cell (battery) 2 Welded part (peripheral part) 2a Center part 3 Inclined part 4 Electrode terminal 5 Vehicle drive battery (battery module) 6 Air gap (space) 7 Thermal Conductive Materials 7a and 7b Water Jacket 8a Core Material 8b Adhesive Portion (Elastic Layer) 9 Frame 9a Extension part 10 Heat transfer part (heat exchange part) 11 Through hole (Pipe holding part) 11 'Notch (Pipe holding part) 12 Pipe 20 Temperature control mechanism 21 Cold fluid generator 22 Electric heater 23 Fluid temperature detector 24 Fluid transport pump 25 Temperature detector 70 Base material

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

This module for adjusting battery temperature is provided with: a battery module (5) having a plurality of batteries (1) laminated therein; a heat conducting material (7), which is disposed conforming to a shape of a gap (6) that is formed when the batteries (1) are laminated, said gap being in a battery peripheral section; and a heat exchanging unit (10), which is adhered to or integrated with the heat conducting material (7), and exchanges heat by circulating a fluid inside thereof.

Description

バッテリ温調用モジュールBattery temperature control module
 本発明は、バッテリの温度を調節可能なバッテリ温調用モジュールに関する。 The present invention relates to a battery temperature control module capable of adjusting the temperature of a battery.
 特開2001-23703号公報は、バッテリセルの間に伝熱板を設け、この伝熱板の下に設けた熱交換部にロウ付けすることで、バッテリの熱を外部へ放出させるバッテリ温調装置を開示している。 Japanese Patent Application Laid-Open No. 2001-23703 discloses a battery temperature control in which a heat transfer plate is provided between battery cells and brazed to a heat exchanging portion provided below the heat transfer plate to release the heat of the battery to the outside. An apparatus is disclosed.
 しかしながら、上記装置にあっては、薄肉の伝熱板を用いて伝熱基板に熱伝導させているため、熱通過断面積が小さいことから熱抵抗が大きく、バッテリセルで発生した熱を効率よく熱交換部へ伝達することができない。 However, in the above apparatus, since the heat transfer substrate is thermally conducted using a thin heat transfer plate, the heat passage cross-sectional area is small, so the thermal resistance is large, and the heat generated in the battery cell is efficiently generated. It cannot be transferred to the heat exchanger.
 本発明は、上記問題に着目してなされたもので、その目的は、効率よく熱交換可能なバッテリ温調用モジュールを提供することである。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a battery temperature control module capable of efficiently exchanging heat.
 本発明の一態様は、複数のバッテリを積層したバッテリモジュールと、熱伝導材と、熱交換部と、を備えたバッテリ温調用モジュールである。熱交換部は、熱伝導材と密着または一体化し、内部に流体を流通させることで熱交換を行う。熱伝導材は、バッテリを積層した際に形成されるバッテリ周辺部の隙間形状に沿って配置されている。 One embodiment of the present invention is a battery temperature adjustment module including a battery module in which a plurality of batteries are stacked, a heat conductive material, and a heat exchange unit. The heat exchanging unit is in close contact with or integrated with the heat conducting material, and performs heat exchange by circulating a fluid inside. The heat conductive material is arranged along the gap shape around the battery formed when the batteries are stacked.
図1は、本発明の実施形態1に係るバッテリ温調用モジュールを備えた車両の温調システムを示すシステム構成図である。FIG. 1 is a system configuration diagram illustrating a vehicle temperature control system including a battery temperature control module according to Embodiment 1 of the present invention. 図2は、実施形態1における車両駆動用電池の構成を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the configuration of the vehicle driving battery in the first embodiment. 図3は、実施形態1の伝熱性能を示す特性図である。FIG. 3 is a characteristic diagram showing the heat transfer performance of the first embodiment. 図4は、本発明の実施形態2に係るバッテリパックの構成を示す概略図である。FIG. 4 is a schematic diagram showing a configuration of a battery pack according to Embodiment 2 of the present invention. 図5は、実施形態2における車両駆動用電池の構成を示す概略斜視図である。FIG. 5 is a schematic perspective view showing the configuration of the vehicle driving battery in the second embodiment. 図6は、本発明の実施形態3に係る車両駆動用電池の構成を示す概略斜視図である。FIG. 6 is a schematic perspective view showing the configuration of the vehicle drive battery according to the third embodiment of the present invention. 図7は、本発明の実施形態4に係るバッテリパックの構成を示す概略斜視図である。FIG. 7 is a schematic perspective view showing a configuration of a battery pack according to Embodiment 4 of the present invention.
<実施形態1> 
 以下、本発明の好適な実施形態を図面に基づいて説明する。図1は、本発明の実施形態1に係るバッテリ温調用モジュールを備えた車両の温調システムを示すシステム構成図である。実施形態1に係る車両は、例えば、バッテリとモータとを駆動源とする電気自動車である。この車両は、車両用空調システム13と、複数のバッテリセル1が収装され駆動源となる車両駆動用電池5と、電池5を温調するのに必要な温調用流体(熱媒体)(以下、単に流体ともいう)を生成する温調機構20とを備える。
<Embodiment 1>
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram illustrating a vehicle temperature control system including a battery temperature control module according to Embodiment 1 of the present invention. The vehicle according to the first embodiment is, for example, an electric vehicle that uses a battery and a motor as drive sources. This vehicle includes a vehicle air-conditioning system 13, a vehicle drive battery 5 that houses a plurality of battery cells 1 and serves as a drive source, and a temperature control fluid (heat medium) (hereinafter referred to as temperature control) that is necessary to control the temperature of the battery 5. And a temperature control mechanism 20 that generates a fluid).
 車両用空調システム13は、コンデンサ14と、冷媒圧縮機15と、コンデンサ14から熱を放出するために必要なファン16と、減圧手段を有する冷媒蒸発器18と、これらを接続する空調用冷媒配管等とから構成されている。流路切替バルブ17は、車両用空調システム13内に組み込まれており、冷流体生成装置21の下流に設けられている。流路切替バルブ17は、コンデンサ14で冷却された空調用冷媒の流れを冷媒蒸発器18もしくは冷流体生成装置21に切り替える。 The vehicle air conditioning system 13 includes a condenser 14, a refrigerant compressor 15, a fan 16 necessary for releasing heat from the condenser 14, a refrigerant evaporator 18 having decompression means, and an air conditioning refrigerant pipe connecting them. Etc. The flow path switching valve 17 is incorporated in the vehicle air conditioning system 13 and is provided downstream of the cold fluid generator 21. The flow path switching valve 17 switches the flow of the air-conditioning refrigerant cooled by the condenser 14 to the refrigerant evaporator 18 or the cold fluid generator 21.
 車両用空調システム13の冷流体生成装置21の下流には、冷媒停止バルブ19が設けられている。冷媒停止バルブ19は、流路切替バルブ17により冷媒蒸発器18に空調用冷媒が流れているときに作動し、冷媒蒸発器18の出口から冷流体生成装置21へ空調用冷媒が逆流するのを防止する。 A refrigerant stop valve 19 is provided downstream of the cold fluid generator 21 of the vehicle air conditioning system 13. The refrigerant stop valve 19 operates when the air conditioning refrigerant is flowing to the refrigerant evaporator 18 by the flow path switching valve 17, and the air conditioning refrigerant flows back from the outlet of the refrigerant evaporator 18 to the cold fluid generator 21. To prevent.
