WO2013031119A1 - Sc-fdma送信装置及び送信方法 - Google Patents

Sc-fdma送信装置及び送信方法 Download PDF

Info

Publication number
WO2013031119A1
WO2013031119A1 PCT/JP2012/005167 JP2012005167W WO2013031119A1 WO 2013031119 A1 WO2013031119 A1 WO 2013031119A1 JP 2012005167 W JP2012005167 W JP 2012005167W WO 2013031119 A1 WO2013031119 A1 WO 2013031119A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncturing
frequency
rate
mcs
power amount
Prior art date
Application number
PCT/JP2012/005167
Other languages
English (en)
French (fr)
Inventor
木村 良平
透 大泉
佳彦 小川
今村 大地
文幸 安達
哲矢 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/241,290 priority Critical patent/US9386547B2/en
Priority to JP2013531049A priority patent/JP5826852B2/ja
Publication of WO2013031119A1 publication Critical patent/WO2013031119A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • H03M13/353Adaptation to the channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6522Intended application, e.g. transmission or communication standard
    • H03M13/65253GPP LTE including E-UTRA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the present invention relates to a transmission device and a transmission method.
  • 3GPP LTE (3rd Generation Partnership Project Long Term Evolution) employs SC-FDMA (Single Carrier-Frequency Division Multiple Access) as an uplink access method.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the features of SC-FDMA include low PAPR (Peak-to-Average-Power-Ratio) through single carrier, flexible data allocation to subcarrier frequencies, and strong resistance to multipath in frequency domain signal processing on the receiving side. Can be mentioned.
  • time-domain symbols are converted into frequency components by DFT (Discrete Fourier Transform), each frequency component is mapped to a different subcarrier, and the mapped frequency component is further converted to IDFT.
  • DFT Discrete Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • CP Cyclic Prefix
  • a transmission-side DFT corresponds to a reception-side IDFT (hereinafter referred to as reception IDFT), and a transmission-side IDFT (hereinafter referred to as transmission IDFT).
  • reception IDFT reception-side IDFT
  • transmission IDFT transmission-side IDFT
  • receiving DFT DFT on the receiving side
  • Frequency puncturing is basically a puncturing method applied in an SC-FDMA system, and puncturing is performed on a frequency domain signal after transmission DFT.
  • time puncturing hereinafter also referred to as TP
  • TP time puncturing
  • time puncturing puncturing is performed on a bit-by-bit basis for encoded bits in the time domain immediately after turbo encoding (that is, before the transmission DFT). For example, in FIG. 1, the last two bits of 10 encoded bits are punctured (decimated).
  • frequency puncturing data to be punctured in which encoded bits are superimposed on a plurality of symbols in the frequency domain is punctured in units of symbols. For example, in FIG. 1, 2 symbols on the high frequency side among 8 symbols mapped to 8 subcarriers are punctured (decimated). That is, in time puncturing, some encoded bits (or symbols) themselves in the time domain are completely punctured.
  • frequency puncturing some components of each coded bit are punctured to the same extent. That is, in frequency puncturing, some encoded bits themselves are not completely punctured as in time puncturing.
  • frequency puncturing is a parity bit per transmission compared to time puncturing. You can increase the number. Thus, in frequency puncturing, error correction coding gain can be improved by increasing the number of transmitted parity bits compared to time puncturing.
  • transmission power is the same
  • the total transmission power punctured by time puncturing and frequency puncturing is the same, so the signal after frequency puncturing is the same as the signal after time puncturing. In comparison, the transmission power per bit is reduced.
  • the number of punctured bits (number of puncturing) N in time puncturing is calculated according to the following equation (1).
  • TBS indicates a transport block size and indicates the number of input bits to the turbo encoder.
  • the number of assigned RBs N PRB indicates the number of RBs to which transmission data is assigned.
  • the coding rate Ro shown in Equation (1), the number of SC-FDMA symbols in a subframe, and the number of subcarriers per allocated RB are predetermined by the system.
  • the TBS, the modulation level, and the number of allocated RBs N PRB shown in Equation (1) are determined for each subframe at the base station, and notified to the terminal via the downlink control channel.
  • TBS is determined using two tables shown in FIGS. 2A and 2B.
  • FIG. 2A is a table showing the association between the Modulation and Coding Scheme (MCS) index and the TBS index
  • FIG. 2B is a table showing the association between the TBS index and the number of assigned RBs N PRB and the TBS.
  • MCS Modulation and Coding Scheme
  • FIGS. 2A and 2B are shared between the base station and the terminal.
  • the base station first determines the MCS index and the number of allocated RBs N PRB according to the received SINR or the data amount of the terminal requesting data transmission.
  • the base station notifies the terminal of the determined MCS index and the number of assigned RBs N PRB .
