JP2013051099A - Module for battery temperature control - Google Patents

Module for battery temperature control Download PDF

Info

Publication number
JP2013051099A
JP2013051099A JP2011188122A JP2011188122A JP2013051099A JP 2013051099 A JP2013051099 A JP 2013051099A JP 2011188122 A JP2011188122 A JP 2011188122A JP 2011188122 A JP2011188122 A JP 2011188122A JP 2013051099 A JP2013051099 A JP 2013051099A
Authority
JP
Japan
Prior art keywords
battery
heat
temperature control
battery temperature
control module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011188122A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hanada
知之 花田
Hitoshi Shimonosono
均 下野園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011188122A priority Critical patent/JP2013051099A/en
Priority to PCT/JP2012/068210 priority patent/WO2013031406A1/en
Publication of JP2013051099A publication Critical patent/JP2013051099A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a module for battery temperature control which enables efficient heat exchange.SOLUTION: A module for battery temperature control has a structure where a heat conduction material 7 is sandwiched so as to fit into cross section shapes of gaps formed multiple lamination type battery cells 1 are laminated. This structure increases a heat passing cross section area between the battery cells and a heat transmission part 10 in inclined parts 3. The heat conduction material is made of aluminum or the like and has water jackets 7a, 7b in a core material 8a. The heat conduction material is integrally molded with the heat transmission part. Thus, it is not necessary to combine each component and the number of the components and the assembly work hours are reduced. The module for the battery temperature control also has adhesion parts 8b, having heat conductivity and viscous elasticity, between each battery cell and the heat conduction material 7. Even when there is variations in vibrations and end part shapes of the battery cells, the heat conductivity and the adhesiveness are ensured.

Description

本発明は、バッテリの温度を調節可能なバッテリ温調用モジュールに関する。   The present invention relates to a battery temperature adjustment module capable of adjusting the temperature of a battery.

特許文献1には、バッテリセルの間に伝熱板を設け、この伝熱板の下に設けた熱交換部にロウ付けすることで、バッテリの熱を外部へ放出させるものが開示されている。   Patent Document 1 discloses a structure in which a heat transfer plate is provided between battery cells and the heat of the battery is released to the outside by brazing to a heat exchanging portion provided below the heat transfer plate. .

特開2001−23703号公報JP 2001-23703 A

しかしながら、特許文献1に開示の技術にあっては、薄肉の伝熱板を用いて伝熱基盤に熱伝導させているため、熱通過断面積が小さいことから熱抵抗が大きく、バッテリセルで発生した熱を効率よく熱交換部へ伝達することができないという問題があった。   However, in the technique disclosed in Patent Document 1, heat conduction is performed to the heat transfer base using a thin heat transfer plate, so that the thermal resistance is large because the heat passage cross-sectional area is small, and is generated in the battery cell. There is a problem in that the heat that is generated cannot be efficiently transferred to the heat exchange section.

本発明は、上記問題に着目してなされたもので、効率よく熱交換可能なバッテリ温調用モジュールを提供することを目的とする。   The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a battery temperature control module capable of efficiently exchanging heat.

上記目的を達成するため、本発明のバッテリ温調用モジュールにあっては、複数のバッテリを積層した際に形成される隙間形状に沿って熱伝導材を配置し、この熱伝導材と密着して内部で冷媒を流動させることで熱交換を行なう熱交換部を備えた。   In order to achieve the above object, in the battery temperature control module of the present invention, a heat conductive material is arranged along a gap shape formed when a plurality of batteries are stacked, and is in close contact with the heat conductive material. A heat exchanging unit for exchanging heat by flowing a refrigerant inside was provided.

隙間形状に合わせた熱伝導材を設けたため、熱通過断面積を大きくすることができ、熱抵抗を小さくすることでバッテリにおいて発生した熱を効率よく熱交換部に伝達することができ、効率よくバッテリを温調することができる。   Because the heat conduction material matched to the gap shape is provided, the heat passage cross-sectional area can be increased, and the heat generated in the battery can be efficiently transferred to the heat exchange part by reducing the thermal resistance, and efficiently The temperature of the battery can be adjusted.

実施例1のバッテリ温調モジュールを備えたモジュール缶の外観図である。It is an external view of the module can provided with the battery temperature control module of Example 1. 実施例1の車両駆動用電池の構成を表す概略斜視図である。1 is a schematic perspective view illustrating a configuration of a vehicle driving battery of Example 1. FIG. 実施例1の伝熱性能と比較例の伝熱性能とを表す特性図である。It is a characteristic view showing the heat transfer performance of Example 1 and the heat transfer performance of a comparative example. 実施例2のバッテリパックの構成を表す概略図である。6 is a schematic diagram illustrating a configuration of a battery pack of Example 2. FIG. 実施例2の車両駆動用電池の構成を表す概略斜視図である。FIG. 6 is a schematic perspective view illustrating a configuration of a vehicle driving battery according to a second embodiment. 実施例3の車両駆動用電池の構成を表す概略斜視図である。6 is a schematic perspective view illustrating a configuration of a battery for driving a vehicle according to Embodiment 3. FIG. 実施例4のバッテリパックの構成を表す概略斜視図である。6 is a schematic perspective view illustrating a configuration of a battery pack according to Embodiment 4. FIG.

図1は実施例1のバッテリ温調モジュールを備えた車両の温調システムを表す概略図である。実施例1の車両はバッテリとモータを駆動源とする電気自動車である。この車両には、車両用空調システム13と、複数のバッテリセル1が収装され駆動源となる車両駆動用電池5と、車両駆動用電池5を温調するのに必要な流体を生成する温調機構20とを有する。   FIG. 1 is a schematic diagram illustrating a vehicle temperature control system including the battery temperature control module according to the first embodiment. The vehicle according to the first embodiment is an electric vehicle using a battery and a motor as drive sources. In this vehicle, a vehicle air conditioning system 13, a vehicle driving battery 5 in which a plurality of battery cells 1 are housed and serving as a driving source, and a temperature that generates a fluid necessary for controlling the temperature of the vehicle driving battery 5. Adjustment mechanism 20.

