WO2013031221A1 - Mobile device, exposure device, method for producing flat panel display, and method for producing device - Google Patents

Mobile device, exposure device, method for producing flat panel display, and method for producing device Download PDF

Info

Publication number
WO2013031221A1
WO2013031221A1 PCT/JP2012/005462 JP2012005462W WO2013031221A1 WO 2013031221 A1 WO2013031221 A1 WO 2013031221A1 JP 2012005462 W JP2012005462 W JP 2012005462W WO 2013031221 A1 WO2013031221 A1 WO 2013031221A1
Authority
WO
WIPO (PCT)
Prior art keywords
holding member
object holding
exposure apparatus
moving body
axis direction
Prior art date
Application number
PCT/JP2012/005462
Other languages
French (fr)
Japanese (ja)
Inventor
青木 保夫
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020197036024A priority Critical patent/KR102202760B1/en
Priority to CN201280042125.XA priority patent/CN103765554B/en
Priority to KR1020147007385A priority patent/KR20140068999A/en
Publication of WO2013031221A1 publication Critical patent/WO2013031221A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0272Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers for lift-off processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving

Definitions

  • the present invention relates to a moving body apparatus, an exposure apparatus, a flat panel display manufacturing method, and a device manufacturing method, and more specifically, a moving body apparatus that drives an object holding member that holds an object along a horizontal plane, and the moving body.
  • the present invention relates to an exposure apparatus including an apparatus for forming a predetermined pattern on the object, a flat panel display manufacturing method using the exposure apparatus, and a device manufacturing method using the exposure apparatus.
  • a lithography process for manufacturing an electronic device such as a liquid crystal display element, a semiconductor element (such as an integrated circuit), a mask or reticle (hereinafter collectively referred to as “mask”), a glass plate or a wafer (hereinafter referred to as “mask”).
  • Step-and-scan exposure in which the pattern formed on the mask is transferred onto the substrate using an energy beam while the substrate is collectively moved along a predetermined scanning direction (scanning direction). The device is used.
  • a so-called gantry type biaxial is used to control the position of the substrate in the horizontal plane (scanning direction, cross-scanning direction, and the position around the axis perpendicular to the horizontal plane) with high speed and high accuracy.
  • a substrate stage apparatus having a coarse / fine movement structure in which a coarse movement stage and a fine movement stage are combined is known (for example, see Patent Document 1).
  • the substrate stage device has also increased in size, and a substrate stage device capable of controlling the position of the large substrate in the horizontal plane with high accuracy and high speed with a simple configuration has been desired.
  • the first moving body capable of moving a position along a first direction in a two-dimensional plane parallel to a horizontal plane, and the first
  • a second direction that is provided on one moving body is movable along the first direction together with the first moving body, and is perpendicular to the first direction in the two-dimensional plane with respect to the first moving body;
  • a second moving body that can move along the position, an object holding member that holds an object and moves along the two-dimensional plane guided by the second moving body, and the first direction with respect to the first direction.
  • the object holding member is disposed on one side of the moving body and supports a region on one side of the object holding member in the first direction from below when the object holding member moves along the second direction.
  • a first guide member movable along the first direction; When the object holding member moves along the second direction with respect to the first direction, an area on the other side of the object holding member in the first direction is viewed from below. And a second guide member that supports and can move along the first direction together with the object holding member.
  • the object holding member is guided along the two-dimensional plane parallel to the horizontal plane by the first and second moving bodies. Since the first and second guide members that support the region on one side and the other side of the object holding member in the first direction from below move together with the object holding member in the first direction, the configuration of the apparatus is simplified. .
  • a moving body device according to the first aspect of the present invention, and a pattern forming apparatus that forms a predetermined pattern on the object held by the object holding member using an energy beam. And an exposure apparatus.
  • a flat panel display comprising: exposing the object using the exposure apparatus according to the second aspect of the present invention; and developing the exposed object. It is a manufacturing method.
  • a device manufacturing method comprising: exposing the object using the exposure apparatus according to the second aspect of the present invention; and developing the exposed object. is there.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 1 schematically shows a configuration of a liquid crystal exposure apparatus 10 according to an embodiment.
  • the liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object.
  • a projection exposure apparatus a so-called scanner.
  • a resist (sensitive agent) is applied to the illumination system 12, the mask stage 14 that holds the mask M, the projection optical system 16, the substrate stage base 18, and the surface (the surface facing the + Z side in FIG. 1).
  • the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction
  • the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis.
  • the orthogonal direction is the Z-axis direction
  • the rotation directions around the X-axis, Y-axis, and Z-axis are the ⁇ x, ⁇ y, and ⁇ z directions, respectively.
  • the illumination system 12 is configured similarly to the illumination system disclosed in, for example, US Pat. No. 5,729,331.
  • the illumination system 12 irradiates the mask M with illumination light IL for exposure.
  • illumination light IL for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used.
  • the mask stage 14 holds a mask M on which a predetermined circuit pattern is formed, for example, by vacuum suction.
  • the mask stage 14 is driven with a predetermined long stroke in the scanning direction (X-axis direction) by a mask stage driving system (not shown) including a linear motor, for example, and is also slightly driven in the Y-axis direction and the ⁇ z direction as appropriate.
  • Position information of the mask stage 14 in the XY plane is obtained by a mask interferometer system including a laser interferometer (not shown).
  • the projection optical system 16 is disposed below the mask stage 14.
  • the projection optical system 16 is configured similarly to the projection optical system disclosed in, for example, US Pat. No. 6,552,775. That is, the projection optical system 16 is a so-called multi-lens projection optical system including, for example, a plurality of optical systems that form an erect image with a bilateral telecentric equal magnification system, and is a single rectangular shape having a longitudinal direction in the Y-axis direction. Functions in the same way as a projection optical system having an image field.
  • the illumination light IL that has passed through the mask M causes the circuit of the mask M in the illumination area to pass through the projection optical system 16.
  • a projected image of the pattern is formed in the irradiation region of the illumination light IL conjugate to the illumination region on the substrate P.
  • the mask M is driven in the scanning direction with respect to the illumination area (illumination light IL)
  • the substrate P is driven in the scanning direction with respect to the exposure area (illumination light IL).
  • the pattern formed on the mask M is transferred to one shot area.
  • the substrate stage base 18 is composed of a plate-like member extending in the Y-axis direction, and as shown in FIG. 2, for example, two are provided at predetermined intervals in the X-axis direction.
  • a plurality of Y linear guides 27a extending in the Y-axis direction, for example, three in this embodiment are fixed on the upper surface of each of the two substrate stage stands 18 in the X-axis direction.
  • the substrate stage base 18 is supported from below by a vibration isolator 19 installed on the floor 11 of the clean room, as shown in FIG.
  • the substrate stage gantry 18 constitutes a part of the apparatus body (body) of the liquid crystal exposure apparatus 10.
  • the mask stage 14 and the projection optical system 16 are supported by the apparatus main body and are vibrationally separated from the floor 11.
  • the substrate stage apparatus 20 shown in FIG. 1 corresponds to a cross-sectional view taken along line AA in FIG.
  • the substrate stage apparatus 20 includes a pair of base frames 22, an X beam 24 installed on the pair of base frames 22, a coarse movement stage 26 mounted on the X beam 24, and a coarse movement stage.
  • a fine movement stage 28 guided by a predetermined stroke in the X-axis direction and / or the Y-axis direction by the H. 26, and a pair of step guides 30 for guiding the movement of the fine movement stage 28 along the XY plane.
  • a pair of base frames 22 are spaced apart from each other by a predetermined distance (vibrating) on the + X side of the + X side substrate stage base 18 and on the ⁇ X side of the ⁇ X side substrate stage base 18 respectively. Installed on the floor 11 of the clean room.
  • the pair of base frames 22 supports the vicinity of both ends in the longitudinal direction of the X beam 24 described later from below, and functions as a guide member when the X beam 24 moves in the Y axis direction with a predetermined long stroke.
  • magnet units 21 a (Y stators) including a plurality of permanent magnets arranged at predetermined intervals in the Y-axis direction are fixed to both side surfaces of the base frame 22.
  • a Y linear guide 23 a that is an element of the Y linear guide device 23 is fixed to the upper end surface (the end on the + Z side) of the base frame 22.
  • the X beam 24 is made of a member whose YZ section extending in the X-axis direction is rectangular (see FIG. 1). On the lower surface in the vicinity of both ends in the longitudinal direction of the X beam 24, an XZ cross-section inverted U-shaped member called a Y carriage 25 corresponding to the pair of base frames 22 is fixed.
  • the base frame 22 is inserted between a pair of opposing surfaces of the Y carriage 25.
  • a Y slide member 23b constituting the Y linear guide device 23 is fixed to the ceiling surface of the Y carriage 25 together with the Y linear guide 23a.
  • the Y slide member 23b is slidably engaged with the corresponding Y linear guide 23a with low friction, and the X beam 24 can move on the pair of base frames 22 with a predetermined stroke in the Y axis direction with low friction. It has become.
  • a coil unit 21b (X mover) constituting the Y linear motor 21 together with the magnet unit 21a is fixed to each of the pair of opposing surfaces of the Y carriage 25.
  • the X beam 24 is driven in the Y-axis direction on the pair of base frames 22 by the Y linear motor 21.
  • the type of the Y actuator that drives the X beam 24 is not limited to this, and for example, a feed screw device, a belt driving device, a wire driving device, or the like can be used.
  • the Z position of the lower surface of the X beam 24 is set to the + Z side with respect to the upper end portion of the Y linear guide 27a, and the X beam 24 is sent from the substrate stage mount 18 (that is, the apparatus main body). Vibrationally separated.
  • An auxiliary base frame that supports the central portion in the longitudinal direction of the X beam 24 from below may be disposed between the pair of substrate stage mounts 18.
  • two X linear guides 29a which are elements of the X linear guide device 29, are fixed on the upper surface of the X beam 24 at a predetermined interval in the X-axis direction.
  • magnet units 31 a X stators
  • magnet units 31 a including a plurality of permanent magnets arranged at predetermined intervals in the X-axis direction are fixed to both side surfaces of the X beam 24.
  • the coarse movement stage 26 is formed of a rectangular parallelepiped member, and a plurality of X slide members 29b constituting the X linear guide device 29 together with the X linear guide 29a are fixed to the lower surface thereof. As shown in FIG. 3, for example, two X slide members 29b are provided at a predetermined interval in the X-axis direction for each X linear guide 29a.
  • the X slide member 29b is slidably engaged with the corresponding X linear guide 29a with low friction, and the coarse movement stage 26 can move on the X beam 24 with a predetermined stroke in the X axis direction with low friction. It has become.
  • Coil units 31b (X movers) constituting an X linear motor 31 for driving the coarse movement stage 26 with a predetermined stroke in the X-axis direction are attached to both side surfaces of the coarse movement stage 26 together with the magnet unit 31a. It is fixed via a plate 32.
  • the coarse movement stage 26 is restricted in relative movement in the Y axis direction with respect to the X beam 24 by the X linear guide device 29, and moves in the Y axis direction integrally with the X beam 24. That is, the coarse movement stage 26 constitutes a gantry-type two-axis stage device together with the X beam 24.
  • Each of the Y position information of the X beam 24 and the X position information of the coarse movement stage 26 is obtained, for example, by a linear encoder system (or an optical interferometer system) not shown.
  • Each of the pair of step guides 30 is mounted on a pair of substrate stage mounts 18 as shown in FIG.