 冷流体生成装置21は、車両用空調システム13及び温調機構20の両方に跨って組み込まれている。車両用空調システム13及び温調機構20は、それぞれ独立した回路であり、車両用空調システム13側には空調用冷媒が流れており、温調機構20側には流体が流れている。冷流体生成装置21内部には、図示しない熱交換器が設けられている。この熱交換器において、コンデンサ14で冷却された空調用冷媒と温調機構20内を流れる流体との間で熱交換が行なわれ、温調機構20内を流れる流体を冷却可能としている。 The cold fluid generator 21 is incorporated across both the vehicle air conditioning system 13 and the temperature control mechanism 20. The vehicle air-conditioning system 13 and the temperature control mechanism 20 are independent circuits, respectively. Air-conditioning refrigerant flows on the vehicle air-conditioning system 13 side, and fluid flows on the temperature control mechanism 20 side. A heat exchanger (not shown) is provided inside the cold fluid generator 21. In this heat exchanger, heat exchange is performed between the air-conditioning refrigerant cooled by the condenser 14 and the fluid flowing in the temperature adjustment mechanism 20, so that the fluid flowing in the temperature adjustment mechanism 20 can be cooled.
 温調機構20は、バッテリセル1を冷却するために必要な冷流体生成装置21と、バッテリセル1を加温するために必要な電気ヒータ22と、温調機構20内を流れる流体の温度を検出する流体温検出器23と、流体を輸送するための流体輸送ポンプ24と、これらを接続する流体配管等とから構成されている。流体配管は、電池5の伝熱部10に設けられた配管12に接続されている。 The temperature adjustment mechanism 20 includes a cold fluid generation device 21 necessary for cooling the battery cell 1, an electric heater 22 necessary for heating the battery cell 1, and the temperature of the fluid flowing in the temperature adjustment mechanism 20. It comprises a fluid temperature detector 23 to detect, a fluid transport pump 24 for transporting fluid, and fluid piping connecting these. The fluid pipe is connected to a pipe 12 provided in the heat transfer section 10 of the battery 5.
 電気ヒータ22は、温調機構20内に組み込まれており、バッテリセル1を加温するために、温調機構20内を流れる流体の温度を上昇させる。流体輸送ポンプ24は、バッテリセル1を温調するために必要な流体を伝熱部10に輸送する機能を有する。温度検出器25は、バッテリセル1に設けられており、バッテリセル1の温度を検出する。 The electric heater 22 is incorporated in the temperature adjustment mechanism 20 and increases the temperature of the fluid flowing in the temperature adjustment mechanism 20 in order to heat the battery cell 1. The fluid transport pump 24 has a function of transporting a fluid necessary for controlling the temperature of the battery cell 1 to the heat transfer unit 10. The temperature detector 25 is provided in the battery cell 1 and detects the temperature of the battery cell 1.
 制御装置100は、温度検出器25により検出されたバッテリセル1の温度に基づいて冷却もしくは加温を判断し、上述の各要素に対して制御信号を出力する。具体的には、冷却が必要な場合、制御装置100は、車両用空調システム13にて生成された空調用冷媒と、温調機構20内に流れる流体とを冷流体生成装置21内にて熱交換させ、温調機構20内の流体を冷却する。そして、制御装置100は、冷やされた流体を流体輸送ポンプ24によって電池5の伝熱部10に供給する。一方、加温が必要な場合、制御装置100は、流体温検出器23にて検出された流体温に基づいて、温調機構20内に組み込まれた電気ヒータ22により流体を加温する。そして、制御装置100は、加温された流体を流体輸送ポンプ24によって電池5の伝熱部10に供給する。 The control device 100 determines cooling or heating based on the temperature of the battery cell 1 detected by the temperature detector 25 and outputs a control signal to each of the above-described elements. Specifically, when cooling is required, the control device 100 heats the air-conditioning refrigerant generated in the vehicle air-conditioning system 13 and the fluid flowing in the temperature adjustment mechanism 20 in the cold-fluid generating device 21. The fluid in the temperature control mechanism 20 is cooled by exchanging. Then, the control device 100 supplies the cooled fluid to the heat transfer unit 10 of the battery 5 by the fluid transport pump 24. On the other hand, when the heating is necessary, the control device 100 heats the fluid by the electric heater 22 incorporated in the temperature adjustment mechanism 20 based on the fluid temperature detected by the fluid temperature detector 23. Then, the control device 100 supplies the heated fluid to the heat transfer unit 10 of the battery 5 by the fluid transport pump 24.
 図2は、実施形態1における車両駆動用電池の構成を示す概略斜視図である。バッテリセル1は、例えば、正極板と負極板を積層して形成された発電要素と電解液とをラミネートフィルムを用いた外層材内に封止(ラミネートパック)した略扁平形状のラミネート型電池である。バッテリセル1の外装材の一部からは、電極端子4が外部に導出されている。バッテリセル1は、平面視において略矩形の形状を呈している。 FIG. 2 is a schematic perspective view showing the configuration of the vehicle driving battery according to the first embodiment. The battery cell 1 is, for example, a substantially flat laminated battery in which a power generation element formed by laminating a positive electrode plate and a negative electrode plate and an electrolytic solution are sealed (laminate pack) in an outer layer material using a laminate film. is there. The electrode terminal 4 is led out from a part of the exterior material of the battery cell 1. The battery cell 1 has a substantially rectangular shape in plan view.
 バッテリセル1の外周縁部(主面方向周縁部)には、外装材であるラミネートフィルムを溶着させた薄肉の溶着部2が形成されている。また、バッテリセル1は、その中央部(主面方向中央部)に、厚肉の板状形状を有する中心部2aを有する。中心部2aは、バッテリセル1の平面視において、溶着部2によって周囲を囲まれている。中心部2aの表面は、バッテリセル1の主面と略平行に延在している。さらに、バッテリセル1は、溶着部2と中心部2aとの間に形成された傾斜部3を有する。傾斜部3の表面は、中心部2aの外周縁から溶着部2の内周縁にかけてバッテリセル1の厚さ方向に傾斜している。 At the outer peripheral edge (peripheral peripheral edge in the main surface direction) of the battery cell 1, a thin welded portion 2 is formed by welding a laminate film as an exterior material. Moreover, the battery cell 1 has the center part 2a which has a thick plate shape in the center part (main surface direction center part). The center portion 2 a is surrounded by the welded portion 2 in the plan view of the battery cell 1. The surface of the central portion 2 a extends substantially parallel to the main surface of the battery cell 1. Furthermore, the battery cell 1 has the inclined part 3 formed between the welding part 2 and the center part 2a. The surface of the inclined portion 3 is inclined in the thickness direction of the battery cell 1 from the outer peripheral edge of the center portion 2 a to the inner peripheral edge of the welded portion 2.
 電池5には、バッテリセル1を複数積層して形成したバッテリパックが収装されている。このバッテリパックでは、複数のバッテリセル1が、各々、その中心部2aにおいて、積層方向に隣り合うバッテリセル1と直接面接触するように積層されている。これにより、電池のエネルギー密度の向上を図ることができる。なお、バッテリセル1は、要求される放熱量に応じて、積層方向に隣り合うバッテリセル1と互いに直接接触しないように積層されてもよく、また、適宜、バッテリセル1の間に板状のヒートシンクを挟み込むようにしてもよい。なお、伝熱部10は、バッテリパックの側面のうちバッテリセル1の積層方向に平行な側面の一つに沿って延在している。 The battery 5 houses a battery pack formed by stacking a plurality of battery cells 1. In this battery pack, a plurality of battery cells 1 are stacked so as to be in direct surface contact with the battery cells 1 adjacent to each other in the stacking direction at the center 2a. Thereby, the energy density of a battery can be improved. The battery cells 1 may be stacked so as not to be in direct contact with the battery cells 1 adjacent to each other in the stacking direction according to the required heat dissipation amount. A heat sink may be sandwiched. Note that the heat transfer unit 10 extends along one of the side surfaces of the battery pack parallel to the stacking direction of the battery cells 1.