車両用空調システム13は、コンデンサ14と、冷媒圧縮機15と、コンデンサ14から熱を放出するために必要なファン16と、減圧手段を有する冷媒蒸発器18と、これらを接続する冷媒配管等から構成されている。流路切替バルブ17は、車両用空調システム13内に組み込まれており、冷流体生成装置21の下流に設けられている。流路切替バルブ17は、コンデンサ14で冷却された冷媒の流れを冷媒蒸発器18もしくは冷流体生成装置21に切り替える。   The vehicle air conditioning system 13 includes a condenser 14, a refrigerant compressor 15, a fan 16 necessary for releasing heat from the condenser 14, a refrigerant evaporator 18 having decompression means, a refrigerant pipe connecting these, and the like. It is configured. The flow path switching valve 17 is incorporated in the vehicle air conditioning system 13 and is provided downstream of the cold fluid generator 21. The flow path switching valve 17 switches the flow of the refrigerant cooled by the condenser 14 to the refrigerant evaporator 18 or the cold fluid generator 21.

冷媒停止バルブ19は、車両用空調システム13に組み込まれており、冷流体生成装置21の下流に設けられている。流路切替バルブ17により冷媒蒸発器18に冷媒が流れているときに作動し、冷媒蒸発器18の出口から冷流体生成装置21への冷媒が逆流するのを防止する。   The refrigerant stop valve 19 is incorporated in the vehicle air conditioning system 13 and is provided downstream of the cold fluid generator 21. The flow path switching valve 17 operates when the refrigerant is flowing into the refrigerant evaporator 18, and prevents the refrigerant from flowing back from the outlet of the refrigerant evaporator 18 to the cold fluid generator 21.

冷流体生成装置21は、車両用空調システム13及び温調機構20の両方に跨って組み込まれており、それぞれ独立した回路構成とされている。車両用空調システム13側は冷媒が流れており、温調機構20側は流体が流れている。冷流体生成装置21内部には、図示しない熱交換器が設けられており、コンデンサ14で冷却された冷媒と、温調機構20内を流れる液流体とで熱交換が行なわれ、温調機構20内を流れる流体を冷却可能としている。   The cold fluid generation device 21 is incorporated across both the vehicle air conditioning system 13 and the temperature control mechanism 20, and has an independent circuit configuration. The refrigerant flows on the vehicle air conditioning system 13 side, and the fluid flows on the temperature adjustment mechanism 20 side. A heat exchanger (not shown) is provided inside the cold fluid generator 21, and heat exchange is performed between the refrigerant cooled by the condenser 14 and the liquid fluid flowing in the temperature adjustment mechanism 20, and the temperature adjustment mechanism 20. The fluid flowing inside can be cooled.

温調機構20は、バッテリセル1を冷却するために必要な冷流体生成装置21、バッテリセル1を加温するために必要な電気ヒータ22、温調機構20内を流れる流体の温度を検出する流体温検出手段23、流体を輸送するための流体輸送ポンプ24及びこれらを接続する冷媒配管等から構成されている。冷媒配管は車両駆動用電池5の伝熱部10に設けられた配管12と接続されている。   The temperature adjustment mechanism 20 detects the temperature of the cold fluid generator 21 necessary for cooling the battery cell 1, the electric heater 22 necessary for heating the battery cell 1, and the temperature of the fluid flowing in the temperature adjustment mechanism 20. The fluid temperature detection means 23, the fluid transport pump 24 for transporting the fluid, and the refrigerant pipe connecting these, etc. The refrigerant pipe is connected to a pipe 12 provided in the heat transfer section 10 of the vehicle driving battery 5.

電気ヒータ22は、温調機構20内に組み込まれており、バッテリセル1を加温するために温調機構20内を流れる流体の温度を上昇させる。流体輸送ポンプ24は、バッテリセル1を温調するために必要な流体を伝熱部10に輸送する機能を有する。温度検出手段25は、バッテリセル1に設けられており、バッテリセル1の温度を検出する。   The electric heater 22 is incorporated in the temperature adjustment mechanism 20 and raises the temperature of the fluid flowing in the temperature adjustment mechanism 20 in order to heat the battery cell 1. The fluid transport pump 24 has a function of transporting a fluid necessary for controlling the temperature of the battery cell 1 to the heat transfer unit 10. The temperature detection means 25 is provided in the battery cell 1 and detects the temperature of the battery cell 1.

制御装置100は、温度検出手段25により検出されたバッテリセル1の温度に基づいて冷却もしくは加温を判断し、上述の各種要素に対して制御信号を出力する。具体的には、冷却が必要な場合、車両用空調システム13にて生成された冷媒と、温調機構20内に流れる流体とを冷流体生成装置21内にて熱交換し、温調機構20内の流体を冷却する。そして、流体輸送ポンプ24によって冷やされた流体を車両駆動用電池5に内包されるバッテリセル1の伝熱部10に供給する。一方、加温が必要な場合、流体温検出手段23にて検出された流体温に基づいて、温調機構20内に組み込まれた電気ヒータ22により流体を加温する。そして、加温された流体を流体輸送ポンプ24によって車両駆動用電池5に内包される伝熱部10に供給する。   The control device 100 determines cooling or heating based on the temperature of the battery cell 1 detected by the temperature detection means 25, and outputs a control signal to the various elements described above. Specifically, when cooling is necessary, the refrigerant generated in the vehicle air conditioning system 13 and the fluid flowing in the temperature adjustment mechanism 20 are heat-exchanged in the cold fluid generation device 21, and the temperature adjustment mechanism 20. Cool the fluid inside. Then, the fluid cooled by the fluid transport pump 24 is supplied to the heat transfer section 10 of the battery cell 1 included in the vehicle driving battery 5. On the other hand, when heating is required, the fluid is heated by the electric heater 22 incorporated in the temperature adjustment mechanism 20 based on the fluid temperature detected by the fluid temperature detection means 23. Then, the heated fluid is supplied to the heat transfer unit 10 included in the vehicle drive battery 5 by the fluid transport pump 24.

