WO2013031399A1 - Multicolor-development laser marking sheet for card, and laser marking method - Google Patents

Multicolor-development laser marking sheet for card, and laser marking method Download PDF

Info

Publication number
WO2013031399A1
WO2013031399A1 PCT/JP2012/068155 JP2012068155W WO2013031399A1 WO 2013031399 A1 WO2013031399 A1 WO 2013031399A1 JP 2012068155 W JP2012068155 W JP 2012068155W WO 2013031399 A1 WO2013031399 A1 WO 2013031399A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
laser marking
color
laser
resin
Prior art date
Application number
PCT/JP2012/068155
Other languages
French (fr)
Japanese (ja)
Inventor
俊規 阪上
章 橋本
善之 寺司
Original Assignee
日本カラリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カラリング株式会社 filed Critical 日本カラリング株式会社
Publication of WO2013031399A1 publication Critical patent/WO2013031399A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/28Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/34Multicolour thermography

Definitions

  • the present invention relates to a multicolor coloring laser marking sheet and a laser marking method for cards that are suitably used for various types of cards, particularly plastic IC cards such as contact type and non-contact type IC cards, and more specifically, marking with a laser beam is possible.
  • the present invention relates to a multicolor coloring laser marking sheet for a card and a laser marking method capable of clearly marking characters, symbols, images and the like in two or more different color tones.
  • Plastic cards such as credit cards, bank cards, ID cards, and transportation cards are now widely used all over the world, and the number is increasing. Plastic cards are on an increasing trend due to an increase in the number of cards issued in developing countries.
  • the manufacturing method of these plastic cards is to first print a pattern by offset printing or the like in advance on a specific sheet, and after stacking other multiple sheets and heat-sealing between each sheet by a vacuum press machine, A card is obtained by punching into a card with a punching machine. Alternatively, a plurality of sheets on which nothing is printed are stacked and heat-sealed between the sheets with a vacuum press machine, and then punched into a card shape with a punching machine to obtain a card. Thereafter, printing is performed on the outermost surface of the card using a card printer. In this way, a plastic card was manufactured.
  • a plastic card that can be marked by the laser marking method is manufactured by a method similar to the above card manufacturing method, using a single layer sheet (laser marking sheet) containing a polycarbonate resin in many cases. Specifically, after first printing a light-colored background pattern on a specific white sheet in advance by offset printing, etc., and then stacking a plurality of other sheets and heat-sealing each sheet with a vacuum press machine A punching card is obtained in a card shape by a punching machine. Thereafter, the outermost surface of the card is irradiated with laser light to mark dark characters such as black and images. In this way, marking with high visibility of “black / white contrast” is basically made up of a light-colored background pattern, dark-colored characters, images, and the like (see, for example, Patent Documents 1 to 5).
  • Patent Document 1 discloses that marking is performed by irradiating a thermoplastic resin containing carbon black with laser light. However, only a polyacetal resin and a polybutylene terephthalate resin are substantially disclosed as thermoplastic resins. Furthermore, in patent document 1, only description about the injection molded product is made.
  • Patent Documents 2 and 3 disclose the technology of a laser marking multilayer sheet.
  • a “black / white contrast” sheet is basically described in which a light-colored background pattern and dark-colored characters, images, and the like are obtained.
  • Patent Documents 4 and 5 disclose laser marking resin compositions and molded products other than white or black. However, all of them have the problem that the color and the color produced by the laser light are monochromatic, so that the visibility and design are limited.
  • Patent Document 4 only discloses a technique in an injection-molded article that substantially uses a polyacetal resin or a thermoplastic polyester resin as a thermoplastic resin.
  • Patent Document 5 describes aromatic polycarbonate resins, aromatic polyester resins, polyamide resins, and styrene resins as thermoplastic resins.
  • Patent Document 5 only discloses a technique for an injection molded product. That is, Patent Documents 4 and 5 do not specifically describe the sheet.
  • the present invention has been made to solve the above-described problems of the prior art. That is, by irradiating two or more different wavelengths of laser light onto different positions on the surface of the “card sheet exhibiting a black or dark ground color”, characters, symbols, images, etc. of two or more different colors are obtained.
  • a multicolor laser marking sheet for a card to be marked clearly and a laser marking method is provided.
  • the present inventors have determined that "from a specific thermoplastic resin," a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton.
  • Black color that contains at least one selected skeleton and has an exothermic peak in the range of 360 ° C. or higher and 590 ° C.
  • the following multicolor coloring laser marking sheet for a card and a laser marking method are provided.
  • a sheet comprising a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance, and two or more different color tones including white and chromatic colors when irradiated with laser light
  • At least one thermoplastic selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and non-crystalline aromatic polyester resins
  • the chromatic colorant comprises at least one skeleton selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton.
  • the black material is a substance which changes color or itself disappears by receiving the laser beam, the total thickness of 100 ⁇ 300 [mu] m multicolor laser marking sheet cards.
  • the blending amount of the chromatic colorant is 0.001 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the blending amount of the black substance is with respect to 100 parts by mass of the thermoplastic resin.
  • a multilayer sheet comprising a surface layer and an inner layer, wherein the surface layer is at least one selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and amorphous aromatic polyester resins.
  • the card layer according to any one of [1] to [4], wherein the transparent layer is a transparent layer comprising a thermoplastic resin composition and the inner layer is a layer comprising the laser marking resin composition. Multicolor laser marking sheet.
  • the wavelength of the low energy laser light and the high energy The laser marking method whose difference with the wavelength of the laser beam is 100 nm or more.
  • the multicolor coloring laser marking sheet for a card of the present invention includes a sheet made of a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance, and is irradiated with laser light.
  • seat for cards of this invention is excellent in the characteristic of heat-fusability, sheet
  • the laser marking method of the present invention is described as follows: “When the multicolored laser marking sheet for cards of the present invention is irradiated with two or more different wavelengths of laser light, the wavelength of the low energy laser light and the wavelength of the high energy laser light Therefore, it is possible to clearly mark two or more characters, symbols, images, etc. having different color tones.
  • the multicolor coloring laser marking sheet for cards of the present invention is from a laser marking resin composition (hereinafter sometimes referred to as “resin composition”) containing a thermoplastic resin, a chromatic colorant, and a black substance. It is equipped with a sheet. And it is a sheet
  • the thermoplastic resin is at least one selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin. It is a thermoplastic resin.
  • the chromatic colorant includes “at least one skeleton selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. And having an exothermic peak in the range of 360 to 590 ° C. in the differential thermal analysis ”.
  • the black substance is a substance that disappears or changes its color upon receiving laser light.
  • the multicolor coloring laser marking sheet for cards of the present invention has a total thickness of 100 to 300 ⁇ m.
  • Such a multicolor coloring laser marking sheet for a card is “from a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance.
  • the sheet is marked with two or more different colors including white and chromatic colors by irradiating laser light
  • the thermoplastic resin is an acrylic resin, polycarbonate resin, styrene resin
  • the chromatic colorant is a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, or a quinophthalone skeleton
  • At least one skeleton selected from the group consisting of a perylene skeleton and a metal complex skeleton In addition, it has an exothermic peak in the range of 360 to 590 ° C.
  • the black substance is a substance that itself disappears or changes color by receiving laser light ”and“ total thickness is In order to satisfy “100 to 300 ⁇ m”, marking with a laser beam is possible, and it is possible to clearly mark characters, symbols, images, etc. of two or more different colors.
  • seat for cards of this invention is excellent in the characteristic of heat-fusability, sheet
  • the multicolor coloring laser marking sheet for cards according to the present invention “has a sheet made of the above-mentioned laser marking resin composition and has a total thickness of 100 to 300 ⁇ m”, so that characters, symbols, images, etc. of two or more different colors are provided. It can be marked clearly and has excellent properties in heat-fusibility, sheet cutting properties, and sheet formability.
  • the multicolor coloring laser marking sheet for cards of the present invention can be used as an oversheet for cards (plastic cards such as credit cards).
  • the thickness of the sheet of the present invention needs to be 100 to 300 ⁇ m, preferably 100 to 200 ⁇ m, and more preferably 100 to 150 ⁇ m. When the thickness is within the above range, it is possible to clearly mark characters, symbols, images, and the like having two or more different colors. If the sheet thickness is less than 100 ⁇ m, clear characters, symbols, images and the like cannot be obtained. If it exceeds 300 ⁇ m, the regulation of the thickness of the entire card to be satisfied by the card cannot be satisfied. Further, the cutting property is not sufficient, and defects such as burrs and cracks occur when cutting.
  • the color development mechanism of the multicolor laser marking sheet for cards of the present invention is presumed to be based on the following phenomenon.
  • the black material disappears or changes color depending on the energy of the laser light.
  • the color of the material other than the black material appears stronger than the portion where the disappearance, discoloration or the like does not occur.
  • a low-energy laser beam a laser beam having an energy that causes the black material to disappear, but does not cause decomposition of the chromatic colorant, etc.
  • the part irradiated with laser light has a strong influence of the substance derived from the chromatic colorant (for example, the black substance disappears)
  • the color develops to “color derived from a chromatic colorant”.
  • the degree of color change varies depending on the energy of the irradiated laser beam. Therefore, it is considered that two or more different color tones are marked by irradiating two or more laser beams having different energies.
  • the sheet of the present invention is for a plastic card.
  • Plastic cards are classified into various cards according to information handling. For example, there are a card that handles simple information such as a member name and a member number, a magnetic card that records various information such as personal information on a magnetic stripe, and an IC card that writes information on an IC chip.
  • IC cards are classified into contact type IC cards that exchange information with an IC module disposed on the surface thereof, and non-contact type IC cards in which an IC chip and an antenna are disposed inside the card.
  • IC cards are spreading rapidly because they are far superior to magnetic cards in terms of protection of personal information and the like (that is, in terms of security).
  • the dimensions of these cards are specified in ISO / IEC7810 for credit cards, bank cards, and IC cards, and specifically, specified as 54.0 mm long ⁇ 85.6 mm wide ⁇ 0.76 mm thick.
  • the dimensions of magnetic cards such as domestic commuter passes and passnets are defined as 57.5 mm long ⁇ 85.0 mm wide ⁇ 0.25 mm thick.
  • the thickness of the card (excluding the magnetic card) is generally in the range of about 0.76 to 0.83 mm.
  • oversheet (transparent) 100 ⁇ m / core sheet (white) 150 ⁇ m / core sheet (white) 310 ⁇ m / core sheet (white) 150 ⁇ m / oversheet (transparent) 100 ⁇ m is there.
  • oversheet (transparent) 100 ⁇ m / core sheet (white) 120 ⁇ m / inlet sheet (white) 380 ⁇ m / core sheet (white) 120 ⁇ m / oversheet (transparent) 100 ⁇ m is there.
  • the inlet sheet refers to a sheet on which an IC chip and an antenna are arranged.
  • oversheet (transparent) 100 ⁇ m uses an oversheet that can be laser-marked, and the IC card that has improved security by laser marking on this oversheet is often used overseas, especially in Europe and America. Yes. More recently, it has been used in Asia.
  • the IC card is a laminated body composed of 5 to 7 sheets as a basic structure, and the total thickness of the IC card is generally 760 to 830 ⁇ m. Therefore, the thickness of each sheet is generally 50 to 310 ⁇ m.
  • the main performance required for such an IC card or the like is heat resistance, strength, chemical resistance, scratch resistance, and the like.
  • the main performance required for the sheets used in these cards is that they are thin (thickness is about 50 to 310 ⁇ m) and can be manufactured by melt extrusion.
  • these sheets are generally stacked and compression molded (also referred to as “press molding”) (that is, by heating and pressurizing each of the sheets). This is for performing an operation of punching (referred to as “punching”) after producing a card-like laminate by heat-sealing the sheets.
  • the temperature in this compression molding varies depending on the sheet material, but is about 100 to 140 ° C. for polyvinyl chloride resin (PVC resin) and amorphous polyester resin (PETG resin), and 170 to 190 ° C. for polycarbonate resin (PC resin). It is. Therefore, it is required that the sheets are heat-sealed and no separation occurs within the heating temperature range.
  • PVC resin polyvinyl chloride resin
  • PETG resin amorphous polyester resin
  • PC resin polycarbonate resin
  • the card core sheet is printed with fixed information and the like, it is often lightly colored (generally white) and is required to have excellent whiteness. Furthermore, it is required that offset printing, silk screen printing, and inkjet printing are possible. Since the card oversheet constitutes the surface of the card, colorless transparency, surface gloss and scratch resistance (scratch resistance) are required.
  • the sheet is required to have repeated bending / torsion fatigue strength, impact strength strength, etc. as strength properties required for the card.
  • the resin constituting the sheet satisfying the above required performance was limited to PVC resin, PETG resin, PC resin, or polymer alloy composed of PC resin and PETG resin.
  • Thermoplastic resin is at least one selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and amorphous aromatic polyester resins. By using these specific resins, it is possible to obtain a laser marking sheet capable of marking clear characters, symbols, images and the like even when the sheet is thin (100 to 300 ⁇ m).
  • acrylic resins include acrylic resins such as (co) polymers and rubber-reinforced acrylic resins using one or more of (meth) acrylic esters such as polymethyl methacrylate (PMMA). .
  • acrylic resins such as (co) polymers and rubber-reinforced acrylic resins using one or more of (meth) acrylic esters such as polymethyl methacrylate (PMMA).
  • PMMA polymethyl methacrylate
  • acrylic resins it is preferably at least one selected from the group consisting of acrylic rubber and acrylic elastomer reinforced acrylic resin, and a viewpoint that a sheet having good impact resistance, surface hardness, surface gloss, and transparency can be obtained. Therefore, those composed of acrylic rubber and acrylic elastomer reinforced acrylic resin are more preferable.
  • polycarbonate resin examples include aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic-aliphatic polycarbonate resin copolymer, and the like.
  • aromatic polycarbonate resin or an aromatic polycarbonate resin and an amorphous aromatic polyester are used. It is preferably a polymer alloy resin composed of a resin.
  • styrene resin examples include polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer, (meth) acrylic acid ester / styrene copolymer, acrylonitrile / butadiene / styrene (ABS) copolymer resin, and the like.
  • ABS acrylonitrile / butadiene / styrene copolymer resin
  • a transparent acrylonitrile / butadiene / styrene copolymer resin is preferable from the viewpoint of obtaining a sheet having good impact resistance and transparency.
  • Chromatic colorant A chromatic colorant causes decomposition, scattering, and the like by energy higher than the energy that causes the black material to disappear, change color, or the like. Therefore, when irradiated with high-energy laser light (laser light with energy that causes decomposition of the chromatic colorant, etc.), the irradiated part is "color with a reduced color density derived from the chromatic colorant" Or it turns white.
  • the chromatic colorant includes “a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. And having an exothermic peak in the range of 360 to 590 ° C. in the differential thermal analysis ”.
  • the lower limit temperature of the exothermic peak range is more preferably 380 ° C., particularly preferably 400 ° C.
  • the upper limit temperature is more preferably 585 ° C.
  • the exothermic peak temperature is less than the lower limit value, the marking of the color derived from the chromatic colorant becomes unclear when irradiated with low energy laser light.
  • the exothermic peak temperature is higher than the upper limit value, when a high-energy laser beam is irradiated, the marking of the color having a reduced color density derived from the chromatic colorant becomes unclear.
  • the differential thermal analysis can be performed by an apparatus such as “TG-DTA320 (horizontal furnace)” manufactured by Seiko Denshi.
  • the chromatic colorant may be a pigment or a dye as long as it satisfies the above conditions.
  • the color of the chromatic colorant is not particularly limited as long as it is other than black and white, and can be, for example, red, yellow, blue, purple, and green.
  • a pigment or dye having a phthalocyanine skeleton is “blue to green”
  • a pigment or dye having a diketopyrrolopyrrole skeleton is “orange to red”
  • a pigment or dye having a dioxazine skeleton is “purple”
  • a pigment having a quinacridone skeleton Or the dye is “orange to purple”
  • the pigment or dye having a quinophthalone skeleton is “yellow to red”
  • the pigment or dye having a perylene skeleton is “red to purple”
  • the pigment or dye having a metal complex skeleton is “yellow to purple” Is.
  • Chromatic colorant having a phthalocyanine skeleton examples include compounds represented by the following general formula (I).
  • the chromatic colorant having a phthalocyanine skeleton is a pigment or a dye.
  • M is a coordination metal atom or two hydrogen atoms, and R 1 to R 16 are each independently an arbitrary functional group.
  • M is preferably copper (Cu), aluminum (Al), zinc (Zn), tin (Sn) or two hydrogen atoms, copper (Cu), aluminum (Al).
  • zinc (Zn) is more preferable, and copper (Cu) or aluminum (Al) is particularly preferable.
  • M is a metal, you may have ligands, such as a halogen atom and OH.
  • R 1 ⁇ R 16 is a hydrogen atom; a fluorine, chlorine, bromine, halogen atom such as iodine; sulfonic acid amide group (-SO 2 NHR), - SO 3 - ⁇ NH 3
  • R + wherein R is an alkyl group having 1 to 20 carbon atoms
  • R is an alkyl group having 1 to 20 carbon atoms
  • R is an alkyl group having 1 to 20 carbon atoms
  • R is an alkyl group having 1 to 20 carbon atoms
  • R is an alkyl group having 1 to 20 carbon atoms
  • a copper phthalocyanine pigment (compound represented by the following formula (II)) in which M in the general formula (I) is Cu and R 1 to R 16 are hydrogen atoms.
  • the crystal of the copper phthalocyanine pigment may be ⁇ type or ⁇ type.
  • the average secondary particle diameter of the ⁇ -type copper phthalocyanine pigment is generally more than 20 ⁇ m and not more than 30 ⁇ m, but in the present invention, the upper limit is preferably 20 ⁇ m, more preferably 10 ⁇ m. The lower limit is preferably 1 ⁇ m.
  • the average secondary particle size is a value measured by a laser scattering method, and can be measured by a laser scattering method particle size distribution measuring device or the like.
  • R 1 to R 16 are each independently a hydrogen atom or a halogen atom.
  • a halogen atom a chlorine atom and a bromine atom are preferable.
  • (3) is M in the above general formula (I) is Cu, R 1 ⁇ 4 ⁇ 8 pieces of R 16 (preferably four), the above-mentioned sulfonic acid amide group or -SO 3 - ⁇ NH 3
  • a solvent-soluble copper phthalocyanine dye which is R + , preferably a sulfonic acid amide.
  • a particularly preferable solvent-soluble copper phthalocyanine dye is a compound represented by the following general formula (III).
  • each R is independently an alkyl group having 1 to 20 carbon atoms.
  • each R is particularly preferably an alkyl group having 4 to 8 carbon atoms.
  • Al preferably has —OH or —Cl as a ligand, and more preferably has —OH.
  • a particularly preferred aluminum phthalocyanine pigment is a compound represented by the following formula (IV).
  • This zinc phthalocyanine pigment is a compound represented by the following general formula (V).
  • R 1 to R 16 are each independently a hydrogen atom or a halogen atom.
  • zinc phthalocyanine pigment those in which R 1 to R 16 in the general formula (V) are all hydrogen atoms are particularly preferable.
  • Chromatic colorant having a diketopyrrolopyrrole skeleton examples include compounds represented by the following general formula (VI).
  • the chromatic colorant having a diketopyrrolopyrrole skeleton is usually a pigment.
  • Ar and Ar ′ are each independently an aromatic ring which may have a substituent.
  • the aromatic ring constituting Ar and Ar ′ may be any ring as long as it has aromaticity, but is usually an aromatic ring consisting of a 5- or 6-membered monocyclic ring or a 2-6 condensed ring. . Hetero atoms such as O, S, and N may be included.
  • a 6-membered ring is preferable, a 6-membered monocycle is more preferable, and a benzene ring is particularly preferable.
  • the aromatic ring preferably has a substituent, and preferred substituents include a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, an amino group, —NHCOR ′, —COR. 'And -COOR' (where R 'is an alkyl group having 1 to 12 carbon atoms or a (hetero) aryl group having 12 or less carbon atoms). Of these, a halogen atom is preferable, and a chlorine atom is particularly preferable.
  • Chromatic colorant having a dioxazine skeleton examples include compounds containing a skeleton represented by the following formula (VII).
  • the chromatic colorant having a dioxazine skeleton is usually a pigment.
  • the chromatic colorant containing the skeleton represented by the general formula (VII) may be a compound having a substituent or a compound having no substituent, but is a compound having a substituent. It is preferable.
  • the compound represented by the following general formula (VIII) can be mentioned, for example.
  • R 17 to R 22 are each independently a halogen atom, —NHCOR ′ (where R ′ is an alkyl group having 1 to 12 carbon atoms, or (hetero An aryl group), an alkyl group having 1 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms.)
  • the chromatic colorant having a dioxazine skeleton particularly preferably has substituents R 17 and R 18 in the general formula (VIII).
  • R 17 and R 18 are preferably a halogen atom or —NHCOR ′, more preferably —NHCOR ′.
  • R 19 to R 22 are preferably a halogen atom, —NHCOR ′, an alkyl group having 1 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms, and more preferably an alkoxyl group having 1 to 12 carbon atoms or —NHCOR ′. preferable.
  • Chromatic colorant having quinacridone skeleton examples include compounds containing a skeleton represented by the following formula (IX).
  • the chromatic colorant having a quinacridone skeleton is usually a pigment.
  • the chromatic colorant containing a skeleton represented by the above general formula (IX) may be a compound having a substituent or a compound having no substituent.
  • the compound represented by the following general formula (X) can be mentioned, for example.
  • Examples of the substituent in the general formula (X) include a halogen atom or an alkyl group having 1 to 12 carbon atoms.
  • Chromatic colorant having a quinophthalone skeleton examples include compounds containing a skeleton represented by the following general formula (XI).
  • the chromatic colorant having a quinophthalone skeleton is a pigment or a dye.
  • the chromatic colorant containing a skeleton represented by the general formula (XI) may be a compound having a substituent or a compound having no substituent.
  • the compound represented by the following general formula (XII) can be mentioned, for example.
  • R 27 to R 30 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms or a group containing a ring structure.
  • R 31 represents a hydrogen atom, a halogen atom, an alkoxyl group having 1 to 12 carbon atoms, an aryloxy group having 5 to 12 carbon atoms, a heteroaryloxy group having 1 to 12 carbon atoms, or an alkylthio having 1 to 12 carbon atoms.
  • R 32 is a hydrogen atom or a hydroxyl group
  • R 33 to R 36 are each independently a hydrogen atom, A halogen atom, a carboxyl group, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, —COOR ′ or —CONR ′ 2 (where R ′ is an alkyl group having 1 to 12 carbon atoms) Or a (hetero) aryl group having 12 or less carbon atoms.)
  • R 28 and R 29 , R 31 and R 32 , R 33 and R 34 , R 34 and R 35 , and R 35 And R 36 may be connected to each other to form a ring.
  • X 1 to X 4 are each independently a hydrogen atom or a halogen atom.
  • the chromatic colorant in the case where R 27 in the general formula (XII) is a substituent represented by the general formula (XIII) is a compound represented by the following general formula (XIV).
  • R 28 to R 36 are the same as described above, and X 5 to X 8 are each independently a hydrogen atom or a halogen atom.
  • R 28 to R 30 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxyl having 1 to 12 carbon atoms.
  • R 31 and R 32 are hydrogen atoms and R 33 to R 36 are halogen atoms is preferred.
  • the chromatic colorant is such that R 28 and R 29 are hydrogen atoms or halogen atoms, R 30 to R 32 are hydrogen atoms, R 33 to R 36 are halogen atoms, and X 5 to A compound in which X 8 is a halogen atom.
  • the chromatic colorant having a quinophthalone skeleton represented by the above general formula (XIV) is usually a pigment.
  • Particularly preferred chromatic colorants are those in which R 28 and R 29 are hydrogen atoms, R 30 to R 32 are hydrogen atoms, R 33 to R 36 are halogen atoms (X 9 to X 12 ), and , X 5 to X 8 are a halogen atom (compound represented by the following general formula (XV)).
  • X 5 to X 12 are each independently a halogen atom.
  • R 27 and R 30 are hydrogen atoms
  • R 28 and R 29 are halogen atoms, alkyl groups having 1 to 12 carbon atoms or alkoxyl groups having 1 to 12 carbon atoms.
  • Compound represented by the following general formula (XVI) is usually a dye.
  • R 28 and R 29 are each independently a halogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms
  • R 31 is a hydrogen atom
  • R 32 is a hydrogen atom or a hydroxyl group
  • R 33 to R 36 are each independently a hydrogen atom, a halogen atom, a carboxyl group, a carbon number of 1 to 12 alkyl group, an alkoxyl group having 1 to 12 carbon atoms, -COOR ', - CONR' 2
  • Chromatic colorant having a perylene skeleton examples include compounds represented by the following general formula (XXI).
  • the chromatic colorant having a perylene skeleton is usually a pigment.
  • R 47 and R 48 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 5 to 12 carbon atoms, or a heteroaryl group having 1 to 12 carbon atoms. , —COR ′ or —COOR ′ (where R ′ is an alkyl group having 1 to 12 carbon atoms and a (hetero) aryl group having 12 or less carbon atoms).
  • R 47 and R 48 are alkyl groups having 1 to 12 carbon atoms are preferable, and those in which R 47 and R 48 are alkyl groups having 1 to 3 carbon atoms are more preferable.
  • Chromatic colorant having metal complex skeleton examples include compounds in which metal ions are coordinated to an organic dye skeleton.
  • examples of the organic dye skeleton include those having an azo group and those having an azomethine group. And these may have a hydroxyl group, an amino group, an imino group, etc. in the ortho position or peri position of an azo group or an azomethine group.
  • Examples of the metal ion include ions of copper, nickel, cobalt, zinc and the like.
  • the content of the chromatic colorant is preferably 0.001 to 3.0 parts by mass, more preferably 0.002 to 1.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Particularly preferred is 0.005 to 0.8 part by mass.
  • marking of a color derived from the chromatic colorant is difficult to be performed, and the contrast between the laser beam irradiation part and the cloth part may be reduced, and the visibility may be reduced. is there.
  • it exceeds 3.0 parts by mass white marking is difficult to be performed, and the contrast between the laser beam irradiation part and the cloth part may be lowered, and the visibility may be lowered.
  • the black material is not particularly limited as long as it is a material that itself disappears or changes color by receiving the laser beam. That is, if the laser beam energy is extinguished or discolored by the energy of the laser beam, and the color of the laser beam irradiation part in the sheet of the present invention becomes a color in which the influence of the color of the substance other than the black substance appears strongly. Any black material may be used.
  • annihilation means that the black substance does not exist due to vaporization, volatilization, or decomposition
  • discoloration means that at least a part of the substance has a color different from that before light reception due to decomposition or the like (preferably White) (for example, from black to light blue or white).
  • black in the black substance means a dark color including black, for example, red-black (brown-black), green-black, blue-black, purple-black, gray -Black colors such as black are included.
  • the black material the following are preferable. That is, when a black test piece consisting only of 100 parts by mass of polymethyl methacrylate and 0.1 part by mass of black material is irradiated with laser light having an output of 31 A, a frequency of 5.5 kHz, and a wavelength of 1,064 nm, Are preferably white or a color other than black.
  • the black material may be an inorganic material or an organic material. And it may be a pigment or a dye. Furthermore, unless the effects of the present invention are impaired, compounds or minerals not included in these may be included.
  • the black substance include inorganic pigments such as carbon black, titanium black, and black iron oxide, graphite, and activated carbon. You may use these individually or in combination of 2 or more types. Among these, those containing as a main component a substance (carbon black, titanium black, black iron oxide) that is easily foamed by laser light irradiation are preferable, and those containing carbon black as the main component are more preferable.
  • carbon black examples include acetylene black, channel black, and furnace black.
  • the average particle size (primary particle size) of carbon black is preferably 0.1 to 1000 nm, more preferably 1 to 500 nm, and particularly preferably 5 to 100 nm.
  • the nitrogen adsorption specific surface area of carbon black is preferably 1 to 10000 m 2 / g, more preferably 5 to 5000 m 2 / g, and particularly preferably 10 to 2000 m 2 / g.
  • Carbon black absorbs laser beam energy and vaporizes. Therefore, the influence of the color derived from carbon black (black or dark color) is reduced or eliminated in the laser light irradiation part, and the color is generated in “color derived from components other than carbon black”.
  • Titanium black is generally obtained by reducing titanium dioxide. Titanium black changes to white titanium dioxide by laser light irradiation. For this reason, the laser beam irradiating portion has a small or no black color derived from titanium black and develops white color.
  • the average particle size of titanium black is preferably 0.01 to 2 ⁇ m, more preferably 0.05 to 1.5 ⁇ m, and particularly preferably 0.1 to 1 ⁇ m.
  • Black iron oxide is generally represented by Fe 3 O 4 or FeO ⁇ Fe 2 O 3 . Black iron oxide turns reddish white by laser light irradiation. For this reason, the laser beam irradiating portion has a small or no black level and develops a white color.
  • the average particle diameter of black iron oxide is preferably 0.01 to 2 ⁇ m, more preferably 0.05 to 1.5 ⁇ m, and particularly preferably 0.1 to 1 ⁇ m.
  • the content of the black substance is preferably 0.01 to 2.0 parts by weight, more preferably 0.03 to 1.0 parts by weight, with respect to 100 parts by weight of the thermoplastic resin. It is particularly preferred that the amount be from 05 to 0.8 parts by mass.
  • the content of the black material is less than 0.01 parts by mass, the color of the fabric part of the sheet of the present invention becomes light (that is, it does not become a blackish dark color), and the fabric part and the laser beam irradiation part There is a possibility that the contrast is small and the visibility is poor.
  • it exceeds 2.0 parts by mass the laser light irradiation part is darkened, the contrast between the fabric part and the laser light irradiation part is lowered, and the visibility may be lowered.
  • the resin composition may further contain a white material.
  • the white material is preferably one that is not easily affected by the reception of laser light. By including such a white substance, the brightness of the ground color in the sheet of the present invention can be adjusted, and the whiteness of the color developed by laser marking can be improved.
  • the white substance is preferably at least one selected from the group consisting of white dyes and white pigments.
  • the white dye and the white pigment are not particularly limited as long as they do not hinder color development by laser marking, and examples thereof include titanium dioxide, zinc oxide, zinc sulfide, and barium sulfate. You may use these individually or in combination of 2 or more types.
  • the average particle size of the white substance is preferably 0.05 to 3.0 ⁇ m, and more preferably 0.1 to 2.0 ⁇ m.
  • the content of the white substance is preferably 0.001 to 1.0 part by weight, more preferably 0.01 to 0.5 part by weight, with respect to 100 parts by weight of the thermoplastic resin. Particularly preferred is 0.02 to 0.1 parts by mass. If the content of the white substance is less than 0.001 part by mass, the effect of blending the white substance may not be obtained. On the other hand, if it exceeds 1.0 part by mass, the contrast between the fabric part and the laser beam irradiation part may not be obtained satisfactorily.
  • the resin composition may further contain additives such as UV absorbers, antioxidants, antistatic agents, hydrophilicity imparting agents such as surfactants, and lubricants.
  • additives such as UV absorbers, antioxidants, antistatic agents, hydrophilicity imparting agents such as surfactants, and lubricants.
  • a hydrophilicity imparting agent such as an antistatic agent or a surfactant
  • charging during sheet conveyance can be suppressed and the handling property of the sheet can be improved.
  • printability can be improved by preventing charging during offset printing and improving compatibility with printing ink.
  • the ultraviolet absorber examples include benzophenones, benzotriazoles, salicylic acid esters, metal complex salts, and the like. These may be used alone or in combination of two or more.
  • the content of the ultraviolet absorber is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • antioxidants examples include hindered amines, hydroquinones, hindered phenols, and sulfur-containing compounds. These may be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • antistatic agent examples include a low molecular antistatic agent and a high molecular antistatic agent. These may be ion conduction type or electron conduction type.
  • low molecular weight antistatic agent examples include an anionic antistatic agent; a cationic antistatic agent; a nonionic antistatic agent; an amphoteric antistatic agent; a complex compound; a metal such as alkoxysilane, alkoxytitanium, and alkoxyzirconium. Examples thereof include alkoxides and derivatives thereof; coated silica, phosphates, phosphates, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • polymer type antistatic agent examples include a vinyl copolymer having a sulfonic acid metal salt in the molecule, an alkylsulfonic acid metal salt, an alkylbenzenesulfonic acid metal salt, and betaine. Furthermore, a polyamide elastomer, a polyester elastomer, etc. can also be used. These can be used individually by 1 type or in combination of 2 or more types.
  • the content of the antistatic agent is preferably 0.5 to 30 parts by mass, more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • Examples of the lubricant include calcium stearate, fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, oxy fatty acid, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol.
  • Examples include esters, aliphatic alcohols, polyhydric alcohols, polyglycols, polyglycerols, metal soaps, silicones, and modified silicones. These may be used alone or in combination of two or more.
  • the content of the lubricant is preferably 0.1 to 5.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and 0.03 to 5.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the amount is more preferably 1.0 part by weight, and particularly preferably 0.05 to 0.3 part by weight.
  • the multicolor coloring laser marking sheet for a card of the present invention may be a single layer sheet or a multilayer sheet having a surface layer and an inner layer.
  • the single layer sheet has an advantage that the sheet can be manufactured at a relatively low cost because melt extrusion can be performed by one extruder and a single layer T die.
  • the core layer (inner layer) is a laser marking layer
  • the skin layer (surface layer) is a transparent protective layer.
  • a protective layer can be formed on the laser marking layer by providing a skin layer. Therefore, depending on the material of the protective layer, there are advantages that the appearance is good, scratch resistance, chemical resistance, and printability when printing on the outermost layer is improved.
  • the surface layer includes at least one thermoplastic resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin. It is preferable that the layer is a transparent layer (sheet) made of a product, and the inner layer is a layer (sheet) made of the laser marking resin composition.
  • the ratio of the thickness of the inner layer to the total thickness of the multilayer sheet is preferably 30 to 85%, more preferably 50 to 85%, and further preferably 60 to 80%. preferable.
  • the ratio of the thickness is within the above range, characters, symbols, images and the like having two or more different color tones become clearer.
  • the thickness ratio of the core layer is less than 30%, clear characters / images may not be obtained. If it exceeds 85%, the thickness of the skin layers that are both outer layers of the three-layer sheet becomes too thin, and it may be difficult to control the thickness of each skin layer. Therefore, a three-layer sheet with a uniform thickness of each skin layer may not be obtained. Moreover, there is a possibility that a clear character / image cannot be obtained.
  • the average surface roughness (Rz) of the multicolor laser marking sheet for cards of the present invention is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and particularly preferably 3 to 6 ⁇ m.
  • the average surface roughness (Rz) is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and particularly preferably 3 to 6 ⁇ m.
  • the average surface roughness (Rz) can be measured by various surface roughness measuring instruments.
  • the average surface roughness (Rz) is a contact surface roughness meter (manufactured by TAYLOR HOBSON). It is a value measured by “FORM TALYSURF SERIES II”).
  • the L value in the lightness measurement of the fabric color (color of the fabric portion) of the multicolor coloring laser marking sheet for cards of the present invention is preferably less than 50, and more preferably less than 30.
  • the laser light irradiation portion is lightly colored in the sheet of the present invention, and the contrast between the laser irradiation portion and the fabric portion is good. If the contrast is good in this way, characters, symbols, images, etc. are marked more clearly.
  • “L value in lightness measurement of fabric color” is a value measured by a colorimeter.
  • the whiteness of the laser-marked portion of the multicolor coloring laser marking sheet for cards of the present invention is preferably 20 or more, and more preferably 30 or more.
  • the “laser-marked portion” refers to a portion where a change (disappearance or the like) of a black material has occurred due to laser light irradiation.
  • “whiteness” is a value measured according to JIS K7105.
  • the contrast between the fabric color of the multicolor coloring laser marking sheet for cards of the present invention and the color of the laser-marked portion is preferably 2 or more, and more preferably 3 or more.
  • the contrast is in the above range, characters, symbols, images and the like are marked more clearly, and thus visibility is further improved.
  • the “contrast between the fabric color and the color of the laser-marked portion” in this specification is a value measured by a luminance meter.
  • the multicolor coloring laser marking sheet for cards of the present invention is irradiated with laser light of the same wavelength under different irradiation conditions or by irradiating laser light of different wavelengths. This is a method of marking in two or more different color tones by irradiating a laser beam so that the energy amount to the irradiated object (the sheet) at that time becomes two or more different energy amounts.
  • the wavelength of the low energy laser light, the wavelength of the high energy laser light, The difference is 100 nm or more. That is, in the method of laser marking by irradiating one laser beam A and another laser beam B, the laser beam A and the laser beam B have different wavelengths, and the difference between these wavelengths is 100 nm or more. According to such a method, it is possible to clearly mark characters, symbols, images, etc. having two or more different colors on the multicolor coloring laser marking sheet for cards of the present invention.
  • the “energy” of the laser beam depends on the irradiation condition of the laser beam. Specifically, by changing the type, wavelength, pulse width, frequency, output, irradiation time, irradiation area, distance and angle from the light source to the molded product, irradiation method, etc. Laser beams with different energy amounts can be obtained. More specifically, the amount of energy can be made different when laser light having different wavelengths is used, or when laser light having the same wavelength is used and other irradiation conditions such as irradiation time are varied.
  • the amount of energy given to the irradiated object is different between the case of one irradiation and the case of two or more irradiations, and the latter with a longer irradiation time is “higher energy”.
  • the laser beam is irradiated so that the amount of energy with respect to the object to be irradiated becomes two or more different energy amounts by irradiating laser beams of the same wavelength under different irradiation conditions or by irradiating laser beams of different wavelengths.
  • “Irradiating light” means irradiating two or more laser beams having different degrees of damage to the irradiated object.
  • the damage given to the irradiated object is different between the case where the irradiation is performed once and the case where the irradiation is performed in a plurality of times. Included in “Laser light”. In other words, even if the total energy to be applied is the same, if the irradiated object receives more damage than irradiated twice, the former is set to “high energy”.
  • the laser light applied to the multicolor coloring laser marking sheet for card of the present invention is not irradiated unless the performance of the multicolor coloring laser marking sheet for card of the present invention is significantly impaired. It may be performed under conditions.
  • the irradiation method may be either a scanning method or a mask method, and two or more laser beams having different energies may be irradiated simultaneously or may be irradiated one by one.
  • a laser beam irradiation device a general laser marking device or the like can be used as a laser beam irradiation device.
  • This device is usually equipped with a laser oscillator, laser modulator, handling unit, controller, etc., and laser light oscillated from the laser oscillator is pulse-modulated by the laser modulator and irradiated to the surface of the molded product. Marking is formed.
  • laser marking two or more laser beams having different energies may be emitted from one device, or a plurality of devices may be used.
  • a laser marking system “RSM50D type”, “RSM30D type” manufactured by Roffin Basel, Inc. can be used as an apparatus capable of two-wavelength laser marking.
  • the laser beam may be any of gas, solid, semiconductor, dye, excimer and free electron, but preferably has a wavelength in the range of 100 to 2,000 nm.
  • the numbers indicating the “wavelength” of laser light such as 1,064 nm and 532 nm, all mean the center wavelength, and normally include an error of ⁇ 3%.
  • Examples of the gas laser include a helium / neon laser, a rare gas ion laser, a helium / cadmium laser, a metal vapor laser, and a carbon dioxide laser.
  • Examples of the solid laser include a ruby laser, a neodymium laser, and a wavelength tunable solid laser.
  • the semiconductor laser may be inorganic or organic, and examples of the inorganic semiconductor laser include GaAs / GaAlAs, InGaAs, and InP. Further, a semiconductor laser-excited solid laser such as Nd: YAG, Nd: YVO 4 , or Nd: YLF can also be used.
  • the above laser beams may be used alone or in combination of two or more.
  • the portion where the black material change (disappearance, discoloration, etc.) occurs is the color of the material other than the black material.
  • the portion where the chromatic colorant is changed becomes “a color with a reduced color density derived from the chromatic colorant” or white.
  • the black material vaporizes, volatilizes, disappears due to complete decomposition, or at least a part of the black material stays and discoloration that changes to a color different from the original black occurs due to decomposition or the like.
  • the laser beam irradiating unit develops a color derived from the chromatic colorant.
  • the laser beam irradiating portion develops white color or “a color having a reduced color density derived from the chromatic colorant”.
  • FIGS. 1 and 2 An example of a coloring method by laser light irradiation will be briefly described with reference to FIGS. 1 and 2, but the laser marking method of the present invention is not limited to these.
  • FIG. 1 is a schematic view showing a cross section of an embodiment of a multicolor coloring laser marking sheet for cards of the present invention.
  • a laser beam of “color derived from a chromatic colorant” having a large area can be obtained by irradiating the multicolor coloring laser marking sheet 101 for a card with a low-energy laser beam. An irradiation part is formed. Thereafter, a laser beam is further irradiated to a part of the laser beam irradiation unit.
  • a part of the laser beam irradiation part of the color derived from the chromatic colorant is marked with white or a color having a reduced density of “color derived from the chromatic colorant”. be able to.
  • FIG. 2 includes a laser light irradiation unit 11 having a color with a reduced density of white or “color derived from a chromatic colorant” inside the laser light irradiation unit 12 of “color derived from a chromatic colorant”. It is an example which shows the multicolor coloring laser marking sheet 101 for cards.
  • FIG. 2 is a schematic view showing a cross section of another embodiment of the multicolor coloring laser marking sheet for cards of the present invention.
  • Laser marking in which the irradiation unit 11 is adjacent can be realized.
  • the energy of the laser light irradiated for the second time may be the same as or different from the first time, and is not particularly limited.
  • the laser beam is remarkably generated.
  • a high energy laser beam is a laser beam which remarkably reduces the density of the color derived from the chromatic colorant.
  • a sheet containing only one chromatic colorant may be used, or a sheet containing two or more chromatic colorants may be used.
  • the latter is preferable from the viewpoint that a clearer marking can be easily formed.
  • the sheet of the present invention can change the color of the marking depending on the energy of the irradiated laser beam.
  • Specific examples include a method of obtaining markings of three or more colors by irradiation of three or more laser beams having different energies. More specifically, the method of irradiating a total of three types of laser light, that is, two types of energy having different degrees of change of the black material and energy of decreasing the color density derived from the chromatic colorant, and the black material changes. Examples include a method of irradiating a total of three types of laser beams of energy and two types of energy having different degrees of change in the chromatic colorant.
  • a part of the black material is extinguished or discolored to make the color derived from the black material lighter.
  • the color can be changed to “dark red”, then “red” by irradiation with high-energy laser light, and then colored “white” or “light red” by irradiation with higher-energy laser light. In this way, shading can be formed.
  • a case where a composition containing two kinds of chromatic colorants is colored in three colors for example, a case where chromatic colorants of red and blue are used will be described.
  • the black material is extinguished or discolored, and the color derived from the black material is reduced to “purple, which is a mixed color of red and blue”, and then the high-energy laser light is irradiated.
  • a laser marking having a desired color can be obtained by appropriately selecting the irradiation condition of the laser light and the chromatic colorant.
  • a simple method for obtaining laser beams having different energies is to use laser beams having different wavelengths.
  • the difference in wavelength of each laser beam is preferably 100 nm or more, more preferably 200 nm or more, and particularly preferably 500 nm or more.
  • the upper limit is usually 1,500 nm.
  • a wavelength of 1,064 nm it is preferable to use laser light and laser light having a wavelength of 532 nm.
  • a color derived from a chromatic colorant is developed by irradiation with a laser beam having a wavelength of 1,064 nm, and white or “a color having a reduced color density derived from a chromatic colorant” by irradiation with a laser beam having a wavelength of 532 nm.
  • a clear marking can be formed.
  • the “color derived from a chromatic colorant” mainly refers to a color obtained by the disappearance, discoloration, etc. of a black substance by laser light irradiation.
  • the color of the chromatic colorant itself hereinafter also simply referred to as “colorant's original color”
  • Black color of the original color of the colorant (mixed color of the original colorant and the color of the black material, mixed color of the original colorant and the color changed from the black material)
  • a color having a reduced color density derived from a chromatic colorant refers to a color having a reduced density of the above-mentioned “color derived from a chromatic colorant”. This color is mainly obtained by changing the chromatic colorant by irradiation with laser light. For example, the influence of the color of the chromatic colorant is reduced by the decomposition or scattering of the chromatic colorant. The color which appears by this, the color etc. which the chromatic colorant discolored and the color tone changed are included.
  • the “color having a reduced color density derived from the chromatic colorant” is more preferable as it is closer to white because it is easier to distinguish from the “color derived from the chromatic colorant” described above.
  • “white” usually includes mainly the color of the thermoplastic resin itself contained in the sheet of the present invention, and includes not only pure white but also white-based colors mixed with other colors.
  • titanium black is included as a black substance, the color derived from titanium dioxide or the color of the thermoplastic resin after being changed to titanium dioxide by laser light irradiation.
  • a mixed color, a color derived from a white material blended as necessary, or a mixed color of this color and the color of the thermoplastic resin are included.
  • the thermoplastic resin contained in the sheet of the present invention is easily foamed by the reception of laser light, the color of the irradiated portion by the high-energy laser light becomes higher in whiteness.
  • the whiteness of the above “white” can be evaluated according to JIS K7105.
  • Whiteness means the degree of whiteness of a color.
  • the whiteness can also be evaluated based on the reflectance when the object is irradiated with a certain amount of light.
  • the reflectance can be measured with a hunter whiteness meter or the like. Here, the reflectance varies depending on the type of light to be irradiated (wavelength or the like). In the case of a hunter whiteness meter, measurement is performed with blue light that is the three primary colors of light.
  • the whiteness (%) of the white marking obtained in the sheet of the present invention can also be expressed as a ratio of the intensity of magnesium oxide to the reflected light.
  • the whiteness (%) in this case is preferably 55 to 100%, more preferably 60 to 100%, still more preferably 70 to 100%, and particularly preferably 80 to 100%.
  • the white irradiation portion in the sheet of the present invention may be white as long as it is visible to the human eye even if the whiteness is low.
  • ⁇ E1 is the Lab value (L1: brightness, a1: redness, b1: yellowness) of the irradiated part when the sheet of the present invention is irradiated with high energy laser light (for example, laser light with a wavelength of 532 nm), and Except for not containing a chromatic colorant, the Lab value (L2; brightness, a2) of the irradiated portion when the same sheet as the sheet of the present invention is irradiated with low energy laser light (for example, laser light having a wavelength of 1064 nm) ; Redness, b2; yellowness), a value calculated by the formula (1).
  • ⁇ E2 calculated by the following formula (2) is preferably a lower limit of 3, more preferably 3.5, particularly from the viewpoint that the color tone difference of each irradiation part can be clarified.
  • Preferably it is 4.
  • the upper limit is usually 50.
  • ⁇ E2 ⁇ ⁇ (L1-L3) 2 + (a1-a3) 2 + (b1-b3) 2 ⁇
  • ⁇ E2 is the Lab value (L1; brightness, a1; redness, b1; yellowness) of the irradiated part when the sheet of the present invention is irradiated with high energy laser light (for example, laser light with a wavelength of 532 nm), and Based on the Lab value (L3: brightness, a3: redness, b3: yellowness) of the irradiated part when the sheet of the present invention is irradiated with low energy laser light (for example, laser light having a wavelength of 1,064 nm). This is a value calculated by (2).
  • the Lab value is Richard S., known as a numerical expression of color.
  • L. by Hunter. a. b Indicates the value of the color system. According to such a Lab value, a difference due to visual sensation can be eliminated.
  • the Lab value is obtained by measuring the target color tone with a colorimeter and then converting the color of the laser light irradiated part into lightness (L) and hue (a, b) and plotting it on a graph as shown in FIG. Is a numerical value.
  • a color difference meter is an instrument that measures various quantities for displaying color, and measures the spectral distribution of light or the spectral reflectance (transmittance) of an object.
  • the lightness (L) is defined by a numerical value in the range of 0 to 100 on the vertical axis shown on the left, and the larger the value of L, the brighter.
  • a is a scale on the left and right in the graph, and indicates that the degree of red is strong on the (+) side and the degree of green is strong on the ( ⁇ ) side.
  • b is an upper and lower scale in the graph, indicating that the degree of yellow is strong on the (+) side and the degree of blue is strong on the ( ⁇ ) side.
  • FIG. 3 is a diagram illustrating a color solid of the Lab color system.
  • Exothermic peak temperature The exothermic peak temperature of the chromatic colorant was measured by differential thermal analysis. As a measuring device, “TG-DTA320 type (horizontal furnace)” manufactured by Seiko Electronics Co., Ltd. was used.
  • Formula (XXII) represents a ⁇ -type copper phthalocyanine pigment
  • Formula (XXIV) represents an aluminum phthalocyanine pigment
  • Formula (XXV) represents a diketopyrrolopyrrole pigment
  • Formula (XXVI) represents a dioxazine pigment.
  • Formula (XXVII) represents a quinacridone pigment
  • Formula (XXVIII) represents a quinophthalone pigment
  • Formula (XXIX) represents a perylene pigment
  • Formula (XXX) represents a metal complex pigment
  • Formula (XXXI) Represents an anthraquinone dye
  • formula (XXXII) represents a perinone dye
  • formula (XXXIII) represents an iron phthalocyanine pigment
  • formula (XXXIV) represents perylene black.
  • Card fabric color The fabric color of the laser marking sheet of the produced card was evaluated by the following criteria after measuring the brightness with a colorimeter and calculating the L value of the colorimeter. The case where the L value was less than 30 was “A”, the case where the L value was 30 or more and less than 50 was “B”, and the case where the L value was 50 or more was “C”. The lightness was measured using a trade name “Color-Eye 7000A” manufactured by Gretag Machbeth.
  • Laser color development (chromatic color): For laser color development, a laser beam having a wavelength of 1,064 nm was used using “Laser Marker RMS103D” and “Power Line [E / SHG type]” manufactured by Roffin Basel. Visual evaluation of the color developability of the irradiated part (color developing part) after laser light irradiation was performed according to the following criteria. “A” is used when “the same color as the used chromatic colorant can be confirmed”, and “B” is used when “slightly inferior chromatic color is viable but practical”. When it is a color different from the chromatic colorant and is inferior in vividness and difficult to be practically used, “C” is given.
  • Whiteness of laser coloring portion The whiteness of the colored portion that developed white (the portion colored by laser light irradiation) was measured according to JIS K7105, and the measurement results were evaluated according to the following criteria. The case where the whiteness was 30 or more was “A”, the case where the whiteness was 20 or more and less than 30 was “B”, and the case where the whiteness was less than 20 was “C”. In addition, the laser beam irradiation was performed using “Nd: YVO 4 laser RMS103D laser marker” manufactured by Roffin Sinar. In Tables 2 to 5, “Laser Colorability (White)” is shown.
  • Heat fusion property The card-like laminate is heated and pressurized (0.1 to 1.0 MPa) at 160 to 180 ° C. using a vacuum press. Thereafter, the adhesion between the oversheet and the core sheet was evaluated according to the following criteria. The case where “peeling was not observed” was designated as “A”, the case where “slightly exfoliation was observed” was designated as “B”, and the case where “peeling was observed” was designated as “C”.
  • Sheet cutting property After the sheet was cut to a predetermined size, the cut sheet was observed, and the cutting property was evaluated according to the following criteria. “A” indicates that there is no problem (no defects such as burrs or cracks are observed), and “B” indicates that “burrs occur on the cut end face”. “C” is defined as the case where a malfunction such as the occurrence of the problem cannot be put into practical use.
  • Sheet formability A sheet having a predetermined thickness was formed and observed, and whether or not a sheet having a uniform thickness was formed was evaluated according to the following criteria. When “no problem (a sheet having a uniform thickness) is obtained”, “A” is set, and when “the thickness variation is slightly large” is set “B”, “a thickness variation is large or a smooth sheet is obtained. “C” was assigned to the case where it was not practical.
  • Sheet transportability After the sheets are cut to a predetermined size, 200 to 300 sheets are stacked and packed and stored. Thereafter, in the step of heating and laminating the card-like laminate, this packaging is unpacked and the stacked sheets are conveyed one by one to a vacuum press. In this case, the sheet transportability was evaluated according to the following criteria. “A” indicates that “there is no problem in taking out and conveying the sheet”, and “B” indicates that “the sheet is slightly difficult to take out but is practical”, and “the sheets are stuck together and taken out one by one. The “difficult” case was designated as “C”.
  • Example 1 First, 100 parts by mass of an acrylic resin composed of 30% by mass of a product name “Acripet MF (standard grade, manufactured by Mitsubishi Rayon Co.)” and 70% by mass of a product name “Acrypet VRL40 (impact resistant grade, manufactured by Mitsubishi Rayon Co., Ltd.)” In addition, 0.2 part by mass of ⁇ -type copper phthalocyanine pigment and 0.1 part by mass of carbon black “# 45 (manufactured by Mitsubishi Chemical Corporation)” are blended as a chromatic colorant (1), and matted by an extruder with a T-die. While processing, a black sheet single layer sheet A (multicolored laser marking sheet for card) was produced. The single-layer sheet A had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • Rz average surface roughness
  • an amorphous polyester resin (trade name “EASTAR Copolyester 6763”, manufactured by Eastman Chemical Co., Ltd.) and 60 parts by mass of an aromatic polycarbonate resin (trade name “Taflon A2200 (produced by Idemitsu Kosan Co., Ltd.)” 20 parts by weight of titanium oxide “CR-60-2 (manufactured by Ishihara Sangyo Co., Ltd.)” and 0.2 part by weight of fatty acid monoglyceride as a lubricant were blended, and a sheet (white single-layer sheet Q) was processed with a mat using an extruder with a T-die.
  • the white monolayer sheet Q had a sheet thickness of 250 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.6 ⁇ m.
  • each sheet is laminated so that the monolayer sheet A, the white monolayer sheet Q, the white monolayer sheet Q, and the monolayer sheet A are laminated, and the card-like laminate is heated and pressed by a vacuum press.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 2 A single-layer sheet B (multi-color coloring laser marking for card) in the same manner as in Example 1 except that the aluminum phthalocyanine pigment as the chromatic colorant (2) was used instead of the chromatic colorant (1).
  • the single layer sheet B had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.8 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet B, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet B.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 3 A single-layer sheet C (multicolor coloring for cards) in the same manner as in Example 1 except that the diketopyrrolopyrrole pigment, which is the chromatic colorant (3), was used instead of the chromatic colorant (1). Laser marking sheet) was produced.
  • Single-layer sheet C had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.4 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the stacking order of the single-layer sheet C, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet C.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 4 A single-layer sheet D (multicolor coloring laser marking for card) in the same manner as in Example 1 except that the dioxazine pigment as the chromatic colorant (4) was used instead of the chromatic colorant (1).
  • Sheet had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.8 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet D, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet D.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 5 Single-layer sheet E (multicolor coloring laser marking for card) in the same manner as in Example 1 except that the quinacridone pigment as the chromatic colorant (5) was used instead of the chromatic colorant (1).
  • Sheet Single-layer sheet E had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) of both sides of the sheet of 3.8 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet E, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet E.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 6 Single-layer sheet F (multicolor coloring laser marking sheet for cards) in the same manner as in Example 1 except that a quinophthalone pigment that is a chromatic colorant (6) was used instead of the chromatic colorant (1) ) was produced.
  • the single-layer sheet F had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.8 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the stacking order of the single-layer sheet F, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet F.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 7 A single-layer sheet G (multicolored color laser marking sheet for cards) in the same manner as in Example 1 except that a perylene pigment as the chromatic colorant (7) was used instead of the chromatic colorant (1). ) was produced.
  • the single-layer sheet G had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.8 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet G, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet G.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 8 Single-layer sheet H (multicolored laser marking for cards) in the same manner as in Example 1 except that the metal complex pigment which is the chromatic colorant (8) was used instead of the chromatic colorant (1).
  • the single layer sheet H had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) of both sides of the sheet of 3.8 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet H, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet H.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 9 A single-layer sheet in the same manner as in Example 1 except that a transparent ABS resin (transparent acrylonitrile / butadiene / styrene copolymer resin) (trade name “Techno ABS810”, manufactured by Technopolymer Co., Ltd.) was used instead of the acrylic resin.
  • I multicolored laser marking sheet for card
  • Single-layer sheet I had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.6 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet I, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet I.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 10 A single-layer sheet J (multicolor coloring laser marking sheet for card) in the same manner as in Example 1 except that an aromatic polycarbonate resin (trade name “Toughlon A2200”, manufactured by Idemitsu Kosan Co., Ltd.) was used instead of the acrylic resin. ) was produced.
  • the single layer sheet J had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet J, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet J.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 11 First, 100 parts by mass of an amorphous polyester resin (trade name “Eastman Tritan Copolyester FX100” manufactured by Eastman Chemical Co., Ltd.), 0.2 parts by mass of ⁇ -type copper phthalocyanine pigment as a chromatic colorant (1), carbon black (“ # 45 (manufactured by Mitsubishi Chemical Co., Ltd.))) 0.1 part by weight and 0.1 part by weight of calcium stearate as a lubricant, and a single-layer sheet K (multiple for cards) while matting with an extruder with a T-die A color-developing laser marking sheet) was prepared.
  • the single-layer sheet K had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet K, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet K.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Multi-color coloring laser marking sheet for cards (hereinafter referred to as “multilayer sheet”) composed of multilayer sheets in the order of lamination of the surface layer (skin layer), inner layer (core layer), and surface layer (skin layer) by an extruder with two types and three layers T-die L ”in some cases).
  • the produced multilayer sheet had a total sheet thickness of 150 ⁇ m, a ratio of the core layer thickness to the total sheet thickness of 73.3%, and an average surface roughness (Rz) of both surfaces of the sheet of 3.5 ⁇ m.
  • the core layer was a black layer.
  • the skin layer was prepared by blending 100 parts by mass of an amorphous polyester resin (trade name “Eastman Tritan Copolyester FX100” manufactured by Eastman Chemical Co., Ltd.) and 0.1 parts by mass of calcium stearate as a lubricant.
  • the core layer is an acrylic resin 100 composed of 30% by mass of a product name “Acripet MF (standard grade, manufactured by Mitsubishi Rayon Co.)” and 70% by mass of a product name “Acripet VRL40 (impact resistant grade, manufactured by Mitsubishi Rayon Co., Ltd.)”.
  • a blend of 0.2 part by mass of ⁇ -type copper phthalocyanine pigment and 0.1 part by mass of carbon black “# 45 (manufactured by Mitsubishi Chemical Corporation)” as a chromatic colorant (1) was used.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the respective sheets are laminated so that the multilayer sheet L, the white single layer sheet Q, the white single layer sheet Q, and the multilayer sheet L are laminated.
  • a card-like laminate (thickness: 800 ⁇ m) was produced by heating and pressing with a vacuum press.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Examples 13 to 39 A card (card-like laminate) was produced in the same manner as in Example 1 except that the blending amounts shown in Tables 3 to 5 were appropriately changed so as to satisfy the blending amounts. Each of the above evaluations was performed on the produced card. The evaluation results are shown in Tables 3 to 5.
  • Example 1 Single-layer sheet M (multicolored laser marking for cards) in the same manner as in Example 1 except that the anthraquinone dye, which is the chromatic colorant (9), was used instead of the chromatic colorant (1).
  • the single layer sheet M had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet M, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet M.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 2 Single-layer sheet N (multicolored color laser marking sheet for cards) in the same manner as in Example 1 except that a perinone dye, which is a chromatic colorant (10), was used instead of the chromatic colorant (1). ) was produced.
  • the single-layer sheet N had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet N, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet N.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 3 Single-layer sheet O (multicolored color laser marking for cards) in the same manner as in Example 1 except that instead of the chromatic colorant (1), an iron phthalocyanine pigment as the chromatic colorant (11) was used. Sheet).
  • the single-layer sheet O had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) on both sides of the sheet of 3.5 ⁇ m.
  • a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet O, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet O.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • Example 4 Single-layer sheet P (multicolor coloring laser marking sheet for cards) in the same manner as in Example 1 except that perylene black, which is the chromatic colorant (12), was used instead of the chromatic colorant (1).
  • the single layer sheet P had a sheet thickness of 150 ⁇ m and an average surface roughness (Rz) of both sides of the sheet of 3.5 ⁇ m.
  • a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet P, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet P.
  • seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
  • the laser marking sheets of Examples 1 to 39 could be marked with laser light.
  • the marked characters, symbols, images, and the like were clearer in the laser marking sheets of Examples 1 to 39 than in the laser marking sheets of Comparative Examples 1 to 11.
  • marking derived from the chromatic colorant can be clearly performed by vaporizing and changing the color of carbon black by irradiation with laser light having a wavelength of 1,064 nm, and laser light by irradiation with laser light having a wavelength of 532 nm.
  • the chromatic colorant was also vaporized and discolored, and it was confirmed that a white marking could be formed.
  • the chromatic colorant (11) contained in the single-layer sheet O has an exothermic peak temperature of less than 360 ° C., and thus is derived from the chromatic colorant even when irradiated with lower energy laser light. The formation of the marking was insufficient.
  • Comparative Examples 7 to 9 polyacetal resin, polyamide resin, or polyurethane resin was used as the resin contained in the resin composition, but it was difficult to form a uniform sheet. Further, in Comparative Examples 7 to 9, the heat-fusibility with the core sheet was very poor and peeling occurred.
  • the multicolor coloring laser marking sheet for cards of the present invention can be used as a sheet constituting various cards.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Laminated Bodies (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