  • Each of the pair of step guides 30 is formed of a member having a rectangular YZ section (see FIG. 1) extending in the X-axis direction, and is disposed in parallel to each other at a predetermined interval in the Y-axis direction.
  • the X beam 24 is inserted between the pair of step guides 30 with a predetermined clearance.
  • the length of the step guide 30 in the longitudinal direction (X-axis direction) is set somewhat shorter than that of the X beam 24, and the width direction (Y-axis direction) is set somewhat wider than that of the X beam 24.
  • the upper surface of the step guide 30 is finished with very high flatness.
  • a plurality of Y slide members 27b constituting the Y linear guide device 27 together with the Y linear guide 27a are fixed to the lower surface of the step guide 30.
  • two Y slide members 27b are provided at a predetermined interval in the Y-axis direction for one Y linear guide 27a.
  • the Y slide member 27b is slidably engaged with the corresponding Y linear guide 27a with low friction, and the step guide 30 moves on the pair of substrate stage mounts 18 with a predetermined stroke in the Y axis direction with low friction. It is possible.
  • Each of the pair of step guides 30 is mechanically coupled to the X beam 24 via a coupling device 34 in the vicinity of both ends in the longitudinal direction, as shown in FIG.
  • the coupling device 34 includes a rod-shaped member extending in the Y-axis direction, and a slide device (for example, a ball joint) attached to both ends of the rod-shaped member.
  • the X beam 24 and the step guide are connected via the slide device. 30.
  • the rod-shaped member is set to have high rigidity in the Y-axis direction.
  • the X beam 24 is driven in one (eg, + Y) direction in the Y-axis direction by a plurality of Y linear motors 21 (not shown in FIG. 2, see FIG. 3), the other in the Y-axis direction.
  • the step guide 30 on the side (for example, ⁇ Y side) is pulled by the X beam 24 via the coupling device 34, and the step guide 30 on one side (for example, + Y side) in the Y-axis direction is X via the coupling device 34. Pressed by the beam 24.
  • the pair of step guides 30 moves in the Y-axis direction integrally with the X beam 24.
  • the fine movement stage 28 is formed of a rectangular box-shaped member in plan view, and a substrate holder 36 is fixed on the upper surface thereof.
  • the substrate holder 36 is made of a plate-like member having a rectangular shape in plan view, and holds the substrate P by suction.
  • a Y-bar mirror 40y having a reflecting surface orthogonal to the Y axis is fixed to the ⁇ Y side surface of fine movement stage 28 via mirror base 38, and the ⁇ X side side surface of fine movement stage 28 is shown in FIG.
  • an X bar mirror 40x having a reflecting surface orthogonal to the X axis is fixed via a mirror base 38. 2
  • the illustration of the substrate holder 36, the mirror base 38, the Y bar mirror 40y, and the X bar mirror 40x (see FIG. 1 or FIG. 3) is omitted from the viewpoint of avoiding the complication of the drawing.
  • raising blocks 42 are attached to the vicinity of the four corners on the lower surface of fine movement stage 28, respectively.
  • An air bearing 44 is attached to the lower surface of the raising block 42 as shown in FIG.
  • the gas ejection surfaces (bearing surfaces) of, for example, two air bearings 44 on the + Y side are on the upper surface of the step guide 30 on the + Y side, and the gas ejection surfaces of, for example, two air bearings 44 on the ⁇ Y side.
  • each of the four air bearings 44 ejects pressurized gas (for example, air) to the upper surface of the corresponding step guide 30.
  • the fine movement stage 28 floats on the pair of step guides 30 through a slight clearance due to the static pressure of the gas supplied between the air bearing 44 and the step guide 30.
  • the arrangement and number of the air bearings 44 are not particularly limited as long as the fine movement stage 28 can be floated stably on the pair of step guides 30.
  • the fine movement stage 28 is guided to the coarse movement stage 26 and driven in the X-axis direction and / or the Y-axis direction by a fine movement stage drive system including a plurality of voice coil motors.
  • the plurality of voice coil motors include, for example, two X voice coil motors 46x and two Y voice coil motors 46y that generate thrust in the X-axis direction.
  • one of the two X voice coil motors 46x is arranged on the + Y side of the fine movement stage 28, and the other is arranged on the ⁇ Y side of the fine movement stage 28.
  • one of the two Y voice coil motors 46y is + X of the fine movement stage 28.
  • the other side and the other side are arranged on the ⁇ X side of fine movement stage 28, respectively.
  • the X voice coil motor 46x includes an X stator 46 a fixed to the + Y side surface of the coarse movement stage 26 and an X mover 46 b fixed to the lower surface of the fine movement stage 28. .
  • the X stator 46a has a coil unit (not shown).
  • the X mover 46b is formed in a cross-sectional YZ cross-sectional U shape, and a permanent magnet is fixed to a pair of opposed surfaces.
  • the coil unit included in the X stator 46a is inserted between the pair of permanent magnets with a predetermined clearance.
  • the X voice coil motor 46x of the present embodiment is a moving magnet type, but may be a moving coil type.
  • the fine movement stage 28 moves in the same direction and at the same speed as the coarse movement stage 26.
  • the thrust (Lorentz force) in the X-axis direction generated by the two X voice coil motors 46x is controlled.
  • the X beam 24 moves in the Y-axis direction with a long stroke, for example, two Y voice coils so that the fine movement stage 28 moves in the same direction and at the same speed as the X beam 24 (that is, the coarse movement stage 26).
  • the thrust in the Y-axis direction generated by the motor 46y is controlled.
  • the coarse movement stage 26 and the fine movement stage 28 integrally move along the XY plane with a long stroke.
  • the fine movement stage 28 is set to ⁇ z with respect to the coarse movement stage 26 by making the thrust directions of the two X voice coil motors 46x (or, for example, two Y voice coil motors 46y) opposite to each other. Slightly driven in the direction.
  • the fine movement stage 28 is guided by the coarse movement stage 26 and driven with a long stroke in the X-axis direction, the fine movement stage 28 is appropriately finely driven in the Y-axis direction and the / ⁇ z direction.
  • the mask M is loaded onto the mask stage 14 by a mask loader (not shown) under the control of a main controller (not shown).
  • the substrate P is loaded onto the substrate holder 36 by a substrate loader (not shown).
  • alignment measurement is performed by the main controller using an alignment detection system (not shown), and after completion of the alignment measurement, a plurality of shot areas set on the substrate P are sequentially exposed in a step-and-scan manner. Operation is performed. Since this exposure operation is the same as the conventional step-and-scan exposure operation, detailed description thereof is omitted here.
  • the fine movement stage 28 that holds the substrate P via the substrate holder 36 has a predetermined length in the X-axis direction. Driven by stroke.
  • the length of the step guide 30 in the longitudinal direction (X-axis direction) is set to be slightly longer than the movable distance in the X-axis direction of the fine movement stage 28, and the fine movement stage 28 is integrally formed with the coarse movement stage 26.
  • the coarse movement stage 26 When moving in the axial direction, it moves on the pair of step guides 30.
  • the fine movement stage 28 performs a step operation in the Y-axis direction, the coarse movement stage 26, the X beam 24, and the pair of step guides 30 integrally move in the Y-axis direction. Therefore, the fine movement stage 28 does not fall off from the pair of step guides 30.
  • the fine movement stage 28 is mounted on the pair of step guides 30 in a non-contact state, the fine movement stage 28 is moved in the X axis and / or Y with a small thrust. It can be driven (guided) in the axial direction. Further, since the position control system of the fine movement stage 28 is improved, high-precision exposure is possible. Further, since transmission of external vibration and reaction force to the fine movement stage 28 is suppressed, the position of the fine movement stage 28 can be controlled with high accuracy.
  • the pair of step guides 30 covers the movable range of the fine movement stage 28 in the X axis direction and moves integrally with the fine movement stage 28 in the Y axis direction.
  • a guide member for example, a surface plate
  • having a large area that covers the entire movement range in the XY plane is unnecessary. Therefore, the cost is low, and transportation and assembly are easy.
  • the magnet unit 21a (Y stator), which is an element of the Y linear motor 21 for driving the X beam 24, is vibrationally separated from the substrate stage gantry 18, when the X beam 24 is driven. Is not transmitted to the projection optical system 16 supported by the apparatus main body.
  • a Z / tilt actuator is disposed between the fine movement stage 28 and the substrate holder 36 or between the raising block 42 and the fine movement stage 28 to control the position of the substrate P in the Z-axis direction, ⁇ x direction, and ⁇ y direction. It may be possible.
  • a plurality of X beams 24 may be arranged between the pair of step guides 30.
  • the step guide 30 is moved in the Y-axis direction by being pulled by the X beam 24.
  • the step guide 30 is not limited to this, and for example, each of the pair of step guides 30 using an actuator such as a linear motor is used. It may be driven independently of the X beam 24.
  • a Y stator 21a (see FIG. 3) fixed to the base frame 22 may be used as a stator of the linear motor for driving the pair of step guides 30.
  • the X-beam 24 is driven in the Y-axis direction by the plurality of Y linear motors 21 so that the pair of step guides 30 moves integrally with the X-beam 24 in the Y-axis direction.
  • the present invention is not limited to this, and even if the pair of step guides 30 is driven in the Y-axis direction by an actuator (for example, a linear motor) and the X-beam 24 is moved in the Y-axis direction accordingly (X-beam 24). (There is no need to provide an actuator for driving).
  • the fine movement stage 28 is supported in a non-contact manner on the pair of step guides 30 via a plurality of air bearings 44 from below.
  • the fine movement stage 28 is in a contact state via a rolling element (for example, a ball). 28 may be mounted on the step guide 30.
  • the pair of step guides 30 may be connected physically (mechanically) (but not to interfere with the X beam 24). In this case, when one of the step guides 30 is pulled by the X beam 24, the other step guide 30 also moves together. For example, if the X beam 24 pulls (or presses) only one of the step guides 30, for example. good.
  • the illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm).
  • a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium).
  • harmonics converted into ultraviolet light using a nonlinear optical crystal may be used.
  • a solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
  • the case of the multi-lens projection optical system 16 including a plurality of projection optical units has been described.
  • the number of projection optical units is not limited to this, and one or more projection optical units may be used.
  • the projection optical system is not limited to a multi-lens type projection optical system, and may be a projection optical system using an Offner type large mirror, for example.
  • the projection optical system 16 has a projection magnification of the same magnification has been described.
  • the present invention is not limited to this, and the projection optical system may be either a reduction system or an enlargement system.
  • a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive mask substrate is used.
  • a predetermined light shielding pattern or phase pattern / dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, for example, a non-light-emitting image display
  • DMD Digital * Micro-mirror * Device
  • An exposure apparatus is particularly suitable.
  • the exposure apparatus can also be applied to a step-and-repeat type exposure apparatus and a step-and-stitch type exposure apparatus.
  • the object held by the mobile device is not limited to the substrate that is the object to be exposed, and may be a pattern holder (original) such as a mask.
  • the use of the exposure apparatus is not limited to a liquid crystal exposure apparatus that transfers a liquid crystal display element pattern onto a square glass plate.
  • an exposure apparatus for semiconductor manufacturing, a thin film magnetic head, a micromachine, and a DNA chip The present invention can also be widely applied to an exposure apparatus for manufacturing the above.
  • an exposure apparatus for manufacturing in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc.
  • the present invention can also be applied to an exposure apparatus that transfers a circuit pattern.
  • the object to be exposed is not limited to the glass plate, and may be another object such as a wafer, a ceramic substrate, a film member, or mask blanks.
  • the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
  • the step of designing the function and performance of the device the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer)
  • the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
  • the mobile device of the present invention is suitable for driving an object holding member that holds an object along a two-dimensional plane parallel to a horizontal plane.
  • the exposure apparatus of the present invention is suitable for exposing an object.
  • the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display.
  • the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Abstract