  • the base station and terminal determine the modulation scheme and TBS index from the MCS index with reference to the table shown in FIG. 2A.
  • the base station and the terminal determine the TBS from the TBS index and the number of assigned RBs N PRB with reference to the table shown in FIG. 2B.
  • the base station and the terminal share the tables shown in FIG. 2A and FIG. 2B so that the terminal can feed the MCS index and the number of assigned RBs N PRB from the base station to the terminal.
  • TBS can be specified.
  • the terminal can specify all the parameters used for calculating the puncturing number N in Equation (1).
  • Patent Document 2 discloses that, in a static (Additive White Gaussian Noise: AWGN) channel, time puncturing and frequency puncturing are combined to provide better error rate characteristics than when only time puncturing is used. It is shown. On the other hand, Patent Document 2 also shows that when time puncturing and frequency puncturing are combined in a multipath fading channel, the error rate characteristic is degraded as compared with the case of using only time puncturing.
  • AWGN Additional White Gaussian Noise
  • a clustered SC-FDMA (clustered SC-FDMA) in which an SC-FDMA symbol is divided into a plurality of clusters and the plurality of clusters are mapped to frequency resources.
  • Each cluster includes a plurality of resource blocks (Resource (Block: RB).
  • RB resource blocks
  • a base station determines a cluster size (number of symbols constituting a cluster) and a cluster allocation position used by the terminal for transmission, and notifies the determined information to the terminal through a downlink control channel. For example, in the frequency domain, the base station sets a resource having a good average reception SINR (Signal to Interference and Noise Ratio) as a cluster allocation position.
  • SINR Signal to Interference and Noise Ratio
  • the terminal determines the number of symbols corresponding to the cluster size notified using the downlink control channel as the number of input symbols to the DFT (transmission DFT). And a terminal maps each cluster comprised with the symbol after DFT to the allocation position notified using the downlink control channel. Each mapped cluster is transmitted after IDFT.
  • frequency puncturing is applied to the clustered SC-FDMA described above to assign clusters to frequency resources with good channel gain.
  • FIG. 3 shows a configuration example of a terminal in a system in which frequency puncturing is applied to clustered SC-FDMA.
  • frequency puncturing has a function of determining (selecting) a symbol to be transmitted (or a symbol to be thinned out) and a function of mapping a symbol to a band (allocated band) used for transmission.
  • the terminal thins out symbols (four symbols in FIG. 3) corresponding to the puncturing number N specified by Expression (1) from the symbols output from the DFT (transmission DFT).
  • the terminal maps the punctured symbols to the allocated band (allocated position) notified from the base station.
  • the cluster size is determined in consideration of not only the SINR of each RB to which each cluster is mapped but also the size of the entire data. For this reason, transmission symbols are not necessarily mapped to clusters with good SINR. Therefore, a situation in which SINR characteristics are inferior in each cluster, that is, a situation in which a drop in channel gain occurs. Particularly in a multipath fading channel, such a situation is likely to occur, and when frequency puncturing is applied to clustered SC-FDMA, error rate characteristics in each cluster deteriorate.
  • An object of the present invention is to provide an SC-FDMA transmission apparatus and transmission method capable of obtaining a good error rate characteristic in any propagation channel.
  • the SC-FDMA transmission apparatus includes time puncturing for puncturing each bit of encoded data in bit units in the time domain, and the encoded data in which each bit is superimposed on a plurality of symbols in the frequency domain.
  • a transmission apparatus that performs frequency puncturing that performs puncturing in symbol units, and bits that are punctured by time puncturing in a total power amount corresponding to a component in which the encoded data is punctured in time puncturing and frequency puncturing Determining means based on a puncturing determination rule, a ratio between a first power amount corresponding to the second power amount corresponding to a symbol punctured by frequency puncturing, and based on the ratio, Set the first power amount and the second power amount Setting means, first puncturing means for performing time puncturing on the encoded data according to the first power amount, and the encoded data after time puncturing according to the second power amount Second puncturing means for performing frequency puncturing on the puncturing decision rule, wherein the ratio is the MCS for the encoded data and the resources allocated for the encoded data And
  • the transmission method of the present invention includes time puncturing for puncturing each bit of encoded data in units of bits in the time domain, and the encoded data in which each bit is superimposed on a plurality of symbols in the frequency domain in units of symbols.