A multicolor-development laser marking sheet for cards which is capable of being clearly marked with characters, symbols, images, or the like in two or more different color tones and which comprises a sheet constituted of a laser-marking resin composition that comprises a thermoplastic resin, a chromatic colorant, and a black substance, wherein the thermoplastic resin is, for example, an acrylic resin, the chromatic colorant is a colorant that contains at least one framework selected from the group consisting of a phthalocyanine framework, a diketopyrrolopyrrole framework, a dioxazine framework, a quinacridone framework, a quinophthalone framework, a perylene framework, and metal complex frameworks and that, in a differential thermal analysis, has an exothermic peak in the range of 360-590ºC, and the black substance is a substance that itself disappears or changes in color upon reception of laser light. The sheet has an overall thickness of 100-300 µm.

Description

カード用多色発色レーザーマーキングシート及びレーザーマーキング方法Multicolored laser marking sheet for card and laser marking method
 本発明は、各種カード、特に接触式及び非接触式ICカード等のプラスチックICカードに好適に用いられるカード用多色発色レーザーマーキングシート及びレーザーマーキング方法に関し、更に詳しくは、レーザー光によるマーキングが可能であり、2以上の異なる色調に文字、記号、画像等を鮮明にマーキング可能なカード用多色発色レーザーマーキングシート及びレーザーマーキング方法に関する。 The present invention relates to a multicolor coloring laser marking sheet and a laser marking method for cards that are suitably used for various types of cards, particularly plastic IC cards such as contact type and non-contact type IC cards, and more specifically, marking with a laser beam is possible. The present invention relates to a multicolor coloring laser marking sheet for a card and a laser marking method capable of clearly marking characters, symbols, images and the like in two or more different color tones.
 クレジットカード、銀行カード、IDカード、交通カードなどのプラスチックカードは今や世界中に広く浸透し、その数は膨大な数になってきている。プラスチックカードは、発展途上国でのカード発行数の増加などにより更なる増加傾向にある。 ¡Plastic cards such as credit cards, bank cards, ID cards, and transportation cards are now widely used all over the world, and the number is increasing. Plastic cards are on an increasing trend due to an increase in the number of cards issued in developing countries.
 これらのプラスチックカードの製造方法は、まず、予め特定のシートにオフセット印刷等で図柄を印刷しておき、その他の複数枚のシートを重ねて真空プレス機により各シート間を加熱融着した後、打ち抜き機にてカード状に打ち抜き、カードを得る。または、何も印刷されない複数枚のシートを重ねて真空プレス機により各シート間を加熱融着した後、打ち抜き機にてカード状に打ち抜き、カードを得る。その後、このカードの最表面にカード用印刷機を用いて印刷が施される。このようにしてプラスチックカードが製造されていた。 The manufacturing method of these plastic cards is to first print a pattern by offset printing or the like in advance on a specific sheet, and after stacking other multiple sheets and heat-sealing between each sheet by a vacuum press machine, A card is obtained by punching into a card with a punching machine. Alternatively, a plurality of sheets on which nothing is printed are stacked and heat-sealed between the sheets with a vacuum press machine, and then punched into a card shape with a punching machine to obtain a card. Thereafter, printing is performed on the outermost surface of the card using a card printer. In this way, a plastic card was manufactured.
 しかしながら、これらのプラスチックカードにおいては、セキュリィティの要求の高まりから、ヨーロッパやアメリカでは早くに、レーザー光を照射して文字、画像等をマーキングするレーザーマーキング法が広範囲に採用されている。 However, in these plastic cards, a laser marking method for marking characters, images, etc. by irradiating a laser beam as soon as possible in Europe and the United States has been widely adopted due to an increase in security requirements.
 レーザーマーキング法によってマーキング可能なプラスチックカードは、多くはポリカーボネート樹脂を含む単層のシート(レーザーマーキングシート)を用い、上記のカード製造方法と同様の方法で製造される。具体的には、まず、予め特定の白色シートにオフセット印刷等で淡彩色の背景図柄を印刷しておき、その他の複数枚のシートを重ねて真空プレス機により各シート間を加熱融着した後、打ち抜き機にてカード状に打ち抜きカードを得る。その後、このカードの最表面にレーザー光を照射して黒色などの濃彩色の文字、画像などをマーキングする。このようにして、淡彩色の背景図柄と濃彩色の文字、画像などからなる基本的に「黒/白コントラスト」の視認性の高いマーキングがなされる(例えば、特許文献1~5参照)。 A plastic card that can be marked by the laser marking method is manufactured by a method similar to the above card manufacturing method, using a single layer sheet (laser marking sheet) containing a polycarbonate resin in many cases. Specifically, after first printing a light-colored background pattern on a specific white sheet in advance by offset printing, etc., and then stacking a plurality of other sheets and heat-sealing each sheet with a vacuum press machine A punching card is obtained in a card shape by a punching machine. Thereafter, the outermost surface of the card is irradiated with laser light to mark dark characters such as black and images. In this way, marking with high visibility of “black / white contrast” is basically made up of a light-colored background pattern, dark-colored characters, images, and the like (see, for example, Patent Documents 1 to 5).
特開平5-92657号公報Japanese Patent Laid-Open No. 5-92657 特開2002-273832号公報JP 2002-273732 A 特許第3889431号公報Japanese Patent No. 3889431 特開平6-297828号公報JP-A-6-297828 特開平8-127175号公報JP-A-8-127175
 しかし、これらのレーザーマーキング技術は、黒色系文字やモノカラー画像がマーキングされるのみの技術であり、未だ改良の余地があった。即ち、最近では、プラスチックカードの更なる差別化が望まれており、差別化を図るためにカラーレーザーマーキング技術を向上させる要望が高まってきている。具体的には、2以上の異なる色調の文字、記号、画像等が鮮明にマーキングされるカラーレーザーマーキングシートの開発が切望されている。 However, these laser marking technologies are only technologies for marking black characters and monocolor images, and there is still room for improvement. That is, recently, further differentiation of plastic cards is desired, and there is an increasing demand for improving color laser marking technology in order to achieve differentiation. Specifically, development of a color laser marking sheet on which characters, symbols, images and the like of two or more different colors are clearly marked is desired.
 特許文献1には、カーボンブラックを配合した熱可塑性樹脂にレーザー光を照射することによりマーキングすることが開示されている。しかし、熱可塑性樹脂としては実質的にポリアセタール樹脂とポリブチレンテレフタレート樹脂が開示されているのみである。更には特許文献1においては、射出成形品についての記載のみがされている。 Patent Document 1 discloses that marking is performed by irradiating a thermoplastic resin containing carbon black with laser light. However, only a polyacetal resin and a polybutylene terephthalate resin are substantially disclosed as thermoplastic resins. Furthermore, in patent document 1, only description about the injection molded product is made.
 特許文献2、特許文献3には、レーザーマーキング多層シートの技術が開示されている。そして、淡彩色の背景図柄と濃彩色の文字、画像などが得られる基本的に「黒/白コントラスト」のシートについて記載されている。 Patent Documents 2 and 3 disclose the technology of a laser marking multilayer sheet. In addition, a “black / white contrast” sheet is basically described in which a light-colored background pattern and dark-colored characters, images, and the like are obtained.
 特許文献4、特許文献5には、白色または黒色以外のレーザーマーキング樹脂組成物及び成形品が開示されている。しかし、いずれもレーザー光による発色が単色であるために、見易さやデザインが限定されるという問題を有している。また、特許文献4には、熱可塑性樹脂として実質的にポリアセタール樹脂、熱可塑性ポリエステル樹脂を使用した射出成形品における技術が開示されているのみである。特許文献5には、熱可塑性樹脂として、芳香族ポリカーボネート樹脂、芳香族ポリエステル樹脂、ポリアミド樹脂、スチレン系樹脂が記載されている。しかし、特許文献5には、射出成形品における技術が開示されているのみである。即ち、特許文献4、5には、シートについての具体的な記載はない。 Patent Documents 4 and 5 disclose laser marking resin compositions and molded products other than white or black. However, all of them have the problem that the color and the color produced by the laser light are monochromatic, so that the visibility and design are limited. Patent Document 4 only discloses a technique in an injection-molded article that substantially uses a polyacetal resin or a thermoplastic polyester resin as a thermoplastic resin. Patent Document 5 describes aromatic polycarbonate resins, aromatic polyester resins, polyamide resins, and styrene resins as thermoplastic resins. However, Patent Document 5 only discloses a technique for an injection molded product. That is, Patent Documents 4 and 5 do not specifically describe the sheet.
 本発明は、上述のような従来技術の課題を解決するためになされたものである。即ち、「黒色又は暗色系の地色を呈するカード用シート」の表面の異なる位置に、2以上の異なる波長のレーザー光を照射することにより、2以上の異なる色調の文字、記号、画像等が鮮明にマーキングされるカード用多色発色レーザーマーキングシート及びレーザーマーキング方法を提供する。 The present invention has been made to solve the above-described problems of the prior art. That is, by irradiating two or more different wavelengths of laser light onto different positions on the surface of the “card sheet exhibiting a black or dark ground color”, characters, symbols, images, etc. of two or more different colors are obtained. Provided are a multicolor laser marking sheet for a card to be marked clearly and a laser marking method.
 本発明者らは上記目的を達成すべく鋭意検討した結果、「特定の熱可塑性樹脂に、「フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格及び金属錯体骨格から選ばれる骨格の少なくとも1種を含み、かつ示差熱分析により、360℃以上590℃以下の範囲に発熱ピークを有する有彩色着色剤」と「レーザー光の受光によりそれ自身が消滅する又は変色する黒色物質」とを含む樹脂組成物」からなる「単層シートまたは多層シート中の所定の層」に、異なるエネルギーを有する2以上のレーザー光を照射することにより、2以上の異なる色調の文字、記号、画像等が鮮明にマーキングされることを見出した。 As a result of diligent investigations to achieve the above-mentioned object, the present inventors have determined that "from a specific thermoplastic resin," a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. Black color that contains at least one selected skeleton and has an exothermic peak in the range of 360 ° C. or higher and 590 ° C. or lower by differential thermal analysis and “disappears or discolors itself by receiving laser light” By irradiating two or more laser beams having different energies to a “predetermined layer in a single layer sheet or a multilayer sheet” comprising a “resin composition containing a substance”, two or more characters and symbols having different colors It was found that images and the like are clearly marked.
 本発明により、以下のカード用多色発色レーザーマーキングシート及びレーザーマーキング方法が提供される。 According to the present invention, the following multicolor coloring laser marking sheet for a card and a laser marking method are provided.
[1] 熱可塑性樹脂と、有彩色着色剤と、黒色物質と、を含むレーザーマーキング樹脂組成物からなるシートを備え、レーザー光を照射することにより、白色及び有彩色を含む2以上の異なる色調にマーキングされるシートであって、前記熱可塑性樹脂が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂であり、前記有彩色着色剤が、フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するものであり、前記黒色物質が、レーザー光の受光によりそれ自身が消滅する又は変色する物質であり、総厚みが100~300μmであるカード用多色発色レーザーマーキングシート。 [1] A sheet comprising a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance, and two or more different color tones including white and chromatic colors when irradiated with laser light At least one thermoplastic selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and non-crystalline aromatic polyester resins A resin, wherein the chromatic colorant comprises at least one skeleton selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. And has an exothermic peak in the range of 360 to 590 ° C. in differential thermal analysis. The black material is a substance which changes color or itself disappears by receiving the laser beam, the total thickness of 100 ~ 300 [mu] m multicolor laser marking sheet cards.
[2] 前記黒色物質が、カーボンブラック、チタンブラック、及び、黒色酸化鉄からなる群より選択される少なくとも1種である前記[1]に記載のカード用多色発色レーザーマーキングシート。 [2] The multicolor coloring laser marking sheet for cards according to [1], wherein the black substance is at least one selected from the group consisting of carbon black, titanium black, and black iron oxide.
[3] 前記有彩色着色剤の配合量が、前記熱可塑性樹脂100質量部に対して0.001~3質量部であり、前記黒色物質の配合量が、前記熱可塑性樹脂100質量部に対して0.01~2質量部である前記[1]または[2]に記載のカード用多色発色レーザーマーキングシート。 [3] The blending amount of the chromatic colorant is 0.001 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the blending amount of the black substance is with respect to 100 parts by mass of the thermoplastic resin. The multicolor coloring laser marking sheet for cards according to the above [1] or [2], which is 0.01 to 2 parts by mass.
[4] 前記樹脂組成物が、前記熱可塑性樹脂100質量部に対して0.001~1質量部の白色系物質を含有する前記[1]~[3]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [4] The card multiplicity according to any one of [1] to [3], wherein the resin composition contains 0.001 to 1 part by mass of a white material with respect to 100 parts by mass of the thermoplastic resin. Color development laser marking sheet.
[5] 単層シートである前記[1]~[4]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [5] The multicolor coloring laser marking sheet for cards according to any one of [1] to [4], which is a single layer sheet.
[6] 表層と内層とを備える多層シートであり、前記表層が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂を含む表層用樹脂組成物からなる透明な層であり、前記内層が、前記レーザーマーキング樹脂組成物からなる層である前記[1]~[4]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [6] A multilayer sheet comprising a surface layer and an inner layer, wherein the surface layer is at least one selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and amorphous aromatic polyester resins. The card layer according to any one of [1] to [4], wherein the transparent layer is a transparent layer comprising a thermoplastic resin composition and the inner layer is a layer comprising the laser marking resin composition. Multicolor laser marking sheet.
[7] 前記多層シートの総厚みに対する前記内層の厚みの比率が、30~85%である前記[6]に記載のカード用多色発色レーザーマーキングシート。 [7] The multicolor coloring laser marking sheet for cards according to [6], wherein the ratio of the thickness of the inner layer to the total thickness of the multilayer sheet is 30 to 85%.
[8] 平均表面粗さ(Rz)が、1~10μmである前記[1]~[7]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [8] The multicolor laser marking sheet for cards according to any one of [1] to [7], wherein the average surface roughness (Rz) is 1 to 10 μm.
[9] 生地色の明度測定におけるL値が、50未満である前記[1]~[8]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [9] The multicolor coloring laser marking sheet for cards according to any one of [1] to [8], wherein the L value in the measurement of the lightness of the fabric color is less than 50.
[10] レーザーマーキングされた部分の白色度が、20以上である前記[1]~[9]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [10] The multicolor coloring laser marking sheet for cards according to any one of [1] to [9], wherein the whiteness of the laser-marked portion is 20 or more.
[11] 生地色とレーザーマーキングされた部分の色とのコントラストが、2以上である前記[1]~[10]のいずれかに記載のカード用多色発色レーザーマーキングシート。 [11] The multicolor laser marking sheet for cards according to any one of [1] to [10], wherein the contrast between the fabric color and the color of the laser-marked portion is 2 or more.
[12] 前記[1]~[11]のいずれかに記載のカード用多色発色レーザーマーキングシートに2以上の異なる波長のレーザー光照射を行うに際して、低エネルギーのレーザー光の波長と、高エネルギーのレーザー光の波長との差が、100nm以上であるレーザーマーキング方法。 [12] When irradiating the multicolor laser marking sheet for cards according to any one of [1] to [11] with two or more different wavelengths, the wavelength of the low energy laser light and the high energy The laser marking method whose difference with the wavelength of the laser beam is 100 nm or more.
 本発明のカード用多色発色レーザーマーキングシートは、「熱可塑性樹脂と、有彩色着色剤と、黒色物質と、を含むレーザーマーキング樹脂組成物からなるシートを備え、レーザー光を照射することにより、白色及び有彩色を含む2以上の異なる色調にマーキングされるシートであって、熱可塑性樹脂が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂であり、有彩色着色剤が、フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するものであり、黒色物質が、レーザー光の受光によりそれ自身が消滅する又は変色する物質であること」及び「総厚みが100~300μmであること」を満たすため、レーザー光によるマーキングが可能であり、2以上の異なる色調の文字、記号、画像等が鮮明にマーキングされる。また、上記条件を満たすため、本発明のカード用多色発色レーザーマーキングシートは、加熱融着性、シート裁断性、及び、シート成形性の特性に優れている。 The multicolor coloring laser marking sheet for a card of the present invention includes a sheet made of a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance, and is irradiated with laser light. A sheet marked in two or more different color tones including white and chromatic colors, wherein the thermoplastic resin is an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin At least one selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. 360-59 in differential thermal analysis comprising at least one selected skeleton In order to satisfy “having an exothermic peak in the range of ° C. and the black substance is a substance that itself disappears or changes color by receiving laser light” and “the total thickness is 100 to 300 μm”, Marking with a laser beam is possible, and characters, symbols, images, etc. of two or more different colors are marked clearly. Moreover, in order to satisfy | fill the said conditions, the multicolor coloring laser marking sheet | seat for cards of this invention is excellent in the characteristic of heat-fusability, sheet | seat cutting property, and sheet moldability.
 本発明のレーザーマーキング方法は、「本発明のカード用多色発色レーザーマーキングシートに2以上の異なる波長のレーザー光照射を行うに際して、低エネルギーのレーザー光の波長と、高エネルギーのレーザー光の波長との差が、100nm以上である」ため、2以上の異なる色調の文字、記号、画像等を鮮明にマーキングすることができる。 The laser marking method of the present invention is described as follows: “When the multicolored laser marking sheet for cards of the present invention is irradiated with two or more different wavelengths of laser light, the wavelength of the low energy laser light and the wavelength of the high energy laser light Therefore, it is possible to clearly mark two or more characters, symbols, images, etc. having different color tones.
本発明のカード用多色発色レーザーマーキングシートの一実施形態の断面を示す模式図である。It is a schematic diagram which shows the cross section of one Embodiment of the multicolor coloring laser marking sheet for cards of this invention. 本発明のカード用多色発色レーザーマーキングシートの他の実施形態の断面を示す模式図である。It is a schematic diagram which shows the cross section of other embodiment of the multicolor coloring laser marking sheet for cards of this invention. Lab表色系の色立体を示す図である。It is a figure which shows the color solid of a Lab color system.
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。 Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to the following embodiment. That is, it is understood that modifications and improvements as appropriate to the following embodiments are also within the scope of the present invention based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
[1]カード用多色発色レーザーマーキングシート:
 本発明のカード用多色発色レーザーマーキングシートは、熱可塑性樹脂と、有彩色着色剤と、黒色物質と、を含むレーザーマーキング樹脂組成物(以下、「樹脂組成物」と記す場合がある)からなるシートを備えている。そして、レーザー光を照射することにより、白色及び有彩色を含む2以上の異なる色調にマーキングされるシートである。このカード用多色発色レーザーマーキングシートは、上記熱可塑性樹脂が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂である。また、上記有彩色着色剤が、「フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するもの」である。更に、上記黒色物質が、レーザー光の受光によりそれ自身が消滅する又は変色する物質である。そして、本発明のカード用多色発色レーザーマーキングシートは、総厚みが100~300μmのものである。
[1] Multicolor laser marking sheet for cards:
The multicolor coloring laser marking sheet for cards of the present invention is from a laser marking resin composition (hereinafter sometimes referred to as “resin composition”) containing a thermoplastic resin, a chromatic colorant, and a black substance. It is equipped with a sheet. And it is a sheet | seat marked by two or more different color tones including white and a chromatic color by irradiating a laser beam. In this multicolor coloring laser marking sheet for card, the thermoplastic resin is at least one selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin. It is a thermoplastic resin. Further, the chromatic colorant includes “at least one skeleton selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. And having an exothermic peak in the range of 360 to 590 ° C. in the differential thermal analysis ”. Furthermore, the black substance is a substance that disappears or changes its color upon receiving laser light. The multicolor coloring laser marking sheet for cards of the present invention has a total thickness of 100 to 300 μm.
 このようなカード用多色発色レーザーマーキングシート(以下、単に「シート」と記す場合がある)は、「熱可塑性樹脂と、有彩色着色剤と、黒色物質と、を含むレーザーマーキング樹脂組成物からなるシートを備え、レーザー光を照射することにより、白色及び有彩色を含む2以上の異なる色調にマーキングされるシートであって、熱可塑性樹脂が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂であり、有彩色着色剤が、フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するものであり、黒色物質が、レーザー光の受光によりそれ自身が消滅する又は変色する物質であること」及び「総厚みが100~300μmであること」を満たすため、レーザー光によるマーキングが可能であり、2以上の異なる色調の文字、記号、画像等を鮮明にマーキング可能である。また、上記条件を満たすため、本発明のカード用多色発色レーザーマーキングシートは、加熱融着性、シート裁断性、及び、シート成形性の特性に優れている。 Such a multicolor coloring laser marking sheet for a card (hereinafter sometimes simply referred to as “sheet”) is “from a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance. The sheet is marked with two or more different colors including white and chromatic colors by irradiating laser light, and the thermoplastic resin is an acrylic resin, polycarbonate resin, styrene resin, And at least one thermoplastic resin selected from the group consisting of non-crystalline aromatic polyester resins, and the chromatic colorant is a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, or a quinophthalone skeleton , At least one skeleton selected from the group consisting of a perylene skeleton and a metal complex skeleton In addition, it has an exothermic peak in the range of 360 to 590 ° C. in the differential thermal analysis, and the black substance is a substance that itself disappears or changes color by receiving laser light ”and“ total thickness is In order to satisfy “100 to 300 μm”, marking with a laser beam is possible, and it is possible to clearly mark characters, symbols, images, etc. of two or more different colors. Moreover, in order to satisfy | fill the said conditions, the multicolor coloring laser marking sheet | seat for cards of this invention is excellent in the characteristic of heat-fusability, sheet | seat cutting property, and sheet moldability.
 なお、文字、記号、画像等が鮮明であるか否かは、白色に発色した発色部についてはレーザー照射部と生地部とのコントラストが良好であるか否かにより判断することができる。有彩色の照射部については、使用した有彩色着色剤と同じ色が確認できるか否かにより判断することができる。本発明のカード用多色発色レーザーマーキングシートは、「上記レーザーマーキング樹脂組成物からなるシートを備え、総厚みが100~300μmである」ため、2以上の異なる色調の文字、記号、画像等を鮮明にマーキング可能であり、かつ、加熱融着性、シート裁断性、及び、シート成形性において優れた特性を兼ね備える。 Note that whether a character, a symbol, an image, or the like is clear can be determined based on whether or not the contrast between the laser irradiation portion and the fabric portion is good for a colored portion that is colored white. About a chromatic color irradiation part, it can be judged by whether the same color as the used chromatic colorant can be confirmed. The multicolor coloring laser marking sheet for cards according to the present invention “has a sheet made of the above-mentioned laser marking resin composition and has a total thickness of 100 to 300 μm”, so that characters, symbols, images, etc. of two or more different colors are provided. It can be marked clearly and has excellent properties in heat-fusibility, sheet cutting properties, and sheet formability.
 本発明のカード用多色発色レーザーマーキングシートは、カード(クレジットカードなどのプラスチックカード等)のオーバーシートに用いることができる。本発明のシートの厚みは、上述したように100~300μmであることが必要であり、100~200μmであることが好ましく、100~150μmであることが更に好ましい。上記厚みが上記範囲であることによって、2以上の異なる色調の文字、記号、画像等を鮮明にマーキングすることができる。シート厚みが100μm未満であると、鮮明な文字、記号、画像等が得られない。300μmを超えると、カードが満たすべきカード全体の厚みの規定を満足できない。また、裁断性が十分でなく、裁断した際にバリやクラックなどの不具合が生じる。 The multicolor coloring laser marking sheet for cards of the present invention can be used as an oversheet for cards (plastic cards such as credit cards). As described above, the thickness of the sheet of the present invention needs to be 100 to 300 μm, preferably 100 to 200 μm, and more preferably 100 to 150 μm. When the thickness is within the above range, it is possible to clearly mark characters, symbols, images, and the like having two or more different colors. If the sheet thickness is less than 100 μm, clear characters, symbols, images and the like cannot be obtained. If it exceeds 300 μm, the regulation of the thickness of the entire card to be satisfied by the card cannot be satisfied. Further, the cutting property is not sufficient, and defects such as burrs and cracks occur when cutting.
 本発明のカード用多色発色レーザーマーキングシートの発色機構は、概ね、以下のような現象に基づいているものと推定される。 The color development mechanism of the multicolor laser marking sheet for cards of the present invention is presumed to be based on the following phenomenon.
 本発明のカード用多色発色レーザーマーキングシートにレーザー光を照射すると、レーザー光のエネルギーに応じて、黒色物質の消滅、変色等が生じる。 When the multicolor coloring laser marking sheet for cards according to the present invention is irradiated with laser light, the black material disappears or changes color depending on the energy of the laser light.
 ここで、黒色物質の消滅、変色等が生じた部分は、相対的に消滅、変色等が生じていない部分に比べて黒色物質以外の物質(例えば、有彩色着色剤)の色が強く現れる。具体的には、黒色又は暗色系の生地色(地色)を呈するシートに対して、低エネルギーのレーザー光(黒色物質を消滅等させるが有彩色着色剤の分解等を起こさせないエネルギーのレーザー光)が照射されると、黒色物質が消滅等するためレーザー光が照射された部分(レーザー光照射部(または照射部))は、有彩色着色剤に由来する物質の影響が強く現れた色(以下、「有彩色着色剤に由来する色」と記す場合がある)に発色する。そして、その後、更に上記黒色物質の消滅、変色等が生じた部分にレーザー光(有彩色着色剤の分解等を起こさせるエネルギーのレーザー光)を照射すると、有彩色着色剤の分解、飛散等が生じることとなる。その結果、有彩色着色剤の分解、飛散等が生じた部分は、「有彩色着色剤の分解、飛散等が生じていない部分に比べて相対的に有彩色着色剤に由来する色の濃度(濃さ)が低下した色」または白色になる。 Here, in the portion where the disappearance or discoloration of the black material has occurred, the color of the material other than the black material (for example, a chromatic colorant) appears stronger than the portion where the disappearance, discoloration or the like does not occur. Specifically, a low-energy laser beam (a laser beam having an energy that causes the black material to disappear, but does not cause decomposition of the chromatic colorant, etc.) on a sheet exhibiting a black or dark fabric color (ground color) ), The part irradiated with laser light (laser light irradiation part (or irradiation part)) has a strong influence of the substance derived from the chromatic colorant (for example, the black substance disappears) Hereinafter, the color develops to “color derived from a chromatic colorant”. After that, further irradiation of laser light (laser light with energy causing decomposition of the chromatic colorant) to the part where the black material disappeared, discolored, etc. causes decomposition, scattering, etc. of the chromatic colorant. Will occur. As a result, the portion where the chromatic colorant was decomposed, scattered, etc., “the concentration of the color derived from the chromatic colorant relative to the portion where the chromatic colorant was not decomposed, scattered, etc. ( Color with a reduced intensity) or white.
 以上のように、照射したレーザー光のエネルギーの違いに応じて色の変化が生じる程度が異なる。そのため、異なるエネルギーを有する2以上のレーザー光を照射することにより、2以上の異なる色調にマーキングされると考えられる。 As described above, the degree of color change varies depending on the energy of the irradiated laser beam. Therefore, it is considered that two or more different color tones are marked by irradiating two or more laser beams having different energies.
 本発明のシートは、プラスチックカード用のものである。プラスチックカードは、情報の取り扱いにより種々のカードに分類される。例えば、会員名、会員番号などの簡易情報を取り扱うカード、個人情報等の種々の情報を磁気ストライプに記録させる磁気カード、ICチップに情報を書き込むICカード等がある。 The sheet of the present invention is for a plastic card. Plastic cards are classified into various cards according to information handling. For example, there are a card that handles simple information such as a member name and a member number, a magnetic card that records various information such as personal information on a magnetic stripe, and an IC card that writes information on an IC chip.
 ICカードは、その表面に配設したICモジュールで情報をやり取りする接触型ICカードと、カード内部にICチップとアンテナとを配設した非接触型ICカードとに分類される。近年では、個人情報等の保護の観点(即ちセキュリティの点)で磁気カードより格段に優れているという理由から、ICカードが急速に広がってきている。 IC cards are classified into contact type IC cards that exchange information with an IC module disposed on the surface thereof, and non-contact type IC cards in which an IC chip and an antenna are disposed inside the card. In recent years, IC cards are spreading rapidly because they are far superior to magnetic cards in terms of protection of personal information and the like (that is, in terms of security).
 これらのカードの寸法は、クレジットカード、銀行カード、ICカードについてはISO/IEC7810に規定があり、具体的には、縦54.0mm×横85.6mm×厚さ0.76mmと規定されている。一方、国内の定期券、パスネット等の磁気カードの寸法は、縦57.5mm×横85.0mm×厚さ0.25mmと規定されている。なお、カード(磁気カードは除く)の厚みは、一般的に0.76~0.83mm程度の範囲であることが多い。 The dimensions of these cards are specified in ISO / IEC7810 for credit cards, bank cards, and IC cards, and specifically, specified as 54.0 mm long × 85.6 mm wide × 0.76 mm thick. . On the other hand, the dimensions of magnetic cards such as domestic commuter passes and passnets are defined as 57.5 mm long × 85.0 mm wide × 0.25 mm thick. In general, the thickness of the card (excluding the magnetic card) is generally in the range of about 0.76 to 0.83 mm.