A substrate stage device (20) is provided with: an X-beam (24) capable of moving in the Y-axis direction; a coarse stage (26) provided on the X-beam (24), capable of moving with the X-beam (24) in the Y-axis direction, and capable of moving in the X-axis direction relative to the X-beam (24); a fine stage (28) for supporting a substrate (P), and, when guided by the coarse stage (26), moving in the direction of the X-axis and/or the Y-axis; and a pair of step guides (30) that are respectively positioned on the +Y side and the -Y side of the X-beam (24), support the +Y-side and the -Y-side regions of the fine stage (28) from below, and are capable of moving with the fine stage (28) in the Y-axis direction.

Description

移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
 本発明は、移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法に係り、更に詳しくは、物体を保持する物体保持部材を水平面に沿って駆動する移動体装置、前記移動体装置を含み、前記物体に所定のパターンを形成する露光装置、前記露光装置を用いたフラットパネルディスプレイの製造方法、及び前記露光装置を用いたデバイス製造方法に関する。 The present invention relates to a moving body apparatus, an exposure apparatus, a flat panel display manufacturing method, and a device manufacturing method, and more specifically, a moving body apparatus that drives an object holding member that holds an object along a horizontal plane, and the moving body. The present invention relates to an exposure apparatus including an apparatus for forming a predetermined pattern on the object, a flat panel display manufacturing method using the exposure apparatus, and a device manufacturing method using the exposure apparatus.
 従来、液晶表示素子、半導体素子(集積回路等)等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、マスク又はレチクル(以下、「マスク」と総称する)と、ガラスプレート又はウエハ(以下、「基板」と総称する)とを所定の走査方向(スキャン方向)に沿って同期移動させつつ、マスクに形成されたパターンをエネルギビームを用いて基板上に転写するステップ・アンド・スキャン方式の露光装置が用いられている。 Conventionally, in a lithography process for manufacturing an electronic device (microdevice) such as a liquid crystal display element, a semiconductor element (such as an integrated circuit), a mask or reticle (hereinafter collectively referred to as “mask”), a glass plate or a wafer (hereinafter referred to as “mask”). Step-and-scan exposure in which the pattern formed on the mask is transferred onto the substrate using an energy beam while the substrate is collectively moved along a predetermined scanning direction (scanning direction). The device is used.
 この種の露光装置としては、基板の水平面内の位置(スキャン方向、クロススキャン方向、及び水平面に直交する軸線回り方向の位置)を高速、且つ高精度で制御するため、いわゆるガントリタイプの2軸粗動ステージと、微動ステージとを組み合わせた粗微動構成の基板ステージ装置を有しているものが知られている(例えば、特許文献1参照)。 As this type of exposure apparatus, a so-called gantry type biaxial is used to control the position of the substrate in the horizontal plane (scanning direction, cross-scanning direction, and the position around the axis perpendicular to the horizontal plane) with high speed and high accuracy. 2. Description of the Related Art A substrate stage apparatus having a coarse / fine movement structure in which a coarse movement stage and a fine movement stage are combined is known (for example, see Patent Document 1).
 ここで、近年の基板の大型化に伴い基板ステージ装置も大型化しており、簡単な構成で高精度且つ高速に大型基板の水平面内の位置制御が可能な基板ステージ装置が望まれていた。 Here, with the recent increase in size of the substrate, the substrate stage device has also increased in size, and a substrate stage device capable of controlling the position of the large substrate in the horizontal plane with high accuracy and high speed with a simple configuration has been desired.
米国特許出願公開第2010/0018950号明細書US Patent Application Publication No. 2010/0018950
 本発明は、上述の事情の下でなされたもので、第1の観点からすると、水平面に平行な二次元平面内の第1方向に沿った位置を移動可能な第1移動体と、前記第1移動体に設けられ、前記第1移動体と共に前記第1方向に沿った位置を移動可能、且つ前記第1移動体に対して前記二次元平面内で前記第1方向に直交する第2方向に沿った位置を移動可能な第2移動体と、物体を保持し、前記第2移動体に誘導されて前記二次元平面に沿って移動する物体保持部材と、前記第1方向に関して前記第1移動体の一側に配置され、前記物体保持部材が前記第2方向に沿って移動する際に該物体保持部材の前記第1方向に関する一側の領域を下方から支持するとともに、前記物体保持部材と共に前記第1方向に沿って移動可能な第1ガイド部材と、前記第1方向に関して前記第1移動体の他側に配置され、前記物体保持部材が前記第2方向に沿って移動する際に該物体保持部材の前記第1方向に関する他側の領域を下方から支持するとともに、前記物体保持部材と共に前記第1方向に沿って移動可能な第2ガイド部材と、を備える移動体装置である。 The present invention has been made under the circumstances described above. From the first viewpoint, the first moving body capable of moving a position along a first direction in a two-dimensional plane parallel to a horizontal plane, and the first A second direction that is provided on one moving body, is movable along the first direction together with the first moving body, and is perpendicular to the first direction in the two-dimensional plane with respect to the first moving body; A second moving body that can move along the position, an object holding member that holds an object and moves along the two-dimensional plane guided by the second moving body, and the first direction with respect to the first direction. The object holding member is disposed on one side of the moving body and supports a region on one side of the object holding member in the first direction from below when the object holding member moves along the second direction. And a first guide member movable along the first direction; When the object holding member moves along the second direction with respect to the first direction, an area on the other side of the object holding member in the first direction is viewed from below. And a second guide member that supports and can move along the first direction together with the object holding member.
 これによれば、物体保持部材は、第1及び第2移動体により水平面に平行な二次元平面に沿って誘導される。物体保持部材の第1方向に関する一側及び他側の領域を下方から支持する第1及び第2ガイド部材は、物体保持部材と共に第1方向に沿って移動するので、装置の構成が簡単となる。 According to this, the object holding member is guided along the two-dimensional plane parallel to the horizontal plane by the first and second moving bodies. Since the first and second guide members that support the region on one side and the other side of the object holding member in the first direction from below move together with the object holding member in the first direction, the configuration of the apparatus is simplified. .
 本発明は、第2の観点からすると、本発明の第1の観点にかかる移動体装置と、前記物体保持部材に保持された前記物体にエネルギビームを用いて所定のパターンを形成するパターン形成装置と、を備える露光装置である。 According to a second aspect of the present invention, there is provided a moving body device according to the first aspect of the present invention, and a pattern forming apparatus that forms a predetermined pattern on the object held by the object holding member using an energy beam. And an exposure apparatus.
 本発明は、第3の観点からすると、本発明の第2の観点にかかる露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法である。 According to a third aspect of the present invention, there is provided a flat panel display comprising: exposing the object using the exposure apparatus according to the second aspect of the present invention; and developing the exposed object. It is a manufacturing method.
 本発明は、第4の観点からすると、本発明の第2の観点にかかる露光装置を用いて前記物体を露光することと、露光された前記物体を現像することと、を含むデバイス製造方法である。 According to a fourth aspect of the present invention, there is provided a device manufacturing method comprising: exposing the object using the exposure apparatus according to the second aspect of the present invention; and developing the exposed object. is there.
一実施形態に係る液晶露光装置の構成を概略的に示す図である。It is a figure which shows schematically the structure of the liquid-crystal exposure apparatus which concerns on one Embodiment. 図1の液晶露光装置が有する基板ステージ装置の平面図である。It is a top view of the substrate stage apparatus which the liquid crystal exposure apparatus of FIG. 1 has. 図2のB-B線断面図である。FIG. 3 is a sectional view taken along line BB in FIG.
 以下、一実施形態について、図1~図3を用いて説明する。 Hereinafter, an embodiment will be described with reference to FIGS.
 図1には、一実施形態に係る液晶露光装置10の構成が概略的に示されている。液晶露光装置10は、例えば液晶表示装置(フラットパネルディスプレイ)などに用いられる矩形(角型)のガラス基板P(以下、単に基板Pと称する)を露光対象物とするステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。 FIG. 1 schematically shows a configuration of a liquid crystal exposure apparatus 10 according to an embodiment. The liquid crystal exposure apparatus 10 employs a step-and-scan method in which a rectangular (square) glass substrate P (hereinafter simply referred to as a substrate P) used in, for example, a liquid crystal display device (flat panel display) is an exposure object. A projection exposure apparatus, a so-called scanner.
 液晶露光装置10は、照明系12、マスクMを保持するマスクステージ14、投影光学系16、基板ステージ架台18、表面(図1で+Z側を向いた面)にレジスト(感応剤)が塗布された基板Pを保持する基板ステージ装置20、及びこれらの制御系等を含む。以下、露光時にマスクMと基板Pとが投影光学系16に対してそれぞれ相対走査される方向をX軸方向とし、水平面内でX軸に直交する方向をY軸方向、X軸及びY軸に直交する方向をZ軸方向とし、X軸、Y軸、及びZ軸回りの回転方向をそれぞれθx、θy、及びθz方向として説明を行う。 In the liquid crystal exposure apparatus 10, a resist (sensitive agent) is applied to the illumination system 12, the mask stage 14 that holds the mask M, the projection optical system 16, the substrate stage base 18, and the surface (the surface facing the + Z side in FIG. 1). A substrate stage device 20 that holds the substrate P, and a control system thereof. Hereinafter, the direction in which the mask M and the substrate P are relatively scanned with respect to the projection optical system 16 at the time of exposure is defined as the X-axis direction, and the direction orthogonal to the X-axis in the horizontal plane is defined as the Y-axis direction, the X-axis, and the Y-axis. The description will be made assuming that the orthogonal direction is the Z-axis direction, and the rotation directions around the X-axis, Y-axis, and Z-axis are the θx, θy, and θz directions, respectively.
 照明系12は、例えば米国特許第5,729,331号明細書などに開示される照明系と同様に構成されている。照明系12は、露光用の照明光ILをマスクMに照射する。照明光ILとしては、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)などの光(あるいは、上記i線、g線、h線の合成光)が用いられる。 The illumination system 12 is configured similarly to the illumination system disclosed in, for example, US Pat. No. 5,729,331. The illumination system 12 irradiates the mask M with illumination light IL for exposure. As the illumination light IL, for example, light such as i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or the combined light of the i-line, g-line, and h-line is used.
 マスクステージ14は、所定の回路パターンが形成されたマスクMを、例えば真空吸着により保持している。マスクステージ14は、例えばリニアモータを含むマスクステージ駆動系(不図示)により走査方向(X軸方向)に所定の長ストロークで駆動されるとともに、Y軸方向、及びθz方向に適宜微少駆動される。マスクステージ14のXY平面内の位置情報(θz方向の回転量情報を含む)は、不図示のレーザ干渉計を含むマスク干渉計システムにより求められる。 The mask stage 14 holds a mask M on which a predetermined circuit pattern is formed, for example, by vacuum suction. The mask stage 14 is driven with a predetermined long stroke in the scanning direction (X-axis direction) by a mask stage driving system (not shown) including a linear motor, for example, and is also slightly driven in the Y-axis direction and the θz direction as appropriate. . Position information of the mask stage 14 in the XY plane (including rotation amount information in the θz direction) is obtained by a mask interferometer system including a laser interferometer (not shown).
 投影光学系16は、マスクステージ14の下方に配置されている。投影光学系16は、例えば米国特許第6,552,775号明細書に開示された投影光学系と同様に構成されている。すなわち、投影光学系16は例えば両側テレセントリックな等倍系で正立正像を形成する光学系を複数含む、いわゆるマルチレンズ投影光学系であり、Y軸方向を長手方向とする長方形状の単一のイメージフィールドを持つ投影光学系と同等に機能する。 The projection optical system 16 is disposed below the mask stage 14. The projection optical system 16 is configured similarly to the projection optical system disclosed in, for example, US Pat. No. 6,552,775. That is, the projection optical system 16 is a so-called multi-lens projection optical system including, for example, a plurality of optical systems that form an erect image with a bilateral telecentric equal magnification system, and is a single rectangular shape having a longitudinal direction in the Y-axis direction. Functions in the same way as a projection optical system having an image field.