図2は実施例1の車両駆動用電池の構成を表す概略斜視図である。バッテリセル1は、内蔵物である電極材4及び電解液をラミネートパックしたラミネート型電池である。バッテリセル1の周辺部には、ラミネート溶着するための溶着代2を有する。また、バッテリセル1の中央には、電解液等が充填され板状であって厚肉の中心部2aを有する。また、電極材4を積層した端部には、溶着代2と中心部2aとの間に形成された傾斜部3を有する。車両駆動用電池5は、このラミネート型のバッテリセル1を積層したバッテリパックを収装したものであり、バッテリセル1の積層時に溶着代2と傾斜部3によって形成される空隙6の断面形状に合わせて熱伝導材7を挟み込む構成とされている。これにより、傾斜部3においてバッテリセル1と伝熱部10との間の熱通過断面積を大きくしている。   FIG. 2 is a schematic perspective view illustrating the configuration of the vehicle driving battery according to the first embodiment. The battery cell 1 is a laminate type battery in which a built-in electrode material 4 and an electrolyte solution are laminated. A peripheral portion of the battery cell 1 has a welding allowance 2 for laminate welding. Further, the center of the battery cell 1 is filled with an electrolytic solution or the like and has a plate-like and thick central portion 2a. Further, the end portion where the electrode material 4 is laminated has an inclined portion 3 formed between the welding allowance 2 and the center portion 2a. The vehicle driving battery 5 is a battery pack in which the laminated battery cells 1 are stacked, and has a cross-sectional shape of a gap 6 formed by the welding allowance 2 and the inclined portion 3 when the battery cells 1 are stacked. In addition, the heat conductive material 7 is sandwiched. Thereby, in the inclination part 3, the heat passage cross-sectional area between the battery cell 1 and the heat-transfer part 10 is enlarged.

熱伝導材7は熱伝導性の良好なアルミ材料等で形成され、板状に延在される基材70と、基材70から上方に突出形成される芯材8aと、芯材8aの外側に設けられ、バッテリセル1の表面と熱伝導材7との密着性を向上させるために熱伝導性シリコン等をコーティングした粘着部8bとを有する。粘着部8bは、絶縁材であることから、電極材の周囲にも設置することができ、放熱効果を更に高めている。熱伝導材7は、芯材8aの内部にウォータージャケット7a,7bを有し、これにより冷却性能を向上している。矢視Aに示すように、実施例1では、基材70内に形成されたウォータージャケット7aと芯材8aの内部にまで形成されたウォータージャケット7bとを備えたタイプPT1と、基材70内にのみウォータージャケット7aを形成したタイプPT2とが考えられる。これらは要求性能,強度及びコスト等に応じて適宜設定可能である。   The heat conductive material 7 is formed of an aluminum material or the like having good heat conductivity, and a base material 70 extending in a plate shape, a core material 8a formed to protrude upward from the base material 70, and the outside of the core material 8a. And an adhesive portion 8b coated with thermally conductive silicon or the like in order to improve the adhesion between the surface of the battery cell 1 and the thermally conductive material 7. Since the adhesive portion 8b is an insulating material, it can be installed around the electrode material, further enhancing the heat dissipation effect. The heat conductive material 7 has water jackets 7a and 7b inside the core material 8a, thereby improving the cooling performance. As shown in the arrow A, in Example 1, the type PT1 including the water jacket 7a formed in the base material 70 and the water jacket 7b formed up to the inside of the core material 8a, The type PT2 in which the water jacket 7a is formed only on the surface is conceivable. These can be appropriately set according to required performance, strength, cost, and the like.

図3は実施例1の伝熱性能と比較例の伝熱性能とを表す特性図である。尚、比較例とは、実施例1のような熱伝導材7を備えていないタイプである。バッテリセル1は、充放電時に10%程度の収縮があり、その影響により伝熱部10とバッテリセル1との間に空気層が生じる。この場合、熱伝導は空気層を介してしか行なわれないため、熱抵抗も高くなる。一方、実施例1では粘着部8bにより収縮に伴う変形に追従して密着するため、熱伝導を確保でき、熱抵抗も小さくなる。以上から、バッテリセル1と伝熱部10との間の密着度の関係を考慮すると、熱伝導材7を備えたことで20%程度の性能向上を図ることが可能となる。また、絶縁材で構成していることから電極部付近にも設置することができ、更に性能向上を図ることができる。   FIG. 3 is a characteristic diagram showing the heat transfer performance of Example 1 and the heat transfer performance of the comparative example. In addition, a comparative example is a type which is not provided with the heat conductive material 7 like Example 1. FIG. The battery cell 1 contracts by about 10% during charging and discharging, and an air layer is generated between the heat transfer unit 10 and the battery cell 1 due to the influence. In this case, since heat conduction is performed only through the air layer, the thermal resistance is also increased. On the other hand, in Example 1, since the adhesive part 8b closely adheres to the deformation accompanying the contraction, heat conduction can be ensured and the thermal resistance is also reduced. From the above, considering the relationship of the degree of adhesion between the battery cell 1 and the heat transfer section 10, the provision of the heat conductive material 7 can improve the performance by about 20%. In addition, since it is made of an insulating material, it can be installed in the vicinity of the electrode portion, and the performance can be further improved.