 各バッテリセル1の間には、熱伝導材7が挟み込まれている。熱伝導材7の形状は、積層方向に隣り合うバッテリセル1の間に形成される空隙(以下、隙間または空間ともいう)6の形状に合わせて成形されている。すなわち、熱伝導材7は、バッテリセル1の積層方向に平行かつ伝熱部10の主面に垂直な断面において、積層方向に隣り合うバッテリセル1の溶着部2と傾斜部3とによって画成される空隙6の形状と略同一の形状を呈する。そして、熱伝導材7は、各バッテリセル1の溶着部2及び傾斜部3に直接面接触して、バッテリセル1と伝熱部10との間の熱通過断面積を大きくしている。なお、実施形態1では、熱伝導材7は、バッテリセル1の中心部2aには当接していない。すなわち、熱伝導材7は、隣り合うバッテリセル1の中心部2aの間には配置されていない。このため、バッテリパックの温調効率を高めつつその小型化を図ることができる。 A heat conductive material 7 is sandwiched between the battery cells 1. The shape of the heat conductive material 7 is formed in accordance with the shape of a gap (hereinafter also referred to as a gap or a space) 6 formed between the battery cells 1 adjacent in the stacking direction. That is, the heat conductive material 7 is defined by the welded portion 2 and the inclined portion 3 of the battery cell 1 adjacent to each other in the stacking direction in a cross section parallel to the stacking direction of the battery cell 1 and perpendicular to the main surface of the heat transfer section 10. The shape of the gap 6 is substantially the same. The heat conducting material 7 is in direct surface contact with the welded portion 2 and the inclined portion 3 of each battery cell 1 to increase the heat passage cross-sectional area between the battery cell 1 and the heat transfer portion 10. In the first embodiment, the heat conducting material 7 is not in contact with the central portion 2 a of the battery cell 1. That is, the heat conductive material 7 is not disposed between the central portions 2 a of the adjacent battery cells 1. For this reason, it is possible to reduce the size of the battery pack while improving the temperature control efficiency.
 熱伝導材7は、熱伝導性の良好なアルミ材料等で板状に形成された基材70と、基材70から上方に突出形成された芯材8aと、芯材8aの表面上に設けられた粘着部8bとを有する。粘着部8bは、バッテリセル1と熱伝導材7との密着性を向上させるために、芯材8aの表面にコーティングされた、熱伝導性及び粘弾性を有する熱伝導性シリコン等である。なお、この粘着部8bは、絶縁材でもあるため、熱伝導材7を電極端子4に近接させて配置することも可能になる。これにより、バッテリセル1と伝熱部10との間の熱通過断面積をさらに大きくして、放熱効果を一層向上させることができる。 The heat conducting material 7 is provided on the base material 70 formed in a plate shape with an aluminum material having good heat conductivity, a core material 8a formed to project upward from the base material 70, and the surface of the core material 8a. And an adhesive portion 8b. The adhesive portion 8b is heat conductive silicon having thermal conductivity and viscoelasticity coated on the surface of the core material 8a in order to improve adhesion between the battery cell 1 and the heat conductive material 7. In addition, since this adhesion part 8b is also an insulating material, it also becomes possible to arrange | position the heat conductive material 7 close to the electrode terminal 4. FIG. Thereby, the heat passage cross-sectional area between the battery cell 1 and the heat transfer part 10 can be further increased, and the heat dissipation effect can be further improved.
 熱伝導材7は、内部にウォータージャケットを有し、これにより伝熱部10の冷却性能を向上させている。このウォータージャケットの構成としては、基材70内に流路を形成したウォータージャケット7aと、芯材8aの内部に流路を形成したウォータージャケット7bとを備えたタイプPT1、ウォータージャケット7aのみを備えたタイプPT2等が考えられる。ウォータージャケットの構成は、電池5に要求される性能、強度及びコスト等に応じて適宜設定可能である。 The heat conducting material 7 has a water jacket inside, thereby improving the cooling performance of the heat transfer section 10. As the structure of this water jacket, only the type PT1 provided with a water jacket 7a in which a flow path is formed in the base material 70 and a water jacket 7b in which a flow path is formed in the core 8a, only the water jacket 7a is provided. Type PT2 and the like are conceivable. The configuration of the water jacket can be appropriately set according to the performance, strength, cost, and the like required for the battery 5.
 図3は、実施形態1の伝熱性能を比較例の伝熱性能と比較して示す特性図である。ここで比較例とは、伝熱部10に上記熱伝導材7を設けていない例である。バッテリセルは、放電時に10%程度収縮する。このため、比較例では、放電後のバッテリセル1と伝熱部10との間に空気層が形成される。この場合、伝熱部10とバッテリセル1との間の熱伝導は、この空気層を介して行なわるため、熱抵抗も高くなる。一方、実施形態1では、粘着部8bを有する熱伝導材7が設けられており、この粘着部8bがバッテリセル1の収縮に追従して弾性変形することで、熱伝導材7のバッテリセル1(特に、傾斜部3及び溶着部2)との面接触を維持する。これにより、バッテリセル1と伝熱部10との間の熱伝導が確保され、それらの間の熱抵抗も小さくなる。このバッテリセル1と伝熱部10との間の密着度の関係を考慮すると、伝熱部10に熱伝導材7を設けたことで、20%程度、電池の性能向上を図ることが可能となる。また、粘着部8bは絶縁材で構成されていることから、電極端子4付近に熱伝導材7を設置することも可能になる。これにより、放熱効果をさらに向上させることができ、電池の性能の更なる向上を図ることが可能になる。 FIG. 3 is a characteristic diagram showing the heat transfer performance of Embodiment 1 in comparison with the heat transfer performance of a comparative example. Here, the comparative example is an example in which the heat conducting material 7 is not provided in the heat transfer section 10. The battery cell contracts by about 10% when discharged. For this reason, in the comparative example, an air layer is formed between the discharged battery cell 1 and the heat transfer unit 10. In this case, since heat conduction between the heat transfer section 10 and the battery cell 1 is performed through this air layer, the thermal resistance is also increased. On the other hand, in the first embodiment, the heat conducting material 7 having the adhesive portion 8b is provided, and the adhesive portion 8b elastically deforms following the contraction of the battery cell 1, whereby the battery cell 1 of the heat conducting material 7 is provided. In particular, the surface contact with the inclined portion 3 and the welded portion 2 is maintained. Thereby, the heat conduction between the battery cell 1 and the heat transfer part 10 is ensured, and the thermal resistance between them is also reduced. Considering the relationship of the degree of adhesion between the battery cell 1 and the heat transfer unit 10, it is possible to improve the battery performance by about 20% by providing the heat transfer member 7 in the heat transfer unit 10. Become. Moreover, since the adhesion part 8b is comprised with the insulating material, it also becomes possible to install the heat conductive material 7 in the electrode terminal 4 vicinity. Thereby, the heat dissipation effect can be further improved, and the battery performance can be further improved.
 実施形態1にあっては、下記の作用効果が得られる。
(1)複数のバッテリセル1(バッテリ)を積層した車両駆動用電池5(バッテリモジュール)と、バッテリセル1を積層した際に形成されるバッテリ周辺部の隙間形状に沿って配置された熱伝導材7と、熱伝導材7と密着または一体化し、内部に流体を流通させることで熱交換を行う伝熱部10(熱交換部)と、を備えた。