 このため、照明系12からの照明光ILによってマスクM上の照明領域が照明されると、マスクMを通過した照明光ILにより、投影光学系16を介してその照明領域内のマスクMの回路パターンの投影像が、基板P上の照明領域に共役な照明光ILの照射領域に形成される。そして、照明領域(照明光IL)に対してマスクMが走査方向に駆動されるとともに、露光領域(照明光IL)に対して基板Pが走査方向に駆動されることで、基板P上の1つのショット領域にマスクMに形成されたパターンが転写される。 For this reason, when the illumination area on the mask M is illuminated by the illumination light IL from the illumination system 12, the illumination light IL that has passed through the mask M causes the circuit of the mask M in the illumination area to pass through the projection optical system 16. A projected image of the pattern is formed in the irradiation region of the illumination light IL conjugate to the illumination region on the substrate P. Then, the mask M is driven in the scanning direction with respect to the illumination area (illumination light IL), and the substrate P is driven in the scanning direction with respect to the exposure area (illumination light IL). The pattern formed on the mask M is transferred to one shot area.
 基板ステージ架台18は、Y軸方向に延びる板状の部材から成り、図2に示されるように、X軸方向に所定間隔で、例えば2つ設けられている。例えば2つの基板ステージ架台18それぞれの上面には、Y軸方向に延びるYリニアガイド27aがX軸方向に所定間隔で複数、本実施形態では、例えば3本固定されている。基板ステージ架台18は、その長手方向の端部近傍が、図1に示されるように、クリーンルームの床11上に設置された防振装置19により下方から支持されている。基板ステージ架台18は、液晶露光装置10の装置本体(ボディ)の一部を構成している。上記マスクステージ14、及び投影光学系16は、装置本体に支持されており、床11から振動的に分離されている。なお、図1に示される基板ステージ装置20は、図2のA-A線断面図に相当する。 The substrate stage base 18 is composed of a plate-like member extending in the Y-axis direction, and as shown in FIG. 2, for example, two are provided at predetermined intervals in the X-axis direction. For example, a plurality of Y linear guides 27a extending in the Y-axis direction, for example, three in this embodiment are fixed on the upper surface of each of the two substrate stage stands 18 in the X-axis direction. As shown in FIG. 1, the substrate stage base 18 is supported from below by a vibration isolator 19 installed on the floor 11 of the clean room, as shown in FIG. The substrate stage gantry 18 constitutes a part of the apparatus body (body) of the liquid crystal exposure apparatus 10. The mask stage 14 and the projection optical system 16 are supported by the apparatus main body and are vibrationally separated from the floor 11. The substrate stage apparatus 20 shown in FIG. 1 corresponds to a cross-sectional view taken along line AA in FIG.
 基板ステージ装置20は、図2に示されるように、一対のベースフレーム22、一対のベースフレーム22上に架設されたXビーム24、Xビーム24上に搭載された粗動ステージ26、粗動ステージ26によりX軸方向、及び/又はY軸方向に所定のストロークで誘導される微動ステージ28、及び微動ステージ28のXY平面に沿った移動をガイドする一対のステップガイド30を有している。 As shown in FIG. 2, the substrate stage apparatus 20 includes a pair of base frames 22, an X beam 24 installed on the pair of base frames 22, a coarse movement stage 26 mounted on the X beam 24, and a coarse movement stage. A fine movement stage 28 guided by a predetermined stroke in the X-axis direction and / or the Y-axis direction by the H. 26, and a pair of step guides 30 for guiding the movement of the fine movement stage 28 along the XY plane.
 一対のベースフレーム22は、一方が+X側の基板ステージ架台18の+X側に、他方が-X側の基板ステージ架台18の-X側に、それぞれ基板ステージ架台18に所定距離隔てて(振動的に分離された状態で)クリーンルームの床11上に設置されている。一対のベースフレーム22は、後述するXビーム24の長手方向の両端部近傍を下方から支持しており、Xビーム24がY軸方向に所定の長ストロークで移動する際のガイド部材として機能する。図3に示されるように、ベースフレーム22の両側面それぞれには、Y軸方向に所定間隔で配列された複数の永久磁石を含む磁石ユニット21a(Y固定子)が固定されている。また、ベースフレーム22の上端面(+Z側の端部)には、Yリニアガイド装置23の要素であるYリニアガイド23aが固定されている。 A pair of base frames 22 are spaced apart from each other by a predetermined distance (vibrating) on the + X side of the + X side substrate stage base 18 and on the −X side of the −X side substrate stage base 18 respectively. Installed on the floor 11 of the clean room. The pair of base frames 22 supports the vicinity of both ends in the longitudinal direction of the X beam 24 described later from below, and functions as a guide member when the X beam 24 moves in the Y axis direction with a predetermined long stroke. As shown in FIG. 3, magnet units 21 a (Y stators) including a plurality of permanent magnets arranged at predetermined intervals in the Y-axis direction are fixed to both side surfaces of the base frame 22. A Y linear guide 23 a that is an element of the Y linear guide device 23 is fixed to the upper end surface (the end on the + Z side) of the base frame 22.
 Xビーム24は、X軸方向に延びるYZ断面が矩形(図1参照)の部材から成る。Xビーム24の長手方向両端部近傍における下面には、上記一対のベースフレーム22に対応してYキャリッジ25と称されるXZ断面逆U字状の部材が固定されている。上記ベースフレーム22は、Yキャリッジ25の一対の対向面間に挿入されている。Yキャリッジ25の天井面には、上記Yリニアガイド23aと共にYリニアガイド装置23を構成するYスライド部材23bが固定されている。Yスライド部材23bは、対応するYリニアガイド23aに低摩擦でスライド自在に係合しており、Xビーム24は、一対のベースフレーム22上を低摩擦でY軸方向に所定のストロークで移動可能となっている。 The X beam 24 is made of a member whose YZ section extending in the X-axis direction is rectangular (see FIG. 1). On the lower surface in the vicinity of both ends in the longitudinal direction of the X beam 24, an XZ cross-section inverted U-shaped member called a Y carriage 25 corresponding to the pair of base frames 22 is fixed. The base frame 22 is inserted between a pair of opposing surfaces of the Y carriage 25. A Y slide member 23b constituting the Y linear guide device 23 is fixed to the ceiling surface of the Y carriage 25 together with the Y linear guide 23a. The Y slide member 23b is slidably engaged with the corresponding Y linear guide 23a with low friction, and the X beam 24 can move on the pair of base frames 22 with a predetermined stroke in the Y axis direction with low friction. It has become.
 また、Yキャリッジ25の一対の対向面それぞれには、上記磁石ユニット21aと共にYリニアモータ21を構成するコイルユニット21b(X可動子)が固定されている。Xビーム24は、上記Yリニアモータ21により、一対のベースフレーム22上でY軸方向に駆動される。なお、Xビーム24を駆動するYアクチュエータの種類は、これに限定されず、例えば送りねじ装置、ベルト駆動装置、ワイヤ駆動装置などを用いることができる。 Further, a coil unit 21b (X mover) constituting the Y linear motor 21 together with the magnet unit 21a is fixed to each of the pair of opposing surfaces of the Y carriage 25. The X beam 24 is driven in the Y-axis direction on the pair of base frames 22 by the Y linear motor 21. The type of the Y actuator that drives the X beam 24 is not limited to this, and for example, a feed screw device, a belt driving device, a wire driving device, or the like can be used.
 Xビーム24の下面のZ位置は、図1に示されるように、Yリニアガイド27aの上端部よりも+Z側に設定されており、Xビーム24は、基板ステージ架台18(すなわち装置本体)から振動的に分離されている。なお、Xビーム24の長手方向中央部を下方から支持する補助的なベースフレームを一対の基板ステージ架台18の間に配置しても良い。 As shown in FIG. 1, the Z position of the lower surface of the X beam 24 is set to the + Z side with respect to the upper end portion of the Y linear guide 27a, and the X beam 24 is sent from the substrate stage mount 18 (that is, the apparatus main body). Vibrationally separated. An auxiliary base frame that supports the central portion in the longitudinal direction of the X beam 24 from below may be disposed between the pair of substrate stage mounts 18.
 また、Xビーム24の上面には、図2に示されるように、Xリニアガイド装置29の要素であるXリニアガイド29aがX軸方向に所定間隔で、例えば2本固定されている。また、Xビーム24の両側面には、X軸方向に所定間隔で配列された複数の永久磁石を含む磁石ユニット31a(X固定子)が固定されている。 Further, as shown in FIG. 2, for example, two X linear guides 29a, which are elements of the X linear guide device 29, are fixed on the upper surface of the X beam 24 at a predetermined interval in the X-axis direction. Further, magnet units 31 a (X stators) including a plurality of permanent magnets arranged at predetermined intervals in the X-axis direction are fixed to both side surfaces of the X beam 24.
 粗動ステージ26は、直方体状の部材から成り、その下面には、上記Xリニアガイド29aと共にXリニアガイド装置29を構成するXスライド部材29bが複数固定されている。Xスライド部材29bは、図3に示されるように、ひとつのXリニアガイド29aにつき、X軸方向に所定間隔で、例えば2つ設けられている。Xスライド部材29bは、対応するXリニアガイド29aに低摩擦でスライド自在に係合しており、粗動ステージ26は、Xビーム24上を低摩擦でX軸方向に所定のストロークで移動可能となっている。 The coarse movement stage 26 is formed of a rectangular parallelepiped member, and a plurality of X slide members 29b constituting the X linear guide device 29 together with the X linear guide 29a are fixed to the lower surface thereof. As shown in FIG. 3, for example, two X slide members 29b are provided at a predetermined interval in the X-axis direction for each X linear guide 29a. The X slide member 29b is slidably engaged with the corresponding X linear guide 29a with low friction, and the coarse movement stage 26 can move on the X beam 24 with a predetermined stroke in the X axis direction with low friction. It has become.
 また、粗動ステージ26の両側面には、磁石ユニット31aと共に粗動ステージ26をX軸方向に所定のストロークで駆動するためのXリニアモータ31を構成するコイルユニット31b(X可動子)が取付板32を介して固定されている。 Coil units 31b (X movers) constituting an X linear motor 31 for driving the coarse movement stage 26 with a predetermined stroke in the X-axis direction are attached to both side surfaces of the coarse movement stage 26 together with the magnet unit 31a. It is fixed via a plate 32.
 粗動ステージ26は、Xリニアガイド装置29によりXビーム24に対するY軸方向への相対移動が制限されており、Xビーム24と一体的にY軸方向に移動する。すなわち、粗動ステージ26は、Xビーム24と共に、ガントリ式の2軸ステージ装置を構成している。Xビーム24のY位置情報、及び粗動ステージ26のX位置情報それぞれは、例えば不図示のリニアエンコーダシステム(あるいは光干渉計システム)により求められる。 The coarse movement stage 26 is restricted in relative movement in the Y axis direction with respect to the X beam 24 by the X linear guide device 29, and moves in the Y axis direction integrally with the X beam 24. That is, the coarse movement stage 26 constitutes a gantry-type two-axis stage device together with the X beam 24. Each of the Y position information of the X beam 24 and the X position information of the coarse movement stage 26 is obtained, for example, by a linear encoder system (or an optical interferometer system) not shown.
 一対のステップガイド30それぞれは、図2に示されるように、一対の基板ステージ架台18上に搭載されている。一対のステップガイド30は、それぞれX軸方向に延びるYZ断面が矩形(図1参照)の部材から成り、Y軸方向に所定間隔で互いに平行に配置されている。上記Xビーム24は、一対のステップガイド30間に所定のクリアランスを介して挿入されている。ステップガイド30の長手方向(X軸方向)の寸法は、Xビーム24よりも幾分短く設定され、幅方向(Y軸方向)寸法は、Xビーム24よりも幾分広く設定されている。ステップガイド30の上面は、平面度が非常に高く仕上げられている。 Each of the pair of step guides 30 is mounted on a pair of substrate stage mounts 18 as shown in FIG. Each of the pair of step guides 30 is formed of a member having a rectangular YZ section (see FIG. 1) extending in the X-axis direction, and is disposed in parallel to each other at a predetermined interval in the Y-axis direction. The X beam 24 is inserted between the pair of step guides 30 with a predetermined clearance. The length of the step guide 30 in the longitudinal direction (X-axis direction) is set somewhat shorter than that of the X beam 24, and the width direction (Y-axis direction) is set somewhat wider than that of the X beam 24. The upper surface of the step guide 30 is finished with very high flatness.
 ステップガイド30の下面には、図1に示されるように、上記Yリニアガイド27aと共にYリニアガイド装置27を構成するYスライド部材27bが複数固定されている。Yスライド部材27bは、ひとつのYリニアガイド27aにつき、Y軸方向に所定間隔で、例えば2つ設けられている。Yスライド部材27bは、対応するYリニアガイド27aに低摩擦でスライド自在に係合しており、ステップガイド30は、一対の基板ステージ架台18上を低摩擦でY軸方向に所定のストロークで移動可能となっている。 As shown in FIG. 1, a plurality of Y slide members 27b constituting the Y linear guide device 27 together with the Y linear guide 27a are fixed to the lower surface of the step guide 30. For example, two Y slide members 27b are provided at a predetermined interval in the Y-axis direction for one Y linear guide 27a. The Y slide member 27b is slidably engaged with the corresponding Y linear guide 27a with low friction, and the step guide 30 moves on the pair of substrate stage mounts 18 with a predetermined stroke in the Y axis direction with low friction. It is possible.