以上説明したように、実施例1にあっては、下記の作用効果が得られる。
(1)複数のバッテリセル1(バッテリ)を積層した車両駆動用電池5(バッテリモジュール)と、バッテリセル1を積層した際に形成される隙間形状に沿って配置された熱伝導材7と、熱伝導材7と密着し、内部で冷媒を流動させることで熱交換を行なう伝熱部10(熱交換部)と、を備えた。
よって、空間形状に合わせた熱伝導材を設けたため、熱通過断面積を大きくすることができ、熱抵抗を小さくすることでバッテリセル1において発生した熱を効率よく伝熱部10に伝達することができ、効率よくバッテリセル1を温調することができる。
As described above, in the first embodiment, the following operational effects can be obtained.
(1) A vehicle driving battery 5 (battery module) in which a plurality of battery cells 1 (batteries) are stacked, a heat conductive material 7 disposed along a gap shape formed when the battery cells 1 are stacked, A heat transfer section 10 (heat exchange section) that is in close contact with the heat conductive material 7 and performs heat exchange by flowing a refrigerant inside.
Therefore, since the heat conducting material matched to the space shape is provided, the heat passage cross-sectional area can be increased, and the heat generated in the battery cell 1 can be efficiently transmitted to the heat transfer section 10 by reducing the thermal resistance. The temperature of the battery cell 1 can be controlled efficiently.

(2)バッテリセル1は、外縁に薄肉の溶着代2(周辺部)と、厚肉の中心部と、溶着代2と中心部2aとを接続する傾斜部3と、を有するラミネート型のバッテリセルであり、熱伝導材7は、バッテリセル1を積層した際に溶着代2と傾斜部3との間に形成される空間内であって傾斜部3に接するように配置することとした。
よって、バッテリセル1の傾斜部3を用いて熱伝導させるため、熱通過断面積を大きく撮ることができ、熱伝導における熱抵抗を小さくすることで効率よくバッテリセル1を温調することができる。また、バッテリセル1の中央部2a間に熱伝導材を備えていないため、バッテリパックを大型化することなく、温調効率を高めることができる。
(2) The battery cell 1 is a laminate-type battery having a thin welding margin 2 (peripheral portion), a thick central portion, and an inclined portion 3 connecting the welding margin 2 and the central portion 2a on the outer edge. The heat conductive material 7 is a cell and is arranged so as to be in contact with the inclined portion 3 in a space formed between the welding allowance 2 and the inclined portion 3 when the battery cells 1 are stacked.
Therefore, since heat conduction is performed using the inclined portion 3 of the battery cell 1, a large heat passage cross-sectional area can be taken, and the temperature of the battery cell 1 can be efficiently controlled by reducing the thermal resistance in heat conduction. . Moreover, since the heat conductive material is not provided between the center parts 2a of the battery cells 1, the temperature control efficiency can be increased without increasing the size of the battery pack.

(3)熱伝導材7は、伝熱部10と一体成形されている。よって、各部品を組み合わせる必要がなく、部品点数の削減及び組み立て工数の低減を図ることができる。また、芯材8a内部にウォータージャケット7bを形成することができ、更に温調性能の向上を図ることができる。   (3) The heat conductive material 7 is integrally formed with the heat transfer unit 10. Therefore, it is not necessary to combine the parts, and the number of parts and the number of assembly steps can be reduced. Moreover, the water jacket 7b can be formed inside the core material 8a, and the temperature control performance can be further improved.

(4)バッテリセル1と熱伝導材7との間に、熱伝導性及び粘弾性を有する粘着部8b(弾性層)を有する。よって、バッテリセル1が振動したとしても密着状態を確保でき、バッテリセル1と熱伝導材7との間の熱伝導性を維持することができる。また、バッテリセル1の端部形状(電極材4等の形状)にばらつきがあったとしても、それらばらつきを変形により吸収することができ、密着性を確保できる。   (4) Between the battery cell 1 and the heat conductive material 7, it has the adhesion part 8b (elastic layer) which has heat conductivity and viscoelasticity. Therefore, even if the battery cell 1 vibrates, a close contact state can be secured, and the thermal conductivity between the battery cell 1 and the heat conductive material 7 can be maintained. Further, even if there is a variation in the end shape of the battery cell 1 (the shape of the electrode material 4 or the like), the variation can be absorbed by deformation, and adhesion can be ensured.

〔実施例2〕
次に、実施例2について説明する。基本的な構成は実施例1と同じであるため、異なる点についてのみ説明する。図4は実施例2のバッテリパックの構成を表す概略図、図5は実施例2の車両駆動用電池の構成を表す概略斜視図である。実施例2のバッテリパックは、バッテリセル1を積層し、その周囲を枠体9によって覆う構成としたものである。枠体9は実施例1の熱伝導材7と同様の役割を果たすものであり、熱伝導性の良好なアルミ材料等で形成されている。枠体9の内周には、バッテリセル1の外周全体に形成された空隙6にそれぞれ挟み込まれる芯材8aと、粘着部8bとが設けられ、バッテリセル1の周辺全体に亘って熱伝導を可能としている。枠体9は伝熱部10と密着して取り付けられている。これにより、実施例1のようにバッテリセル1の一辺のみに熱伝導材7を設けた構成に比べて更に良好な熱伝導性能を得ることができ、効率的なバッテリ温調を達成することができる。
[Example 2]
Next, Example 2 will be described. Since the basic configuration is the same as that of the first embodiment, only different points will be described. FIG. 4 is a schematic diagram illustrating the configuration of the battery pack according to the second embodiment. FIG. 5 is a schematic perspective view illustrating the configuration of the vehicle driving battery according to the second embodiment. The battery pack of Example 2 has a configuration in which battery cells 1 are stacked and the periphery thereof is covered with a frame body 9. The frame body 9 plays the same role as the heat conductive material 7 of the first embodiment, and is formed of an aluminum material having a good heat conductivity. On the inner periphery of the frame body 9, there are provided a core material 8 a sandwiched between gaps 6 formed on the entire outer periphery of the battery cell 1, and an adhesive portion 8 b, and heat conduction is performed over the entire periphery of the battery cell 1. It is possible. The frame body 9 is attached in close contact with the heat transfer section 10. Thereby, compared with the structure which provided the heat conductive material 7 only in the one side of the battery cell 1 like Example 1, more favorable heat conductive performance can be obtained, and efficient battery temperature control can be achieved. it can.