 このように、実施形態1では、バッテリ周辺部の隙間形状に合わせた熱伝導材7を設けたため、熱通過断面積を大きくして熱抵抗を抑えることができる。これにより、バッテリセル1において発生した熱を高効率で伝熱部10に伝達することができ、効率よくバッテリセル1を温調することができる。
In the first embodiment, the following effects can be obtained.
(1) Heat conduction arranged along a gap shape between a vehicle driving battery 5 (battery module) in which a plurality of battery cells 1 (batteries) are stacked and a battery peripheral portion formed when the battery cells 1 are stacked. The heat transfer part 10 (heat exchange part) which heat-exchanges by adhering or integrating | stacking the material 7 and the heat conductive material 7, and distribute | circulating a fluid inside was provided.
Thus, in Embodiment 1, since the heat conductive material 7 matched with the clearance gap shape of a battery peripheral part was provided, a heat passage cross-sectional area can be enlarged and thermal resistance can be suppressed. Thereby, the heat generated in the battery cell 1 can be transferred to the heat transfer section 10 with high efficiency, and the temperature of the battery cell 1 can be controlled efficiently.
(2)また、バッテリセル1は、薄肉の溶着部2(周縁部)と、厚肉の中心部2aと、溶着部2と中心部2aとを接続する傾斜部3と、を有するラミネート型のバッテリセルである。そして、熱伝導材7は、バッテリセル1を積層した際に溶着部2と傾斜部3との間に形成される空隙6(空間)内において、傾斜部3に接するように配置される。
 このように、実施形態1では、バッテリセル1の傾斜部3を介して熱伝導させるため、熱通過断面積を大きくすることができる。これにより、熱抵抗を抑えて、効率よくバッテリセル1を温調することができる。また、隣り合うバッテリセル1の中心部2a間には、熱伝導材7を配置していないため、バッテリパックを大型化することなく、温調効率を高めることができる。
(2) Further, the battery cell 1 is a laminate type having a thin welded portion 2 (peripheral portion), a thick central portion 2a, and an inclined portion 3 connecting the welded portion 2 and the central portion 2a. It is a battery cell. And the heat conductive material 7 is arrange | positioned so that the inclination part 3 may be contact | connected in the space | gap 6 (space) formed between the welding part 2 and the inclination part 3 when the battery cell 1 is laminated | stacked.
Thus, in Embodiment 1, since heat conduction is performed via the inclined portion 3 of the battery cell 1, the heat passage cross-sectional area can be increased. Thereby, thermal resistance can be suppressed and the battery cell 1 can be temperature-controlled efficiently. Moreover, since the heat conductive material 7 is not disposed between the central portions 2a of the adjacent battery cells 1, the temperature control efficiency can be increased without increasing the size of the battery pack.
(3)さらに、実施形態1では、熱伝導材7が、伝熱部10と一体成形されている。従って、各部品を組み合わせる必要がなく、部品点数の削減及び組み立て工数の低減を図ることができる。また、これにより芯材8a内部にも流路を形成することができ、さらに温調性能の向上を図ることができる。 (3) Furthermore, in Embodiment 1, the heat conductive material 7 is integrally formed with the heat transfer unit 10. Therefore, it is not necessary to combine the parts, and the number of parts and the number of assembly steps can be reduced. In addition, this makes it possible to form a flow path inside the core material 8a and further improve the temperature control performance.
(4)また、バッテリセル1と熱伝導材7との間に、熱伝導性及び粘弾性を有する粘着部8b(弾性層)が設けられている。従って、バッテリセル1が振動したとしても、バッテリセル1と熱伝導材7との間の密着状態を確保して、それらの間の熱伝導性を維持することができる。また、バッテリセル1の端部形状(溶着部2、電極端子4等の形状)にばらつきがあったとしても、それらばらつきを粘着部8bの変形により吸収して、バッテリセル1と熱伝導材7との間の密着性を確保できる。 (4) Moreover, between the battery cell 1 and the heat conductive material 7, the adhesion part 8b (elastic layer) which has heat conductivity and viscoelasticity is provided. Therefore, even if the battery cell 1 vibrates, the contact state between the battery cell 1 and the heat conducting material 7 can be ensured, and the thermal conductivity between them can be maintained. Further, even if there is a variation in the end shape of the battery cell 1 (the shape of the welded portion 2, the electrode terminal 4, etc.), the variation is absorbed by the deformation of the adhesive portion 8b, and the battery cell 1 and the heat conducting material 7 are absorbed. Can be secured.
<実施形態2>
 次に、実施形態2について説明する。基本的な構成は実施形態1と同じであるため、異なる点についてのみ説明する。図4は、本発明の実施形態2に係るバッテリパックの構成を示す概略図であり、図5は、実施形態2における車両駆動用電池の構成を示す概略斜視図である。
<Embodiment 2>
Next, Embodiment 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 4 is a schematic view showing the configuration of the battery pack according to the second embodiment of the present invention, and FIG. 5 is a schematic perspective view showing the configuration of the vehicle driving battery in the second embodiment.
 実施形態2のバッテリパックでは、積層された複数のバッテリセル1の間に枠体9が介装されている。枠体9は、積層方向に隣り合うバッテリセル1の間に一枚ずつ配置され、積層方向視においてバッテリセル1の中心部2aの周囲を覆っている。枠体9は、実施形態1の熱伝導材7と同様の役割を果たすものであり、熱伝導性の良好なアルミ材料等で形成されている。各枠体9の内周縁部には、芯材8aと粘着部8bとが設けられている。芯材8aは、積層方向に隣り合うバッテリセル1の外周縁部の間に形成された空隙6内に配置され、粘着部8bは、芯材8aの内周側面上に設けられている。すなわち、枠体9は、芯材8a及び粘着部8bを介して、バッテリセル1の全周(外周縁部全体)における溶着部2及び傾斜部3と直接面接触している。一方、枠体9は、伝熱部10と密着して取り付けられている。これにより、バッテリセル1の外周縁部全体に亘って熱伝導を可能としている。従って、実施形態2では、実施形態1のようにバッテリセル1の一辺のみに熱伝導材7を設けた構成に比べてさらに良好な熱伝導性能を得ることができ、効率的なバッテリ温調を達成することができる。 In the battery pack of the second embodiment, a frame body 9 is interposed between a plurality of stacked battery cells 1. The frame bodies 9 are arranged one by one between the battery cells 1 adjacent in the stacking direction, and cover the periphery of the central portion 2a of the battery cell 1 when viewed in the stacking direction. The frame body 9 plays the same role as the heat conductive material 7 of the first embodiment, and is formed of an aluminum material having a good heat conductivity. A core material 8a and an adhesive portion 8b are provided at the inner peripheral edge of each frame body 9. The core material 8a is disposed in the gap 6 formed between the outer peripheral edge portions of the battery cells 1 adjacent in the stacking direction, and the adhesive portion 8b is provided on the inner peripheral side surface of the core material 8a. That is, the frame body 9 is in direct surface contact with the welded portion 2 and the inclined portion 3 on the entire circumference (the entire outer peripheral edge portion) of the battery cell 1 through the core material 8a and the adhesive portion 8b. On the other hand, the frame body 9 is attached in close contact with the heat transfer section 10. Thereby, heat conduction is enabled over the entire outer peripheral edge of the battery cell 1. Therefore, in the second embodiment, a better heat conduction performance can be obtained as compared with the configuration in which the heat conducting material 7 is provided only on one side of the battery cell 1 as in the first embodiment, and efficient battery temperature control is achieved. Can be achieved.