 ここで、接触型ICカードの基本構成の一例としては、オーバーシート(透明)100μm/コアシート(白)150μm/コアシート(白)310μm/コアシート(白)150μm/オーバーシート(透明)100μmである。また、非接触型ICカードの基本構成の一例としては、オーバーシート(透明)100μm/コアシート(白)120μm/インレットシート(白)380μm/コアシート(白)120μm/オーバーシート(透明)100μmである。但し、インレットシートは、ICチップとアンテナとを配設したシートをいう。 Here, as an example of the basic configuration of the contact IC card, oversheet (transparent) 100 μm / core sheet (white) 150 μm / core sheet (white) 310 μm / core sheet (white) 150 μm / oversheet (transparent) 100 μm is there. Also, as an example of the basic configuration of the non-contact type IC card, oversheet (transparent) 100 μm / core sheet (white) 120 μm / inlet sheet (white) 380 μm / core sheet (white) 120 μm / oversheet (transparent) 100 μm is there. However, the inlet sheet refers to a sheet on which an IC chip and an antenna are arranged.
 なお、上記「オーバーシート(透明)100μm」にレーザーマーキング可能なオーバーシートを使用し、このオーバーシートにレーザーマーキングすることによってセキユリティを高めたICカードは、海外、特にヨーロッパやアメリカで多く使用されている。更に最近ではアジアでも使用されてきている。 The above-mentioned "oversheet (transparent) 100μm" uses an oversheet that can be laser-marked, and the IC card that has improved security by laser marking on this oversheet is often used overseas, especially in Europe and America. Yes. More recently, it has been used in Asia.
 接触型ICカードの基本構成の別の例としては、オーバーシート(透明)50μm/オーバーシート(レーザーマーキング)100μm/コアシート(白)150μm/コアシート(白)200μm/コアシート(白)150μm/オーバーシート(レーザーマーキング)100μm/オーバーシート(透明)50μmである。また、非接触型ICカードの基本構成の別の例としては、オーバーシート(透明)50μm/オーバーシート(レーザーマーキング)100μm/コアシート(白)100μm/インレットシート(白)380μm/コアシート(白)100μm/オーバーシート(透明)100μmである。 Another example of the basic configuration of the contact IC card is as follows: oversheet (transparent) 50 μm / oversheet (laser marking) 100 μm / core sheet (white) 150 μm / core sheet (white) 200 μm / core sheet (white) 150 μm / Oversheet (laser marking) 100 μm / oversheet (transparent) 50 μm. As another example of the basic configuration of the non-contact type IC card, oversheet (transparent) 50 μm / oversheet (laser marking) 100 μm / core sheet (white) 100 μm / inlet sheet (white) 380 μm / core sheet (white) ) 100 μm / oversheet (transparent) 100 μm.
 このように、ICカードは、基本構成として5~7枚のシートからなる積層体であり、ICカードの総厚みは、一般的に760~830μmである。そのため、各シートの厚さは、50~310μmが一般的である。そして、このようなICカードなどのカードに要求される主な性能は、耐熱性、強度、耐薬品性、耐傷性等がある。 As described above, the IC card is a laminated body composed of 5 to 7 sheets as a basic structure, and the total thickness of the IC card is generally 760 to 830 μm. Therefore, the thickness of each sheet is generally 50 to 310 μm. The main performance required for such an IC card or the like is heat resistance, strength, chemical resistance, scratch resistance, and the like.
 これらのカードに使用されるシートに要求される主な性能は、薄く(厚さが50~310μm程度)、かつ、溶融押出成形で製造可能であることである。カードを製造する際、5~7枚のシートを積層する工程において、一般的には、これらのシートを重ねて圧縮成形(「プレス成形」ともいう)して(即ち、加熱・加圧により各シート間を加熱融着させて)カード状積層体を製造した後、打ち抜く(「パンチング」という)操作を行うためである。 The main performance required for the sheets used in these cards is that they are thin (thickness is about 50 to 310 μm) and can be manufactured by melt extrusion. In manufacturing a card, in the process of laminating 5 to 7 sheets, these sheets are generally stacked and compression molded (also referred to as “press molding”) (that is, by heating and pressurizing each of the sheets). This is for performing an operation of punching (referred to as “punching”) after producing a card-like laminate by heat-sealing the sheets.
 この圧縮成形における温度は、シート材料により異なるが、ポリ塩化ビニル樹脂(PVC樹脂)や非晶性ポリエステル樹脂(PETG樹脂)では、100~140℃程度、ポリカーボネート樹脂(PC樹脂)では170~190℃である。従って、上記加熱温度の範囲において、各シート間が加熱融着し、剥離が生じないことが要求される。 The temperature in this compression molding varies depending on the sheet material, but is about 100 to 140 ° C. for polyvinyl chloride resin (PVC resin) and amorphous polyester resin (PETG resin), and 170 to 190 ° C. for polycarbonate resin (PC resin). It is. Therefore, it is required that the sheets are heat-sealed and no separation occurs within the heating temperature range.
 また、カードのコアシートは、固定情報等が印刷されるので、淡彩色(一般的には白色)であることが多く、白色度に優れていることが要求される。更に、オフセット印刷、シルクスクリーン印刷、インクジェット印刷が可能であることが要求される。カードのオーバーシートは、カードの表面を構成するので、無色透明性、表面光沢及び耐キズ性(耐スクラッチ性)が要求される。 Also, since the card core sheet is printed with fixed information and the like, it is often lightly colored (generally white) and is required to have excellent whiteness. Furthermore, it is required that offset printing, silk screen printing, and inkjet printing are possible. Since the card oversheet constitutes the surface of the card, colorless transparency, surface gloss and scratch resistance (scratch resistance) are required.
 そして、シートには、これらの要求性能以外に、カードに要求される強度特性として、繰り返し曲げ・ねじり疲労強度、耐衝撃強度等が要求される。 In addition to these required performances, the sheet is required to have repeated bending / torsion fatigue strength, impact strength strength, etc. as strength properties required for the card.
 上記要求性能を満足するシートを構成する樹脂としては、PVC樹脂、PETG樹脂、PC樹脂、または、PC樹脂とPETG樹脂とからなるポリマーアロイに限られていた。 The resin constituting the sheet satisfying the above required performance was limited to PVC resin, PETG resin, PC resin, or polymer alloy composed of PC resin and PETG resin.
[1-1]熱可塑性樹脂:
 熱可塑性樹脂は、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種である。これらの特定の樹脂を用いることによって、厚みが薄い(100~300μm)シートとした場合にも鮮明な文字、記号、画像等がマーキング可能なレーザーマーキングシートを得ることができる。
[1-1] Thermoplastic resin:
The thermoplastic resin is at least one selected from the group consisting of acrylic resins, polycarbonate resins, styrene resins, and amorphous aromatic polyester resins. By using these specific resins, it is possible to obtain a laser marking sheet capable of marking clear characters, symbols, images and the like even when the sheet is thin (100 to 300 μm).
 アクリル系樹脂としては、例えば、ポリメタクリル酸メチル(PMMA)等の(メタ)アクリル酸エステルの1種以上を用いた(共)重合体等のアクリル樹脂及びゴム強化アクリル樹脂などを挙げることができる。これらの中でも、アクリルゴム及びアクリルエラストマー強化アクリル樹脂からなる群より選択される少なくとも1種であることが好ましく、耐衝撃性、表面硬度、表面光沢、及び透明性が良好なシートが得られるという観点から、アクリルゴムとアクリルエラストマー強化アクリル樹脂とからなるものが更に好ましい。 Examples of acrylic resins include acrylic resins such as (co) polymers and rubber-reinforced acrylic resins using one or more of (meth) acrylic esters such as polymethyl methacrylate (PMMA). . Among these, it is preferably at least one selected from the group consisting of acrylic rubber and acrylic elastomer reinforced acrylic resin, and a viewpoint that a sheet having good impact resistance, surface hardness, surface gloss, and transparency can be obtained. Therefore, those composed of acrylic rubber and acrylic elastomer reinforced acrylic resin are more preferable.
 ポリカーボネート系樹脂としては、例えば、芳香族ポリカーボネート樹脂、脂肪族ポリカーボネート樹脂、芳香族-脂肪族ポリカーボネート樹脂共重合体などを挙げることができる。これらの中でも、耐熱性、耐衝撃性、及び透明性が良好なシートが得られるという観点、及び、コストが高くならないという観点から、芳香族ポリカーボネート樹脂または芳香族ポリカーボネート樹脂と非結晶性芳香族ポリエステル系樹脂とからなるポリマーアロイ樹脂であることが好ましい。 Examples of the polycarbonate resin include aromatic polycarbonate resin, aliphatic polycarbonate resin, aromatic-aliphatic polycarbonate resin copolymer, and the like. Among these, from the viewpoint of obtaining a sheet having good heat resistance, impact resistance, and transparency, and from the viewpoint of not increasing the cost, an aromatic polycarbonate resin or an aromatic polycarbonate resin and an amorphous aromatic polyester are used. It is preferably a polymer alloy resin composed of a resin.
 スチレン系樹脂としては、例えば、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、(メタ)アクリル酸エステル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン(ABS)共重合樹脂などを挙げることができる。これらの中でも、耐衝撃性及び透明性が良好なシートが得られるという観点から、透明なアクリロニトリル・ブタジエン・スチレン共重合樹脂であることが好ましい。 Examples of the styrene resin include polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer, (meth) acrylic acid ester / styrene copolymer, acrylonitrile / butadiene / styrene (ABS) copolymer resin, and the like. Can be mentioned. Among these, a transparent acrylonitrile / butadiene / styrene copolymer resin is preferable from the viewpoint of obtaining a sheet having good impact resistance and transparency.
[1-2]有彩色着色剤:
 有彩色着色剤は、黒色物質を消滅、変色等させるエネルギーより高いエネルギーによって分解、飛散等を起こすものである。そのため、高エネルギーのレーザー光(有彩色着色剤の分解等を起こさせるエネルギーのレーザー光)が照射されると、その照射部は、「有彩色着色剤に由来する色の濃度が低下した色」または白色に発色する。
[1-2] Chromatic colorant:
A chromatic colorant causes decomposition, scattering, and the like by energy higher than the energy that causes the black material to disappear, change color, or the like. Therefore, when irradiated with high-energy laser light (laser light with energy that causes decomposition of the chromatic colorant, etc.), the irradiated part is "color with a reduced color density derived from the chromatic colorant" Or it turns white.
 有彩色着色剤は、上述したように「フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するもの」である。 As described above, the chromatic colorant includes “a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton. And having an exothermic peak in the range of 360 to 590 ° C. in the differential thermal analysis ”.
 発熱ピーク範囲の下限温度は、更に好ましくは380℃、特に好ましくは400℃であり、上限温度は、更に好ましくは585℃である。発熱ピーク温度が下限値未満であると、低エネルギーのレーザー光を照射した場合に、有彩色着色剤に由来する色のマーキングが不鮮明となる。一方、発熱ピーク温度が上限値超であると、高エネルギーのレーザー光を照射した場合に、有彩色着色剤に由来する色の濃度が低下した色のマーキングが不鮮明となる。なお、示差熱分析は、例えばセイコー電子社製の「TG-DTA320型(横型炉)」などの装置により行うことができる。 The lower limit temperature of the exothermic peak range is more preferably 380 ° C., particularly preferably 400 ° C., and the upper limit temperature is more preferably 585 ° C. When the exothermic peak temperature is less than the lower limit value, the marking of the color derived from the chromatic colorant becomes unclear when irradiated with low energy laser light. On the other hand, when the exothermic peak temperature is higher than the upper limit value, when a high-energy laser beam is irradiated, the marking of the color having a reduced color density derived from the chromatic colorant becomes unclear. The differential thermal analysis can be performed by an apparatus such as “TG-DTA320 (horizontal furnace)” manufactured by Seiko Denshi.
 有彩色着色剤としては、上記条件を満たすものである限り、顔料でもよいし染料であってもよい。 The chromatic colorant may be a pigment or a dye as long as it satisfies the above conditions.
 有彩色着色剤の色は、黒色及び白色以外である限り特に制限はなく、例えば、赤色系、黄色系、青色系、紫色系、緑色系等の色とすることができる。 The color of the chromatic colorant is not particularly limited as long as it is other than black and white, and can be, for example, red, yellow, blue, purple, and green.
 例えば、フタロシアニン骨格を有する顔料又は染料は「青~緑色」、ジケトピロロピロール骨格を有する顔料又は染料は「橙~赤色」、ジオキサジン骨格を有する顔料又は染料は「紫色」、キナクリドン骨格を有する顔料又は染料は「橙~紫色」、キノフタロン骨格を有する顔料又は染料は「黄~赤色」、ペリレン骨格を有する顔料又は染料は「赤~紫色」、金属錯体骨格を有する顔料又は染料は「黄~紫色」である。 For example, a pigment or dye having a phthalocyanine skeleton is “blue to green”, a pigment or dye having a diketopyrrolopyrrole skeleton is “orange to red”, a pigment or dye having a dioxazine skeleton is “purple”, and a pigment having a quinacridone skeleton Or the dye is “orange to purple”, the pigment or dye having a quinophthalone skeleton is “yellow to red”, the pigment or dye having a perylene skeleton is “red to purple”, and the pigment or dye having a metal complex skeleton is “yellow to purple” Is.
[1-2-1]フタロシアニン骨格を有する有彩色着色剤:
 上述のフタロシアニン骨格を有する有彩色着色剤としては、下記一般式(I)で表される化合物などを挙げることができる。なお、フタロシアニン骨格を有する有彩色着色剤は、顔料又は染料である。
[1-2-1] Chromatic colorant having a phthalocyanine skeleton:
Examples of the chromatic colorant having the phthalocyanine skeleton include compounds represented by the following general formula (I). The chromatic colorant having a phthalocyanine skeleton is a pigment or a dye.
Figure JPOXMLDOC01-appb-C000001
(上記一般式(I)中、Mは、配位金属原子又は2つの水素原子であり、R~R16は、それぞれ独立して任意の官能基である。)
Figure JPOXMLDOC01-appb-C000001
(In the general formula (I), M is a coordination metal atom or two hydrogen atoms, and R 1 to R 16 are each independently an arbitrary functional group.)
 上記一般式(I)において、Mは、銅(Cu)、アルミニウム(Al)、亜鉛(Zn)、スズ(Sn)又は2つの水素原子であることが好ましく、銅(Cu)、アルミニウム(Al)又は亜鉛(Zn)が更に好ましく、銅(Cu)又はアルミニウム(Al)が特に好ましい。なお、Mが金属の場合、ハロゲン原子、OH等の配位子を有してもよい。 In the above general formula (I), M is preferably copper (Cu), aluminum (Al), zinc (Zn), tin (Sn) or two hydrogen atoms, copper (Cu), aluminum (Al). Alternatively, zinc (Zn) is more preferable, and copper (Cu) or aluminum (Al) is particularly preferable. In addition, when M is a metal, you may have ligands, such as a halogen atom and OH.
 また、上記一般式(I)において、R~R16は、水素原子;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;スルホン酸アミド基(-SONHR)、-SO ・NH等の置換基(式中、Rは、炭素数1~20のアルキル基である。)が好ましく、R~R16のうちの複数の隣接するRが連結して芳香環を形成した基も好ましい。特に好ましくは、水素原子又はスルホン酸アミド基である。 In the general formula (I), R 1 ~ R 16 is a hydrogen atom; a fluorine, chlorine, bromine, halogen atom such as iodine; sulfonic acid amide group (-SO 2 NHR), - SO 3 - · NH 3 A substituent such as R + (wherein R is an alkyl group having 1 to 20 carbon atoms) is preferable, and a plurality of adjacent Rs out of R 1 to R 16 are connected to form an aromatic ring. Groups are also preferred. Particularly preferred is a hydrogen atom or a sulfonic acid amide group.
 フタロシアニン骨格を有する有彩色着色剤として好ましい具体的な構造を、以下の(1)~(6)に列挙する。このうち、(1)、(3)、(4)に列挙する具体的な構造のものが好ましい。 Specific structures preferable as a chromatic colorant having a phthalocyanine skeleton are listed in the following (1) to (6). Among these, the thing of the specific structure enumerated in (1), (3), (4) is preferable.
 (1)上記一般式(I)におけるMがCuであり、かつ、R~R16が水素原子である銅フタロシアニン顔料(下記式(II)で表される化合物)。 (1) A copper phthalocyanine pigment (compound represented by the following formula (II)) in which M in the general formula (I) is Cu and R 1 to R 16 are hydrogen atoms.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記銅フタロシアニン顔料の結晶は、α型であってもβ型であってもよい。β型銅フタロシアニン顔料の平均二次粒子径は、一般的には、20μm超であり30μm以下であるが、本発明においては、その上限が20μmであることが好ましく、10μmであることがより好ましく、下限が1μmであることが好ましい。なお、平均二次粒子径は、レーザー散乱法により測定される値であり、レーザー散乱法粒径分布測定装置等により測定することができる。 The crystal of the copper phthalocyanine pigment may be α type or β type. The average secondary particle diameter of the β-type copper phthalocyanine pigment is generally more than 20 μm and not more than 30 μm, but in the present invention, the upper limit is preferably 20 μm, more preferably 10 μm. The lower limit is preferably 1 μm. The average secondary particle size is a value measured by a laser scattering method, and can be measured by a laser scattering method particle size distribution measuring device or the like.
 (2)上記一般式(I)におけるMがCuであり、R~R16が、それぞれ独立して水素原子又はハロゲン原子であるハロゲン含有銅フタロシアニン顔料。なお、ハロゲン原子としては、塩素原子、臭素原子が好ましい。 (2) A halogen-containing copper phthalocyanine pigment in which M in the general formula (I) is Cu, and R 1 to R 16 are each independently a hydrogen atom or a halogen atom. In addition, as a halogen atom, a chlorine atom and a bromine atom are preferable.
 (3)上記一般式(I)におけるMがCuであり、R~R16のうちの4~8個(好ましくは4個)が、上述のスルホン酸アミド基又は-SO ・NH、好ましくはスルホン酸アミドである溶剤可溶型銅フタロシアニン染料。特に好ましい溶剤可溶型銅フタロシアニン染料は、下記一般式(III)で表される化合物である。 (3) is M in the above general formula (I) is Cu, R 1 ~ 4 ~ 8 pieces of R 16 (preferably four), the above-mentioned sulfonic acid amide group or -SO 3 - · NH 3 A solvent-soluble copper phthalocyanine dye which is R + , preferably a sulfonic acid amide. A particularly preferable solvent-soluble copper phthalocyanine dye is a compound represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000003
(上記一般式(III)中、各Rは、それぞれ独立して炭素数1~20のアルキル基である。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (III), each R is independently an alkyl group having 1 to 20 carbon atoms.)
 上記一般式(III)において、各Rは、それぞれ独立して炭素数4~8のアルキル基であることが特に好ましい。 In the general formula (III), each R is particularly preferably an alkyl group having 4 to 8 carbon atoms.
 (4)上記一般式(I)におけるMがAlであり、かつ、R~R16が水素原子であるアルミニウムフタロシアニン顔料。Alは、配位子として-OH又は-Clを有しているものが好ましく、-OHを有しているものが更に好ましい。特に好ましいアルミニウムフタロシアニン顔料は、下記式(IV)で表される化合物である。 (4) An aluminum phthalocyanine pigment in which M in the above general formula (I) is Al and R 1 to R 16 are hydrogen atoms. Al preferably has —OH or —Cl as a ligand, and more preferably has —OH. A particularly preferred aluminum phthalocyanine pigment is a compound represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (5)上記一般式(I)におけるMがSnであり、かつ、R~R16が、それぞれ独立して水素原子又はハロゲン原子であるスズフタロシアニン顔料。 (5) A tin phthalocyanine pigment in which M in the general formula (I) is Sn, and R 1 to R 16 are each independently a hydrogen atom or a halogen atom.
 (6)上記一般式(I)におけるMがZnであり、かつ、R~R16が、それぞれ独立して水素原子又はハロゲン原子である亜鉛フタロシアニン顔料。この亜鉛フタロシアニン顔料は、下記一般式(V)で表される化合物である。 (6) A zinc phthalocyanine pigment in which M in the general formula (I) is Zn, and R 1 to R 16 are each independently a hydrogen atom or a halogen atom. This zinc phthalocyanine pigment is a compound represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000005
(上記一般式(V)中、R~R16は、それぞれ独立して水素原子又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (V), R 1 to R 16 are each independently a hydrogen atom or a halogen atom.)
 亜鉛フタロシアニン顔料としては、上記一般式(V)におけるR~R16が全て水素原子であるものが特に好ましい。 As the zinc phthalocyanine pigment, those in which R 1 to R 16 in the general formula (V) are all hydrogen atoms are particularly preferable.
[1-2-2]ジケトピロロピロール骨格を有する有彩色着色剤:
 ジケトピロロピロール骨格を有する有彩色着色剤としては、下記一般式(VI)で表される化合物などを挙げることができる。ジケトピロロピロール骨格を有する有彩色着色剤は、通常、顔料である。
[1-2-2] Chromatic colorant having a diketopyrrolopyrrole skeleton:
Examples of the chromatic colorant having a diketopyrrolopyrrole skeleton include compounds represented by the following general formula (VI). The chromatic colorant having a diketopyrrolopyrrole skeleton is usually a pigment.
Figure JPOXMLDOC01-appb-C000006
(上記一般式(VI)中、Ar及びAr’は、それぞれ独立して置換基を有してもよい芳香族環である。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (VI), Ar and Ar ′ are each independently an aromatic ring which may have a substituent.)
 Ar及びAr’を構成する芳香族環は、芳香族性を有する限り、どのような環でもよいが、通常、5又は6員環の、単環又は2~6縮合環からなる芳香環である。O、S、N等のヘテロ原子を含んでいてもよい。具体的には、ベンゼン環、ナフタレン環、アンスラセン環、フェナントレン環、フルオレン環、ピリジン環、チオフェン環、ピロール環、フラン環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、イミダゾール環、キノリン環、イソキノリン環、カルバゾール環、チアゾール環、ジベンゾチオフェン環等が挙げられる。これらのうち、6員環が好ましく、6員環の単環が更に好ましく、ベンゼン環が特に好ましい。 The aromatic ring constituting Ar and Ar ′ may be any ring as long as it has aromaticity, but is usually an aromatic ring consisting of a 5- or 6-membered monocyclic ring or a 2-6 condensed ring. . Hetero atoms such as O, S, and N may be included. Specifically, benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, fluorene ring, pyridine ring, thiophene ring, pyrrole ring, furan ring, benzothiophene ring, benzofuran ring, benzopyrrole ring, imidazole ring, quinoline ring, isoquinoline Ring, carbazole ring, thiazole ring, dibenzothiophene ring and the like. Among these, a 6-membered ring is preferable, a 6-membered monocycle is more preferable, and a benzene ring is particularly preferable.
 上記芳香族環は、置換基を有することが好ましく、好ましい置換基としては、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基、アミノ基、-NHCOR’、-COR’及び-COOR’(但し、R’は、炭素数1~12のアルキル基又は炭素数12以下の(ヘテロ)アリール基である。)を挙げることができる。これらのうち、ハロゲン原子が好ましく、塩素原子が特に好ましい。 The aromatic ring preferably has a substituent, and preferred substituents include a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, an amino group, —NHCOR ′, —COR. 'And -COOR' (where R 'is an alkyl group having 1 to 12 carbon atoms or a (hetero) aryl group having 12 or less carbon atoms). Of these, a halogen atom is preferable, and a chlorine atom is particularly preferable.
[1-2-3]ジオキサジン骨格を有する有彩色着色剤:
 ジオキサジン骨格を有する有彩色着色剤としては、下記式(VII)で表される骨格を含む化合物を挙げることができる。ジオキサジン骨格を有する有彩色着色剤は、通常、顔料である。
[1-2-3] Chromatic colorant having a dioxazine skeleton:
Examples of the chromatic colorant having a dioxazine skeleton include compounds containing a skeleton represented by the following formula (VII). The chromatic colorant having a dioxazine skeleton is usually a pigment.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記一般式(VII)で表される骨格を含む有彩色着色剤は、置換基を有する化合物であってもよいし置換基を有しない化合物であってもよいが、置換基を有する化合物であることが好ましい。置換基を有する化合物としては、例えば、下記一般式(VIII)で表される化合物を挙げることができる。 The chromatic colorant containing the skeleton represented by the general formula (VII) may be a compound having a substituent or a compound having no substituent, but is a compound having a substituent. It is preferable. As a compound which has a substituent, the compound represented by the following general formula (VIII) can be mentioned, for example.
Figure JPOXMLDOC01-appb-C000008
(上記一般式(VIII)中、R17~R22は、それぞれ独立して、ハロゲン原子、-NHCOR’(但し、R’は、炭素数1~12のアルキル基又は炭素数12以下の(ヘテロ)アリール基である。)、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。)
Figure JPOXMLDOC01-appb-C000008
(In the above general formula (VIII), R 17 to R 22 are each independently a halogen atom, —NHCOR ′ (where R ′ is an alkyl group having 1 to 12 carbon atoms, or (hetero An aryl group), an alkyl group having 1 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms.)
 ジオキサジン骨格を有する有彩色着色剤としては、上記一般式(VIII)において、置換基R17及びR18を有することが特に好ましい。R17及びR18は、ハロゲン原子又は-NHCOR’が好ましく、-NHCOR’が更に好ましい。また、R19~R22は、ハロゲン原子、-NHCOR’、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基が好ましく、炭素数1~12のアルコキシル基又は-NHCOR’が更に好ましい。 The chromatic colorant having a dioxazine skeleton particularly preferably has substituents R 17 and R 18 in the general formula (VIII). R 17 and R 18 are preferably a halogen atom or —NHCOR ′, more preferably —NHCOR ′. R 19 to R 22 are preferably a halogen atom, —NHCOR ′, an alkyl group having 1 to 12 carbon atoms, or an alkoxyl group having 1 to 12 carbon atoms, and more preferably an alkoxyl group having 1 to 12 carbon atoms or —NHCOR ′. preferable.
[1-2-4]キナクリドン骨格を有する有彩色着色剤:
 キナクリドン骨格を有する有彩色着色剤としては、下記式(IX)で表される骨格を含む化合物などを挙げることができる。キナクリドン骨格を有する有彩色着色剤は、通常、顔料である。
[1-2-4] Chromatic colorant having quinacridone skeleton:
Examples of the chromatic colorant having a quinacridone skeleton include compounds containing a skeleton represented by the following formula (IX). The chromatic colorant having a quinacridone skeleton is usually a pigment.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記一般式(IX)で表される骨格を含む有彩色着色剤は、置換基を有する化合物であってもよいし置換基を有しない化合物であってもよい。置換基を有する化合物としては、例えば、下記一般式(X)で表される化合物を挙げることができる。 The chromatic colorant containing a skeleton represented by the above general formula (IX) may be a compound having a substituent or a compound having no substituent. As a compound which has a substituent, the compound represented by the following general formula (X) can be mentioned, for example.
Figure JPOXMLDOC01-appb-C000010
(上記一般式(X)中、R23~R26は置換基である。)
Figure JPOXMLDOC01-appb-C000010
(In the general formula (X), R 23 to R 26 are substituents.)
 一般式(X)における置換基としては、ハロゲン原子又は炭素数1~12のアルキル基を挙げることができる。 Examples of the substituent in the general formula (X) include a halogen atom or an alkyl group having 1 to 12 carbon atoms.
[1-2-5]キノフタロン骨格を有する有彩色着色剤:
 キノフタロン骨格を有する有彩色着色剤としては、下記一般式(XI)で表される骨格を含む化合物などを挙げることができる。キノフタロン骨格を有する有彩色着色剤は、顔料又は染料である。
[1-2-5] Chromatic colorant having a quinophthalone skeleton:
Examples of the chromatic colorant having a quinophthalone skeleton include compounds containing a skeleton represented by the following general formula (XI). The chromatic colorant having a quinophthalone skeleton is a pigment or a dye.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記一般式(XI)で表される骨格を含む有彩色着色剤は、置換基を有する化合物であってもよいし置換基を有しない化合物であってもよい。置換基を有する化合物としては、例えば、下記一般式(XII)で表される化合物を挙げることができる。 The chromatic colorant containing a skeleton represented by the general formula (XI) may be a compound having a substituent or a compound having no substituent. As a compound which has a substituent, the compound represented by the following general formula (XII) can be mentioned, for example.
Figure JPOXMLDOC01-appb-C000012
(上記一般式(XII)中、R27~R30は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基又は環構造を含む基であり、R31は、水素原子、ハロゲン原子、炭素数1~12のアルコキシル基、炭素数5~12のアリールオキシ基、炭素数1~12のヘテロアリールオキシ基、炭素数1~12のアルキルチオ基、炭素数5~12のアリールチオ基又は炭素数1~12のヘテロアリールチオ基であり、R32は、水素原子又はヒドロキシル基であり、R33~R36は、それぞれ独立して水素原子、ハロゲン原子、カルボキシル基、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基、-COOR’又は-CONR’(但し、R’は、炭素数1~12のアルキル基又は炭素数12以下の(ヘテロ)アリール基である。)である。なお、R28及びR29、R31及びR32、R33及びR34、R34及びR35、並びに、R35及びR36は、それぞれ互いに連結して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000012
(In the general formula (XII), R 27 to R 30 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms or a group containing a ring structure. R 31 represents a hydrogen atom, a halogen atom, an alkoxyl group having 1 to 12 carbon atoms, an aryloxy group having 5 to 12 carbon atoms, a heteroaryloxy group having 1 to 12 carbon atoms, or an alkylthio having 1 to 12 carbon atoms. Group, an arylthio group having 5 to 12 carbon atoms or a heteroarylthio group having 1 to 12 carbon atoms, R 32 is a hydrogen atom or a hydroxyl group, and R 33 to R 36 are each independently a hydrogen atom, A halogen atom, a carboxyl group, an alkyl group having 1 to 12 carbon atoms, an alkoxyl group having 1 to 12 carbon atoms, —COOR ′ or —CONR ′ 2 (where R ′ is an alkyl group having 1 to 12 carbon atoms) Or a (hetero) aryl group having 12 or less carbon atoms.) R 28 and R 29 , R 31 and R 32 , R 33 and R 34 , R 34 and R 35 , and R 35 And R 36 may be connected to each other to form a ring.)
 上記一般式(XII)において、R27~R30が環構造を含む基である場合、この基としては、下記一般式(XIII)で表される置換基などを挙げることができる。 In the above general formula (XII), when R 27 to R 30 are groups containing a ring structure, examples of this group include substituents represented by the following general formula (XIII).
Figure JPOXMLDOC01-appb-C000013
(上記一般式(XIII)中、X~Xは、それぞれ独立して水素原子又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000013
(In the general formula (XIII), X 1 to X 4 are each independently a hydrogen atom or a halogen atom.)
 上記一般式(XII)におけるR27が、上記一般式(XIII)で表される置換基である場合の上記有彩色着色剤は、下記一般式(XIV)で表される化合物である。 The chromatic colorant in the case where R 27 in the general formula (XII) is a substituent represented by the general formula (XIII) is a compound represented by the following general formula (XIV).
Figure JPOXMLDOC01-appb-C000014
(上記一般式(XIV)中、R28~R36は、前記と同様であり、X~Xは、それぞれ独立して水素原子又はハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000014
(In the general formula (XIV), R 28 to R 36 are the same as described above, and X 5 to X 8 are each independently a hydrogen atom or a halogen atom.)
 上記一般式(XIV)で表される、キノフタロン骨格を有する有彩色着色剤としては、R28~R30が水素原子、ハロゲン原子、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基であり、R31及びR32が水素原子であり、かつ、R33~R36がハロゲン原子である化合物が好ましい。 As the chromatic colorant having a quinophthalone skeleton represented by the above general formula (XIV), R 28 to R 30 are a hydrogen atom, a halogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxyl having 1 to 12 carbon atoms. A compound in which R 31 and R 32 are hydrogen atoms and R 33 to R 36 are halogen atoms is preferred.
 より好ましい上記有彩色着色剤は、R28及びR29が水素原子又はハロゲン原子であり、R30~R32が水素原子であり、R33~R36がハロゲン原子であり、かつ、X~Xがハロゲン原子である化合物である。上記一般式(XIV)で表される、キノフタロン骨格を有する有彩色着色剤は、通常、顔料である。 More preferably, the chromatic colorant is such that R 28 and R 29 are hydrogen atoms or halogen atoms, R 30 to R 32 are hydrogen atoms, R 33 to R 36 are halogen atoms, and X 5 to A compound in which X 8 is a halogen atom. The chromatic colorant having a quinophthalone skeleton represented by the above general formula (XIV) is usually a pigment.
 特に好ましい上記有彩色着色剤は、R28及びR29が水素原子であり、R30~R32が水素原子であり、R33~R36がハロゲン原子(X~X12)であり、かつ、X~Xがハロゲン原子である化合物(下記一般式(XV)で表される化合物)である。 Particularly preferred chromatic colorants are those in which R 28 and R 29 are hydrogen atoms, R 30 to R 32 are hydrogen atoms, R 33 to R 36 are halogen atoms (X 9 to X 12 ), and , X 5 to X 8 are a halogen atom (compound represented by the following general formula (XV)).
Figure JPOXMLDOC01-appb-C000015
(上記一般式(XV)中、X~X12は、それぞれ独立してハロゲン原子である。)
Figure JPOXMLDOC01-appb-C000015
(In the general formula (XV), X 5 to X 12 are each independently a halogen atom.)
 なお、上記一般式(XII)において、R27及びR30が水素原子であり、R28及びR29がハロゲン原子、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である化合物(下記一般式(XVI)で表される化合物)は、通常、染料である。 In the above general formula (XII), R 27 and R 30 are hydrogen atoms, and R 28 and R 29 are halogen atoms, alkyl groups having 1 to 12 carbon atoms or alkoxyl groups having 1 to 12 carbon atoms. (Compound represented by the following general formula (XVI)) is usually a dye.