以上説明したように、実施例2にあっては下記の作用効果が得られる。
(5)熱伝導材は、バッテリセル1の全周を囲むように形成された枠体である。よって、バッテリセル1の一辺のみに熱伝導材を形成した場合に比べて熱伝導効率を向上することができる。
As described above, the following operational effects are obtained in the second embodiment.
(5) The heat conductive material is a frame formed so as to surround the entire circumference of the battery cell 1. Therefore, compared with the case where a heat conductive material is formed only on one side of the battery cell 1, the heat conduction efficiency can be improved.

〔実施例3〕
次に、実施例3について説明する。基本的な構成は実施例2と同様であるため、異なる点についてのみ説明する。図6は実施例3の車両駆動用電池の構成を表す概略斜視図である。実施例2では、枠体9を伝熱部10と密着して取り付けたが、実施例3では、枠体9の一辺を延在させた延在部9aを形成し、この延在部9aに配管12が貫通する貫通孔11を形成した点が異なる。このように、全ての枠体9に貫通するように配管12を貫通孔11に通すことで、実施例2のように伝熱部10を別途構成することなく、簡易な構成で枠体9と冷媒との間の熱交換を達成できる。
Example 3
Next, Example 3 will be described. Since the basic configuration is the same as that of the second embodiment, only different points will be described. FIG. 6 is a schematic perspective view showing the configuration of the vehicle drive battery of the third embodiment. In the second embodiment, the frame body 9 is attached in close contact with the heat transfer section 10, but in the third embodiment, an extension section 9 a is formed by extending one side of the frame body 9, and the extension section 9 a The difference is that a through hole 11 through which the pipe 12 passes is formed. Thus, by passing the pipes 12 through the through holes 11 so as to penetrate all the frame bodies 9, the frame body 9 can be configured with a simple configuration without separately configuring the heat transfer section 10 as in the second embodiment. Heat exchange with the refrigerant can be achieved.

以上説明したように、実施例3にあっては下記の作用効果が得られる。
(6)枠体9の一辺に、冷媒を流動させる配管を保持する貫通孔11(配管保持部)を形成した。よって、簡易な構成で枠体9と冷媒との間の熱交換を達成できる。
As described above, the following effects are obtained in the third embodiment.
(6) A through hole 11 (pipe holding portion) that holds a pipe through which the refrigerant flows is formed on one side of the frame body 9. Therefore, heat exchange between the frame 9 and the refrigerant can be achieved with a simple configuration.

〔実施例4〕
次に、実施例4について説明する。基本的な構成は実施例3と同様であるため、異なる点についてのみ説明する。図7は実施例4のバッテリパックの構成を表す概略斜視図である。実施例3では、延在部9aに貫通孔11を形成し、これに配管12を通す構成としたが、実施例4では、貫通孔11に代えて切り欠き11'(配管保持部)を形成し、切り欠き11'と配管12とを密着させることで熱伝導を行なう点が異なる。これにより、実施例2のように伝熱部10を別途構成することなく、簡易な構成で枠体9と冷媒との間の熱交換を達成できる。
Example 4
Next, Example 4 will be described. Since the basic configuration is the same as that of the third embodiment, only different points will be described. FIG. 7 is a schematic perspective view illustrating the configuration of the battery pack according to the fourth embodiment. In the third embodiment, the through hole 11 is formed in the extending portion 9a and the pipe 12 is passed through the extended portion 9a. However, in the fourth embodiment, a notch 11 ′ (pipe holding portion) is formed instead of the through hole 11. However, the heat conduction is different by bringing the notch 11 ′ and the pipe 12 into close contact. Thus, heat exchange between the frame body 9 and the refrigerant can be achieved with a simple configuration without separately configuring the heat transfer section 10 as in the second embodiment.

以上、実施例及び変形例に基づいて本発明を説明したが、上記実施形態に限らず、他の構成であっても本発明に含まれる。例えば、実施例では、バッテリセル1の冷却をメインに説明したが、冷却に限らず、加温する場合であっても同様に適用可能である。また、実施例ではラミネート型のバッテリセルを例に挙げて説明したが、他の形状もしくはタイプのバッテリセルを複数積み重ねる構成であれば適用可能である。   As mentioned above, although this invention was demonstrated based on the Example and the modification, not only the said embodiment but another structure is also included in this invention. For example, in the embodiment, the cooling of the battery cell 1 has been mainly described. In the embodiment, the laminate type battery cell is described as an example, but the present invention is applicable to any configuration in which a plurality of battery cells of other shapes or types are stacked.

1 バッテリセル
2 溶着代
2a 中心部
3 傾斜部
4 電極材
5 車両駆動用電池
6 空隙
7 熱伝導材
7a,7b ウォータージャケット
8a 芯材
8b 粘着部
9 枠体
9a 延在部
10 伝熱部
11 貫通孔
12 配管
20 温調機構
21 冷流体生成装置
22 電気ヒータ
23 流体温検出手段
24 流体輸送ポンプ
25 温度検出手段
70 基材
DESCRIPTION OF SYMBOLS 1 Battery cell 2 Welding allowance 2a Center part 3 Inclined part 4 Electrode material 5 Battery 6 for vehicle drive Space | gap 7 Heat conductive material 7a, 7b Water jacket 8a Core material 8b Adhesive part 9 Frame 9a Extension part 10 Heat-transfer part 11 Through Hole 12 Pipe 20 Temperature control mechanism 21 Cold fluid generator 22 Electric heater 23 Fluid temperature detection means 24 Fluid transport pump 25 Temperature detection means 70 Base material

Claims (6)