 実施形態2にあっては、下記の作用効果が得られる。
(5)実施形態2の熱伝導材は、バッテリセル1の全周を囲むように形成された枠体9である。よって、バッテリセル1の一辺のみに熱伝導材を形成した場合に比べ、熱伝導効率を向上させることができる。
In the second embodiment, the following effects can be obtained.
(5) The heat conductive material of Embodiment 2 is the frame 9 formed so that the perimeter of the battery cell 1 may be enclosed. Therefore, compared with the case where a heat conductive material is formed only on one side of the battery cell 1, the heat transfer efficiency can be improved.
<実施形態3>
 次に、実施形態3について説明する。基本的な構成は実施形態2と同様であるため、異なる点についてのみ説明する。図6は、本発明の実施形態3に係る車両駆動用電池の構成を示す概略斜視図である。実施形態2では、枠体9を伝熱部10と密着させて取り付けたが、実施形態3では、枠体9の一辺を外側へ延在させた延在部9aを形成し、この延在部9aに貫通孔11を形成し、この貫通孔11に配管12を貫通させて保持させた。貫通孔11に通した配管12は、積層方向に並んだ全ての枠体9を貫通する。また、各貫通孔11の内周面は、配管12の外周面と熱伝導可能に密着している。これにより、実施形態2のように伝熱部10を別途構成することなく、簡易な構成で枠体9と流体との間の熱交換を達成できる。
<Embodiment 3>
Next, Embodiment 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described. FIG. 6 is a schematic perspective view showing the configuration of the vehicle drive battery according to the third embodiment of the present invention. In the second embodiment, the frame body 9 is attached in close contact with the heat transfer section 10, but in the third embodiment, an extension portion 9 a is formed by extending one side of the frame body 9, and this extension portion is formed. A through hole 11 was formed in 9a, and a pipe 12 was passed through the through hole 11 and held. The pipe 12 that has passed through the through hole 11 passes through all the frames 9 arranged in the stacking direction. Moreover, the inner peripheral surface of each through-hole 11 is closely_contact | adhered with the outer peripheral surface of the piping 12 so that heat conduction is possible. Thereby, the heat exchange between the frame 9 and the fluid can be achieved with a simple configuration without separately configuring the heat transfer section 10 as in the second embodiment.
 実施形態3にあっては、下記の作用効果が得られる。
(6)枠体9の一辺に、流体を流通させる配管を保持する貫通孔11(配管保持部)を形成した。よって、簡易な構成で枠体9と流体との間の熱交換を達成できる。
In the third embodiment, the following effects can be obtained.
(6) A through-hole 11 (pipe holding portion) that holds a pipe through which fluid flows is formed on one side of the frame body 9. Therefore, heat exchange between the frame 9 and the fluid can be achieved with a simple configuration.
<実施形態4>
 次に、実施形態4について説明する。基本的な構成は実施形態3と同様であるため、異なる点についてのみ説明する。図7は、本発明の実施形態4に係るバッテリパックの構成を示す概略斜視図である。実施形態3では、延在部9aに貫通孔11を形成し、これに配管12を通す構成としたが、実施形態4では、貫通孔11に代えて切り欠き11'(配管保持部)を形成し、切り欠き11'の内周面と配管12の外周面とを密着させることで熱伝導を行う。これにより、実施形態2のように伝熱部10を別途構成することなく、簡易な構成で枠体9と冷媒との間の熱交換を達成できる。
<Embodiment 4>
Next, Embodiment 4 will be described. Since the basic configuration is the same as that of the third embodiment, only different points will be described. FIG. 7 is a schematic perspective view showing a configuration of a battery pack according to Embodiment 4 of the present invention. In the third embodiment, the through hole 11 is formed in the extending portion 9a and the pipe 12 is passed through the extended portion 9a. However, in the fourth embodiment, a notch 11 ′ (pipe holding portion) is formed instead of the through hole 11. Then, heat conduction is performed by bringing the inner peripheral surface of the notch 11 ′ into close contact with the outer peripheral surface of the pipe 12. Thus, heat exchange between the frame body 9 and the refrigerant can be achieved with a simple configuration without separately configuring the heat transfer unit 10 as in the second embodiment.
 以上、本発明の実施形態について説明したが、これらの実施形態は本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。例えば、上記実施形態では、主としてバッテリセル1の冷却する場合を説明したが、本発明は加温する場合であっても同様に適用可能である。また、上記実施形態ではラミネート型のバッテリセルを例に挙げて説明したが、本発明は、他の形状もしくはタイプのバッテリセルを複数積み重ねた構成に対しても適用可能である。 As mentioned above, although embodiment of this invention was described, these embodiment is only the mere illustration described in order to make an understanding of this invention easy, and this invention is not limited to the said embodiment. The technical scope of the present invention is not limited to the specific technical matters disclosed in the above embodiment, but includes various modifications, changes, alternative techniques, and the like that can be easily derived therefrom. For example, although the case where the battery cell 1 is mainly cooled has been described in the above embodiment, the present invention can be similarly applied even when the battery cell 1 is heated. Moreover, although the laminate type battery cell has been described as an example in the above embodiment, the present invention can be applied to a configuration in which a plurality of battery cells of other shapes or types are stacked.
 本出願は、2011年8月31日に出願された日本国特許願第2011-188122号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2011-188122 filed on August 31, 2011, the entire contents of which are incorporated herein by reference.
 本発明に係るバッテリ温調用モジュールによれば、バッテリを積層した際にバッテリ周辺部に形成される隙間形状に合わせた熱伝導材を設けた。これにより、熱通過断面積を大きくして熱抵抗を抑制することができ、バッテリにおいて発生した熱を効率よく熱交換部に伝達して、効率よくバッテリを温調することができる。 According to the battery temperature control module according to the present invention, the heat conducting material is provided in accordance with the shape of the gap formed in the battery periphery when the batteries are stacked. Thereby, a heat passage cross-sectional area can be enlarged and thermal resistance can be suppressed, and the heat generated in the battery can be efficiently transmitted to the heat exchanging unit, and the temperature of the battery can be efficiently controlled.
1   バッテリセル(バッテリ)
2   溶着部(周縁部)
2a  中心部
3   傾斜部
4   電極端子
5   車両駆動用電池(バッテリモジュール)
6   空隙(空間)
7   熱伝導材
7a,7b  ウォータージャケット
8a  芯材
8b  粘着部(弾性層)
9   枠体
9a  延在部
10  伝熱部(熱交換部)
11  貫通孔(配管保持部)
11’ 切り欠き(配管保持部)
12  配管
20  温調機構
21  冷流体生成装置
22  電気ヒータ
23  流体温検出器
24  流体輸送ポンプ
25  温度検出器
70  基材
1 Battery cell (battery)
2 Welded part (peripheral part)
2a Center part 3 Inclined part 4 Electrode terminal 5 Vehicle drive battery (battery module)
6 Air gap (space)
7 Thermal Conductive Materials 7a and 7b Water Jacket 8a Core Material 8b Adhesive Portion (Elastic Layer)
9 Frame 9a Extension part 10 Heat transfer part (heat exchange part)
11 Through hole (Pipe holding part)
11 'Notch (Pipe holding part)
12 Pipe 20 Temperature control mechanism 21 Cold fluid generator 22 Electric heater 23 Fluid temperature detector 24 Fluid transport pump 25 Temperature detector 70 Base material