 一対のステップガイド30それぞれは、図2に示されるように、長手方向の両端部近傍において、連結装置34を介してXビーム24に機械的に連結されている。連結装置34は、Y軸方向に延びる棒状の部材と、該棒状部材の両端部に取り付けられた滑節装置(例えばボールジョイント)とを含み、上記滑節装置を介してXビーム24とステップガイド30との間に架設されている。棒状部材は、Y軸方向の剛性が高く設定されている。 Each of the pair of step guides 30 is mechanically coupled to the X beam 24 via a coupling device 34 in the vicinity of both ends in the longitudinal direction, as shown in FIG. The coupling device 34 includes a rod-shaped member extending in the Y-axis direction, and a slide device (for example, a ball joint) attached to both ends of the rod-shaped member. The X beam 24 and the step guide are connected via the slide device. 30. The rod-shaped member is set to have high rigidity in the Y-axis direction.
 基板ステージ装置20では、Xビーム24が複数のYリニアモータ21(図2では不図示。図3参照)によりY軸方向に関する一方の(例えば+Y)方向に駆動されると、Y軸方向に関する他方側(例えば-Y側)のステップガイド30が連結装置34を介してXビーム24に牽引されるとともに、Y軸方向に関する一方側(例えば+Y側)のステップガイド30が連結装置34を介してXビーム24に押圧される。これにより、一対のステップガイド30がXビーム24と一体的にY軸方向に移動する。 In the substrate stage apparatus 20, when the X beam 24 is driven in one (eg, + Y) direction in the Y-axis direction by a plurality of Y linear motors 21 (not shown in FIG. 2, see FIG. 3), the other in the Y-axis direction. The step guide 30 on the side (for example, −Y side) is pulled by the X beam 24 via the coupling device 34, and the step guide 30 on one side (for example, + Y side) in the Y-axis direction is X via the coupling device 34. Pressed by the beam 24. As a result, the pair of step guides 30 moves in the Y-axis direction integrally with the X beam 24.
 図1に戻り、微動ステージ28は、平面視矩形の箱形部材から成り、その上面に基板ホルダ36が固定されている。基板ホルダ36は、平面視矩形の板状の部材から成り、基板Pを吸着保持する。微動ステージ28の-Y側の側面には、ミラーベース38を介してY軸に直交する反射面を有するYバーミラー40yが固定され、微動ステージ28の-X側の側面には、図3に示されるように、ミラーベース38を介してX軸に直交する反射面を有するXバーミラー40xが固定されている。なお、図2では、図面の錯綜を避ける観点から基板ホルダ36、ミラーベース38、Yバーミラー40y、及びXバーミラー40x(図1又は図3参照)の図示がそれぞれ省略されている。 Referring back to FIG. 1, the fine movement stage 28 is formed of a rectangular box-shaped member in plan view, and a substrate holder 36 is fixed on the upper surface thereof. The substrate holder 36 is made of a plate-like member having a rectangular shape in plan view, and holds the substrate P by suction. A Y-bar mirror 40y having a reflecting surface orthogonal to the Y axis is fixed to the −Y side surface of fine movement stage 28 via mirror base 38, and the −X side side surface of fine movement stage 28 is shown in FIG. As shown, an X bar mirror 40x having a reflecting surface orthogonal to the X axis is fixed via a mirror base 38. 2, the illustration of the substrate holder 36, the mirror base 38, the Y bar mirror 40y, and the X bar mirror 40x (see FIG. 1 or FIG. 3) is omitted from the viewpoint of avoiding the complication of the drawing.
 微動ステージ28の下面における四隅部近傍それぞれには、図2に示されるように、嵩上げブロック42が取り付けられている。また、嵩上げブロック42の下面には、図1に示されるように、エアベアリング44が取り付けられている。図2に戻り、+Y側の、例えば2つのエアベアリング44の気体噴出面(軸受け面)は、+Y側のステップガイド30の上面に、-Y側の、例えば2つのエアベアリング44の気体噴出面は、-Y側のステップガイド30の上面にそれぞれ対向している。例えば4つのエアベアリング44それぞれは、対応するステップガイド30の上面に対して加圧気体(例えば空気)を噴出する。微動ステージ28は、エアベアリング44とステップガイド30との間に供給される気体の静圧により、一対のステップガイド30上に微少なクリアランスを介して浮上している。なお、エアベアリング44の配置、及び数は、一対のステップガイド30上で微動ステージ28を安定した状態で浮上させることができれば特に限定されない。 As shown in FIG. 2, raising blocks 42 are attached to the vicinity of the four corners on the lower surface of fine movement stage 28, respectively. An air bearing 44 is attached to the lower surface of the raising block 42 as shown in FIG. Returning to FIG. 2, the gas ejection surfaces (bearing surfaces) of, for example, two air bearings 44 on the + Y side are on the upper surface of the step guide 30 on the + Y side, and the gas ejection surfaces of, for example, two air bearings 44 on the −Y side. Are opposed to the upper surface of the step guide 30 on the -Y side. For example, each of the four air bearings 44 ejects pressurized gas (for example, air) to the upper surface of the corresponding step guide 30. The fine movement stage 28 floats on the pair of step guides 30 through a slight clearance due to the static pressure of the gas supplied between the air bearing 44 and the step guide 30. The arrangement and number of the air bearings 44 are not particularly limited as long as the fine movement stage 28 can be floated stably on the pair of step guides 30.
 微動ステージ28は、複数のボイスコイルモータを含む微動ステージ駆動系により、粗動ステージ26に誘導されてX軸方向、及び/又はY軸方向に駆動される。複数のボイスコイルモータには、図2に示されるように、X軸方向の推力を発生する、例えば2つのXボイスコイルモータ46xと、例えば2つのYボイスコイルモータ46yが含まれる。例えば2つのXボイスコイルモータ46xは、一方が微動ステージ28の+Y側、他方が微動ステージ28の-Y側にそれぞれ配置され、例えば2つのYボイスコイルモータ46yは、一方が微動ステージ28の+X側、他方が微動ステージ28の-X側にそれぞれ配置されている。 The fine movement stage 28 is guided to the coarse movement stage 26 and driven in the X-axis direction and / or the Y-axis direction by a fine movement stage drive system including a plurality of voice coil motors. As shown in FIG. 2, the plurality of voice coil motors include, for example, two X voice coil motors 46x and two Y voice coil motors 46y that generate thrust in the X-axis direction. For example, one of the two X voice coil motors 46x is arranged on the + Y side of the fine movement stage 28, and the other is arranged on the −Y side of the fine movement stage 28. For example, one of the two Y voice coil motors 46y is + X of the fine movement stage 28. The other side and the other side are arranged on the −X side of fine movement stage 28, respectively.
 上記複数のボイスコイルモータの構成は、配置が異なる点を除き、同じであるので、以下、微動ステージ28の+Y側に配置されたXボイスコイルモータ46xについて説明する。図1に示されるように、Xボイスコイルモータ46xは、粗動ステージ26の+Y側の側面に固定されたX固定子46aと、微動ステージ28の下面に固定されたX可動子46bとを含む。X固定子46aは、不図示のコイルユニットを有している。X可動子46bは、断面YZ断面U字状に形成され、その一対の対向面に永久磁石が固定されている。X固定子46aが有するコイルユニットは、上記一対の永久磁石間に所定のクリアランスを介して挿入されている。なお、本実施形態のXボイスコイルモータ46xは、ムービングマグネット型であるが、ムービングコイル型であっても良い。 Since the configuration of the plurality of voice coil motors is the same except for the difference in arrangement, the X voice coil motor 46x arranged on the + Y side of the fine movement stage 28 will be described below. As shown in FIG. 1, the X voice coil motor 46 x includes an X stator 46 a fixed to the + Y side surface of the coarse movement stage 26 and an X mover 46 b fixed to the lower surface of the fine movement stage 28. . The X stator 46a has a coil unit (not shown). The X mover 46b is formed in a cross-sectional YZ cross-sectional U shape, and a permanent magnet is fixed to a pair of opposed surfaces. The coil unit included in the X stator 46a is inserted between the pair of permanent magnets with a predetermined clearance. The X voice coil motor 46x of the present embodiment is a moving magnet type, but may be a moving coil type.
 基板ステージ装置20では、例えば粗動ステージ26がXビーム24に沿ってX軸方向に長ストロークで移動する際に、微動ステージ28が粗動ステージ26と同方向且つ同速度で移動するように例えば2つのXボイスコイルモータ46xが発生するX軸方向の推力(ローレンツ力)が制御される。また、Xビーム24がY軸方向にに長ストロークで移動する際に、微動ステージ28がXビーム24(すなわち粗動ステージ26)と同方向且つ同速度で移動するように例えば2つのYボイスコイルモータ46yが発生するY軸方向の推力が制御される。これにより、粗動ステージ26と微動ステージ28とが一体的にXY平面に沿って長ストロークで移動する。 In the substrate stage device 20, for example, when the coarse movement stage 26 moves along the X beam 24 with a long stroke in the X-axis direction, the fine movement stage 28 moves in the same direction and at the same speed as the coarse movement stage 26. The thrust (Lorentz force) in the X-axis direction generated by the two X voice coil motors 46x is controlled. Further, when the X beam 24 moves in the Y-axis direction with a long stroke, for example, two Y voice coils so that the fine movement stage 28 moves in the same direction and at the same speed as the X beam 24 (that is, the coarse movement stage 26). The thrust in the Y-axis direction generated by the motor 46y is controlled. As a result, the coarse movement stage 26 and the fine movement stage 28 integrally move along the XY plane with a long stroke.
 また、微動ステージ28は、例えば2つのXボイスコイルモータ46x(あるいは、例えば2つのYボイスコイルモータ46y)の推力の向きが互いに反対の方向とされることにより、粗動ステージ26に対してθz方向に微少駆動される。微動ステージ28は、粗動ステージ26に誘導されてX軸方向に長ストロークで駆動される際、Y軸方向及び/θz方向に適宜微少駆動される。 Further, the fine movement stage 28 is set to θz with respect to the coarse movement stage 26 by making the thrust directions of the two X voice coil motors 46x (or, for example, two Y voice coil motors 46y) opposite to each other. Slightly driven in the direction. When the fine movement stage 28 is guided by the coarse movement stage 26 and driven with a long stroke in the X-axis direction, the fine movement stage 28 is appropriately finely driven in the Y-axis direction and the / θz direction.
 上述のようにして構成された液晶露光装置10(図1参照)では、不図示の主制御装置の管理の下、不図示のマスクローダによって、マスクステージ14上へのマスクMのロードが行われるとともに、不図示の基板ローダによって基板ホルダ36上への基板Pのロードが行なわれる。その後、主制御装置により、不図示のアライメント検出系を用いてアライメント計測が実行され、そのアライメント計測の終了後、基板P上に設定された複数のショット領域に逐次ステップ・アンド・スキャン方式の露光動作が行なわれる。なお、この露光動作は従来から行われているステップ・アンド・スキャン方式の露光動作と同様であるので、ここでは詳細な説明を省略する。 In the liquid crystal exposure apparatus 10 (see FIG. 1) configured as described above, the mask M is loaded onto the mask stage 14 by a mask loader (not shown) under the control of a main controller (not shown). At the same time, the substrate P is loaded onto the substrate holder 36 by a substrate loader (not shown). Thereafter, alignment measurement is performed by the main controller using an alignment detection system (not shown), and after completion of the alignment measurement, a plurality of shot areas set on the substrate P are sequentially exposed in a step-and-scan manner. Operation is performed. Since this exposure operation is the same as the conventional step-and-scan exposure operation, detailed description thereof is omitted here.
 例えば、上記ステップ・アンド・スキャン方式の露光動作時におけるスキャン露光動作時などにおいて、基板ステージ装置20では、基板ホルダ36を介して基板Pを保持する微動ステージ28が、X軸方向に所定の長ストロークで駆動される。ステップガイド30は、長手方向(X軸方向)の寸法が微動ステージ28のX軸方向に関する移動可能距離よりも幾分長く設定されており、微動ステージ28は、粗動ステージ26と一体的にX軸方向に移動する際には、一対のステップガイド30上を移動する。また、微動ステージ28がY軸方向にステップ動作を行う際には、粗動ステージ26、Xビーム24、及び一対のステップガイド30が一体的にY軸方向に移動する。したがって、微動ステージ28が一対のステップガイド30上から脱落することがない。 For example, in the scan exposure operation during the step-and-scan exposure operation, in the substrate stage apparatus 20, the fine movement stage 28 that holds the substrate P via the substrate holder 36 has a predetermined length in the X-axis direction. Driven by stroke. The length of the step guide 30 in the longitudinal direction (X-axis direction) is set to be slightly longer than the movable distance in the X-axis direction of the fine movement stage 28, and the fine movement stage 28 is integrally formed with the coarse movement stage 26. When moving in the axial direction, it moves on the pair of step guides 30. Further, when the fine movement stage 28 performs a step operation in the Y-axis direction, the coarse movement stage 26, the X beam 24, and the pair of step guides 30 integrally move in the Y-axis direction. Therefore, the fine movement stage 28 does not fall off from the pair of step guides 30.
 以上説明した本実施形態の基板ステージ装置20によれば、微動ステージ28が一対のステップガイド30上に非接触状態で搭載されているので、小さな推力で微動ステージ28をX軸、及び/又はY軸方向に駆動(誘導)することができる。また、微動ステージ28の位置制御制が向上するので、高精度の露光が可能となる。また、微動ステージ28に対する外部からの振動、および反力の伝達が抑制されるので、微動ステージ28を高精度で位置制御することができる。 According to the substrate stage apparatus 20 of the present embodiment described above, since the fine movement stage 28 is mounted on the pair of step guides 30 in a non-contact state, the fine movement stage 28 is moved in the X axis and / or Y with a small thrust. It can be driven (guided) in the axial direction. Further, since the position control system of the fine movement stage 28 is improved, high-precision exposure is possible. Further, since transmission of external vibration and reaction force to the fine movement stage 28 is suppressed, the position of the fine movement stage 28 can be controlled with high accuracy.