  • a transmission method for performing frequency puncturing to perform puncturing which corresponds to bits punctured by time puncturing in a total power amount corresponding to a component to which the encoded data is punctured in time puncturing and frequency puncturing
  • a ratio between the first power amount and a second power amount corresponding to a symbol punctured by frequency puncturing is determined based on a puncturing determination rule, and based on the ratio, the first power amount and Set the second power amount, and according to the first power amount
  • Time puncturing is performed on the encoded data
  • frequency puncturing is performed on the encoded data after time puncturing according to the second power amount, and in the puncturing determination rule, the ratio is: It is specified from the MCS for the encoded data, the number of resources allocated to the encoded data, and the delay spread in
  • Diagram showing time and frequency puncturing The figure which shows the correspondence of MCS, TBS, and the number of allocation RBs Diagram showing clustered SC-FDMA with frequency puncturing applied The figure which shows the correspondence of the total puncturing amount, time puncturing amount, and frequency puncturing amount which concern on each embodiment of this invention
  • the block diagram which shows the main structures of the transmitter which concerns on Embodiment 1 of this invention.
  • the block diagram which shows the structure of the transmitter which concerns on Embodiment 1 of this invention.
  • Diagram showing the drop in channel gain in a propagation channel Diagram showing an example of the cause of ISI The figure which shows the applicability of the frequency puncturing which concerns on Embodiment 1 of this invention
  • the figure which shows clustered SC-FDMA to which the frequency puncturing according to the first embodiment of the present invention is applied
  • the figure which shows the channel estimation precision according to the number of allocation clusters which concerns on Embodiment 2 of this invention The figure which shows the frequency puncturing rate determination table which concerns on Embodiment 2 of this invention.
  • the transmitting apparatus (SC-FDMA apparatus) according to each embodiment is, for example, a terminal, and the receiving apparatus according to each embodiment is, for example, a base station.
  • the transmission apparatus performs time puncturing (TP) for puncturing each bit of encoded data in bit units in the time domain, and a plurality of symbols in the frequency domain.
  • TP time puncturing
  • FP Frequency puncturing
  • the amount of power corresponding to the bits punctured at the time puncturing the time the amount of puncturing N t are punctured in the frequency puncturing the frequency amount of puncturing N f.
  • equation (2) to the total time the amount of puncturing N t and the frequency amount of puncturing N f a (total power) to the total amount of puncturing N P.
  • equation (3) to the total amount of puncturing N P, the ratio of the frequency amount of puncturing N f, a frequency puncturing rate R f. That is, in the following, in the total amount of puncturing N P, the ratio of the time the amount of puncturing N t and frequency puncturing amount N f, will be described representing the frequency puncturing rate R f.
  • FIG. 5 shows the main components of transmitting apparatus 100 according to the present embodiment.
  • the transmission apparatus 100 illustrated in FIG. 5 performs time puncturing and frequency puncturing, and the determination unit 151 performs a time in a total puncturing amount corresponding to a component in which encoded data is punctured in time puncturing and frequency puncturing.
  • the ratio between the puncturing amount and the frequency puncturing amount is determined based on the puncturing determination rule, and the setting unit 152 sets the time puncturing amount and the frequency puncturing amount based on the ratio, and the time puncturing unit 102 performs time puncturing on the encoded data according to the time puncturing amount, and the frequency puncturing unit 105 performs frequency puncturing on the encoded data after time puncturing according to the frequency puncturing amount.
  • the ratio is calculated based on the MCS for the encoded data, the number of resources allocated for the encoded data, and the delay spread in the propagation channel between the receiving apparatus and the transmitting apparatus 100. Identified from
  • FIG. 6 is a block diagram showing the configuration of the transmission apparatus according to this embodiment.
  • the encoding unit 101 performs encoding (for example, turbo encoding) on the information data to generate encoded bits.
  • the coded bits are composed of systematic bits (information data itself) and parity bits (redundant data).
  • the encoding unit 101 outputs the generated encoded bits to the time puncturing unit 102.
  • the time puncturing unit 102 includes a CB (Circular Buffer) and stores encoded bits input from the encoding unit 101. Further, the time puncturing unit 102, the time from the control unit 111 to be described later puncturing amount N t is input. The time puncturing unit 102 performs time puncturing on the coded bits according to the time puncturing amount N t . In other words, the time puncturing unit 102 thins out the number of bits corresponding to the time puncturing amount N t from the encoded bits stored in the CB. As described above, the time puncturing unit 102 extracts transmission unit data from the coded bits stored in the CB. That is, temporal puncturing (bit-based puncturing) is to perform extraction processing in bit units. The time puncturing unit 102 outputs the extracted encoded bits to the modulation unit 103.
  • CB Common Buffer
  • the modulation unit 103 digitally modulates the coded bits input from the time puncturing unit 102 according to the modulation level input from the feedback information demodulation unit 110 to generate modulation symbols.
  • Modulation section 103 outputs the generated modulation symbol to DFT section 104.
  • the DFT unit 104 performs DFT processing (transmission DFT) on the modulation symbol input from the modulation unit 103 to convert a time domain signal into a frequency domain signal (symbol).
  • DFT section 104 outputs the modulated symbols after DFT to frequency puncturing section 105.
  • the frequency puncturing unit 105 the frequency amount of puncturing N f is input from the control unit 111.