Claims (6)

  1.  複数のバッテリを積層したバッテリモジュールと、
     前記バッテリを積層した際に形成されるバッテリ周辺部の隙間形状に沿って配置された熱伝導材と、
     前記熱伝導材と密着または一体化し、内部に流体を流通させることで熱交換を行う熱交換部と、
     を備えたことを特徴とするバッテリ温調用モジュール。
    A battery module in which a plurality of batteries are stacked;
    A heat conductive material arranged along the gap shape of the battery periphery formed when the battery is stacked; and
    A heat exchanging part that is in close contact with or integrated with the heat conducting material and exchanges heat by circulating a fluid inside;
    A battery temperature control module comprising:
  2.  前記バッテリは、薄肉の周縁部と、厚肉の中心部と、前記周縁部と前記中心部とを接続する傾斜部と、を有するラミネート型のバッテリセルであり、
     前記熱伝導材は、前記バッテリセルを積層した際に前記周縁部と前記傾斜部との間に形成される空間内において、前記傾斜部に接するように配置されることを特徴とする請求項1に記載のバッテリ温調用モジュール。
    The battery is a laminated battery cell having a thin peripheral portion, a thick central portion, and an inclined portion connecting the peripheral portion and the central portion,
    2. The heat conducting material is disposed so as to contact the inclined portion in a space formed between the peripheral edge portion and the inclined portion when the battery cells are stacked. Module for battery temperature control as described in 1.
  3.  前記熱伝導材は、前記熱交換部と一体成形されていることを特徴とする請求項1又は2に記載のバッテリ温調用モジュール。 The battery temperature control module according to claim 1 or 2, wherein the heat conducting material is integrally formed with the heat exchange part.
  4.  前記バッテリと前記熱伝導材との間に、熱伝導性及び粘弾性を有する弾性層を有することを特徴とする請求項1乃至3のいずれか一項に記載のバッテリ温調用モジュール。 4. The battery temperature adjustment module according to claim 1, further comprising an elastic layer having thermal conductivity and viscoelasticity between the battery and the heat conducting material. 5.
  5.  前記熱伝導材は、前記バッテリの全周を囲むように形成された枠体であることを特徴とする請求項1乃至4のいずれか一項に記載のバッテリ温調用モジュール。 5. The battery temperature adjustment module according to claim 1, wherein the heat conducting material is a frame formed so as to surround the entire circumference of the battery.
  6.  前記枠体の一辺に、前記流体を流通させる配管を保持する配管保持部を形成したことを特徴とする請求項5に記載のバッテリ温調用モジュール。 6. The battery temperature control module according to claim 5, wherein a pipe holding part for holding a pipe for circulating the fluid is formed on one side of the frame.
PCT/JP2012/068210 2011-08-31 2012-07-18 Module for adjusting battery temperature WO2013031406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011188122A JP2013051099A (en) 2011-08-31 2011-08-31 Module for battery temperature control
JP2011-188122 2011-08-31