 また、一対のステップガイド30は、X軸方向に関して微動ステージ28の移動可能範囲をカバーするとともに、Y軸方向に関して微動ステージ28と一体的に移動するので、基板ステージ装置20では、微動ステージ28のXY平面内の全移動範囲をカバーするような広い面積を有するガイド部材(例えば定盤)が不要である。したがって、コストが安く、且つ搬送、組み立てが容易である。 Further, the pair of step guides 30 covers the movable range of the fine movement stage 28 in the X axis direction and moves integrally with the fine movement stage 28 in the Y axis direction. A guide member (for example, a surface plate) having a large area that covers the entire movement range in the XY plane is unnecessary. Therefore, the cost is low, and transportation and assembly are easy.
 また、Xビーム24を駆動するためのYリニアモータ21の要素である磁石ユニット21a(Y固定子)が基板ステージ架台18に対して振動的に分離されているので、Xビーム24を駆動する際の駆動反力、振動などが、装置本体に支持された投影光学系16などに伝達することが抑制される。 Further, since the magnet unit 21a (Y stator), which is an element of the Y linear motor 21 for driving the X beam 24, is vibrationally separated from the substrate stage gantry 18, when the X beam 24 is driven. Is not transmitted to the projection optical system 16 supported by the apparatus main body.
 なお、以上説明した本実施形態の構成は、適宜変更が可能である。例えば、微動ステージ28と基板ホルダ36との間、あるいは嵩上げブロック42と微動ステージ28との間にZ・チルトアクチュエータを配置して基板PのZ軸方向、θx方向、及びθy方向の位置を制御可能としても良い。また、Xビーム24は、一対のステップガイド30間に複数配置されても良い。 It should be noted that the configuration of the present embodiment described above can be changed as appropriate. For example, a Z / tilt actuator is disposed between the fine movement stage 28 and the substrate holder 36 or between the raising block 42 and the fine movement stage 28 to control the position of the substrate P in the Z-axis direction, θx direction, and θy direction. It may be possible. A plurality of X beams 24 may be arranged between the pair of step guides 30.
 また、上記実施形態において、ステップガイド30は、Xビーム24により牽引されることによりY軸方向に移動したが、これに限られず、例えばリニアモータなどのアクチュエータを用いて一対のステップガイド30それぞれをXビーム24と独立して駆動しても良い。この場合、一対のステップガイド30を駆動するためのリニアモータの固定子として、ベースフレーム22に固定されたY固定子21a(図3参照)を用いても良い。 In the above embodiment, the step guide 30 is moved in the Y-axis direction by being pulled by the X beam 24. However, the step guide 30 is not limited to this, and for example, each of the pair of step guides 30 using an actuator such as a linear motor is used. It may be driven independently of the X beam 24. In this case, a Y stator 21a (see FIG. 3) fixed to the base frame 22 may be used as a stator of the linear motor for driving the pair of step guides 30.
 また、上記実施形態では、Xビーム24が複数のYリニアモータ21によりY軸方向に駆動されることにより、一対のステップガイド30がXビーム24と一体的にY軸方向に移動する構成であったが、これに限られず、一対のステップガイド30がアクチュエータ(例えばリニアモータ)によりY軸方向に駆動され、これに伴いXビーム24がY軸方向に移動する構成であっても(Xビーム24を駆動するアクチュエータも設けなくても)良い。 In the above-described embodiment, the X-beam 24 is driven in the Y-axis direction by the plurality of Y linear motors 21 so that the pair of step guides 30 moves integrally with the X-beam 24 in the Y-axis direction. However, the present invention is not limited to this, and even if the pair of step guides 30 is driven in the Y-axis direction by an actuator (for example, a linear motor) and the X-beam 24 is moved in the Y-axis direction accordingly (X-beam 24). (There is no need to provide an actuator for driving).
 また、上記実施形態において、微動ステージ28は、複数のエアベアリング44を介して一対のステップガイド30上に下方から非接触支持されたが、転動体(例えばボール)を介して接触状態で微動ステージ28をステップガイド30上に搭載しても良い。 In the above embodiment, the fine movement stage 28 is supported in a non-contact manner on the pair of step guides 30 via a plurality of air bearings 44 from below. However, the fine movement stage 28 is in a contact state via a rolling element (for example, a ball). 28 may be mounted on the step guide 30.
 また、一対のステップガイド30を物理的(機械的)に(ただし、Xビーム24に抵触しないように)連結しても良い。この場合、一方のステップガイド30がXビーム24に牽引されると、他方のステップガイド30も一体的に移動するため、例えばXビーム24が一方のステップガイド30のみを牽引(又は押圧)すれば良い。 Further, the pair of step guides 30 may be connected physically (mechanically) (but not to interfere with the X beam 24). In this case, when one of the step guides 30 is pulled by the X beam 24, the other step guide 30 also moves together. For example, if the X beam 24 pulls (or presses) only one of the step guides 30, for example. good.
 また、照明光は、ArFエキシマレーザ光(波長193nm)、KrFエキシマレーザ光(波長248nm)などの紫外光や、F2レーザ光(波長157nm)などの真空紫外光であっても良い。また、照明光としては、例えばDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、固体レーザ(波長:355nm、266nm)などを使用しても良い。 The illumination light may be ultraviolet light such as ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), or vacuum ultraviolet light such as F 2 laser light (wavelength 157 nm). As the illumination light, for example, a single wavelength laser beam oscillated from a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium). In addition, harmonics converted into ultraviolet light using a nonlinear optical crystal may be used. A solid laser (wavelength: 355 nm, 266 nm) or the like may be used.
 また、上記実施形態は、複数本の投影光学ユニットを備えたマルチレンズ方式の投影光学系16である場合について説明したが、投影光学ユニットの本数はこれに限らず、1本以上あれば良い。また、マルチレンズ方式の投影光学系に限らず、例えばオフナー型の大型ミラーを用いた投影光学系などであっても良い。また、上記実施形態では投影光学系16として、投影倍率が等倍のものを用いる場合について説明したが、これに限らず、投影光学系は縮小系及び拡大系のいずれでも良い。 In the above embodiment, the case of the multi-lens projection optical system 16 including a plurality of projection optical units has been described. However, the number of projection optical units is not limited to this, and one or more projection optical units may be used. The projection optical system is not limited to a multi-lens type projection optical system, and may be a projection optical system using an Offner type large mirror, for example. In the above embodiment, the case where the projection optical system 16 has a projection magnification of the same magnification has been described. However, the present invention is not limited to this, and the projection optical system may be either a reduction system or an enlargement system.
 また、光透過性のマスク基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクが用いられたが、このマスクに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク)、例えば、非発光型画像表示素子(空間光変調器とも呼ばれる)の一種であるDMD(Digital Micro-mirror Device)を用いる可変成形マスクを用いても良い。 Further, a light transmissive mask in which a predetermined light shielding pattern (or phase pattern / dimming pattern) is formed on a light transmissive mask substrate is used. Instead of this mask, for example, US Pat. No. 6,778, As disclosed in US Pat. No. 257, an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed, for example, a non-light-emitting image display You may use the variable shaping | molding mask using DMD (Digital * Micro-mirror * Device) which is 1 type of an element (it is also called a spatial light modulator).
 また、露光装置としては、サイズ(外径、対角線の長さ、一辺の少なくとも1つを含む)が500mm以上の基板、例えば液晶表示素子などのフラットパネルディスプレイ用の大型基板を露光対象物とする露光装置が特に適している。 As an exposure apparatus, a substrate having a size (including at least one of an outer diameter, a diagonal length, and one side) of 500 mm or more, for example, a large substrate for a flat panel display such as a liquid crystal display element is used as an exposure object. An exposure apparatus is particularly suitable.
 また、露光装置としては、ステップ・アンド・リピート方式の露光装置、ステップ・アンド・スティッチ方式の露光装置にも適用することができる。また、移動体装置に保持される物体は、露光対象物体である基板などに限られず、マスクなどのパターン保持体(原版)であっても良い。 The exposure apparatus can also be applied to a step-and-repeat type exposure apparatus and a step-and-stitch type exposure apparatus. Further, the object held by the mobile device is not limited to the substrate that is the object to be exposed, and may be a pattern holder (original) such as a mask.
 また、露光装置の用途としては、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置に限定されることなく、例えば半導体製造用の露光装置、薄膜磁気ヘッド、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるマスク又はレチクルを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも本発明を適用できる。なお、露光対象となる物体はガラスプレートに限られるものでなく、例えばウエハ、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。また、露光対象物がフラットパネルディスプレイ用の基板である場合、その基板の厚さは特に限定されず、例えばフィルム状(可撓性を有するシート状の部材)のものも含まれる。 Further, the use of the exposure apparatus is not limited to a liquid crystal exposure apparatus that transfers a liquid crystal display element pattern onto a square glass plate. For example, an exposure apparatus for semiconductor manufacturing, a thin film magnetic head, a micromachine, and a DNA chip The present invention can also be widely applied to an exposure apparatus for manufacturing the above. Moreover, in order to manufacture not only microdevices such as semiconductor elements but also masks or reticles used in light exposure apparatuses, EUV exposure apparatuses, X-ray exposure apparatuses, electron beam exposure apparatuses, etc., glass substrates, silicon wafers, etc. The present invention can also be applied to an exposure apparatus that transfers a circuit pattern. The object to be exposed is not limited to the glass plate, and may be another object such as a wafer, a ceramic substrate, a film member, or mask blanks. Moreover, when the exposure target is a substrate for a flat panel display, the thickness of the substrate is not particularly limited, and includes, for example, a film-like (flexible sheet-like member).
 液晶表示素子(あるいは半導体素子)などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたマスク(あるいはレチクル)を製作するステップ、ガラス基板(あるいはウエハ)を製作するステップ、上述した各実施形態の露光装置、及びその露光方法によりマスク(レチクル)のパターンをガラス基板に転写するリソグラフィステップ、露光されたガラス基板を現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ガラス基板上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。 For electronic devices such as liquid crystal display elements (or semiconductor elements), the step of designing the function and performance of the device, the step of producing a mask (or reticle) based on this design step, and the step of producing a glass substrate (or wafer) A lithography step for transferring a mask (reticle) pattern to a glass substrate by the exposure apparatus and the exposure method of each embodiment described above, a development step for developing the exposed glass substrate, and a portion where the resist remains. It is manufactured through an etching step for removing the exposed member of the portion by etching, a resist removing step for removing a resist that has become unnecessary after etching, a device assembly step, an inspection step, and the like. In this case, in the lithography step, the above-described exposure method is executed using the exposure apparatus of the above embodiment, and a device pattern is formed on the glass substrate. Therefore, a highly integrated device can be manufactured with high productivity. .
 以上説明したように、本発明の移動体装置は、物体を保持する物体保持部材を水平面に平行な二次元平面に沿って駆動するのに適している。また、本発明の露光装置は、物体を露光するのに適している。また、本発明のフラットパネルディスプレイの製造方法は、フラットパネルディスプレイの製造に適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。 As described above, the mobile device of the present invention is suitable for driving an object holding member that holds an object along a two-dimensional plane parallel to a horizontal plane. The exposure apparatus of the present invention is suitable for exposing an object. Moreover, the manufacturing method of the flat panel display of this invention is suitable for manufacture of a flat panel display. The device manufacturing method of the present invention is suitable for manufacturing micro devices.