Figure JPOXMLDOC01-appb-C000016
(上記一般式(XVI)中、R28及びR29は、それぞれ独立してハロゲン原子、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基であり、R31は、水素原子、ハロゲン原子、炭素数1~12のアルコキシル基、炭素数5~12のアリールオキシ基、炭素数1~12のヘテロアリールオキシ基、炭素数1~12のアルキルチオ基、炭素数5~12のアリールチオ基又は炭素数1~12のヘテロアリールチオ基であり、R32は、水素原子又はヒドロキシル基であり、R33~R36は、それぞれ独立して水素原子、ハロゲン原子、カルボキシル基、炭素数1~12のアルキル基、炭素数1~12のアルコキシル基、-COOR’、-CONR’(但し、R’は、炭素数1~12のアルキル基又は炭素数12以下の(ヘテロ)アリール基である。)である。なお、R28及びR29、R31及びR32、R33及びR34、R34及びR35、並びに、R35及びR36は、それぞれ互いに連結して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000016
(In the general formula (XVI), R 28 and R 29 are each independently a halogen atom, an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms, and R 31 is a hydrogen atom, A halogen atom, an alkoxyl group having 1 to 12 carbon atoms, an aryloxy group having 5 to 12 carbon atoms, a heteroaryloxy group having 1 to 12 carbon atoms, an alkylthio group having 1 to 12 carbon atoms, and an arylthio group having 5 to 12 carbon atoms Or a heteroarylthio group having 1 to 12 carbon atoms, R 32 is a hydrogen atom or a hydroxyl group, and R 33 to R 36 are each independently a hydrogen atom, a halogen atom, a carboxyl group, a carbon number of 1 to 12 alkyl group, an alkoxyl group having 1 to 12 carbon atoms, -COOR ', - CONR' 2 ( where, R 'is of 1 to 12 carbon atoms alkyl group or having 12 or less carbon ( Hetero) aryl group.) Is. In addition, R 28 and R 29, R 31 and R 32, R 33 and R 34, R 34 and R 35, and, R 35 and R 36, are connected to each other To form a ring.)
[1-2-6]ペリレン骨格を有する有彩色着色剤:
 ペリレン骨格を有する有彩色着色剤としては、例えば、下記一般式(XXI)で表される化合物などを挙げることができる。ペリレン骨格を有する有彩色着色剤は、通常、顔料である。
[1-2-6] Chromatic colorant having a perylene skeleton:
Examples of the chromatic colorant having a perylene skeleton include compounds represented by the following general formula (XXI). The chromatic colorant having a perylene skeleton is usually a pigment.
Figure JPOXMLDOC01-appb-C000017
(上記一般式(XXI)中、R47及びR48は、それぞれ独立して水素原子、炭素数1~12のアルキル基、炭素数5~12のアリール基、炭素数1~12のヘテロアリール基、-COR’又は-COOR’(但し、R’は、炭素数1~12のアルキル基、炭素数12以下の(ヘテロ)アリール基である。)である。)
Figure JPOXMLDOC01-appb-C000017
(In the general formula (XXI), R 47 and R 48 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, an aryl group having 5 to 12 carbon atoms, or a heteroaryl group having 1 to 12 carbon atoms. , —COR ′ or —COOR ′ (where R ′ is an alkyl group having 1 to 12 carbon atoms and a (hetero) aryl group having 12 or less carbon atoms).
 上記一般式(XXI)で表される化合物としては、R47及びR48が炭素数1~12のアルキル基であるものが好ましく、炭素数1~3のアルキル基であるものが更に好ましい。 As the compound represented by the general formula (XXI), those in which R 47 and R 48 are alkyl groups having 1 to 12 carbon atoms are preferable, and those in which R 47 and R 48 are alkyl groups having 1 to 3 carbon atoms are more preferable.
[1-2-7]金属錯体骨格を有する有彩色着色剤:
 金属錯体骨格を有する有彩色着色剤としては、例えば、有機色素骨格に金属イオンが配位した化合物等を挙げることができる。有機色素骨格としては、アゾ基を有するもの、アゾメチン基を有するもの等を挙げることができる。そして、これらは、アゾ基またはアゾメチン基のオルト位又はペリ位にヒドロキシル基、アミノ基、イミノ基等を有するものであってもよい。金属イオンとしては、銅、ニッケル、コバルト、亜鉛等のイオンを挙げることができる。
[1-2-7] Chromatic colorant having metal complex skeleton:
Examples of the chromatic colorant having a metal complex skeleton include compounds in which metal ions are coordinated to an organic dye skeleton. Examples of the organic dye skeleton include those having an azo group and those having an azomethine group. And these may have a hydroxyl group, an amino group, an imino group, etc. in the ortho position or peri position of an azo group or an azomethine group. Examples of the metal ion include ions of copper, nickel, cobalt, zinc and the like.
 有彩色着色剤の含有量は、熱可塑性樹脂100質量部に対して、0.001~3.0質量部であることが好ましく、0.002~1.0質量部であることが更に好ましく、0.005~0.8質量部であることが特に好ましい。上記含有量が0.001質量部未満であると、有彩色着色剤に由来する色のマーキングがされ難くなり、レーザー光照射部と生地部とのコントラストが低下して視認性が低下するおそれがある。一方、3.0質量部超であると、白色のマーキングがされ難くなり、レーザー光照射部と生地部とのコントラストが低下して視認性が低下するおそれがある。 The content of the chromatic colorant is preferably 0.001 to 3.0 parts by mass, more preferably 0.002 to 1.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. Particularly preferred is 0.005 to 0.8 part by mass. When the content is less than 0.001 part by mass, marking of a color derived from the chromatic colorant is difficult to be performed, and the contrast between the laser beam irradiation part and the cloth part may be reduced, and the visibility may be reduced. is there. On the other hand, if it exceeds 3.0 parts by mass, white marking is difficult to be performed, and the contrast between the laser beam irradiation part and the cloth part may be lowered, and the visibility may be lowered.
[1-3]黒色物質:
 黒色物質は、レーザー光の受光によりそれ自身が消滅する又は変色する物質であれば特に限定されない。即ち、レーザー光のエネルギーによりそれ自身が消滅、変色等して、本発明のシートにおけるレーザー光照射部の色が、黒色物質以外の物質の色の影響が強く現れた色となるものであればどのような黒色物質であってもよい。
[1-3] Black material:
The black material is not particularly limited as long as it is a material that itself disappears or changes color by receiving the laser beam. That is, if the laser beam energy is extinguished or discolored by the energy of the laser beam, and the color of the laser beam irradiation part in the sheet of the present invention becomes a color in which the influence of the color of the substance other than the black substance appears strongly. Any black material may be used.
 本明細書において「消滅」は、気化、揮散又は分解して黒色物質が存在しなくなることを意味し、「変色」は、物質の少なくとも一部が、分解等により受光前と異なる色(好ましくは白色)になること(例えば、黒色から水色又は白色)を意味する。また、黒色物質の「黒色」は、黒色を含む暗色系の色を意味し、例えば、赤色-黒色系(茶色-黒色系)、緑色-黒色系、青色-黒色系、紫色-黒色系、灰色-黒色系等の黒系の色を含む。 In this specification, “annihilation” means that the black substance does not exist due to vaporization, volatilization, or decomposition, and “discoloration” means that at least a part of the substance has a color different from that before light reception due to decomposition or the like (preferably White) (for example, from black to light blue or white). Further, “black” in the black substance means a dark color including black, for example, red-black (brown-black), green-black, blue-black, purple-black, gray -Black colors such as black are included.
 黒色物質としては、以下のものが好ましい。即ち、ポリメタクリル酸メチル100質量部及び黒色物質0.1質量部のみからなる黒色試験片に対して、出力31A、周波数5.5kHz、波長1,064nmのレーザー光を照射した場合に、照射部が白色、または黒色以外の色に変色するものが好ましい。 As the black material, the following are preferable. That is, when a black test piece consisting only of 100 parts by mass of polymethyl methacrylate and 0.1 part by mass of black material is irradiated with laser light having an output of 31 A, a frequency of 5.5 kHz, and a wavelength of 1,064 nm, Are preferably white or a color other than black.
 黒色物質は、無機物質であってもよいし有機物質であってもよい。そして、顔料であってもよいし染料であってもよい。更に、本発明の効果を損なわなければ、これらに含まれない化合物や鉱物等を含んでいてもよい。 The black material may be an inorganic material or an organic material. And it may be a pigment or a dye. Furthermore, unless the effects of the present invention are impaired, compounds or minerals not included in these may be included.
 黒色物質としては、具体的には、カーボンブラック、チタンブラック、黒色酸化鉄等の無機顔料、黒鉛、活性炭等を挙げることができる。これらは単独または2種以上を組み合わせて用いてもよい。これらのうち、レーザー光照射による発泡が起こりやすい物質(カーボンブラック、チタンブラック、黒色酸化鉄)を主成分とするものが好ましく、カーボンブラックを主成分とするものが更に好ましい。 Specific examples of the black substance include inorganic pigments such as carbon black, titanium black, and black iron oxide, graphite, and activated carbon. You may use these individually or in combination of 2 or more types. Among these, those containing as a main component a substance (carbon black, titanium black, black iron oxide) that is easily foamed by laser light irradiation are preferable, and those containing carbon black as the main component are more preferable.
 カーボンブラックとしては、例えば、アセチレンブラック、チャンネルブラック、ファーネスブラック等を挙げることができる。カーボンブラックの平均粒子径(1次粒子径)は0.1~1000nmであることが好ましく、1~500nmであることが更に好ましく、5~100nmであることが特に好ましい。更に、カーボンブラックの窒素吸着比表面積は、1~10000m/gであることが好ましく、5~5000m/gであることが更に好ましく、10~2000m/gであることが特に好ましい。 Examples of carbon black include acetylene black, channel black, and furnace black. The average particle size (primary particle size) of carbon black is preferably 0.1 to 1000 nm, more preferably 1 to 500 nm, and particularly preferably 5 to 100 nm. Further, the nitrogen adsorption specific surface area of carbon black is preferably 1 to 10000 m 2 / g, more preferably 5 to 5000 m 2 / g, and particularly preferably 10 to 2000 m 2 / g.
 カーボンブラックは、レーザー光のエネルギーを吸収して気化する。そのため、レーザー光照射部は、カーボンブラック由来の色(黒色又は暗色)の影響が小さく又は無くなり、「カーボンブラック以外の成分に由来する色」に発色することになる。 Carbon black absorbs laser beam energy and vaporizes. Therefore, the influence of the color derived from carbon black (black or dark color) is reduced or eliminated in the laser light irradiation part, and the color is generated in “color derived from components other than carbon black”.
 チタンブラックは、一般に、二酸化チタンを還元して得られるものである。チタンブラックは、レーザー光照射により白色の二酸化チタンに変化する。そのため、レーザー光照射部は、チタンブラックに由来する黒色の度合いが小さく又は無くなり、白色に発色することになる。チタンブラックの平均粒子径は、0.01~2μmであることが好ましく、0.05~1.5μmであることが更に好ましく、0.1~1μmであることが特に好ましい。 Titanium black is generally obtained by reducing titanium dioxide. Titanium black changes to white titanium dioxide by laser light irradiation. For this reason, the laser beam irradiating portion has a small or no black color derived from titanium black and develops white color. The average particle size of titanium black is preferably 0.01 to 2 μm, more preferably 0.05 to 1.5 μm, and particularly preferably 0.1 to 1 μm.
 黒色酸化鉄は、一般に、FeまたはFeO・Feで表されるものである。黒色酸化鉄は、レーザー光照射により赤みがかった白色に変化する。そのため、レーザー光照射部は、黒色の度合いが小さく又は無くなり、白色に発色することになる。黒色酸化鉄の平均粒子径は、0.01~2μmであることが好ましく、0.05~1.5μmであることが更に好ましく、0.1~1μmであることが特に好ましい。 Black iron oxide is generally represented by Fe 3 O 4 or FeO · Fe 2 O 3 . Black iron oxide turns reddish white by laser light irradiation. For this reason, the laser beam irradiating portion has a small or no black level and develops a white color. The average particle diameter of black iron oxide is preferably 0.01 to 2 μm, more preferably 0.05 to 1.5 μm, and particularly preferably 0.1 to 1 μm.
 黒色物質の含有量は、熱可塑性樹脂100質量部に対して、0.01~2.0質量部であることが好ましく、0.03~1.0質量部であることが更に好ましく、0.05~0.8質量部であることが特に好ましい。黒色物質の含有量が0.01質量部未満であると、本発明のシートの生地部の色が薄くなり(即ち、黒色系の濃彩色にならず)、生地部とレーザー光照射部とのコントラストが小さく視認性に劣るおそれがある。一方、2.0質量部超であると、レーザー光照射部が黒ずみ、生地部とレーザー光照射部とのコントラストが低下し、視認性が低下するおそれがある。 The content of the black substance is preferably 0.01 to 2.0 parts by weight, more preferably 0.03 to 1.0 parts by weight, with respect to 100 parts by weight of the thermoplastic resin. It is particularly preferred that the amount be from 05 to 0.8 parts by mass. When the content of the black material is less than 0.01 parts by mass, the color of the fabric part of the sheet of the present invention becomes light (that is, it does not become a blackish dark color), and the fabric part and the laser beam irradiation part There is a possibility that the contrast is small and the visibility is poor. On the other hand, if it exceeds 2.0 parts by mass, the laser light irradiation part is darkened, the contrast between the fabric part and the laser light irradiation part is lowered, and the visibility may be lowered.
[1-4]白色系物質:
 本発明においては、樹脂組成物が白色系物質を更に含有していてもよい。この白色系物質は、レーザー光の受光により影響をうけにくいものであることが好ましい。このような白色系物質を含有させることにより、本発明のシートにおける地色の明度を調節することができるとともに、レーザーマーキングによって発色した色の白色度を向上させることができる。
[1-4] White substance:
In the present invention, the resin composition may further contain a white material. The white material is preferably one that is not easily affected by the reception of laser light. By including such a white substance, the brightness of the ground color in the sheet of the present invention can be adjusted, and the whiteness of the color developed by laser marking can be improved.
 白色系物質としては、白色染料及び白色顔料からなる群より選択される少なくとも1種であることが好ましい。白色染料、白色顔料としては、レーザーマーキングによる発色を妨げるものでなければ特に制限はなく、例えば、二酸化チタン、酸化亜鉛、硫化亜鉛、硫酸バリウム等を挙げることができる。これらは、単独または2種以上を組み合わせて用いてもよい。 The white substance is preferably at least one selected from the group consisting of white dyes and white pigments. The white dye and the white pigment are not particularly limited as long as they do not hinder color development by laser marking, and examples thereof include titanium dioxide, zinc oxide, zinc sulfide, and barium sulfate. You may use these individually or in combination of 2 or more types.
 白色系物質の平均粒子径は、0.05~3.0μmであることが好ましく、0.1~2.0μmであることが更に好ましい。白色系物質の含有量は、熱可塑性樹脂100質量部に対して、0.001~1.0質量部であることが好ましく、0.01~0.5質量部であることが更に好ましく、0.02~0.1質量部であることが特に好ましい。白色系物質の含有量が0.001質量部未満であると、白色系物質を配合したことによる効果が得られないおそれがある。一方、1.0質量部超であると、生地部とレーザー光照射部とのコントラストが良好に得られないおそれがある。 The average particle size of the white substance is preferably 0.05 to 3.0 μm, and more preferably 0.1 to 2.0 μm. The content of the white substance is preferably 0.001 to 1.0 part by weight, more preferably 0.01 to 0.5 part by weight, with respect to 100 parts by weight of the thermoplastic resin. Particularly preferred is 0.02 to 0.1 parts by mass. If the content of the white substance is less than 0.001 part by mass, the effect of blending the white substance may not be obtained. On the other hand, if it exceeds 1.0 part by mass, the contrast between the fabric part and the laser beam irradiation part may not be obtained satisfactorily.
[1-5]添加剤:
 樹脂組成物には、目的や用途に応じて、更に、紫外線吸収剤、酸化防止剤、帯電防止剤、界面活性剤等の親水性付与剤、滑剤等の添加剤を含有させてもよい。これらの添加剤のうち、帯電防止剤や、界面活性剤等の親水性付与剤を配合すると、シートの搬送時における帯電を抑制して上記シートのハンドリング性を向上させることができる。また、オフセット印刷時の帯電防止や印刷インクとのなじみが向上されることにより印刷性を向上させることができる。
[1-5] Additive:
Depending on the purpose and application, the resin composition may further contain additives such as UV absorbers, antioxidants, antistatic agents, hydrophilicity imparting agents such as surfactants, and lubricants. Among these additives, when a hydrophilicity imparting agent such as an antistatic agent or a surfactant is blended, charging during sheet conveyance can be suppressed and the handling property of the sheet can be improved. Further, printability can be improved by preventing charging during offset printing and improving compatibility with printing ink.
 紫外線吸収剤としては、例えば、ベンゾフェノン類、ベンゾトリアゾール類、サリチル酸エステル類、金属錯塩類等を挙げることができる。これらは、1種を単独で用いても2種以上を組み合わせて用いてもよい。紫外線吸収剤の含有量は、熱可塑性樹脂100質量部に対して、0.05~5質量部であることが好ましい。 Examples of the ultraviolet absorber include benzophenones, benzotriazoles, salicylic acid esters, metal complex salts, and the like. These may be used alone or in combination of two or more. The content of the ultraviolet absorber is preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
 酸化防止剤としては、例えば、ヒンダードアミン類、ハイドロキノン類、ヒンダードフェノール類、硫黄含有化合物等を挙げることができる。これらは、1種を単独で用いても2種以上を組み合わせて用いてもよい。酸化防止剤の含有量は、熱可塑性樹脂100質量部に対して、0.1~5質量部であることが好ましい。 Examples of the antioxidant include hindered amines, hydroquinones, hindered phenols, and sulfur-containing compounds. These may be used alone or in combination of two or more. The content of the antioxidant is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
 帯電防止剤としては、例えば、低分子型帯電防止剤、高分子型帯電防止剤等を挙げることができる。これらはイオン伝導型でもよいし電子伝導型でもよい。 Examples of the antistatic agent include a low molecular antistatic agent and a high molecular antistatic agent. These may be ion conduction type or electron conduction type.
 低分子型帯電防止剤としては、例えば、アニオン系帯電防止剤;カチオン系帯電防止剤;非イオン系帯電防止剤;両性系帯電防止剤;錯化合物;アルコキシシラン、アルコキシチタン、アルコキシジルコニウム等の金属アルコキシド、その誘導体;コーテッドシリカ、リン酸塩、リン酸エステル等を挙げることができる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。 Examples of the low molecular weight antistatic agent include an anionic antistatic agent; a cationic antistatic agent; a nonionic antistatic agent; an amphoteric antistatic agent; a complex compound; a metal such as alkoxysilane, alkoxytitanium, and alkoxyzirconium. Examples thereof include alkoxides and derivatives thereof; coated silica, phosphates, phosphates, and the like. These can be used individually by 1 type or in combination of 2 or more types.
 高分子型帯電防止剤としては、例えば、分子内にスルホン酸金属塩を有するビニル共重合体、アルキルスルホン酸金属塩、アルキルベンゼンスルホン酸金属塩、ベタイン等を挙げることができる。更に、ポリアミドエラストマー、ポリエステルエラストマー等を用いることもできる。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。 Examples of the polymer type antistatic agent include a vinyl copolymer having a sulfonic acid metal salt in the molecule, an alkylsulfonic acid metal salt, an alkylbenzenesulfonic acid metal salt, and betaine. Furthermore, a polyamide elastomer, a polyester elastomer, etc. can also be used. These can be used individually by 1 type or in combination of 2 or more types.
 帯電防止剤の含有量は、熱可塑性樹脂100質量部に対して、0.5~30質量部であることが好ましく、0.5~20質量部であることが更に好ましい。 The content of the antistatic agent is preferably 0.5 to 30 parts by mass, more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
 滑剤としては、例えば、ステアリン酸カルシウム、脂肪酸エステル、炭化水素樹脂、パラフィン、高級脂肪酸、オキシ脂肪酸、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、脂肪族アルコール、多価アルコール、ポリグリコール、ポリグリセロール、金属石鹸、シリコーン、変性シリコーン等を挙げることができる。これらは、単独で用いても2種以上を組み合わせて用いてもよい。滑剤の含有量は、熱可塑性樹脂100質量部に対して、0.1~5.0質量部であることが好ましく、0.01~5.0質量部であることが好ましく、0.03~1.0質量部であることが更に好ましく、0.05~0.3質量部であることが特に好ましい。 Examples of the lubricant include calcium stearate, fatty acid ester, hydrocarbon resin, paraffin, higher fatty acid, oxy fatty acid, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol. Examples include esters, aliphatic alcohols, polyhydric alcohols, polyglycols, polyglycerols, metal soaps, silicones, and modified silicones. These may be used alone or in combination of two or more. The content of the lubricant is preferably 0.1 to 5.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and 0.03 to 5.0 parts by mass with respect to 100 parts by mass of the thermoplastic resin. The amount is more preferably 1.0 part by weight, and particularly preferably 0.05 to 0.3 part by weight.
 本発明のカード用多色発色レーザーマーキングシートは、単層シートであってもよいし、表層と内層とを備える多層シートであってもよい。単層シートであると、1台の押出成形機と単層Tダイにより溶融押出成形が可能であるために比較的安価にシートの製造が可能であるという利点がある。一方、多層シートの場合、コア層(内層)がレーザーマーキング層でありスキン層(表層)が透明の保護層である。スキン層を設けることでレーザーマーキング層に保護層を形成できる。そのため、保護層の材質によるが、外観の良さ、耐キズ性、耐薬品性、最外層に印刷を行う場合における印刷性が向上するという利点がある。 The multicolor coloring laser marking sheet for a card of the present invention may be a single layer sheet or a multilayer sheet having a surface layer and an inner layer. The single layer sheet has an advantage that the sheet can be manufactured at a relatively low cost because melt extrusion can be performed by one extruder and a single layer T die. On the other hand, in the case of a multilayer sheet, the core layer (inner layer) is a laser marking layer and the skin layer (surface layer) is a transparent protective layer. A protective layer can be formed on the laser marking layer by providing a skin layer. Therefore, depending on the material of the protective layer, there are advantages that the appearance is good, scratch resistance, chemical resistance, and printability when printing on the outermost layer is improved.
 多層シートの場合、表層が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂を含む表層用樹脂組成物からなる透明な層(シート)であり、内層が、上記レーザーマーキング樹脂組成物からなる層(シート)であることが好ましい。 In the case of a multilayer sheet, the surface layer includes at least one thermoplastic resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin. It is preferable that the layer is a transparent layer (sheet) made of a product, and the inner layer is a layer (sheet) made of the laser marking resin composition.
 また、多層シートの場合、多層シートの総厚みに対する内層の厚みの比率が30~85%のものであることが好ましく、50~85%であることが好ましく、60~80%であることが更に好ましい。上記厚みの比率が上記範囲であることによって、2以上の異なる色調の文字、記号、画像等がより鮮明になる。一方、コア層の厚み比率が30%未満であると、鮮明な文字・画像が得られないおそれがある。85%を超えると、3層シートの両外層であるスキン層の厚みが薄くなりすぎ、各スキン層の厚みの制御が困難となるおそれがある。そのため、各スキン層の厚みが均一な3層シートが得られないおそれがある。また、鮮明な文字・画像が得られないおそれがある。 In the case of a multilayer sheet, the ratio of the thickness of the inner layer to the total thickness of the multilayer sheet is preferably 30 to 85%, more preferably 50 to 85%, and further preferably 60 to 80%. preferable. When the ratio of the thickness is within the above range, characters, symbols, images and the like having two or more different color tones become clearer. On the other hand, if the thickness ratio of the core layer is less than 30%, clear characters / images may not be obtained. If it exceeds 85%, the thickness of the skin layers that are both outer layers of the three-layer sheet becomes too thin, and it may be difficult to control the thickness of each skin layer. Therefore, a three-layer sheet with a uniform thickness of each skin layer may not be obtained. Moreover, there is a possibility that a clear character / image cannot be obtained.
 本発明のカード用多色発色レーザーマーキングシートの平均表面粗さ(Rz)は、1~10μmであることが好ましく、2~8μmであることが更に好ましく、3~6μmであることが特に好ましい。上記平均表面粗さ(Rz)を上記範囲とすることによって、カード積層体の製造時における、プレス機による加熱積層工程において層間の気泡抜け性が良好となる。更に、上記工程における加熱プレスにより平滑面が得られ、この平滑面により良好な表面光沢が得られる。従って、文字、記号、画像等の鮮明性に優れたシートが得られる。また、シートの搬送性が良好となる。平均表面粗さ(Rz)が1μm未満であると、シートの搬送性が十分に得られないおそれがある。一方、10μm超であると、良好な表面光沢が得られないおそれがある。即ち、文字、記号、画像等の鮮明性に優れたシートが得られないおそれがある。平均表面粗さ(Rz)は種々の表面粗さ測定機にて測定可能であるが、本明細書においては、平均表面粗さ(Rz)は、接触式表面粗さ計(TAYLOR HOBSON社製の「FORM TALYSURF SERIES II」)によって測定した値である。 The average surface roughness (Rz) of the multicolor laser marking sheet for cards of the present invention is preferably 1 to 10 μm, more preferably 2 to 8 μm, and particularly preferably 3 to 6 μm. By setting the average surface roughness (Rz) in the above range, the air bubble removal property between layers is improved in the heating lamination process with a press machine during the production of the card laminate. Furthermore, a smooth surface is obtained by the heating press in the above process, and a good surface gloss is obtained by this smooth surface. Therefore, a sheet having excellent clarity of characters, symbols, images and the like can be obtained. Further, the sheet transportability is improved. If the average surface roughness (Rz) is less than 1 μm, the sheet transportability may not be sufficiently obtained. On the other hand, if it exceeds 10 μm, there is a possibility that good surface gloss cannot be obtained. That is, there is a possibility that a sheet with excellent clarity such as characters, symbols, images, etc. cannot be obtained. The average surface roughness (Rz) can be measured by various surface roughness measuring instruments. In this specification, the average surface roughness (Rz) is a contact surface roughness meter (manufactured by TAYLOR HOBSON). It is a value measured by “FORM TALYSURF SERIES II”).
 本発明のカード用多色発色レーザーマーキングシートの生地色(生地部の色)の明度測定におけるL値は、50未満であるであることが好ましく、30未満であることが更に好ましい。上記L値を上記範囲であると、本発明のシートにおいてはレーザー光照射部が淡彩色であるため、このレーザー照射部と生地部とのコントラストが良好となる。そして、このようにコントラストが良好であると、文字、記号、画像等が更に鮮明にマーキングされることになる。ここで、本明細書において「生地色の明度測定におけるL値」は、測色計により測定した値である。 The L value in the lightness measurement of the fabric color (color of the fabric portion) of the multicolor coloring laser marking sheet for cards of the present invention is preferably less than 50, and more preferably less than 30. When the L value is in the above range, the laser light irradiation portion is lightly colored in the sheet of the present invention, and the contrast between the laser irradiation portion and the fabric portion is good. If the contrast is good in this way, characters, symbols, images, etc. are marked more clearly. Here, in this specification, “L value in lightness measurement of fabric color” is a value measured by a colorimeter.
 本発明のカード用多色発色レーザーマーキングシートのレーザーマーキングされた部分の白色度は、20以上であることが好ましく、30以上であることが更に好ましい。上記白色度が上記範囲であると、生地色とレーザー光照射部とのコントラストが優れるために、2以上の異なる色調の文字、記号、画像等がより鮮明に得られる。「レーザーマーキングされた部分」は、レーザー光の照射により黒色物質の変化(消滅など)が生じた部分のことをいう。ここで、本明細書において「白色度」は、JIS K7105に準拠して測定した値である。 The whiteness of the laser-marked portion of the multicolor coloring laser marking sheet for cards of the present invention is preferably 20 or more, and more preferably 30 or more. When the whiteness is in the above range, the contrast between the fabric color and the laser light irradiation part is excellent, and thus characters, symbols, images, etc. having two or more different colors can be obtained more clearly. The “laser-marked portion” refers to a portion where a change (disappearance or the like) of a black material has occurred due to laser light irradiation. Here, in this specification, “whiteness” is a value measured according to JIS K7105.
 本発明のカード用多色発色レーザーマーキングシートの生地色とレーザーマーキングされた部分の色とのコントラストは、2以上であることが好ましく、3以上であることが更に好ましい。上記コントラストが上記範囲であると、文字、記号、画像等が更に鮮明にマーキングされるため、視認性が更に良好となる。ここで、本明細書において「生地色とレーザーマーキングされた部分の色とのコントラスト」は、輝度計により測定した値である。 The contrast between the fabric color of the multicolor coloring laser marking sheet for cards of the present invention and the color of the laser-marked portion is preferably 2 or more, and more preferably 3 or more. When the contrast is in the above range, characters, symbols, images and the like are marked more clearly, and thus visibility is further improved. Here, the “contrast between the fabric color and the color of the laser-marked portion” in this specification is a value measured by a luminance meter.
[2]レーザーマーキング方法:
 本発明のレーザーマーキング方法は、本発明のカード用多色発色レーザーマーキングシートに対して、同一波長のレーザー光を異なる照射条件で照射又は波長の異なるレーザー光を照射することにより、レーザー光照射の際の被照射物(上記シート)に対するエネルギー量が2以上の異なるエネルギー量となるように、レーザー光を照射することによって、2以上の異なる色調にマーキングする方法である。
[2] Laser marking method:
In the laser marking method of the present invention, the multicolor coloring laser marking sheet for cards of the present invention is irradiated with laser light of the same wavelength under different irradiation conditions or by irradiating laser light of different wavelengths. This is a method of marking in two or more different color tones by irradiating a laser beam so that the energy amount to the irradiated object (the sheet) at that time becomes two or more different energy amounts.
 そして、本発明のレーザーマーキング方法においては、カード用多色発色レーザーマーキングシートに2以上の異なる波長のレーザー光照射を行うに際して、低エネルギーのレーザー光の波長と、高エネルギーのレーザー光の波長との差が、100nm以上である。即ち、一のレーザー光Aと他のレーザー光Bとを照射してレーザーマーキングする方法において、レーザー光Aとレーザー光Bとは波長が異なり、これらの波長の差が100nm以上である。このような方法によれば、本発明のカード用多色発色レーザーマーキングシートに、2以上の異なる色調の文字、記号、画像等を鮮明にマーキングすることができる。 In the laser marking method of the present invention, when irradiating the multicolor coloring laser marking sheet for card with two or more different wavelengths of laser light, the wavelength of the low energy laser light, the wavelength of the high energy laser light, The difference is 100 nm or more. That is, in the method of laser marking by irradiating one laser beam A and another laser beam B, the laser beam A and the laser beam B have different wavelengths, and the difference between these wavelengths is 100 nm or more. According to such a method, it is possible to clearly mark characters, symbols, images, etc. having two or more different colors on the multicolor coloring laser marking sheet for cards of the present invention.
 一般的に、レーザー光の「エネルギー」は、レーザー光の照射条件に依存する。具体的には、照射するレーザー光の種類、波長、パルス幅、周波数、出力の他、照射時間、照射面積、光源から成形品までの距離と角度、照射方法等を変えることにより、2以上の異なるエネルギー量のレーザー光を得ることができる。より具体的には、波長の異なるレーザー光を用いる場合や、同一波長のレーザー光を用い、照射時間等の他の照射条件を異ならせた場合に異なるエネルギー量とすることができる。また、照射条件を同一としたとき、1回照射の場合と2回以上照射の場合とでは、被照射物に与えるエネルギー量は異なり、照射時間の長い後者の方が「高いエネルギー」となる。 Generally, the “energy” of the laser beam depends on the irradiation condition of the laser beam. Specifically, by changing the type, wavelength, pulse width, frequency, output, irradiation time, irradiation area, distance and angle from the light source to the molded product, irradiation method, etc. Laser beams with different energy amounts can be obtained. More specifically, the amount of energy can be made different when laser light having different wavelengths is used, or when laser light having the same wavelength is used and other irradiation conditions such as irradiation time are varied. Further, when the irradiation conditions are the same, the amount of energy given to the irradiated object is different between the case of one irradiation and the case of two or more irradiations, and the latter with a longer irradiation time is “higher energy”.