Publications (1)

Publication Number Publication Date
WO2013031406A1 true WO2013031406A1 (en) 2013-03-07

Family

ID=47755913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068210 WO2013031406A1 (en) 2011-08-31 2012-07-18 Module for adjusting battery temperature

Country Status (2)

Country Link
JP (1) JP2013051099A (en)
WO (1) WO2013031406A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106953136A (en) * 2016-01-07 2017-07-14 通用汽车环球科技运作有限责任公司 The thermal interfacial material of cured in place
JP2018022688A (en) * 2016-08-01 2018-02-08 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft Battery module and battery
EP3373358A4 (en) * 2015-12-18 2019-08-21 LG Chem, Ltd. Battery pack
US10490868B2 (en) 2016-01-06 2019-11-26 Lg Chem, Ltd. Battery pack comprising member of edge cooling type
IT201800009787A1 (en) * 2018-10-25 2020-04-25 Italdesign-Giugiaro SPA System for cooling removable battery modules in an electric or hybrid drive vehicle.
CN112103424A (en) * 2019-06-17 2020-12-18 株式会社Lg化学 Battery module, battery pack including the battery module, and energy storage system including the battery pack
CN113206313A (en) * 2021-03-24 2021-08-03 浙江合众新能源汽车有限公司 Battery structure for inhibiting thermal runaway spreading of battery pack
US20210288360A1 (en) * 2018-03-30 2021-09-16 Sk Innovation Co., Ltd. Pouch case, and secondary battery and secondary battery pack using the same
RU2785964C2 (en) * 2018-10-25 2022-12-15 Италдесигн-Гиугиаро С.П.A. Electric or hybrid automobile vehicle with a cooling system for cooling removable battery modules
EP3364495B1 (en) * 2016-02-16 2023-10-18 LG Energy Solution, Ltd. Battery system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954258B2 (en) * 2013-05-24 2016-07-20 株式会社デンソー Battery pack and manufacturing method thereof
EP3125357B1 (en) * 2014-03-26 2018-11-28 Honda Motor Co., Ltd. Electrically driven vehicle
JP6373103B2 (en) * 2014-07-18 2018-08-15 カルソニックカンセイ株式会社 Power storage device
US10199695B2 (en) 2014-08-18 2019-02-05 Johnson Controls Technology Company Battery module with restrained battery cells utilizing a heat exchanger
KR101865995B1 (en) * 2015-03-27 2018-06-08 주식회사 엘지화학 Battery module
KR101960922B1 (en) * 2015-08-21 2019-03-21 주식회사 엘지화학 Battery module
KR102065102B1 (en) 2015-09-02 2020-01-10 주식회사 엘지화학 A battery module having an improved cooling structure
KR102051109B1 (en) * 2015-10-08 2019-12-02 주식회사 엘지화학 Battery Module
US9865906B2 (en) * 2016-04-15 2018-01-09 Lg Chem, Ltd. Battery system and method of assembling the battery system
KR102067713B1 (en) 2016-05-31 2020-01-17 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR102051108B1 (en) * 2016-06-13 2019-12-02 주식회사 엘지화학 Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
KR102119183B1 (en) 2016-08-18 2020-06-04 주식회사 엘지화학 Battery module
KR102120118B1 (en) * 2016-08-18 2020-06-08 주식회사 엘지화학 Battery module
US10581125B2 (en) 2016-11-02 2020-03-03 Lg Chem, Ltd. Battery system having a metallic end plate with thermally conductive adhesive portions thereon
KR102155330B1 (en) * 2016-11-29 2020-09-11 주식회사 엘지화학 Air cooling type secondary battery module
KR102410517B1 (en) * 2017-08-11 2022-06-20 현대자동차주식회사 Battery module
JP2019109968A (en) 2017-12-15 2019-07-04 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
DE112020000727T5 (en) * 2019-02-07 2022-01-05 Shin-Etsu Polymer Co., Ltd. Heat dissipation structure and battery provided with it
CN114207911A (en) 2019-08-03 2022-03-18 三洋电机株式会社 Power supply device, electric vehicle provided with same, and power storage device
KR20220014575A (en) 2020-07-29 2022-02-07 주식회사 엘지에너지솔루션 Battery pack and method of manufacturing the same
KR20220025413A (en) * 2020-08-24 2022-03-03 주식회사 엘지에너지솔루션 Battery module and battery pack including the same
JP7272518B1 (en) * 2021-06-29 2023-05-12 大日本印刷株式会社 Energy storage device, heat transfer material, package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111370A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Thermal control apparatus of battery
JP2008159440A (en) * 2006-12-25 2008-07-10 Calsonic Kansei Corp Vehicular battery cooling system
JP2009009889A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle
JP2009277561A (en) * 2008-05-16 2009-11-26 Nec Tokin Corp Battery pack
WO2010114317A2 (en) * 2009-04-01 2010-10-07 주식회사 엘지화학 Battery module having excellent radiation property and medium to large sized battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111370A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Thermal control apparatus of battery
JP2008159440A (en) * 2006-12-25 2008-07-10 Calsonic Kansei Corp Vehicular battery cooling system
JP2009009889A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Power source device for vehicle
JP2009277561A (en) * 2008-05-16 2009-11-26 Nec Tokin Corp Battery pack
WO2010114317A2 (en) * 2009-04-01 2010-10-07 주식회사 엘지화학 Battery module having excellent radiation property and medium to large sized battery pack