  • Frequency puncturing section 105 in accordance with the frequency amount of puncturing N f, the frequency puncturing with respect to modulation symbols in the frequency domain inputted from DFT section 104.
  • Frequency puncturing section 105 then outputs the modulation symbols after frequency puncturing to mapping section 106.
  • the mapping unit 106 maps the modulation symbol input from the frequency puncturing unit 105 to the frequency resource indicated in the allocated band information (allocated cluster information) input from the feedback information demodulating unit 110. That is, mapping section 106 maps a plurality of clusters generated by dividing the frequency punctured symbols to the allocation positions indicated in the allocation band information. Mapping section 106 outputs the modulation symbol mapped to the frequency resource to IDFT section 107.
  • the IDFT unit 107 performs IDFT processing (transmission IDFT) on the modulation symbol (frequency domain) input from the mapping unit 106, and converts the frequency domain signal into a time domain signal. At this time, the IDFT unit 107 performs IDFT by inserting zeros (zero padding) into frequency punctured frequency resources (subcarriers). IDFT section 107 outputs a signal (time domain) after IDFT to CP (Cyclic Prefix) adding section 108.
  • IDFT processing transmission IDFT
  • a CP signal (reference signal; not shown) and a modulation symbol (that is, a data signal) from the IDFT unit 107 are input to the CP adding unit 108.
  • CP adding section 108 adds the same signal as the tail part of the multiplexed signal of the pilot signal and modulation symbol as a CP to the head of the signal to generate an SC-FDMA signal.
  • the generated SC-FDMA signal is transmitted via the antenna 109.
  • the feedback information demodulator 110 receives feedback information transmitted from the receiving apparatus 200 (FIG. 7) described later via the antenna 109, and demodulates the received feedback information.
  • the feedback information includes information indicating the presence / absence of retransmission, an MCS index, the number of allocated RBs N PRB , allocated band information indicating an allocation position of transmission data, an FP index that is information related to a frequency puncturing rate, and the like.
  • This FP index is feedback information generated based on a delay spread in a propagation channel between the transmission device 100 and the reception device 200.
  • the feedback information demodulation unit 110 outputs a modulation level (modulation scheme) specified from the MCS index to the modulation unit 103 with reference to, for example, the table shown in FIG. Further, feedback information demodulating section 110 outputs allocated band information to mapping section 106. Further, feedback information demodulation section 110 outputs the MCS index, the number of assigned RBs N PRB , and the FP index to control section 111.
  • the control unit 111 adopts a configuration including a determination unit 151 and a setting unit 152.
  • Determination unit 151 using the information input from the feedback information demodulating section 110, in the total amount of puncturing N P, the ratio of the time the amount of puncturing N t and frequency puncturing amount N f, the puncturing decision rule Determine based on.
  • the determination unit 151 refers to the frequency puncturing determination rule using the MCS (coding rate and modulation scheme), the number of allocated RBs N PRB , and the FP index, and the frequency puncturing rate R f. To decide.
  • the frequency puncturing rate R f (the ratio between the time puncturing amount N t and the frequency puncturing amount N f ) is determined by the MCS (coding rate and modulation scheme) for the encoded data, It is specified from the number of resources allocated to the data (number of allocated RBs N PRB ) and the delay spread in the propagation channel between the receiving apparatus 200 and the transmitting apparatus 100.
  • the delay spread is calculated by the receiving apparatus 200 (for example, a base station), it is assumed that the delay spread is not fed back using, for example, a downlink control channel. Therefore, it is assumed that the transmission apparatus 100 (for example, a terminal) cannot grasp the delay spread itself.
  • the determination unit 151 feeds back the MCS index, the number of allocated RBs N PRB , and the FP index (between the receiving apparatus 200 and the transmitting apparatus 100), for example, using the downlink control channel from the receiving apparatus 200.
  • the frequency puncturing rate R f is determined using the information generated based on the delay spread) and the frequency puncturing determination rule held by the determination unit 151. Thereby, in the transmission apparatus 100, even when the delay spread itself is not fed back, the frequency puncturing rate R f based on the delay spread can be determined.
  • the determination unit 151 outputs the determined frequency puncturing rate R f (the ratio between N t and N f ) to the setting unit 152.
  • the setting unit 152 determines the frequency puncturing amount N f and the time puncturing amount N t based on the frequency puncturing rate R f determined by the determining unit 151. For example, setting section 152 according to equation (4), first calculates the frequency amount of puncturing N f and a total amount of puncturing N P and frequency puncturing rate R f. Then, setting section 152 according to equation (4), calculates the time the amount of puncturing N t from the total amount of puncturing N P and the frequency amount of puncturing N f. The setting unit 152 outputs the time puncturing amount N t to the time puncturing unit 102, and outputs the frequency puncturing amount N f to the frequency puncturing unit 105.