 上記「同一波長のレーザー光を異なる照射条件で照射又は波長の異なるレーザー光を照射することにより、レーザー光照射の際の被照射物に対するエネルギー量が2以上の異なるエネルギー量となるように、レーザー光を照射する」とは、被照射物に与えるダメージの程度が異なる、2以上のレーザー光を照射することをいう。上述の照射条件が全て同一のとき、これを1回で照射した場合と複数回に分けて照射した場合とで被照射物に与えるダメージが異なるが、この場合も「異なるエネルギーを有する2以上のレーザー光」に含めることとする。即ち、与える総エネルギーが同一でも、1回照射の方が2回照射より、被照射物が受けるダメージが大きい場合は、前者を「高いエネルギー」とする。 As described above, the laser beam is irradiated so that the amount of energy with respect to the object to be irradiated becomes two or more different energy amounts by irradiating laser beams of the same wavelength under different irradiation conditions or by irradiating laser beams of different wavelengths. “Irradiating light” means irradiating two or more laser beams having different degrees of damage to the irradiated object. When all of the above-mentioned irradiation conditions are the same, the damage given to the irradiated object is different between the case where the irradiation is performed once and the case where the irradiation is performed in a plurality of times. Included in “Laser light”. In other words, even if the total energy to be applied is the same, if the irradiated object receives more damage than irradiated twice, the former is set to “high energy”.
 本発明のレーザーマーキング方法において、本発明のカード用多色発色レーザーマーキングシートに照射するレーザー光は、本発明のカード用多色発色レーザーマーキングシートの性能を大幅に損なわなければ、どのような照射条件で行ってもよい。照射方法も、スキャン方式及びマスク方式のいずれでもよく、異なるエネルギーを有する2以上のレーザー光を同時に照射してもよいし、1つずつ照射してもよい。また、レーザー光の照射装置としては、一般的なレーザーマーキング用装置等を用いることができる。この装置は、通常、レーザー発振器、レーザー変調器、ハンドリングユニット、コントローラー等を備えており、レーザー発振器から発振したレーザー光を、レーザー変調器によりパルス変調し、成形品の表面に照射することで、マーキングを形成させる。なお、レーザーマーキングに際しては、1台の装置で異なるエネルギーを有する2以上のレーザー光を照射してもよいし、複数の装置を用いてもよい。2波長のレーザーマーキングが可能な装置としては、例えば、ロフィン・バーゼル社製のレーザーマーキングシステム「RSM50D型」、「RSM30D型」等を用いることができる。 In the laser marking method of the present invention, the laser light applied to the multicolor coloring laser marking sheet for card of the present invention is not irradiated unless the performance of the multicolor coloring laser marking sheet for card of the present invention is significantly impaired. It may be performed under conditions. The irradiation method may be either a scanning method or a mask method, and two or more laser beams having different energies may be irradiated simultaneously or may be irradiated one by one. Moreover, as a laser beam irradiation device, a general laser marking device or the like can be used. This device is usually equipped with a laser oscillator, laser modulator, handling unit, controller, etc., and laser light oscillated from the laser oscillator is pulse-modulated by the laser modulator and irradiated to the surface of the molded product. Marking is formed. In laser marking, two or more laser beams having different energies may be emitted from one device, or a plurality of devices may be used. As an apparatus capable of two-wavelength laser marking, for example, a laser marking system “RSM50D type”, “RSM30D type” manufactured by Roffin Basel, Inc. can be used.
 レーザー光は、気体、固体、半導体、色素、エキシマー及び自由電子のいずれでもよいが、波長が100~2,000nmの範囲内にあるものが好ましい。なお、本発明において、例えば1,064nm、532nmのようにレーザー光の「波長」を示す数字は、いずれも中心波長を意味し、通常、±3%の誤差を含むものとする。 The laser beam may be any of gas, solid, semiconductor, dye, excimer and free electron, but preferably has a wavelength in the range of 100 to 2,000 nm. In the present invention, the numbers indicating the “wavelength” of laser light, such as 1,064 nm and 532 nm, all mean the center wavelength, and normally include an error of ± 3%.
 気体レーザーとしては、ヘリウム・ネオンレーザー、希ガスイオンレーザー、ヘリウム・カドミウムレーザー、金属蒸気レーザー、炭酸ガスレーザー等を挙げることができる。固体レーザーとしては、ルビーレーザー、ネオジウムレーザー、波長可変固体レーザー等を挙げることができる。半導体レーザーは、無機でも有機でもよく、無機の半導体レーザーとしては、GaAs/GaAlAs系、InGaAs系、InP系等を挙げることができる。また、Nd:YAG、Nd:YVO、Nd:YLF等の半導体レーザー励起固体レーザーを用いることもできる。上記レーザー光は、単独で用いても2種以上を組み合わせて用いてもよい。 Examples of the gas laser include a helium / neon laser, a rare gas ion laser, a helium / cadmium laser, a metal vapor laser, and a carbon dioxide laser. Examples of the solid laser include a ruby laser, a neodymium laser, and a wavelength tunable solid laser. The semiconductor laser may be inorganic or organic, and examples of the inorganic semiconductor laser include GaAs / GaAlAs, InGaAs, and InP. Further, a semiconductor laser-excited solid laser such as Nd: YAG, Nd: YVO 4 , or Nd: YLF can also be used. The above laser beams may be used alone or in combination of two or more.
 本発明のレーザーマーキング方法によると、本発明のカード用多色発色レーザーマーキングシートにレーザー光を照射したとき、黒色物質の変化(消滅、変色等)が生じた部分は黒色物質以外の物質の色が強く現れ、有彩色着色剤の変化(分解、飛散等)が生じた部分は「有彩色着色剤に由来する色の濃度が低下した色」または白色になる。レーザー光のエネルギーが低い場合は、黒色物質の気化、揮散、完全分解等による消滅、又は、上記黒色物質の少なくとも一部が留まり、分解等により元の黒色と異なる色となる変色が起こる。そのため、レーザー光照射部は、有彩色着色剤に由来する色に発色する。一方、レーザー光のエネルギーが上記レーザーよりも高い場合、レーザー光照射部は、白色または「有彩色着色剤に由来する色の濃度が低下した色」に発色する。 According to the laser marking method of the present invention, when the multicolor coloring laser marking sheet for card of the present invention is irradiated with laser light, the portion where the black material change (disappearance, discoloration, etc.) occurs is the color of the material other than the black material. The portion where the chromatic colorant is changed (decomposition, scattering, etc.) becomes “a color with a reduced color density derived from the chromatic colorant” or white. When the energy of the laser beam is low, the black material vaporizes, volatilizes, disappears due to complete decomposition, or at least a part of the black material stays and discoloration that changes to a color different from the original black occurs due to decomposition or the like. Therefore, the laser beam irradiating unit develops a color derived from the chromatic colorant. On the other hand, when the energy of the laser beam is higher than that of the laser, the laser beam irradiating portion develops white color or “a color having a reduced color density derived from the chromatic colorant”.
 レーザー光照射による発色方法の例を図1,図2により簡単に説明するが、本発明のレーザーマーキング方法は、これらに限定されるものではない。 An example of a coloring method by laser light irradiation will be briefly described with reference to FIGS. 1 and 2, but the laser marking method of the present invention is not limited to these.
 図1に示すように、カード用多色発色レーザーマーキングシート100に対して、2つの異なるエネルギーを有するレーザー光を異なる位置に照射する。このようにレーザー光を照射することにより、低エネルギーのレーザー光22の照射部12は、有彩色着色剤に由来する色にマーキングされ、一方、高エネルギーのレーザー光21の照射部11は、白色または「有彩色着色剤に由来する色の濃度が低下した色」にマーキングされ、2つの異なる色調にマーキングされたカード用多色発色レーザーマーキングシート100を得ることができる。このとき、レーザー光の照射は同時に行ってよいし、別々に行ってもよい。図1は、本発明のカード用多色発色レーザーマーキングシートの一実施形態の断面を示す模式図である。 As shown in FIG. 1, laser light having two different energies is irradiated to different positions on the card multicolor coloring laser marking sheet 100. By irradiating the laser beam in this way, the irradiation unit 12 of the low energy laser beam 22 is marked with a color derived from the chromatic colorant, while the irradiation unit 11 of the high energy laser beam 21 is white. Alternatively, it is possible to obtain a multicolor coloring laser marking sheet 100 for a card which is marked with “color having a reduced color density derived from a chromatic colorant” and marked in two different color tones. At this time, the laser light irradiation may be performed simultaneously or separately. FIG. 1 is a schematic view showing a cross section of an embodiment of a multicolor coloring laser marking sheet for cards of the present invention.
 また、図2に示すように、カード用多色発色レーザーマーキングシート101に対して、低エネルギーのレーザー光を照射することにより、広い面積の、「有彩色着色剤に由来する色」のレーザー光照射部を形成する。その後、このレーザー光照射部の一部に、更にレーザー光を照射する。このように複数回レーザー光を照射すると、有彩色着色剤に由来する色のレーザー光照射部の一部を、白色または「有彩色着色剤に由来する色」の濃度が低下した色にマーキングすることができる。図2は、「有彩色着色剤に由来する色」のレーザー光照射部12の内側に、白色または「有彩色着色剤に由来する色」の濃度が低下した色のレーザー光照射部11を有するカード用多色発色レーザーマーキングシート101を示している例である。図2は、本発明のカード用多色発色レーザーマーキングシートの他の実施形態の断面を示す模式図である。 In addition, as shown in FIG. 2, a laser beam of “color derived from a chromatic colorant” having a large area can be obtained by irradiating the multicolor coloring laser marking sheet 101 for a card with a low-energy laser beam. An irradiation part is formed. Thereafter, a laser beam is further irradiated to a part of the laser beam irradiation unit. When the laser beam is irradiated a plurality of times in this way, a part of the laser beam irradiation part of the color derived from the chromatic colorant is marked with white or a color having a reduced density of “color derived from the chromatic colorant”. be able to. FIG. 2 includes a laser light irradiation unit 11 having a color with a reduced density of white or “color derived from a chromatic colorant” inside the laser light irradiation unit 12 of “color derived from a chromatic colorant”. It is an example which shows the multicolor coloring laser marking sheet 101 for cards. FIG. 2 is a schematic view showing a cross section of another embodiment of the multicolor coloring laser marking sheet for cards of the present invention.
 複数回に分けてレーザー光を照射すると、「有彩色着色剤に由来する色」のレーザー光照射部12と、白色または「有彩色着色剤に由来する色」の濃度が低下した色のレーザー光照射部11とが隣り合ったレーザーマーキングを実現することができる。なお、この2回目に照射するレーザー光のエネルギーは、1回目と同じであってよいし、異なってもよく、特に限定されない。 When laser light is irradiated in multiple times, the laser light irradiation unit 12 of “color derived from a chromatic colorant” and the laser light of a white color or a color whose concentration of “color derived from a chromatic colorant” has decreased Laser marking in which the irradiation unit 11 is adjacent can be realized. The energy of the laser light irradiated for the second time may be the same as or different from the first time, and is not particularly limited.
 本発明のレーザーマーキング方法により、2色の鮮明なマーキングを得る場合は、通常、低エネルギーのレーザー光は、有彩色着色剤由来の色が鮮明になりやすいため、黒色物質由来の色の消失を顕著に起こさせるレーザー光であることが好ましい。また、高エネルギーのレーザー光は、有彩色着色剤由来の色の濃度を顕著に低下させるレーザー光であることが好ましい。 When two-color clear marking is obtained by the laser marking method of the present invention, normally, low-energy laser light tends to have a clear color derived from a chromatic colorant. It is preferable that the laser beam is remarkably generated. Moreover, it is preferable that a high energy laser beam is a laser beam which remarkably reduces the density of the color derived from the chromatic colorant.
 本発明のレーザーマーキング方法により、3色以上の鮮明なマーキングを得る場合は、有彩色着色剤を1種のみ含むシートを用いてもよいし、有彩色着色剤を2種以上含むシートを用いてもよいが、より鮮明なマーキングを形成しやすいという観点からは後者が好ましい。 When a clear marking of three or more colors is obtained by the laser marking method of the present invention, a sheet containing only one chromatic colorant may be used, or a sheet containing two or more chromatic colorants may be used. However, the latter is preferable from the viewpoint that a clearer marking can be easily formed.
 有彩色着色剤を1種のみ含むシートにおいて多色発色させる場合には、本発明のシートが、照射するレーザー光のエネルギーに依存してマーキングの色を変えることができることを利用する。具体的には、異なるエネルギーを有する3以上のレーザー光の照射により、3色以上のマーキングを得る方法等を挙げることができる。より具体的には、黒色物質の変化の程度が異なる2種のエネルギーと有彩色着色剤由来の色の濃度が低下するエネルギーとの合計3種のレーザー光を照射する方法、黒色物質が変化するエネルギーと有彩色着色剤の変化の程度が異なる2種のエネルギーとの合計3種のレーザー光を照射する方法等を挙げることができる。 In the case where multicolor coloring is performed on a sheet containing only one kind of chromatic colorant, the fact that the sheet of the present invention can change the color of the marking depending on the energy of the irradiated laser beam is utilized. Specific examples include a method of obtaining markings of three or more colors by irradiation of three or more laser beams having different energies. More specifically, the method of irradiating a total of three types of laser light, that is, two types of energy having different degrees of change of the black material and energy of decreasing the color density derived from the chromatic colorant, and the black material changes. Examples include a method of irradiating a total of three types of laser beams of energy and two types of energy having different degrees of change in the chromatic colorant.
 例えば、赤色の有彩色着色剤を1種のみ含むシートを用いる場合について説明すると、低エネルギーのレーザー光の照射により、黒色物質の一部を消滅又は変色させて上記黒色物質由来の色を薄くして「暗赤色」とし、その後、高エネルギーのレーザー光の照射により「赤色」とし、その後、更に高エネルギーのレーザー光の照射により「白色」又は「薄赤色」に発色させることができる。このように濃淡を形成することができる。 For example, in the case of using a sheet containing only one kind of red chromatic colorant, by irradiating a low energy laser beam, a part of the black material is extinguished or discolored to make the color derived from the black material lighter. The color can be changed to “dark red”, then “red” by irradiation with high-energy laser light, and then colored “white” or “light red” by irradiation with higher-energy laser light. In this way, shading can be formed.
 また、有彩色着色剤を2種含む組成物に対して3色に発色させる場合、例えば、赤色と青色との有彩色着色剤を用いた場合について説明する。低エネルギーのレーザー光の照射により、黒色物質を消滅又は変色させて上記黒色物質由来の色を薄くして「赤色と青色の混合色である紫色」とし、その後、高エネルギーのレーザー光の照射により赤色の有彩色着色剤由来の色の濃度を低下させて「青色」とし、その後、更に高エネルギーのレーザー光の照射により青色の有彩色着色剤由来の色の濃度を低下させて「白色」又は「薄青色」に発色させることができる。 Further, a case where a composition containing two kinds of chromatic colorants is colored in three colors, for example, a case where chromatic colorants of red and blue are used will be described. By irradiating the low-energy laser light, the black material is extinguished or discolored, and the color derived from the black material is reduced to “purple, which is a mixed color of red and blue”, and then the high-energy laser light is irradiated. Reduce the density of the color derived from the red chromatic colorant to “blue”, and then reduce the density of the color derived from the blue chromatic colorant by irradiating with a high-energy laser beam to “white” or It can be colored “light blue”.
 以上のように、レーザー光の照射条件及び有彩色着色剤等を適切に選択することにより、所望の色のレーザーマーキングを得ることができる。 As described above, a laser marking having a desired color can be obtained by appropriately selecting the irradiation condition of the laser light and the chromatic colorant.
 異なるエネルギーを有するレーザー光を得る簡便な方法は、異なる波長のレーザー光を使用することである。例えば、波長だけが異なるレーザー光の照射により、レーザーマーキングを行う場合、各レーザー光の波長の差は、好ましくは100nm以上、更に好ましくは200nm以上、特に好ましくは500nm以上である。なお、上限は、通常、1,500nmである。本発明のレーザーマーキング方法において、有彩色着色剤に由来する色と、白色または「有彩色着色剤に由来する色の濃度が低下した色」とを鮮明にマーキングするには、波長1,064nmのレーザー光及び波長532nmのレーザー光を用いることが好ましい。即ち、波長1,064nmのレーザー光の照射により有彩色着色剤に由来する色を発色させ、波長532nmのレーザー光の照射により白色または「有彩色着色剤に由来する色の濃度が低下した色」に発色させると、鮮明なマーキングを形成することができる。 A simple method for obtaining laser beams having different energies is to use laser beams having different wavelengths. For example, when laser marking is performed by irradiating laser beams having different wavelengths only, the difference in wavelength of each laser beam is preferably 100 nm or more, more preferably 200 nm or more, and particularly preferably 500 nm or more. The upper limit is usually 1,500 nm. In the laser marking method of the present invention, in order to clearly mark a color derived from a chromatic colorant and a white color or a “color having a reduced color density derived from a chromatic colorant”, a wavelength of 1,064 nm It is preferable to use laser light and laser light having a wavelength of 532 nm. That is, a color derived from a chromatic colorant is developed by irradiation with a laser beam having a wavelength of 1,064 nm, and white or “a color having a reduced color density derived from a chromatic colorant” by irradiation with a laser beam having a wavelength of 532 nm. When the color is developed, a clear marking can be formed.
 本明細書において「有彩色着色剤に由来する色」は、主に、レーザー光の照射により黒色物質が消滅、変色等することによって得られる色をいう。例えば、黒色物質の消滅、変色等により黒色物質の色の影響が小さくなることによって現れる、(a)有彩色着色剤そのものの色(以下、単に「着色剤本来の色」ともいう。)、(b)着色剤本来の色に黒色がかった色(着色剤本来の色と黒色物質の色との混合色、着色剤本来の色と黒色物質が変色した色との混合色)、(c)有彩色着色剤が変色して色調が変化した色、(d)上記(c)の色に黒色がかった色等が含まれる。 In the present specification, the “color derived from a chromatic colorant” mainly refers to a color obtained by the disappearance, discoloration, etc. of a black substance by laser light irradiation. For example, (a) the color of the chromatic colorant itself (hereinafter also simply referred to as “colorant's original color”), which appears when the influence of the color of the black material is reduced due to the disappearance or discoloration of the black material, b) Black color of the original color of the colorant (mixed color of the original colorant and the color of the black material, mixed color of the original colorant and the color changed from the black material), (c) present A color in which the color tone is changed by changing the color of the coloring agent, (d) a color in which the color of (c) is blackish, and the like are included.
 本明細書において「有彩色着色剤に由来する色の濃度が低下した色」は、上述の「有彩色着色剤に由来する色」の濃度が低下した色をいう。この色は、主に、レーザー光の照射により有彩色着色剤が変化することによって得られる色であり、例えば、有彩色着色剤の分解、飛散等により有彩色着色剤の色の影響が小さくなることによって現れる色、有彩色着色剤が変色して色調が変化した色等が含まれる。「有彩色着色剤に由来する色の濃度が低下した色」は、白色に近い色であるほど、上述の「有彩色着色剤に由来する色」と区別しやすいため好ましい。 In this specification, “a color having a reduced color density derived from a chromatic colorant” refers to a color having a reduced density of the above-mentioned “color derived from a chromatic colorant”. This color is mainly obtained by changing the chromatic colorant by irradiation with laser light. For example, the influence of the color of the chromatic colorant is reduced by the decomposition or scattering of the chromatic colorant. The color which appears by this, the color etc. which the chromatic colorant discolored and the color tone changed are included. The “color having a reduced color density derived from the chromatic colorant” is more preferable as it is closer to white because it is easier to distinguish from the “color derived from the chromatic colorant” described above.
 本明細書において「白色」は、通常、本発明のシートに含まれる熱可塑性樹脂そのものの色を主とし、純白に限らず、他の色が混じった白系の色が含まれる。更に、この色の他に、黒色物質としてチタンブラックが含まれる場合には、レーザー光の照射により二酸化チタンに変化した後の、二酸化チタン由来の色またはこの色と上記熱可塑性樹脂の色との混合色、必要に応じて配合される白色系物質等に由来する色またはこの色と上記熱可塑性樹脂の色との混合色等が含まれる。本発明のシートに含まれる熱可塑性樹脂がレーザー光の受光により発泡しやすいものである場合、高エネルギーのレーザー光による照射部の発色は、白色度がより高くなる。 In the present specification, “white” usually includes mainly the color of the thermoplastic resin itself contained in the sheet of the present invention, and includes not only pure white but also white-based colors mixed with other colors. In addition to this color, when titanium black is included as a black substance, the color derived from titanium dioxide or the color of the thermoplastic resin after being changed to titanium dioxide by laser light irradiation. A mixed color, a color derived from a white material blended as necessary, or a mixed color of this color and the color of the thermoplastic resin are included. When the thermoplastic resin contained in the sheet of the present invention is easily foamed by the reception of laser light, the color of the irradiated portion by the high-energy laser light becomes higher in whiteness.
 なお、上記「白色」の白色度は、JIS K7105等により評価することができる。白色度は、色の白さの度合いを意味する。白色度は、ある一定光量の光を対象物に照射したときの反射率により評価することもできる。反射率は、ハンター白色度計等により測定することができる。ここで、反射率は、照射する光の種類(波長等)によって異なり、ハンター白色度計の場合は、光の3原色である青色光で測定を行う。 The whiteness of the above “white” can be evaluated according to JIS K7105. Whiteness means the degree of whiteness of a color. The whiteness can also be evaluated based on the reflectance when the object is irradiated with a certain amount of light. The reflectance can be measured with a hunter whiteness meter or the like. Here, the reflectance varies depending on the type of light to be irradiated (wavelength or the like). In the case of a hunter whiteness meter, measurement is performed with blue light that is the three primary colors of light.
 本発明のシートにおいて得られた白色マーキングの白色度(%)は、酸化マグネシウムの反射光に対する強度の割合で表すこともできる。この場合の白色度(%)としては、好ましくは55~100%、より好ましくは60~100%、更に好ましくは70~100%、特に好ましくは80~100%である。なお、人間の視覚による白さと白色度計による白色度とは必ずしも一致しないこともあるため、本発明のシートにおける白色の照射部は、白色度が低くても人間の目に白く見えればよい。 The whiteness (%) of the white marking obtained in the sheet of the present invention can also be expressed as a ratio of the intensity of magnesium oxide to the reflected light. The whiteness (%) in this case is preferably 55 to 100%, more preferably 60 to 100%, still more preferably 70 to 100%, and particularly preferably 80 to 100%. In addition, since the whiteness by human vision and the whiteness by the whiteness meter may not necessarily match, the white irradiation portion in the sheet of the present invention may be white as long as it is visible to the human eye even if the whiteness is low.
 本発明においては、下記式(1)により算出されるΔE1は、黒色又は暗色系の地色に対して白色度の高いマーキングを形成することができるという観点から、上限が好ましくは3、更に好ましくは2.5、特に好ましくは2である。下限は、通常、0である。なお、ΔE1の値が小さいほど白色度が高いことを示す。
(1):ΔE1=√{(L1-L2)+(a1-a2)+(b1-b2)
In the present invention, ΔE1 calculated by the following formula (1) has an upper limit of preferably 3 and more preferably from the viewpoint of being able to form a marking having a high whiteness with respect to a black or dark ground color. Is 2.5, particularly preferably 2. The lower limit is usually 0. In addition, it shows that whiteness is so high that the value of (DELTA) E1 is small.
(1): ΔE1 = √ {(L1-L2) 2 + (a1-a2) 2 + (b1-b2) 2 }
 ΔE1は、本発明のシートに高エネルギーのレーザー光(例えば、波長532nmのレーザー光)を照射したときの照射部のLab値(L1;明度、a1;赤色度、b1;黄色度)、及び、有彩色着色剤を含有しない以外は本発明のシートと同一のシートに低エネルギーのレーザー光(例えば、波長1,064nmのレーザー光)を照射したときの照射部のLab値(L2;明度、a2;赤色度、b2;黄色度)に基づき、式(1)により算出される値である。 ΔE1 is the Lab value (L1: brightness, a1: redness, b1: yellowness) of the irradiated part when the sheet of the present invention is irradiated with high energy laser light (for example, laser light with a wavelength of 532 nm), and Except for not containing a chromatic colorant, the Lab value (L2; brightness, a2) of the irradiated portion when the same sheet as the sheet of the present invention is irradiated with low energy laser light (for example, laser light having a wavelength of 1064 nm) ; Redness, b2; yellowness), a value calculated by the formula (1).
 また、本発明においては、下記式(2)により算出されるΔE2は、各照射部の色調差を明瞭にすることができるという観点から、下限が好ましくは3、更に好ましくは3.5、特に好ましくは4である。上限は、通常、50である。なお、ΔE2の値が大きいほど色調差が明瞭であることを示す。
(2):ΔE2=√{(L1-L3)+(a1-a3)+(b1-b3)
Further, in the present invention, ΔE2 calculated by the following formula (2) is preferably a lower limit of 3, more preferably 3.5, particularly from the viewpoint that the color tone difference of each irradiation part can be clarified. Preferably it is 4. The upper limit is usually 50. In addition, it shows that a color difference is clear, so that the value of (DELTA) E2 is large.
(2): ΔE2 = √ {(L1-L3) 2 + (a1-a3) 2 + (b1-b3) 2 }
 ΔE2は、本発明のシートに高エネルギーのレーザー光(例えば、波長532nmのレーザー光)を照射したときの照射部のLab値(L1;明度、a1;赤色度、b1;黄色度)、及び、本発明のシートに低エネルギーのレーザー光(例えば、波長1,064nmのレーザー光)を照射したときの照射部のLab値(L3;明度、a3;赤色度、b3;黄色度)に基づき、式(2)により算出される値である。 ΔE2 is the Lab value (L1; brightness, a1; redness, b1; yellowness) of the irradiated part when the sheet of the present invention is irradiated with high energy laser light (for example, laser light with a wavelength of 532 nm), and Based on the Lab value (L3: brightness, a3: redness, b3: yellowness) of the irradiated part when the sheet of the present invention is irradiated with low energy laser light (for example, laser light having a wavelength of 1,064 nm). This is a value calculated by (2).
 なお、Lab値とは、色の数値表現として知られるRichard S.HunterによるL.a.b表色系の値を示す。このようなLab値によれば、視感覚による差をなくすことができる。Lab値は、色差計により、対象とする色調を測定した後、レーザー光照射部の色を明度(L)、色相(a、b)として数値化し、図3に示すようなグラフ上にプロットし、数値化した値である。色差計は、色を表示する諸量を測定する計器のことであり、光の分光分布又は物体の分光反射(透過)率を測定するものである。 Note that the Lab value is Richard S., known as a numerical expression of color. L. by Hunter. a. b Indicates the value of the color system. According to such a Lab value, a difference due to visual sensation can be eliminated. The Lab value is obtained by measuring the target color tone with a colorimeter and then converting the color of the laser light irradiated part into lightness (L) and hue (a, b) and plotting it on a graph as shown in FIG. Is a numerical value. A color difference meter is an instrument that measures various quantities for displaying color, and measures the spectral distribution of light or the spectral reflectance (transmittance) of an object.
 図3の色立体を示したグラフにおいては、明度(L)は左に示した縦軸で、0~100の範囲の数値で規定されるものであり、Lの値が大きいほど明るい。aはグラフにおける左右の尺度であり、(+)側では赤の度合いが強く、(-)側では緑の度合いが強いことを示す。一方、bはグラフにおける上下の尺度であり、(+)側では黄の度合いが強く、(-)側では青の度合いが強いことを示す。図3は、Lab表色系の色立体を示す図である。 3 In the graph showing the color solid in FIG. 3, the lightness (L) is defined by a numerical value in the range of 0 to 100 on the vertical axis shown on the left, and the larger the value of L, the brighter. a is a scale on the left and right in the graph, and indicates that the degree of red is strong on the (+) side and the degree of green is strong on the (−) side. On the other hand, b is an upper and lower scale in the graph, indicating that the degree of yellow is strong on the (+) side and the degree of blue is strong on the (−) side. FIG. 3 is a diagram illustrating a color solid of the Lab color system.
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、実施例中の各種測定及び評価の方法は以下の方法を採用した。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples. In addition, the following methods were employ | adopted as the method of various measurements and evaluation in an Example.
[1]発熱ピーク温度:
 有彩色着色剤の発熱ピーク温度は、示差熱分析により測定した。測定装置は、セイコー電子社製の「TG-DTA320型(横型炉)」を用いた。
[1] Exothermic peak temperature:
The exothermic peak temperature of the chromatic colorant was measured by differential thermal analysis. As a measuring device, “TG-DTA320 type (horizontal furnace)” manufactured by Seiko Electronics Co., Ltd. was used.
 具体的な測定方法としては、3mgの試料をアルミニウム製の直径5mm×高さ2.5mmの皿型容器に均一に密に充填し、昇温速度を10℃/分として、空気中、流速200ml/分の条件で行った。なお、測定装置における温度の較正は、インジウム及びスズを用いて行った。また、質量の較正は、室温下、分銅を用いて行い、更に、シュウ酸カルシウムを用いて行った。発熱ピーク温度は、昇温曲線におけるピークトップにより決定した。発熱ピーク温度の測定結果を表1に示す。 As a specific measurement method, 3 mg of a sample is uniformly and densely packed in an aluminum-made dish having a diameter of 5 mm and a height of 2.5 mm, and the heating rate is 10 ° C./min. Per minute. Note that temperature calibration in the measuring apparatus was performed using indium and tin. Moreover, mass calibration was performed using a weight at room temperature, and further using calcium oxalate. The exothermic peak temperature was determined by the peak top in the temperature rise curve. Table 1 shows the measurement results of the exothermic peak temperature.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例及び比較例に用いた各有彩色着色剤の化学式を以下に示す。なお、式(XXII)はβ型銅フタロシアニン顔料を示し、式(XXIV)はアルミニウムフタロシアニン顔料を示し、式(XXV)はジケトピロロピロール系顔料を示し、式(XXVI)はジオキサジン系顔料を示し、式(XXVII)はキナクリドン系顔料を示し、式(XXVIII)はキノフタロン系顔料を示し、式(XXIX)はペリレン系顔料を示し、式(XXX)は金属錯体系顔料を示し、式(XXXI)はアンスラキノン系染料を示し、式(XXXII)はペリノン系染料を示し、式(XXXIII)は鉄フタロシアニン顔料を示し、式(XXXIV)はペリレンブラックを示す。 The chemical formula of each chromatic colorant used in Examples and Comparative Examples is shown below. Formula (XXII) represents a β-type copper phthalocyanine pigment, Formula (XXIV) represents an aluminum phthalocyanine pigment, Formula (XXV) represents a diketopyrrolopyrrole pigment, and Formula (XXVI) represents a dioxazine pigment. Formula (XXVII) represents a quinacridone pigment, Formula (XXVIII) represents a quinophthalone pigment, Formula (XXIX) represents a perylene pigment, Formula (XXX) represents a metal complex pigment, and Formula (XXXI) Represents an anthraquinone dye, formula (XXXII) represents a perinone dye, formula (XXXIII) represents an iron phthalocyanine pigment, and formula (XXXIV) represents perylene black.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[2]カード生地色:
 作製したカードのレーザーマーキングシートの生地色は、測色計により明度測定を行い、測色計のL値を算出した後、以下の判定基準により評価した。L値が30未満の場合を「A」とし、L値が30以上で50未満の場合を「B」とし、L値が50以上の場合を「C」とした。なお、明度測定は、Gretag Machbeth社製の商品名「Color-Eye 7000A」により行った。
[2] Card fabric color:
The fabric color of the laser marking sheet of the produced card was evaluated by the following criteria after measuring the brightness with a colorimeter and calculating the L value of the colorimeter. The case where the L value was less than 30 was “A”, the case where the L value was 30 or more and less than 50 was “B”, and the case where the L value was 50 or more was “C”. The lightness was measured using a trade name “Color-Eye 7000A” manufactured by Gretag Machbeth.
[3]レーザー発色性(有彩色):