複数のバッテリを積層したバッテリモジュールと、
前記バッテリを積層した際に形成される隙間形状に沿って配置された熱伝導材と、
前記熱伝導材と密着し、内部で冷媒を流動させることで熱交換を行なう熱交換部と、
を備えたことを特徴とするバッテリ温調用モジュール。
A battery module in which a plurality of batteries are stacked;
A heat conducting material arranged along a gap shape formed when the batteries are stacked;
A heat exchanging part that is in close contact with the heat conducting material and exchanges heat by flowing a refrigerant inside;
A battery temperature control module comprising:
請求項1に記載のバッテリ温調用モジュールにおいて、
前記バッテリは、外縁に薄肉の周辺部と、厚肉の中心部と、前記周辺部と前記中心部とを接続する傾斜部と、を有するラミネート型のバッテリセルであり、
前記熱伝導材は、前記ラミネートセルを積層した際に前記周辺部と前記傾斜部との間に形成される空間内であって前記傾斜部に接するように配置することを特徴とするバッテリ温調用モジュール。
The battery temperature control module according to claim 1,
The battery is a laminate-type battery cell having a thin peripheral portion on the outer edge, a thick central portion, and an inclined portion connecting the peripheral portion and the central portion,
The heat conducting material is disposed in a space formed between the peripheral portion and the inclined portion when the laminate cell is laminated, and is disposed so as to be in contact with the inclined portion. module.
請求項1又は2に記載のバッテリ温調用モジュールにおいて、
前記熱伝導材は、前記熱交換部と一体成形されていることを特徴とするバッテリ温調用モジュール。
The battery temperature control module according to claim 1 or 2,
The battery temperature control module, wherein the heat conducting material is integrally formed with the heat exchange part.
請求項1ないし3いずれか1つに記載のバッテリ温調用モジュールにおいて、
前記バッテリと前記熱伝導材との間に、熱伝導性及び粘弾性を有する弾性層を有することを特徴とするバッテリ温調用モジュール。
The battery temperature control module according to any one of claims 1 to 3,
A battery temperature control module comprising an elastic layer having thermal conductivity and viscoelasticity between the battery and the thermal conductive material.
請求項1ないし4いずれか一つに記載のバッテリ温調用モジュールにおいて、
前記熱伝導材は、前記バッテリの全周を囲むように形成された枠体であることを特徴とするバッテリ温調用モジュール。
The battery temperature control module according to any one of claims 1 to 4,
The battery temperature control module, wherein the heat conducting material is a frame formed so as to surround the entire circumference of the battery.
請求項5に記載のバッテリ温調用モジュールにおいて、
前記枠体の一辺に、冷媒を流動させる配管を保持する配管保持部を形成したことを特徴とするバッテリ温調用モジュール。
The battery temperature control module according to claim 5,
A battery temperature control module, wherein a pipe holding part for holding a pipe for flowing a refrigerant is formed on one side of the frame.
JP2011188122A 2011-08-31 2011-08-31 Module for battery temperature control Withdrawn JP2013051099A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011188122A JP2013051099A (en) 2011-08-31 2011-08-31 Module for battery temperature control
PCT/JP2012/068210 WO2013031406A1 (en) 2011-08-31 2012-07-18 Module for adjusting battery temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188122A JP2013051099A (en) 2011-08-31 2011-08-31 Module for battery temperature control

Publications (1)

Publication Number Publication Date
JP2013051099A true JP2013051099A (en) 2013-03-14

Family

ID=47755913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188122A Withdrawn JP2013051099A (en) 2011-08-31 2011-08-31 Module for battery temperature control

Country Status (2)

Country Link
JP (1) JP2013051099A (en)
WO (1) WO2013031406A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229559A (en) * 2013-05-24 2014-12-08 株式会社デンソー Battery pack and manufacturing method therefor
WO2015146387A1 (en) * 2014-03-26 2015-10-01 本田技研工業株式会社 Electrically driven vehicle
JP2016024935A (en) * 2014-07-18 2016-02-08 カルソニックカンセイ株式会社 Power storage device
CN106469840A (en) * 2015-08-21 2017-03-01 株式会社Lg化学 Battery module, set of cells and vehicle
KR20170042155A (en) * 2015-10-08 2017-04-18 주식회사 엘지화학 Battery Module
JP2018502431A (en) * 2015-03-27 2018-01-25 エルジー・ケム・リミテッド Battery module
JP2018507512A (en) * 2015-12-18 2018-03-15 エルジー・ケム・リミテッド battery pack
CN108028444A (en) * 2016-04-15 2018-05-11 株式会社Lg化学 The method of battery system and assembled battery system
JP2018517268A (en) * 2015-09-02 2018-06-28 エルジー・ケム・リミテッド Battery module with improved cooling structure
JP2018518025A (en) * 2016-01-06 2018-07-05 エルジー・ケム・リミテッド Battery pack including edge cooling member
KR20180087370A (en) * 2016-11-02 2018-08-01 주식회사 엘지화학 Battery system
CN108370075A (en) * 2016-08-18 2018-08-03 株式会社Lg化学 Battery module
CN108475831A (en) * 2016-08-18 2018-08-31 株式会社Lg化学 Battery module
JP2018530883A (en) * 2016-02-16 2018-10-18 エルジー・ケム・リミテッド Battery system
JP2018530896A (en) * 2016-05-31 2018-10-18 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
JP2019503040A (en) * 2016-06-13 2019-01-31 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
US10199695B2 (en) 2014-08-18 2019-02-05 Johnson Controls Technology Company Battery module with restrained battery cells utilizing a heat exchanger
EP3442049A1 (en) * 2017-08-11 2019-02-13 Hyundai Motor Company Battery module
JP2019509608A (en) * 2016-11-29 2019-04-04 エルジー・ケム・リミテッド Air-cooled battery module
JP2019109968A (en) * 2017-12-15 2019-07-04 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
WO2020162161A1 (en) * 2019-02-07 2020-08-13 信越ポリマー株式会社 Heat dissipation structure and battery having same
CN114450840A (en) * 2020-07-29 2022-05-06 株式会社Lg新能源 Battery pack and method of manufacturing the same
WO2023277011A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Power storage device, heat transfer body, and package
EP4037069A4 (en) * 2020-08-24 2023-08-16 LG Energy Solution, Ltd. Battery module and battery pack including same
JP7463376B2 (en) 2019-08-03 2024-04-08 三洋電機株式会社 Power supply device, electric vehicle equipped with the power supply device, and power storage device
CN113302781B (en) * 2019-02-07 2024-06-07 信越聚合物株式会社 Heat radiation structure and battery with the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116018B2 (en) * 2016-01-07 2018-10-30 GM Global Technology Operations LLC Cure in place thermal interface material
DE102016009212A1 (en) * 2016-08-01 2018-02-01 Audi Ag Battery module and battery
KR102576860B1 (en) * 2018-03-30 2023-09-11 에스케이온 주식회사 Pouch case, and secondary battery and secondary battery pack using the same
IT201800009787A1 (en) * 2018-10-25 2020-04-25 Italdesign-Giugiaro SPA System for cooling removable battery modules in an electric or hybrid drive vehicle.
KR20200143977A (en) * 2019-06-17 2020-12-28 주식회사 엘지화학 Battery Module Comprising Base Plate having Gas Discharge Passage and Battery Pack and Energy Storage System
CN113206313B (en) * 2021-03-24 2023-04-21 合众新能源汽车股份有限公司 Battery structure for inhibiting thermal runaway of battery pack from spreading