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3373358A4 (en) * 2015-12-18 2019-08-21 LG Chem, Ltd. Battery pack
US10490868B2 (en) 2016-01-06 2019-11-26 Lg Chem, Ltd. Battery pack comprising member of edge cooling type
CN106953136B (en) * 2016-01-07 2019-08-27 通用汽车环球科技运作有限责任公司 The thermal interfacial material of cured in place
CN106953136A (en) * 2016-01-07 2017-07-14 通用汽车环球科技运作有限责任公司 The thermal interfacial material of cured in place
EP3364495B1 (en) * 2016-02-16 2023-10-18 LG Energy Solution, Ltd. Battery system
JP2018022688A (en) * 2016-08-01 2018-02-08 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c.F. Porsche Aktiengesellschaft Battery module and battery
US20210288360A1 (en) * 2018-03-30 2021-09-16 Sk Innovation Co., Ltd. Pouch case, and secondary battery and secondary battery pack using the same
US11658358B2 (en) * 2018-03-30 2023-05-23 Sk On Co., Ltd. Pouch case, and secondary battery and secondary battery pack using the same
RU2785964C2 (en) * 2018-10-25 2022-12-15 Италдесигн-Гиугиаро С.П.A. Electric or hybrid automobile vehicle with a cooling system for cooling removable battery modules
WO2020084363A1 (en) * 2018-10-25 2020-04-30 Italdesign-Giugiaro S.P.A. Electric or hybrid motor-vehicle with cooling system for cooling removable battery modules
IT201800009787A1 (en) * 2018-10-25 2020-04-25 Italdesign-Giugiaro SPA System for cooling removable battery modules in an electric or hybrid drive vehicle.
US11961982B2 (en) 2018-10-25 2024-04-16 Italdesign-Giugiaro S.P.A. Electric or hybrid motor-vehicle with cooling system for cooling removable battery modules
JP2022510652A (en) * 2019-06-17 2022-01-27 エルジー エナジー ソリューション リミテッド Battery modules and battery packs and power storage devices including base plates with gas outlets
JP7170872B2 (en) 2019-06-17 2022-11-14 エルジー エナジー ソリューション リミテッド Battery modules and battery packs including baseplates with gas exhaust channels and power storage devices
CN112103424A (en) * 2019-06-17 2020-12-18 株式会社Lg化学 Battery module, battery pack including the battery module, and energy storage system including the battery pack
CN112103424B (en) * 2019-06-17 2023-04-07 株式会社Lg新能源 Battery module, battery pack including the battery module, and energy storage system including the battery pack
CN113206313A (en) * 2021-03-24 2021-08-03 浙江合众新能源汽车有限公司 Battery structure for inhibiting thermal runaway spreading of battery pack

Also Published As

Publication number Publication date
JP2013051099A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2013031406A1 (en) Module for adjusting battery temperature
US9806389B2 (en) Heat exchanger, particularly for a motor vehicle
JP5462711B2 (en) Battery module
JP6953145B2 (en) Heat exchange laminate sheet
US8968906B2 (en) Compact battery cooling design
JP5659554B2 (en) Battery pack
JP4725164B2 (en) Heat storage device
US20140050465A1 (en) Heat medium heating device and vehicular air-conditioning device including the same
JP2013159135A (en) Heat medium heating device, and vehicular air conditioner including the same
US20140037277A1 (en) Heat medium heating device and vehicular air-conditioning device including the same
JP2012196985A (en) Heater for heat medium and air conditioner for vehicle with the same
JP6373103B2 (en) Power storage device
CN211017316U (en) Plate-type heat exchanger and heat treatment system
JP2008220042A (en) Power converter
JP2006127920A (en) Power supply device
JP2012022830A (en) Power supply device for vehicle
JP2013038001A (en) Battery module
US20140079974A1 (en) Battery module
JP2012214207A (en) Heat medium heating device and vehicle air conditioning apparatus with the same
JP2012134101A (en) Battery module and battery pack
KR102364202B1 (en) Battery pack for electric vehicles with improved cooling performance
JP5699900B2 (en) Battery module
WO2012160573A2 (en) Battery thermal management arrangement
JP5906921B2 (en) Battery module and vehicle
JP7215834B2 (en) Battery temperature controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827795

Country of ref document: EP

Kind code of ref document: A1