  • control unit 111 performs retransmission control of transmission data according to information indicating presence / absence of retransmission included in the feedback information.
  • FIG. 7 is a block diagram showing a configuration of the receiving apparatus according to the present embodiment.
  • CP removing section 202 receives an SC-FDMA signal (analog signal) transmitted from transmitting apparatus 100 (FIG. 6) via antenna 201, and from the received SC-FDMA signal. Remove CP.
  • the DFT unit 203 performs DFT processing (reception DFT) on the reception signal (time domain) input from the CP removal unit 202, and converts the time domain signal into a frequency domain signal. DFT section 203 then outputs the signal after DFT, that is, the frequency domain signal, to channel estimation section 204 and frequency equalization section 205.
  • DFT processing reception DFT
  • time domain time domain
  • DFT section 203 then outputs the signal after DFT, that is, the frequency domain signal, to channel estimation section 204 and frequency equalization section 205.
  • the channel estimation unit 204 performs channel estimation using a pilot signal included in the frequency domain signal input from the DFT unit 203.
  • pilot signals used for channel estimation in the channel estimation unit 204, for example, SRS (Sounding Reference Signal) and DMRS (DeModulation Reference Signal).
  • SRS Sounding Reference Signal
  • DMRS DeModulation Reference Signal
  • the SRS is mapped over the entire transmission band of the transmission device 100, and is used for resource allocation (cluster allocation) to each transmission device 100 in the reception device 200 (feedback information generation unit 210 described later), for example.
  • the DMRS is mapped in a resource (cluster) assigned to the transmission apparatus 100 and used for demodulation processing of transmission signals from each transmission apparatus 100.
  • channel estimation section 204 outputs the channel estimation value obtained using DMRS to frequency equalization section 205, and outputs the channel estimation value obtained using SRS to feedback information generation section 210. Further, channel estimation section 204 may estimate the average SINR of each RB in the entire transmission band using SRS and output the estimation result to feedback information generation section 210.
  • the frequency equalization unit 205 uses the channel estimation value input from the channel estimation unit 204 to perform frequency equalization on the data signal included in the frequency domain signal input from the DFT unit 203. For example, the frequency equalization unit 205 uses the channel estimation value to generate a frequency equalization weight used for frequency equalization processing, and multiplies the frequency equalization weight for each subcarrier in which the data signal (symbol) is arranged. Thus, the influence of interference (for example, multipath fading) is removed. The frequency equalization unit 205 outputs the data signal after frequency equalization to the demapping unit 206.
  • the demapping unit 206 uses the target device (transmitting device 100) from the data signal (frequency domain modulation symbol) input from the frequency equalization unit 205 based on the allocated band information input from the control unit (not shown). Demapping (extracting) the cluster assigned to the frequency resource being processed. The demapping unit 206 outputs the demapped signal to the IDFT unit 207.
  • the IDFT unit 207 performs IDFT processing (reception IDFT) on the data signal (frequency domain modulation symbol) input from the demapping unit 206, and converts the frequency domain signal into a time domain signal. IDFT section 207 then outputs the time domain signal to demodulation section 208.
  • Demodulation section 208 performs demodulation processing (for example, soft decision processing on the IQ plane) on the signal input from IDFT section 207 and outputs the demodulated signal (for example, soft decision bit) to decoding section 209. .
  • demodulation processing for example, soft decision processing on the IQ plane
  • demodulated signal for example, soft decision bit
  • the decoding unit 209 decodes the signal input from the demodulation unit 208 (for example, turbo decoding), and outputs the decoded signal as received data (information data). In addition, the decoding unit 209 outputs the decoding result (decoding success / failure) to the feedback information generation unit 210.
  • feedback information generation section 210 determines the MCS for the transmission data transmitted by transmission apparatus 100 and the allocation position of the transmission data. Further, feedback information generation section 210 calculates a delay spread in a propagation path (channel) between transmitting apparatus 100 and receiving apparatus 200 based on the channel estimation value. Then, feedback information generation section 210 generates an FP index that is information regarding the frequency puncturing rate based on the calculated delay spread.
  • the FP index includes, for example, the MCS and the number of assigned RBs N set in the transmission device 100. This information is determined in accordance with the size of the delay spread under the same PRB condition, and is information indicating any one of a plurality of candidates for the frequency puncturing rate Rf .
  • the feedback information generation unit 210 generates information indicating the presence / absence of retransmission (that is, ACK / NACK information) based on the decoding result input from the decoding unit 209. Then, feedback information generation section 210 generates feedback information including presence / absence of retransmission, MCS index indicating MCS, allocation band information indicating allocation position, and FP index, and transmits the feedback information via antenna 201 to transmitting apparatus 100. Send to.
  • FIG. 8 shows the relationship between the frequency puncturing rate Rf and the error rate.