 レーザー発色性は、ロフィン・バーゼル社製の「レーザーマーカーRMS103D」及び「パワーライン〔E/SHG型〕」を用いて、波長1,064nmのレーザー光を使用した。レーザー光照射後における照射部(発色部)の発色性を下記の判定基準により目視評価を行った。「使用した有彩色着色剤と同じ色が確認できる」場合には「A」とし、「わずかに有彩色の鮮明さが劣るが実用可能である」場合には「B」とし、「使用した有彩色着色剤と異なる色であり、鮮明さが劣り実用困難である」場合には「C」とした。
[3] Laser color development (chromatic color):
For laser color development, a laser beam having a wavelength of 1,064 nm was used using “Laser Marker RMS103D” and “Power Line [E / SHG type]” manufactured by Roffin Basel. Visual evaluation of the color developability of the irradiated part (color developing part) after laser light irradiation was performed according to the following criteria. “A” is used when “the same color as the used chromatic colorant can be confirmed”, and “B” is used when “slightly inferior chromatic color is viable but practical”. When it is a color different from the chromatic colorant and is inferior in vividness and difficult to be practically used, “C” is given.
[4]レーザー発色部の白色度:
 白色に発色した発色部(レーザー光の照射により発色させた部分)の白色度は、JIS K7105に準拠して測定し、測定結果を下記の判定基準により評価した。白色度が30以上の場合を「A」とし、白色度が20以上で30未満の場合を「B」とし、白色度が20未満の場合を「C」とした。なお、レーザー光の照射は、ロフィンシナール社製の「Nd:YVOレーザー RMS103D レーザーマーカー」を使用して行った。表2~表5中、「レーザー発色性(白色)」と示す。
[4] Whiteness of laser coloring portion:
The whiteness of the colored portion that developed white (the portion colored by laser light irradiation) was measured according to JIS K7105, and the measurement results were evaluated according to the following criteria. The case where the whiteness was 30 or more was “A”, the case where the whiteness was 20 or more and less than 30 was “B”, and the case where the whiteness was less than 20 was “C”. In addition, the laser beam irradiation was performed using “Nd: YVO 4 laser RMS103D laser marker” manufactured by Roffin Sinar. In Tables 2 to 5, “Laser Colorability (White)” is shown.
[5]コントラスト:
 生地色と白色に発色した発色部とのコントラストについて、ミノルタ社製の輝度計「LS100」を用いて測定し、測定結果を以下の判定基準により評価した。「コントラスト3以上であり、視認性に優れる」場合を「A」とし、「コントラスト2以上で3未満であり、やや視認性に劣るが、実用可能である」場合を「B」とし、「コントラスト2未満であり、視認性に劣り実用に不適である」場合を「C」とした。
[5] Contrast:
The contrast between the fabric color and the color-developing portion that developed white was measured using a luminance meter “LS100” manufactured by Minolta, and the measurement results were evaluated according to the following criteria. The case where “contrast is 3 or more and excellent in visibility” is “A”, and the case where “contrast is 2 or more and less than 3 and is slightly inferior but is practically usable” is “B”. The case where it was less than 2 and inferior in visibility and unsuitable for practical use was designated as “C”.
[6]加熱融着性:
 カード状積層体について、真空プレス機を用いて160~180℃にて加熱し加圧(0.1~1.0MPa)する。その後、オーバーシートとコアシートとの間の接着性を以下の判定基準により評価した。「剥離が観察されない」場合を「A」とし、「わずかに剥離が見られる」場合を「B」とし、「剥離した」場合を「C」とした。
[6] Heat fusion property:
The card-like laminate is heated and pressurized (0.1 to 1.0 MPa) at 160 to 180 ° C. using a vacuum press. Thereafter, the adhesion between the oversheet and the core sheet was evaluated according to the following criteria. The case where “peeling was not observed” was designated as “A”, the case where “slightly exfoliation was observed” was designated as “B”, and the case where “peeling was observed” was designated as “C”.
[7]シート裁断性:
 シートを所定の寸法に切断した後、切断されたシートを観察し、断裁性を以下の判定基準により評価した。「問題ない(バリやクラックなどの不具合が観察されない)」場合を「A」とし、「断裁端面にバリが発生する」場合を「B」とし、「切断面にクラック発生したか、斜めに切断される等の不具合が発生して実用できない」場合を「C」とした。
[7] Sheet cutting property:
After the sheet was cut to a predetermined size, the cut sheet was observed, and the cutting property was evaluated according to the following criteria. “A” indicates that there is no problem (no defects such as burrs or cracks are observed), and “B” indicates that “burrs occur on the cut end face”. "C" is defined as the case where a malfunction such as the occurrence of the problem cannot be put into practical use.
[8]シート成形性:
 所定の厚みのシートを成形し観察し、均一の厚みのシートが成形された否かについて、以下の判定基準により評価した。「問題ない(均一の厚みのシートがえられた)」場合を「A」とし、「厚み変動がわずかに大きい」場合を「B」とし、「厚み変動が大きいか、または平滑なシートが得られず実用できない」場合を「C」とした。
[8] Sheet formability:
A sheet having a predetermined thickness was formed and observed, and whether or not a sheet having a uniform thickness was formed was evaluated according to the following criteria. When “no problem (a sheet having a uniform thickness) is obtained”, “A” is set, and when “the thickness variation is slightly large” is set “B”, “a thickness variation is large or a smooth sheet is obtained. “C” was assigned to the case where it was not practical.
[9]シート搬送性:
 シートを所定の寸法に切断した後、200~300枚積み重ねて梱包して保管する。その後、カード状積層体を加熱積層する工程において、この梱包を解き、積み重ねたシートを1枚ずつ真空プレス機に搬送する。この場合におけるシートの搬送性を下記判定基準にて評価した。「シートの取り出し、搬送に問題ない」場合を「A」とし、「わずかにシートが取り出し難いが実用可能である」場合を「B」とし、「シート同士が互いに貼りつき1枚ずつ取り出すことが困難である」場合を「C」とした。
[9] Sheet transportability:
After the sheets are cut to a predetermined size, 200 to 300 sheets are stacked and packed and stored. Thereafter, in the step of heating and laminating the card-like laminate, this packaging is unpacked and the stacked sheets are conveyed one by one to a vacuum press. In this case, the sheet transportability was evaluated according to the following criteria. “A” indicates that “there is no problem in taking out and conveying the sheet”, and “B” indicates that “the sheet is slightly difficult to take out but is practical”, and “the sheets are stuck together and taken out one by one. The “difficult” case was designated as “C”.
[10]加熱積層後のカード状積層体の表面光沢:
 カード状積層体を構成する各シートを積層し、真空プレス機を用いて160~180℃にて加熱し加圧(0.1~1.0MPa)してカード状積層体を製造する。その後、製造したカード状積層体の表面光沢を目視にて観察し、下記判定基準にて評価した。「表面光沢は良好である」場合を「A」とし、「わずかに光沢に劣るが、カードとして実用可能である」場合を「B」とし、「表面光沢が劣り、光沢を必要とする一般的なカードとして実用困難である」場合を「C」とした。表2~表6中、「積層体表面光沢」と示す。
[10] Surface gloss of card-like laminate after heat lamination:
Each sheet constituting the card-like laminate is laminated, heated at 160 to 180 ° C. using a vacuum press, and pressurized (0.1 to 1.0 MPa) to produce a card-like laminate. Thereafter, the surface gloss of the manufactured card-like laminate was visually observed and evaluated according to the following criteria. The case where “surface gloss is good” is “A”, and the case where “slightly inferior gloss is practical but can be used as a card” is “B”. "C" is a case where it is difficult to use as a simple card. In Tables 2 to 6, “laminated surface gloss” is shown.
(実施例1)
 まず、商品名「アクリペットMF(標準グレード、三菱レイヨン社製)」30質量%と商品名「アクリペットVRL40(耐衝撃グレード、三菱レイヨン社製)」70質量%とからなるアクリル樹脂100質量部、有彩色着色剤(1)としてβ型銅フタロシアニン顔料0.2質量部、及び、カーボンブラック「#45(三菱化学社製)」0.1質量部を配合し、Tダイ付押出機によりマット加工をしつつ黒色シート単層シートA(カード用多色発色レーザーマーキングシート)を作製した。単層シートAは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Example 1)
First, 100 parts by mass of an acrylic resin composed of 30% by mass of a product name “Acripet MF (standard grade, manufactured by Mitsubishi Rayon Co.)” and 70% by mass of a product name “Acrypet VRL40 (impact resistant grade, manufactured by Mitsubishi Rayon Co., Ltd.)” In addition, 0.2 part by mass of β-type copper phthalocyanine pigment and 0.1 part by mass of carbon black “# 45 (manufactured by Mitsubishi Chemical Corporation)” are blended as a chromatic colorant (1), and matted by an extruder with a T-die. While processing, a black sheet single layer sheet A (multicolored laser marking sheet for card) was produced. The single-layer sheet A had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、非結晶性ポリエステル樹脂(商品名「EASTAR コポリエステル6763」、イーストマンケミカル社製)40質量部、芳香族ポリカーボネート樹脂(商品名「タフロンA2200(出光興産社製)」60質量部に、酸化チタン「CR-60-2(石原産業社製)」20質量部、滑剤として脂肪酸モノグリセライド0.2質量部を配合し、Tダイ付押出機によりマット加工をしつつシート(白色単層シートQ)を作製した。白色単層シートQは、シート厚さ250μm、シート両面の平均表面粗さ(Rz)が3.6μmであった。 Next, 40 parts by mass of an amorphous polyester resin (trade name “EASTAR Copolyester 6763”, manufactured by Eastman Chemical Co., Ltd.) and 60 parts by mass of an aromatic polycarbonate resin (trade name “Taflon A2200 (produced by Idemitsu Kosan Co., Ltd.)” 20 parts by weight of titanium oxide “CR-60-2 (manufactured by Ishihara Sangyo Co., Ltd.)” and 0.2 part by weight of fatty acid monoglyceride as a lubricant were blended, and a sheet (white single-layer sheet Q) was processed with a mat using an extruder with a T-die. The white monolayer sheet Q had a sheet thickness of 250 μm and an average surface roughness (Rz) on both sides of the sheet of 3.6 μm.
 次に、単層シートA、白色単層シートQ、白色単層シートQ、単層シートAの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm;以下、「カード」と記す場合がある)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, each sheet is laminated so that the monolayer sheet A, the white monolayer sheet Q, the white monolayer sheet Q, and the monolayer sheet A are laminated, and the card-like laminate is heated and pressed by a vacuum press. (Thickness 800 μm; hereinafter may be referred to as “card”). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したレーザーマーキングシートについて、上記各評価(カード生地色、レーザー発色性(有彩色)、レーザー発色部の白色度、コントラスト、加熱融着性、シート裁断性、シート成形性)を行った。評価結果を表2に示す。 Each of the above evaluations (card cloth color, laser colorability (chromatic color), whiteness of the laser color development portion, contrast, heat fusion property, sheet cutting property, sheet formability) was performed on the produced laser marking sheet. The evaluation results are shown in Table 2.
 なお、表2~表6中、「カードの層構成」の欄において、例えば「A/Q/Q/A」は単層シートA、白色単層シートQ、白色単層シートQ、単層シートAの積層順でカードが構成されていることを示す。 In Tables 2 to 6, in the column of “card layer structure”, for example, “A / Q / Q / A” is single layer sheet A, white single layer sheet Q, white single layer sheet Q, single layer sheet. It shows that cards are configured in the stacking order of A.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(実施例2)
 有彩色着色剤(1)に代えて、有彩色着色剤(2)であるアルミニウムフタロシアニン顔料を使用したこと以外は、実施例1と同様にして、単層シートB(カード用多色発色レーザーマーキングシート)を作製した。単層シートBは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 2)
A single-layer sheet B (multi-color coloring laser marking for card) in the same manner as in Example 1 except that the aluminum phthalocyanine pigment as the chromatic colorant (2) was used instead of the chromatic colorant (1). Sheet). The single layer sheet B had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートB、白色単層シートQ、白色単層シートQ、単層シートBの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet B, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet B. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例3)
 有彩色着色剤(1)に代えて、有彩色着色剤(3)であるジケトピロロピロール顔料を使用したこと以外は、実施例1と同様にして、単層シートC(カード用多色発色レーザーマーキングシート)を作製した。単層シートCは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.4μmであった。
(Example 3)
A single-layer sheet C (multicolor coloring for cards) in the same manner as in Example 1 except that the diketopyrrolopyrrole pigment, which is the chromatic colorant (3), was used instead of the chromatic colorant (1). Laser marking sheet) was produced. Single-layer sheet C had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.4 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートC、白色単層シートQ、白色単層シートQ、単層シートCの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the stacking order of the single-layer sheet C, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet C. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例4)
 有彩色着色剤(1)に代えて、有彩色着色剤(4)であるジオキサジン系顔料を使用したこと以外は、実施例1と同様にして、単層シートD(カード用多色発色レーザーマーキングシート)を作製した。単層シートDは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 4)
A single-layer sheet D (multicolor coloring laser marking for card) in the same manner as in Example 1 except that the dioxazine pigment as the chromatic colorant (4) was used instead of the chromatic colorant (1). Sheet). Single-layer sheet D had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートD、白色単層シートQ、白色単層シートQ、単層シートDの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet D, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet D. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例5)
 有彩色着色剤(1)に代えて、有彩色着色剤(5)であるキナクリドン系顔料を使用したこと以外は、実施例1と同様にして、単層シートE(カード用多色発色レーザーマーキングシート)を作製した。単層シートEは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 5)
Single-layer sheet E (multicolor coloring laser marking for card) in the same manner as in Example 1 except that the quinacridone pigment as the chromatic colorant (5) was used instead of the chromatic colorant (1). Sheet). Single-layer sheet E had a sheet thickness of 150 μm and an average surface roughness (Rz) of both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートE、白色単層シートQ、白色単層シートQ、単層シートEの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet E, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet E. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例6)
 有彩色着色剤(1)に代えて、有彩色着色剤(6)であるキノフタロン系顔料を使用したこと以外は、実施例1と同様にして単層シートF(カード用多色発色レーザーマーキングシート)を作製した。単層シートFは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 6)
Single-layer sheet F (multicolor coloring laser marking sheet for cards) in the same manner as in Example 1 except that a quinophthalone pigment that is a chromatic colorant (6) was used instead of the chromatic colorant (1) ) Was produced. The single-layer sheet F had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートF、白色単層シートQ、白色単層シートQ、単層シートFの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the stacking order of the single-layer sheet F, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet F. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例7)
 有彩色着色剤(1)に代えて、有彩色着色剤(7)であるペリレン系顔料を使用したこと以外は、実施例1と同様にして単層シートG(カード用多色発色レーザーマーキングシート)を作製した。単層シートGは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 7)
A single-layer sheet G (multicolored color laser marking sheet for cards) in the same manner as in Example 1 except that a perylene pigment as the chromatic colorant (7) was used instead of the chromatic colorant (1). ) Was produced. The single-layer sheet G had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートG、白色単層シートQ、白色単層シートQ、単層シートGの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet G, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet G. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例8)
 有彩色着色剤(1)に代えて、有彩色着色剤(8)である金属錯体系顔料を使用したこと以外は、実施例1と同様にして単層シートH(カード用多色発色レーザーマーキングシート)を作製した。単層シートHは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.8μmであった。
(Example 8)
Single-layer sheet H (multicolored laser marking for cards) in the same manner as in Example 1 except that the metal complex pigment which is the chromatic colorant (8) was used instead of the chromatic colorant (1). Sheet). The single layer sheet H had a sheet thickness of 150 μm and an average surface roughness (Rz) of both sides of the sheet of 3.8 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートH、白色単層シートQ、白色単層シートQ、単層シートHの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet H, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet H. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例9)
 アクリル樹脂に代えて、透明ABS樹脂(透明アクリロニトリル・ブタジエン・スチレン共重合樹脂)(商品名「テクノABS810」、テクノポリマー社製)を使用したこと以外は、実施例1と同様にして単層シートI(カード用多色発色レーザーマーキングシート)を作製した。単層シートIは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.6μmであった。
Example 9
A single-layer sheet in the same manner as in Example 1 except that a transparent ABS resin (transparent acrylonitrile / butadiene / styrene copolymer resin) (trade name “Techno ABS810”, manufactured by Technopolymer Co., Ltd.) was used instead of the acrylic resin. I (multicolored laser marking sheet for card) was produced. Single-layer sheet I had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.6 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートI、白色単層シートQ、白色単層シートQ、単層シートIの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet I, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet I. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例10)
 アクリル樹脂に代えて、芳香族ポリカーボネート樹脂(商品名「タフロンA2200」、出光興産社製)を使用したこと以外は、実施例1と同様にして単層シートJ(カード用多色発色レーザーマーキングシート)を作製した。単層シートJは、シート厚さが150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Example 10)
A single-layer sheet J (multicolor coloring laser marking sheet for card) in the same manner as in Example 1 except that an aromatic polycarbonate resin (trade name “Toughlon A2200”, manufactured by Idemitsu Kosan Co., Ltd.) was used instead of the acrylic resin. ) Was produced. The single layer sheet J had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートJ、白色単層シートQ、白色単層シートQ、単層シートJの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet J, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet J. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例11)
 まず、非結晶性ポリエステル樹脂(商品名「Eastman Tritan Copolyester FX100」、イーストマンケミカル社製)100質量部、有彩色着色剤(1)としてβ型銅フタロシアニン顔料0.2質量部、カーボンブラック(「#45(三菱化学社製)」)0.1質量部、及び、滑剤としてステアリン酸カルシウム0.1質量部を配合し、Tダイ付押出機によりマット加工をしつつ単層シートK(カード用多色発色レーザーマーキングシート)を作製した。単層シートKは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Example 11)
First, 100 parts by mass of an amorphous polyester resin (trade name “Eastman Tritan Copolyester FX100” manufactured by Eastman Chemical Co., Ltd.), 0.2 parts by mass of β-type copper phthalocyanine pigment as a chromatic colorant (1), carbon black (“ # 45 (manufactured by Mitsubishi Chemical Co., Ltd.))) 0.1 part by weight and 0.1 part by weight of calcium stearate as a lubricant, and a single-layer sheet K (multiple for cards) while matting with an extruder with a T-die A color-developing laser marking sheet) was prepared. The single-layer sheet K had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートK、白色単層シートQ、白色単層シートQ、単層シートKの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet K, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet K. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例12)
 2種3層Tダイ付押出機により、表層(スキン層)、内層(コア層)、表層(スキン層)の積層順の多層シートからなるカード用多色発色レーザーマーキングシート(以下、「多層シートL」と記す場合がある)を作製した。作製した多層シートは、シート総厚さ150μm、シート総厚さにおけるコア層厚さの比率が73.3%、シート両面の平均表面粗さ(Rz)が3.5μmであった。コア層は黒色の層であった。
Example 12
Multi-color coloring laser marking sheet for cards (hereinafter referred to as “multilayer sheet”) composed of multilayer sheets in the order of lamination of the surface layer (skin layer), inner layer (core layer), and surface layer (skin layer) by an extruder with two types and three layers T-die L ”in some cases). The produced multilayer sheet had a total sheet thickness of 150 μm, a ratio of the core layer thickness to the total sheet thickness of 73.3%, and an average surface roughness (Rz) of both surfaces of the sheet of 3.5 μm. The core layer was a black layer.
 スキン層は、非結晶性ポリエステル樹脂(商品名「Eastman Tritan Copolyester FX100」、イーストマンケミカル社製)100質量部、滑剤としてステアリン酸カルシウム0.1質量部を配合したものを原料とした。コア層は、商品名「アクリペットMF(標準グレード、三菱レイヨン社製)」30質量%と商品名「アクリペットVRL40(耐衝撃グレード、三菱レイヨン社製)」70質量%とからなるアクリル樹脂100質量部、有彩色着色剤(1)としてβ型銅フタロシアニン顔料0.2質量部、カーボンブラック「#45(三菱化学社製)」0.1質量部を配合したものを原料とした。 The skin layer was prepared by blending 100 parts by mass of an amorphous polyester resin (trade name “Eastman Tritan Copolyester FX100” manufactured by Eastman Chemical Co., Ltd.) and 0.1 parts by mass of calcium stearate as a lubricant. The core layer is an acrylic resin 100 composed of 30% by mass of a product name “Acripet MF (standard grade, manufactured by Mitsubishi Rayon Co.)” and 70% by mass of a product name “Acripet VRL40 (impact resistant grade, manufactured by Mitsubishi Rayon Co., Ltd.)”. As a raw material, a blend of 0.2 part by mass of β-type copper phthalocyanine pigment and 0.1 part by mass of carbon black “# 45 (manufactured by Mitsubishi Chemical Corporation)” as a chromatic colorant (1) was used.
 次に、実施例1と同様にして白色単層シートQを作製し、多層シートL、白色単層シートQ、白色単層シートQ、多層シートLの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the respective sheets are laminated so that the multilayer sheet L, the white single layer sheet Q, the white single layer sheet Q, and the multilayer sheet L are laminated. Then, a card-like laminate (thickness: 800 μm) was produced by heating and pressing with a vacuum press. In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表2に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 2.
(実施例13~39)
 表3~表5に示す配合量などを満たすように適宜変更したこと以外は、実施例1と同様にしてカード(カード状積層体)を作製した。作製したカードについて、上記各評価を行った。評価結果を表3~表5に示す。
(Examples 13 to 39)
A card (card-like laminate) was produced in the same manner as in Example 1 except that the blending amounts shown in Tables 3 to 5 were appropriately changed so as to satisfy the blending amounts. Each of the above evaluations was performed on the produced card. The evaluation results are shown in Tables 3 to 5.
(比較例1)
 有彩色着色剤(1)に代えて、有彩色着色剤(9)であるアンスラキノン系染料を使用したこと以外は、実施例1と同様にして単層シートM(カード用多色発色レーザーマーキングシート)を作製した。単層シートMは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Comparative Example 1)
Single-layer sheet M (multicolored laser marking for cards) in the same manner as in Example 1 except that the anthraquinone dye, which is the chromatic colorant (9), was used instead of the chromatic colorant (1). Sheet). The single layer sheet M had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートM、白色単層シートQ、白色単層シートQ、単層シートMの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet M, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet M. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表6に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
(比較例2)
 有彩色着色剤(1)に代えて、有彩色着色剤(10)であるペリノン系染料を使用したこと以外は、実施例1と同様にして単層シートN(カード用多色発色レーザーマーキングシート)を作製した。単層シートNは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Comparative Example 2)
Single-layer sheet N (multicolored color laser marking sheet for cards) in the same manner as in Example 1 except that a perinone dye, which is a chromatic colorant (10), was used instead of the chromatic colorant (1). ) Was produced. The single-layer sheet N had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートN、白色単層シートQ、白色単層シートQ、単層シートNの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet N, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet N. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表6に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 6.
(比較例3)
 有彩色着色剤(1)に代えて、有彩色着色剤(11)である鉄フタロシアニン系顔料を使用したこと以外は、実施例1と同様にして単層シートO(カード用多色発色レーザーマーキングシート)を作製した。単層シートOは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Comparative Example 3)
Single-layer sheet O (multicolored color laser marking for cards) in the same manner as in Example 1 except that instead of the chromatic colorant (1), an iron phthalocyanine pigment as the chromatic colorant (11) was used. Sheet). The single-layer sheet O had a sheet thickness of 150 μm and an average surface roughness (Rz) on both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートO、白色単層シートQ、白色単層シートQ、単層シートOの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single layer sheet O, the white single layer sheet Q, the white single layer sheet Q, and the single layer sheet O. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表6に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 6.
(比較例4)
 有彩色着色剤(1)に代えて、有彩色着色剤(12)であるペリレンブラックを使用したこと以外は、実施例1と同様にして単層シートP(カード用多色発色レーザーマーキングシート)を作製した。単層シートPは、シートの厚さ150μm、シート両面の平均表面粗さ(Rz)が3.5μmであった。
(Comparative Example 4)
Single-layer sheet P (multicolor coloring laser marking sheet for cards) in the same manner as in Example 1 except that perylene black, which is the chromatic colorant (12), was used instead of the chromatic colorant (1). Was made. The single layer sheet P had a sheet thickness of 150 μm and an average surface roughness (Rz) of both sides of the sheet of 3.5 μm.
 次に、実施例1と同様にして白色単層シートQを作製し、単層シートP、白色単層シートQ、白色単層シートQ、単層シートPの積層順となるように各シートを積層させ、真空プレス機により加熱・加圧してカード状積層体(厚み800μm)を作製した。なお、各シートの厚みは、上記積層順で、150μm、250μm、250μm、150μmであった。 Next, a white single-layer sheet Q is produced in the same manner as in Example 1, and the sheets are arranged in the order of lamination of the single-layer sheet P, the white single-layer sheet Q, the white single-layer sheet Q, and the single-layer sheet P. Laminated and heated and pressurized with a vacuum press machine to produce a card-like laminate (thickness 800 μm). In addition, the thickness of each sheet | seat was 150 micrometers, 250 micrometers, 250 micrometers, and 150 micrometers in the said lamination order.
 作製したカードについて、上記各評価を行った。評価結果を表6に示す。 Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 6.
(比較例5~11)
 表6に示す配合量などを満たすように適宜変更したこと以外は、実施例1と同様にしてカード(カード状積層体)を作製した。作製したカードについて、上記各評価を行った。評価結果を表6に示す。
(Comparative Examples 5 to 11)
A card (card-like laminate) was produced in the same manner as in Example 1 except that the amount was appropriately changed so as to satisfy the blending amounts shown in Table 6. Each of the above evaluations was performed on the produced card. The evaluation results are shown in Table 6.
 表1~表6から明らかなように、実施例1~39のレーザーマーキングシートは、レーザー光によるマーキングが可能であった。また、実施例1~39のレーザーマーキングシートは、比較例1~11のレーザーマーキングシートに比べて、マーキングされた文字、記号、画像等が鮮明であった。また、加熱融着性、シート裁断性、及び、シート成形性の特性に優れていた。即ち、実施例1~39のレーザーマーキングシートは、マーキングされた文字、記号、画像等が鮮明であり、かつ、加熱融着性、シート裁断性、及び、シート成形性において優れた特性を兼ね備えていた。 As is clear from Tables 1 to 6, the laser marking sheets of Examples 1 to 39 could be marked with laser light. In addition, the marked characters, symbols, images, and the like were clearer in the laser marking sheets of Examples 1 to 39 than in the laser marking sheets of Comparative Examples 1 to 11. Moreover, it was excellent in the characteristics of heat-fusibility, sheet cutting property, and sheet formability. That is, the laser marking sheets of Examples 1 to 39 have clearly marked characters, symbols, images, etc., and have excellent characteristics in heat-fusibility, sheet cutting properties, and sheet formability. It was.
 実施例1~12では、波長1,064nmのレーザー光の照射によりカーボンブラックの気化及び変色により有彩色着色剤に由来するマーキングを鮮明に行うことができ、波長532nmのレーザー光の照射によりレーザー光のエネルギーが高いために有彩色着色剤も気化及び変色が生じて全て白色のマーキングが形成できることが確認できた。 In Examples 1 to 12, marking derived from the chromatic colorant can be clearly performed by vaporizing and changing the color of carbon black by irradiation with laser light having a wavelength of 1,064 nm, and laser light by irradiation with laser light having a wavelength of 532 nm. As a result, the chromatic colorant was also vaporized and discolored, and it was confirmed that a white marking could be formed.
 比較例1及び2では、単層シートM、Nに含まれる有彩色着色剤(9)、(10)は、示差熱分析による発熱ピークを有さないため、レーザー光の照射によりカーボンブラックの気化が起こるのみであった。そのため、異なる色調のマーキングは形成されなかった。 In Comparative Examples 1 and 2, the chromatic colorants (9) and (10) contained in the single-layer sheets M and N do not have an exothermic peak due to differential thermal analysis. Only happened. Therefore, markings with different color tones were not formed.
 比較例3では、単層シートOに含まれる有彩色着色剤(11)は、発熱ピーク温度が360℃未満であるため、より低エネルギーのレーザー光を照射しても有彩色着色剤に由来するマーキングの形成は不十分であった。 In Comparative Example 3, the chromatic colorant (11) contained in the single-layer sheet O has an exothermic peak temperature of less than 360 ° C., and thus is derived from the chromatic colorant even when irradiated with lower energy laser light. The formation of the marking was insufficient.
 比較例4では、単層シートPに含まれる有彩色着色剤(12)は、発熱ピーク温度が590℃を超えるため、異なる色調のマーキングは形成されなかった。 In Comparative Example 4, since the chromatic colorant (12) contained in the single-layer sheet P has an exothermic peak temperature exceeding 590 ° C., markings having different tones were not formed.
 比較例7~9では、樹脂組成物に含まれる樹脂として、ポリアセタール樹脂、ポリアミド樹脂、または、ポリウレタン樹脂を使用しているが、均一なシートを成形することは困難であった。更には、比較例7~9では、コアシートとの加熱融着性が非常に悪く、剥離が発生した。 In Comparative Examples 7 to 9, polyacetal resin, polyamide resin, or polyurethane resin was used as the resin contained in the resin composition, but it was difficult to form a uniform sheet. Further, in Comparative Examples 7 to 9, the heat-fusibility with the core sheet was very poor and peeling occurred.
 本発明のカード用多色発色レーザーマーキングシートは、各種カードを構成するシートとして使用することができる。 The multicolor coloring laser marking sheet for cards of the present invention can be used as a sheet constituting various cards.
100,101:カード用多色発色レーザーマーキングシート、21,22:レーザー光、11,12:レーザー光照射部、13:生地部。 100, 101: Multicolor laser marking sheet for card, 21, 22: Laser light, 11, 12: Laser light irradiation part, 13: Fabric part.