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111370A (en) * 2002-08-29 2004-04-08 Matsushita Electric Ind Co Ltd Thermal control apparatus of battery
JP2008159440A (en) * 2006-12-25 2008-07-10 Calsonic Kansei Corp Vehicular battery cooling system
JP5137480B2 (en) * 2007-06-29 2013-02-06 三洋電機株式会社 Power supply for vehicle
JP5450981B2 (en) * 2008-05-16 2014-03-26 Necエナジーデバイス株式会社 Single battery and battery pack
EP2416439B1 (en) * 2009-04-01 2015-07-29 LG Chem, Ltd. Battery module having excellent heat dissipation ability and battery pack employed with the same

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014229559A (en) * 2013-05-24 2014-12-08 株式会社デンソー Battery pack and manufacturing method therefor
WO2015146387A1 (en) * 2014-03-26 2015-10-01 本田技研工業株式会社 Electrically driven vehicle
CN106104908A (en) * 2014-03-26 2016-11-09 本田技研工业株式会社 Electric vehicle
JPWO2015146387A1 (en) * 2014-03-26 2017-04-13 本田技研工業株式会社 Electric vehicle
EP3125357A4 (en) * 2014-03-26 2017-10-25 Honda Motor Co., Ltd. Electrically driven vehicle
JP2016024935A (en) * 2014-07-18 2016-02-08 カルソニックカンセイ株式会社 Power storage device
US10199695B2 (en) 2014-08-18 2019-02-05 Johnson Controls Technology Company Battery module with restrained battery cells utilizing a heat exchanger
JP2018502431A (en) * 2015-03-27 2018-01-25 エルジー・ケム・リミテッド Battery module
CN106469840A (en) * 2015-08-21 2017-03-01 株式会社Lg化学 Battery module, set of cells and vehicle
CN106469840B (en) * 2015-08-21 2019-04-23 株式会社Lg化学 Battery module, battery pack and vehicle
JP2018517268A (en) * 2015-09-02 2018-06-28 エルジー・ケム・リミテッド Battery module with improved cooling structure
US11114712B2 (en) 2015-09-02 2021-09-07 Lg Chem, Ltd. Battery module having improved cooling structure
US10454083B2 (en) 2015-10-08 2019-10-22 Lg Chem, Ltd. Battery module
US20180138472A1 (en) * 2015-10-08 2018-05-17 Lg Chem, Ltd. Battery module
CN107636887A (en) * 2015-10-08 2018-01-26 株式会社Lg化学 Battery module
JP2018522386A (en) * 2015-10-08 2018-08-09 エルジー・ケム・リミテッド Battery module
KR20170042155A (en) * 2015-10-08 2017-04-18 주식회사 엘지화학 Battery Module
KR102051109B1 (en) 2015-10-08 2019-12-02 주식회사 엘지화학 Battery Module
JP2018507512A (en) * 2015-12-18 2018-03-15 エルジー・ケム・リミテッド battery pack
US10074835B2 (en) 2015-12-18 2018-09-11 Lg Chem, Ltd. Battery pack
JP2018518025A (en) * 2016-01-06 2018-07-05 エルジー・ケム・リミテッド Battery pack including edge cooling member
US10490868B2 (en) 2016-01-06 2019-11-26 Lg Chem, Ltd. Battery pack comprising member of edge cooling type
JP2018530883A (en) * 2016-02-16 2018-10-18 エルジー・ケム・リミテッド Battery system
CN108028444B (en) * 2016-04-15 2020-09-22 株式会社Lg化学 Battery system and method of assembling battery system
KR102099735B1 (en) * 2016-04-15 2020-04-10 주식회사 엘지화학 Battery system and its assembly method
JP2018530136A (en) * 2016-04-15 2018-10-11 エルジー・ケム・リミテッド Battery system and assembly method thereof
KR20180087231A (en) * 2016-04-15 2018-08-01 주식회사 엘지화학 Battery system and its assembly method
CN108028444A (en) * 2016-04-15 2018-05-11 株式会社Lg化学 The method of battery system and assembled battery system
JP2018530896A (en) * 2016-05-31 2018-10-18 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
US10950905B2 (en) 2016-05-31 2021-03-16 Lg Chem, Ltd. Battery module, and battery pack and vehicle comprising the same
US11728531B2 (en) 2016-05-31 2023-08-15 Lg Energy Solution, Ltd. Battery module, and battery pack and vehicle comprising the same
JP2019503040A (en) * 2016-06-13 2019-01-31 エルジー・ケム・リミテッド Battery module, battery pack including the same, and automobile
JP2019508870A (en) * 2016-08-18 2019-03-28 エルジー・ケム・リミテッド Battery module
US10847770B2 (en) 2016-08-18 2020-11-24 Lg Chem, Ltd. Battery module
US11848431B2 (en) 2016-08-18 2023-12-19 Lg Energy Solution, Ltd. Battery module
JP2019508846A (en) * 2016-08-18 2019-03-28 エルジー・ケム・リミテッド Battery module
US11557807B2 (en) 2016-08-18 2023-01-17 Lg Energy Solution, Ltd. Battery module
CN108370075A (en) * 2016-08-18 2018-08-03 株式会社Lg化学 Battery module
CN108370075B (en) * 2016-08-18 2021-04-20 株式会社Lg化学 Battery module
US20180375077A1 (en) * 2016-08-18 2018-12-27 Lg Chem, Ltd. Battery module
US10629875B2 (en) 2016-08-18 2020-04-21 Lg Chem, Ltd. Battery module