Claims (12)

  1.  水平面に平行な二次元平面内の第1方向に沿った位置を移動可能な第1移動体と、
     前記第1移動体に設けられ、前記第1移動体と共に前記第1方向に沿った位置を移動可能、且つ前記第1移動体に対して前記二次元平面内で前記第1方向に直交する第2方向に沿った位置を移動可能な第2移動体と、
     物体を保持し、前記第2移動体に誘導されて前記二次元平面に沿って移動する物体保持部材と、
     前記第1方向に関して前記第1移動体の一側に配置され、前記物体保持部材が前記第2方向に沿って移動する際に該物体保持部材の前記第1方向に関する一側の領域を下方から支持するとともに、前記物体保持部材と共に前記第1方向に沿って移動可能な第1ガイド部材と、
     前記第1方向に関して前記第1移動体の他側に配置され、前記物体保持部材が前記第2方向に沿って移動する際に該物体保持部材の前記第1方向に関する他側の領域を下方から支持するとともに、前記物体保持部材と共に前記第1方向に沿って移動可能な第2ガイド部材と、を備える移動体装置。
    A first moving body capable of moving a position along a first direction in a two-dimensional plane parallel to the horizontal plane;
    A first movable body that is movable in a position along the first direction together with the first movable body, and that is perpendicular to the first direction within the two-dimensional plane with respect to the first movable body; A second moving body capable of moving a position along two directions;
    An object holding member that holds an object and moves along the two-dimensional plane guided by the second moving body;
    An area on one side of the object holding member in the first direction is arranged from below when the object holding member moves along the second direction with respect to the first direction. A first guide member supporting and movable along the first direction together with the object holding member;
    When the object holding member moves along the second direction with respect to the first direction, an area on the other side of the object holding member in the first direction is viewed from below. And a second guide member that supports the object holding member and is movable along the first direction.
  2.  前記物体保持部材は、前記第1及び第2ガイド部材に非接触支持される請求項1に記載の移動体装置。 The moving body device according to claim 1, wherein the object holding member is supported in a non-contact manner by the first and second guide members.
  3.  前記物体保持部材は、該物体保持部材と前記第1ガイド部材との間、及び該物体保持部材と第2ガイド部材との間に供給される気体の静圧により前記第1及び第2ガイド部材上に非接触浮上する請求項2に記載の移動体装置。 The object holding member includes the first and second guide members by static pressure of gas supplied between the object holding member and the first guide member and between the object holding member and the second guide member. The mobile device according to claim 2, which floats in a non-contact manner.
  4.  前記物体保持部材を前記第2移動体に対して前記第1及び第2方向、並びに前記水平面に直交する軸回りに微少駆動するアクチュエータを更に備える請求項1~3のいずれか一項に記載の移動体装置。 The actuator according to any one of claims 1 to 3, further comprising an actuator that slightly drives the object holding member with respect to the second moving body in the first and second directions and about an axis orthogonal to the horizontal plane. Mobile device.
  5.  前記物体保持部材は、前記アクチュエータが発生する推力により前記水平面に沿って前記第2移動体に誘導される請求項4に記載の移動体装置。 The moving body device according to claim 4, wherein the object holding member is guided to the second moving body along the horizontal plane by a thrust generated by the actuator.
  6.  前記第1移動体と前記第1及び第2ガイド部材とを物理的に連結する連結部材を更に備える請求項1~5のいずれか一項に記載の移動体装置。 The mobile device according to any one of claims 1 to 5, further comprising a connecting member that physically connects the first mobile body and the first and second guide members.
  7.  請求項1~6のいずれか一項に記載の移動体装置と、
     前記物体保持部材に保持された前記物体にエネルギビームを用いて所定のパターンを形成するパターン形成装置と、を備える露光装置。
    A mobile device according to any one of claims 1 to 6;
    An exposure apparatus comprising: a pattern forming apparatus that forms a predetermined pattern on the object held by the object holding member using an energy beam.
  8.  前記物体に対して前記パターンを形成する際、前記移動体装置は、前記物体を前記エネルギビームに対して前記第2方向に沿って相対移動させる請求項7に記載の露光装置。 The exposure apparatus according to claim 7, wherein when the pattern is formed on the object, the moving body apparatus moves the object relative to the energy beam along the second direction.
  9.  前記物体は、フラットパネルディスプレイ装置に用いられる基板である請求項7又は8に記載の露光装置。 The exposure apparatus according to claim 7 or 8, wherein the object is a substrate used in a flat panel display device.
  10.  前記基板は、少なくとも一辺の長さ又は対角長が500mm以上である請求項9に記載の露光装置。 10. The exposure apparatus according to claim 9, wherein the substrate has a length of at least one side or a diagonal length of 500 mm or more.
  11.  請求項9又は10に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むフラットパネルディスプレイの製造方法。
    Exposing the object using the exposure apparatus according to claim 9 or 10,
    Developing the exposed object. A method of manufacturing a flat panel display.
  12.  請求項7又は8に記載の露光装置を用いて前記物体を露光することと、
     露光された前記物体を現像することと、を含むデバイス製造方法。
    Exposing the object using the exposure apparatus according to claim 7 or 8,
    Developing the exposed object.
PCT/JP2012/005462 2011-08-30 2012-08-30 Mobile device, exposure device, method for producing flat panel display, and method for producing device WO2013031221A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197036024A KR102202760B1 (en) 2011-08-30 2012-08-30 Mobile device, exposure device, method for producing flat panel display, and method for producing device
CN201280042125.XA CN103765554B (en) 2011-08-30 2012-08-30 Mobile body device, exposure device, the manufacture method of flat faced display and manufacturing method
KR1020147007385A KR20140068999A (en) 2011-08-30 2012-08-30 Mobile device, exposure device, method for producing flat panel display, and method for producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011187777A JP5807841B2 (en) 2011-08-30 2011-08-30 Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2011-187777 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031221A1 true WO2013031221A1 (en) 2013-03-07