Claims (12)

  1.  熱可塑性樹脂と、有彩色着色剤と、黒色物質と、を含むレーザーマーキング樹脂組成物からなるシートを備え、レーザー光を照射することにより、白色及び有彩色を含む2以上の異なる色調にマーキングされるシートであって、
     前記熱可塑性樹脂が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂であり、
     前記有彩色着色剤が、フタロシアニン骨格、ジケトピロロピロール骨格、ジオキサジン骨格、キナクリドン骨格、キノフタロン骨格、ペリレン骨格、及び、金属錯体骨格からなる群より選択される少なくとも1種の骨格を含み、かつ、示差熱分析において360~590℃の範囲に発熱ピークを有するものであり、
     前記黒色物質が、レーザー光の受光によりそれ自身が消滅する又は変色する物質であり、
     総厚みが100~300μmであるカード用多色発色レーザーマーキングシート。
    A sheet made of a laser marking resin composition containing a thermoplastic resin, a chromatic colorant, and a black substance is provided. By irradiating a laser beam, marking is performed in two or more different colors including white and chromatic colors. A seat
    The thermoplastic resin is at least one thermoplastic resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin;
    The chromatic colorant includes at least one skeleton selected from the group consisting of a phthalocyanine skeleton, a diketopyrrolopyrrole skeleton, a dioxazine skeleton, a quinacridone skeleton, a quinophthalone skeleton, a perylene skeleton, and a metal complex skeleton, and It has an exothermic peak in the range of 360 to 590 ° C. in differential thermal analysis,
    The black substance is a substance that itself disappears or discolors by receiving laser light,
    Multicolored laser marking sheet for cards with a total thickness of 100 to 300 μm.
  2.  前記黒色物質が、カーボンブラック、チタンブラック、及び、黒色酸化鉄からなる群より選択される少なくとも1種である請求項1に記載のカード用多色発色レーザーマーキングシート。 The multicolor coloring laser marking sheet for cards according to claim 1, wherein the black material is at least one selected from the group consisting of carbon black, titanium black, and black iron oxide.
  3.  前記有彩色着色剤の配合量が、前記熱可塑性樹脂100質量部に対して0.001~3質量部であり、前記黒色物質の配合量が、前記熱可塑性樹脂100質量部に対して0.01~2質量部である請求項1または2に記載のカード用多色発色レーザーマーキングシート。 The blending amount of the chromatic colorant is 0.001 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and the blending amount of the black substance is 0.000 with respect to 100 parts by mass of the thermoplastic resin. The multicolored laser marking sheet for cards according to claim 1 or 2, wherein the amount is 01 to 2 parts by mass.
  4.  前記樹脂組成物が、前記熱可塑性樹脂100質量部に対して0.001~1質量部の白色系物質を含有する請求項1~3のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 4. The multicolor coloring laser marking for card according to claim 1, wherein the resin composition contains 0.001 to 1 part by mass of a white material with respect to 100 parts by mass of the thermoplastic resin. Sheet.
  5.  単層シートである請求項1~4のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 The multicolor coloring laser marking sheet for cards according to any one of claims 1 to 4, which is a single layer sheet.
  6.  表層と内層とを備える多層シートであり、
     前記表層が、アクリル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、及び、非結晶性芳香族ポリエステル系樹脂からなる群より選択される少なくとも1種の熱可塑性樹脂を含む表層用樹脂組成物からなる透明な層であり、
     前記内層が、前記レーザーマーキング樹脂組成物からなる層である請求項1~4のいずれか一項に記載のカード用多色発色レーザーマーキングシート。
    A multilayer sheet comprising a surface layer and an inner layer,
    The surface layer is a transparent resin layer composition comprising at least one thermoplastic resin selected from the group consisting of an acrylic resin, a polycarbonate resin, a styrene resin, and an amorphous aromatic polyester resin. Layer,
    The multicolor coloring laser marking sheet for cards according to any one of claims 1 to 4, wherein the inner layer is a layer made of the laser marking resin composition.
  7.  前記多層シートの総厚みに対する前記内層の厚みの比率が、30~85%である請求項6に記載のカード用多色発色レーザーマーキングシート。 The multicolor coloring laser marking sheet for cards according to claim 6, wherein the ratio of the thickness of the inner layer to the total thickness of the multilayer sheet is 30 to 85%.
  8.  平均表面粗さ(Rz)が、1~10μmである請求項1~7のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 The multicolor coloring laser marking sheet for cards according to any one of claims 1 to 7, wherein the average surface roughness (Rz) is 1 to 10 µm.
  9.  生地色の明度測定におけるL値が、50未満である請求項1~8のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 The multicolor laser marking sheet for cards according to any one of claims 1 to 8, wherein an L value in measurement of lightness of the fabric color is less than 50.
  10.  レーザーマーキングされた部分の白色度が、20以上である請求項1~9のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 The multicolored laser marking sheet for cards according to any one of claims 1 to 9, wherein the whiteness of the laser-marked portion is 20 or more.
  11.  生地色とレーザーマーキングされた部分の色とのコントラストが、2以上である請求項1~10のいずれか一項に記載のカード用多色発色レーザーマーキングシート。 The multicolor coloring laser marking sheet for cards according to any one of claims 1 to 10, wherein the contrast between the fabric color and the color of the laser-marked portion is 2 or more.
  12.  請求項1~11のいずれか一項に記載のカード用多色発色レーザーマーキングシートに2以上の異なる波長のレーザー光照射を行うに際して、低エネルギーのレーザー光の波長と、高エネルギーのレーザー光の波長との差が、100nm以上であるレーザーマーキング方法。 When the multicolor coloring laser marking sheet for cards according to any one of claims 1 to 11 is irradiated with two or more different wavelengths of laser light, the wavelength of the low energy laser light and the high energy laser light The laser marking method whose difference with a wavelength is 100 nm or more.
PCT/JP2012/068155 2011-09-02 2012-07-18 Multicolor-development laser marking sheet for card, and laser marking method WO2013031399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-192009 2011-09-02
JP2011192009 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013031399A1 true WO2013031399A1 (en) 2013-03-07