  • ISI generation factors exist in addition to frequency puncturing.
  • ISI is mainly due to processing between the DFT (transmission DFT) of the transmission apparatus 100 (for example, a terminal) and the IDFT (reception IDFT) of the reception apparatus 200 (for example, a base station), and distortion of channel gain. Arise.
  • the number of propagation channel drops can be cited.
  • the number of propagation channel drops is represented by the number of subcarriers where the channel gain is less than a certain value (hereinafter referred to as the number of drop subcarriers (N d )).
  • the frequency selectivity is low (delay spread is small) fading channel
  • drop number of subcarriers N d is small. Therefore, as shown in FIG. 9A, in a fading channel with low frequency selectivity, the probability that the channel gain drops in each cluster (cluster A and cluster B) is low.
  • frequency puncturing is equivalent to dropping the channel gain to near zero.
  • transmitting apparatus 100 performs ISI according to the state of the propagation channel that is one of the causes of occurrence of ISI (for example, increase or decrease in the number of dropped subcarriers represented by the delay spread or the number of assigned RBs).
  • the frequency puncturing which is the other cause of the occurrence of the above, is controlled. That is, when the ISI due to the state of the propagation channel is large, the transmitting apparatus 100 may reduce the frequency puncturing rate in order to reduce the ISI due to frequency puncturing. In addition, when the ISI due to the state of the propagation channel is small, the transmitting apparatus 100 may increase the frequency puncturing rate in order to give priority to the increase in coding gain over the occurrence of ISI due to frequency puncturing. .
  • the transmission apparatus 100 when the coding rate is low, the transmission apparatus 100 preferably prioritizes application of temporal puncturing over frequency puncturing. On the other hand, as illustrated in FIG. 11, when the coding rate is high (when the coding gain by the coding process is small), it is preferable that the transmission apparatus 100 preferentially apply frequency puncturing.
  • transmitting apparatus 100 may control frequency puncturing according to the coding rate. That is, when the coding rate is low, the transmitting apparatus 100 may reduce the frequency puncturing rate in order to preferentially suppress the occurrence of ISI over the increase in coding gain due to frequency puncturing. In addition, when the coding rate is high, the transmission apparatus 100 may increase the frequency puncturing rate in order to give priority to an increase in coding gain due to frequency puncturing.
  • the MCS index (0 to 26), the number of assigned RBs N PRB (1 to 110), the FP index (0, 1), and the frequency puncturing rate R f are associated with each other. ing. That is, in the frequency puncturing determination table shown in FIG. 12, the frequency puncturing rate R f is the MCS, the number of assigned RBs N PRB, and the delay spread (FP index) in the propagation channel between the receiving apparatus 200 and the transmitting apparatus 100. ). More specifically, in the frequency puncturing determination table shown in FIG. 12, any one of a plurality of candidates for the frequency puncturing rate R f is determined from the MCS, the number of assigned RBs N PRB, and the delay spread (FP index). Or one is specified.
  • the modulation scheme corresponding to MCS indexes 0 to 10 is QPSK
  • the modulation scheme corresponding to MCS indexes 11 to 19 is 16QAM
  • the modulation scheme corresponding to MCS indexes 20 to 26 is 64QAM.
  • the coding rate is higher as the MCS index is larger.
  • the coding rate corresponding to the MCS index 10 is the highest, and the coding rate corresponding to the MCS index 0 is the lowest.
  • the transmission device 100 and the reception device 200 share the frequency puncturing determination table shown in FIG.
  • the candidate of the frequency puncturing rate R f (frequency puncturing rate combination C FP ) is (0.6, 0.8).
  • the reception device 200 feeds back the generated FP index (x fp ) to the transmission device 100.
  • receiving apparatus 200 also feeds back MCS index and the number of assigned RBs N PRB to transmitting apparatus 100. That is, by sharing the frequency puncturing determination table shown in FIG. 12 between the transmitting apparatus 100 and the receiving apparatus 200, for example, in LTE-Advanced, the receiving apparatus 200 has an FP index indicating a candidate for the frequency puncturing rate Rf. Need only be newly added to the feedback information.
  • frequency puncturing amount and time puncturing amount setting processing in the transmission apparatus 100 will be described.
  • Feedback information demodulating section 110 of transmitting apparatus 100 receives feedback information (including MCS index, number of assigned RBs N PRB and FP index (x fp )) fed back from receiving apparatus 200.
  • the determination unit 151 based on the frequency puncturing determination table illustrated in FIG. 12 and the MCS index, the number of allocated RBs N PRB and the FP index (x fp ) fed back from the reception device 200, A frequency puncturing rate Rf is determined.