Family

ID=47755749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005462 WO2013031221A1 (en) 2011-08-30 2012-08-30 Mobile device, exposure device, method for producing flat panel display, and method for producing device

Country Status (5)

Country Link
JP (1) JP5807841B2 (en)
KR (2) KR20140068999A (en)
CN (1) CN103765554B (en)
TW (3) TWI710862B (en)
WO (1) WO2013031221A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331300B2 (en) * 2013-09-13 2018-05-30 日本精工株式会社 Table device and transfer device
TWI762610B (en) * 2017-03-31 2022-05-01 日商尼康股份有限公司 Object holding device, processing device, manufacturing method of flat panel display, component manufacturing method, and object holding method
KR102595405B1 (en) * 2017-03-31 2023-10-27 가부시키가이샤 니콘 Mobile unit apparatus, exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and method for driving mobile unit
TWI791036B (en) 2017-10-05 2023-02-01 日商索尼股份有限公司 Light source device and projection display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025902A (en) * 1999-12-01 2002-01-25 Asm Lithography Bv Positioning system for use in lithographic projection apparatus
JP2006351785A (en) * 2005-06-15 2006-12-28 Yaskawa Electric Corp Alignment stage capable of long length stroke movement
JP2008090718A (en) * 2006-10-04 2008-04-17 Nsk Ltd Positioning device
JP2011044712A (en) * 2009-08-20 2011-03-03 Nikon Corp Object moving device, object processing device, exposure device, object inspection device, and method for manufacturing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129762A1 (en) 2007-03-05 2008-10-30 Nikon Corporation Moving body apparatus, apparatus for forming pattern, method of forming pattern, method of producing device, method of producing moving body apparatus, and method of driving moving body
JP2008221444A (en) * 2007-03-15 2008-09-25 Danaher Motion Japan Kk Gantry type xy stage
US20110085150A1 (en) * 2009-09-30 2011-04-14 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US20110123913A1 (en) * 2009-11-19 2011-05-26 Nikon Corporation Exposure apparatus, exposing method, and device fabricating method
US20110164238A1 (en) * 2009-12-02 2011-07-07 Nikon Corporation Exposure apparatus and device fabricating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025902A (en) * 1999-12-01 2002-01-25 Asm Lithography Bv Positioning system for use in lithographic projection apparatus
JP2006351785A (en) * 2005-06-15 2006-12-28 Yaskawa Electric Corp Alignment stage capable of long length stroke movement
JP2008090718A (en) * 2006-10-04 2008-04-17 Nsk Ltd Positioning device
JP2011044712A (en) * 2009-08-20 2011-03-03 Nikon Corp Object moving device, object processing device, exposure device, object inspection device, and method for manufacturing device

Also Published As

Publication number Publication date
CN103765554A (en) 2014-04-30
TW201314381A (en) 2013-04-01
CN103765554B (en) 2016-11-23
TW201723680A (en) 2017-07-01
JP5807841B2 (en) 2015-11-10
KR20190137970A (en) 2019-12-11
TWI635371B (en) 2018-09-11
TWI710862B (en) 2020-11-21
KR20140068999A (en) 2014-06-09
JP2013051289A (en) 2013-03-14
KR102202760B1 (en) 2021-01-13
TW201842417A (en) 2018-12-01
TWI581069B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
US10627725B2 (en) Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
JP6558721B2 (en) Moving body apparatus and moving method, exposure apparatus and exposure method, flat panel display manufacturing method, and device manufacturing method
JP6551762B2 (en) Mobile body apparatus, exposure apparatus, method of manufacturing flat panel display, and method of manufacturing device
WO2013150788A1 (en) Moving body device, exposure device, flat panel display manufacturing method, and device manufacturing method
JP5807841B2 (en) Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2014098731A (en) Movable body apparatus, exposure apparatus, method for manufacturing flat panel display, and device manufacturing method
JP2012058391A (en) Exposure apparatus, method for manufacturing flat panel display, and method for manufacturing device
JP6132079B2 (en) Exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2016186570A (en) Movable body apparatus, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
KR102151930B1 (en) Exposure device, method for manufacturing flat panel display, and method for manufacturing device
JP2011244608A (en) Linear motor, mobile device, exposure device, device manufacturing method, and flat panel display manufacturing method
JP5772196B2 (en) Mobile device, exposure apparatus, flat panel display manufacturing method, device manufacturing method, and mobile device assembly method.
JP6197909B2 (en) Mobile device
JP6573131B2 (en) Mobile device, exposure apparatus, flat panel display manufacturing method, and device manufacturing method
JP2015079908A (en) Driving device, exposure apparatus and device manufacturing method
JP2013214024A (en) Mobile device, exposure device, flat panel display manufacturing method and device manufacturing method
JP2017211672A (en) Mobile device, exposure device, method of manufacturing flat panel display, and method of manufacturing device
JP2013214028A (en) Exposure device, flat panel display device manufacturing method and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007385

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12828310

Country of ref document: EP

Kind code of ref document: A1