CN108475831B (en) * 2016-08-18 2021-04-02 株式会社Lg化学 Battery module
CN108475831A (en) * 2016-08-18 2018-08-31 株式会社Lg化学 Battery module
CN108701881B (en) * 2016-11-02 2021-06-18 株式会社Lg化学 Battery cell assembly
CN108701881A (en) * 2016-11-02 2018-10-23 株式会社Lg化学 battery cell component
KR102120274B1 (en) * 2016-11-02 2020-06-26 주식회사 엘지화학 Battery system
US10581125B2 (en) 2016-11-02 2020-03-03 Lg Chem, Ltd. Battery system having a metallic end plate with thermally conductive adhesive portions thereon
KR20180087370A (en) * 2016-11-02 2018-08-01 주식회사 엘지화학 Battery system
JP2019501502A (en) * 2016-11-02 2019-01-17 エルジー・ケム・リミテッド Battery system
JP7048837B2 (en) 2016-11-29 2022-04-06 エルジー エナジー ソリューション リミテッド Air-cooled battery module
JP2019509608A (en) * 2016-11-29 2019-04-04 エルジー・ケム・リミテッド Air-cooled battery module
EP3442049A1 (en) * 2017-08-11 2019-02-13 Hyundai Motor Company Battery module
US10790558B2 (en) 2017-08-11 2020-09-29 Hyundai Motor Company Battery module
JP2019109968A (en) * 2017-12-15 2019-07-04 信越ポリマー株式会社 Heat dissipation structure and battery provided with the same
US11217835B2 (en) 2017-12-15 2022-01-04 Shin-Etsu Polymer Co., Ltd. Heat dissipating structure and battery comprising the same
JP6994122B2 (en) 2019-02-07 2022-01-14 信越ポリマー株式会社 Heat dissipation structure and battery with it
JPWO2020162161A1 (en) * 2019-02-07 2021-10-07 信越ポリマー株式会社 Heat dissipation structure and battery with it
CN113302781A (en) * 2019-02-07 2021-08-24 信越聚合物株式会社 Heat dissipation structure and battery provided with same
WO2020162161A1 (en) * 2019-02-07 2020-08-13 信越ポリマー株式会社 Heat dissipation structure and battery having same
CN113302781B (en) * 2019-02-07 2024-06-07 信越聚合物株式会社 Heat radiation structure and battery with the same
JP7463376B2 (en) 2019-08-03 2024-04-08 三洋電機株式会社 Power supply device, electric vehicle equipped with the power supply device, and power storage device
CN114450840A (en) * 2020-07-29 2022-05-06 株式会社Lg新能源 Battery pack and method of manufacturing the same
JP7490295B2 (en) 2020-07-29 2024-05-27 エルジー エナジー ソリューション リミテッド Battery pack and manufacturing method thereof
CN114450840B (en) * 2020-07-29 2024-06-07 株式会社Lg新能源 Battery pack and method of manufacturing the same
EP4037069A4 (en) * 2020-08-24 2023-08-16 LG Energy Solution, Ltd. Battery module and battery pack including same
WO2023277011A1 (en) * 2021-06-29 2023-01-05 大日本印刷株式会社 Power storage device, heat transfer body, and package
JP7272518B1 (en) * 2021-06-29 2023-05-12 大日本印刷株式会社 Energy storage device, heat transfer material, package

Also Published As

Publication number Publication date
WO2013031406A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP2013051099A (en) Module for battery temperature control
US10305154B2 (en) Apparatus for controlling temperature of coolant in water-cooled battery system and method thereof
US9666912B2 (en) Heat-exchanger assembly
US20140050465A1 (en) Heat medium heating device and vehicular air-conditioning device including the same
JP2016040770A (en) Heat exchange plate for temperature management of battery pack
US20120129020A1 (en) Temperature-controlled battery system ii
JP2012204129A (en) Battery pack
JP5596576B2 (en) Thermoelectric device
JP2013159135A (en) Heat medium heating device, and vehicular air conditioner including the same
US10648709B2 (en) Heat exchanger for the temperature control of a battery
JPWO2012105160A1 (en) Battery module
JP2004282804A (en) Inverter device
JP2012196985A (en) Heater for heat medium and air conditioner for vehicle with the same
JP2006127920A (en) Power supply device
JP2013038001A (en) Battery module
JP2012022830A (en) Power supply device for vehicle
JP2008220042A (en) Power converter
JP2012214207A (en) Heat medium heating device and vehicle air conditioning apparatus with the same
JP5699900B2 (en) Battery module
JP2013149524A (en) Battery temperature control apparatus
JP5906921B2 (en) Battery module and vehicle
WO2012160573A2 (en) Battery thermal management arrangement
JP2010165714A (en) Apparatus for cooling semiconductor module
JP7215834B2 (en) Battery temperature controller
JP2002009477A (en) Power module refrigerator for controlling electric motors

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104