  • the determination unit 151 identifies the TBS index with reference to the table of FIG. 2A based on the MCS index fed back from the receiving apparatus 200. Further, the determination unit 151 specifies the TBS with reference to the table of FIG. 2B based on the specified TBS index and the number of assigned RBs N PRB fed back from the receiving apparatus 200. Thus, determination unit 151, for example, according to equation (1), calculates the total amount of puncturing (here represented as N P).
  • the setting unit 152 of the control unit 111 sets the frequency puncturing amount N f according to the equation (4) based on the total puncturing amount N P determined by the determining unit 151 and the frequency puncturing rate R f. Set.
  • the time puncturing unit 102 encodes bits (10 bits in FIG. 13) according to the time puncturing amount N t (corresponding to 2 bits in FIG. 13) set by the setting unit 152. Perform time puncturing on.
  • the time puncturing unit 102 extracts 8 bits of encoded data by thinning out 2 bits from 10 bits of encoded bits.
  • frequency puncturing section 105 converts modulation symbols (eight symbols in FIG. 14) according to the frequency puncturing amount N f (corresponding to two symbols in FIG. 14) set by setting section 152. Frequency puncturing is performed on the image. In FIG. 14, frequency puncturing section 105 thins out 2 symbols from 8 symbols to obtain 6 symbols.
  • frequency puncturing determination table frequency puncturing determination rule
  • the frequency puncturing rate corresponding to FP index 0 (when the delay spread is large) under the condition that the MCS index and the number of assigned RBs N PRB are the same.
  • the transmission device 100 reduces the frequency puncturing rate Rf , thereby reducing the occurrence of ISI due to frequency puncturing. That is, when the delay spread is large (when there is much occurrence of ISI due to a drop in channel gain), transmitting apparatus 100 suppresses the occurrence of ISI due to frequency puncturing among the causes of ISI shown in FIG. 10C. Therefore, the deterioration of the error rate characteristic is suppressed.
  • transmitting apparatus 100 increases frequency puncturing rate Rf . That is, when the delay spread is small, the transmission apparatus 100 generates less ISI due to a drop in channel gain. Therefore, the transmission apparatus 100 encodes due to frequency puncturing rather than suppressing the occurrence of ISI due to frequency puncturing.
  • the error rate characteristic is improved by giving priority to gain.
  • the frequency puncturing rate R f becomes smaller as the number of assigned RBs N PRB increases.
  • transmitting apparatus 100 reduces the occurrence of ISI due to frequency puncturing by decreasing frequency puncturing rate Rf when the number of assigned RBs N PRB is large. That is, when the number of assigned RBs N PRB is large, transmitting apparatus 100 suppresses the deterioration of error rate characteristics by suppressing the occurrence of ISI due to frequency puncturing among the causes of occurrence of ISI shown in FIG. 10C.
  • transmitting apparatus 100 increases frequency puncturing rate Rf . That is, when the number of allocated RBs N PRB is small, the transmitting apparatus 100 generates less ISI due to a drop in channel gain within the allocated band (within the cluster), and thus generates ISI due to frequency puncturing.
  • the error rate characteristic is improved by giving priority to obtaining a coding gain due to frequency puncturing rather than suppressing the puncturing.
  • ⁇ Coding rate> In the frequency puncturing determination table shown in FIG. 12, under the condition that the modulation level, the number of assigned RBs N PRB (number of resources), and the FP index (delay spread) shown in the MCS are the same, the coding rate shown in the MCS is The lower the frequency puncturing rate Rf , the lower.
  • the frequency puncturing rate R f becomes smaller as the coding rate shown in the MCS is lower.
  • the transmission apparatus 100 reduces the frequency puncturing rate Rf so that ISI caused by frequency puncturing can be generated rather than by improving the coding gain due to frequency puncturing. Priority is given to suppression, and deterioration of an error rate characteristic is suppressed.
  • the transmission device 100 increases the frequency puncturing rate Rf . That is, since the transmission apparatus 100 cannot obtain a sufficient coding gain when the coding rate is high, it improves the error rate characteristics by obtaining the coding gain by frequency puncturing.
  • the coding rate R is the coded bit ((TBS / R 0 ) ⁇ N P : numerator after puncturing with respect to the coded bit (TBS / R 0 : denominator) before puncturing). ). That is, the lower the coding rate R, the larger the proportion of punctured bits in the coded bits. That is, the lower the coding rate R, the higher the possibility that the number of parity bits included in the coded bits will decrease, and the coding gain will become smaller.
  • the higher the coding rate R the higher the possibility that the number of parity bits included in the coded bits will increase, and the coding gain will increase. Therefore, when the coding rate R is low (when the number of parity bits included in the coded bits is small), the transmitting apparatus 100 preferably applies frequency puncturing. On the other hand, when the coding rate R is high (when there are many parity bits included in the coded bits), it is preferable that the transmission apparatus 100 apply only time puncturing without applying frequency puncturing.