Family

ID=47755906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068155 WO2013031399A1 (en) 2011-09-02 2012-07-18 Multicolor-development laser marking sheet for card, and laser marking method

Country Status (2)

Country Link
JP (1) JPWO2013031399A1 (en)
WO (1) WO2013031399A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014092187A1 (en) * 2012-12-13 2017-01-12 容子 中鼻 Information writing film and sample container
JP2019167124A (en) * 2018-03-22 2019-10-03 大日本印刷株式会社 Packaging material, packaging container, lid body and label
JP2019167123A (en) * 2018-03-22 2019-10-03 大日本印刷株式会社 Packaging material, packaging container, lid body and label
WO2019187578A1 (en) * 2018-03-28 2019-10-03 大日精化工業株式会社 Laser marking ink composition and packaging material
JP2020006656A (en) * 2018-07-12 2020-01-16 日本カラリング株式会社 Laser printing method
JP2022167984A (en) * 2018-03-22 2022-11-04 大日本印刷株式会社 Packing material, packaging container, lid body, and label

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225221A (en) * 2004-01-16 2005-08-25 Techno Polymer Co Ltd Chromatic color coloring agent for multicolor color developing laser marking, composition for multicolor color developing laser marking and molding including the same and laser marking method
JP2010194757A (en) * 2009-02-23 2010-09-09 Nippon Kararingu Kk Transparent laser marking multilayer sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592657A (en) * 1991-10-02 1993-04-16 Polyplastics Co Laser marking method and molded product subjected to laser marking

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225221A (en) * 2004-01-16 2005-08-25 Techno Polymer Co Ltd Chromatic color coloring agent for multicolor color developing laser marking, composition for multicolor color developing laser marking and molding including the same and laser marking method
JP2010194757A (en) * 2009-02-23 2010-09-09 Nippon Kararingu Kk Transparent laser marking multilayer sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014092187A1 (en) * 2012-12-13 2017-01-12 容子 中鼻 Information writing film and sample container
JP2019167124A (en) * 2018-03-22 2019-10-03 大日本印刷株式会社 Packaging material, packaging container, lid body and label
JP2019167123A (en) * 2018-03-22 2019-10-03 大日本印刷株式会社 Packaging material, packaging container, lid body and label
JP2022162140A (en) * 2018-03-22 2022-10-21 大日本印刷株式会社 Packaging material, packaging container, lid body and label
JP2022167984A (en) * 2018-03-22 2022-11-04 大日本印刷株式会社 Packing material, packaging container, lid body, and label
JP7327604B2 (en) 2018-03-22 2023-08-16 大日本印刷株式会社 Packaging materials, packaging containers, lids and labels
WO2019187578A1 (en) * 2018-03-28 2019-10-03 大日精化工業株式会社 Laser marking ink composition and packaging material
JPWO2019187578A1 (en) * 2018-03-28 2020-07-02 大日精化工業株式会社 Laser marking ink composition and packaging material
CN111936316A (en) * 2018-03-28 2020-11-13 大日精化工业株式会社 Ink composition for laser marking and packaging material
CN111936316B (en) * 2018-03-28 2021-05-11 大日精化工业株式会社 Ink composition for laser marking and packaging material
JP2020006656A (en) * 2018-07-12 2020-01-16 日本カラリング株式会社 Laser printing method

Also Published As

Publication number Publication date
JPWO2013031399A1 (en) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2013031399A1 (en) Multicolor-development laser marking sheet for card, and laser marking method
CN102574411B (en) Method for the production of a multilayer element, and multilayer element
CN105431302B (en) Prepare the method and polylayer forest of polylayer forest
EP2214913B1 (en) Method for producing a security and/or valuable document with personalised information
EP1852270B1 (en) Process for producing a laser-marked laminate and use of a laminate for laser marking
JP6483198B2 (en) Laser marking ink composition and packaging material
US9522516B2 (en) Oversheet for card
WO2009056355A1 (en) Method for producing a polymer layer composite and polymer layer composite with coloured security feature
EP3356252B1 (en) Packaging for pharmaceutical products
WO2012008278A1 (en) Laser marking film
JP5994171B2 (en) Anti-counterfeit printing medium with watermark
DE102008012419A1 (en) Polymer composite layer for security and/or valuable documents comprises at least two interlocking polymer layers joined together with a surface printed with a printed layer absorbing in the visible region in and/or on the composite
DE102008012424A1 (en) Process for producing a polymer layer composite with multilayer personalization and / or customization
EP2331326A1 (en) Forgery-proof security features in security or value documents
WO2009056354A1 (en) Method for producing a security document and security document comprising a security feature that is dependent on the direction of viewing
EP3393816B1 (en) Data storage medium having a laser-induced brightening mark and method for producing said data storage medium
JP2013052579A (en) Laser marking sheet for cards
JP6342042B1 (en) LASER MARKING LAMINATE AND PACKAGING MATERIAL
JP6897013B2 (en) card
CN102189860A (en) Recording method of print and coloured image, lookup table and white ink
WO2014030542A1 (en) Watermarked forgery-proof printing medium
JP7281110B2 (en) Laminated body, card body and booklet body produced using the same
JP2019199517A (en) Ink composition for laser marking and packaging material
KR102404801B1 (en) Decoration having ink receptive layer for concealing substrate and method for manufacturing the same
EP4272972A1 (en) Method for laser engraving and/or laser marking, laser marked and/or engraved article and article for laser engraving and/or laser marking

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012549590

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828410

Country of ref document: EP

Kind code of ref document: A1