  • the transmission apparatus 100 and the reception apparatus 200 have the same condition that the modulation level, the number of allocated RBs N PRB (number of resources), and the FP index (delay spread) are the same.
  • a frequency puncturing determination rule may be used in which the higher the coding rate R, the smaller the frequency puncturing rate Rf .
  • ⁇ Modulation level> In the frequency puncturing determination table shown in FIG. 12, under the condition that the coding rate, the number of assigned RBs N PRB (number of resources), and the FP index (delay spread) shown in the MCS are the same, the modulation level ( The higher the modulation method, the smaller the frequency puncturing rate Rf .
  • the transmission device 100 reduces the frequency puncturing rate Rf , thereby suppressing the occurrence of ISI due to the frequency puncturing. That is, when the modulation level is high, the transmission apparatus 100 suppresses the deterioration of the error rate characteristic by giving priority to suppressing the occurrence of ISI due to frequency puncturing rather than improving the coding gain due to frequency puncturing. .
  • the transmission device 100 increases the frequency puncturing rate Rf . That is, when the modulation level is low, transmitting apparatus 100 improves the error rate characteristic by obtaining a coding gain by frequency puncturing.
  • the transmission device 100 controls both puncturing (TP) and frequency puncturing (FP) (see FIG. 15).
  • the transmitting apparatus 100 uses a puncturing determination rule (here, a frequency puncturing determination table) as a ratio between a time puncturing amount and a frequency puncturing amount (here, a frequency puncturing rate) in the total puncturing amount. ).
  • a puncturing determination rule here, a frequency puncturing determination table
  • the ratio between the time puncturing amount and the frequency puncturing amount (frequency puncturing rate) is assigned to the encoded data and MCS (encoding rate and modulation level).
  • MCS encoding rate and modulation level
  • a frequency puncturing rate is set in consideration of the increase or decrease of ISI due to the drop in channel gain in the propagation channel, which is represented by delay spread. That is, in the present embodiment, when frequency puncturing is applied to clustered SC-FDMA, transmitting apparatus 100 causes an ISI occurrence factor in a multipath fading channel (here, a propagation channel that is below a certain channel gain threshold). ) Is taken into consideration to determine the frequency puncturing rate.
  • a multipath fading channel here, a propagation channel that is below a certain channel gain threshold.
  • the transmission apparatus 100 uses the frequency puncturing rate (that is, the ratio between the time puncturing amount and the frequency puncturing amount) appropriate for the propagation channel fluctuation state (delay spread size) to perform frequency puncturing. Charing can be performed. That is, when there is a large drop in channel gain in the propagation channel, transmitting apparatus 100 reduces the frequency puncturing rate and preferentially suppress the occurrence of ISI over the improvement of coding gain. On the other hand, when there is little drop in channel gain in the propagation channel, transmitting apparatus 100 increases the frequency puncturing rate and improves the coding gain preferentially over the reduction in ISI generation.
  • the frequency puncturing rate that is, the ratio between the time puncturing amount and the frequency puncturing amount
  • the propagation channel fluctuation state delay spread size
  • an FP index is used as feedback information from receiving apparatus 200 for determining frequency puncturing. That is, in LTE-Advanced, when the frequency puncturing determination table shown in FIG. 12 is used, receiving apparatus 200 notifies transmitting apparatus 100 of only 1-bit (0 or 1) FP index as new feedback information. That's fine. Therefore, according to the present embodiment, it is possible to obtain good error rate characteristics while minimizing the amount of signaling added to determine the frequency puncturing rate as compared with LTE-Advanced.
  • the receiving apparatus 200 performs a demodulation process on the clusters transmitted from the transmitting apparatus 100 (FIG. 6) based on, for example, a channel estimation value using DMRS.
  • This DMRS is mapped to a frequency band to which a cluster is assigned.
  • the receiving apparatus 200 uses, for example, a subcarrier that is an estimation target and three subcarriers that are adjacent to both sides of the subcarrier that is the estimation target, and uses channel estimation values (subcarriers) for each frequency band (subcarrier). For example, SINR) is estimated. For this reason, when the subcarrier at the end of the cluster is an estimation target, receiving apparatus 200 cannot use one subcarrier (subcarrier to which DMRS is not mapped) adjacent to the estimation target subcarrier.
  • the channel estimation accuracy is good at frequencies near the center of each cluster, whereas the channel estimation accuracy is poor at frequencies near both ends of each cluster.
  • the number of subcarriers corresponding to both ends of the cluster is larger when the number of clusters is larger (FIG. 16B) than when the number of assigned clusters is small (FIG. 16A). Therefore, there are more subcarriers with poor channel estimation accuracy. That is, the ISI increases as the number of assigned clusters increases.
  • the frequency puncturing rate (that is, the ratio between the time puncturing amount and the frequency puncturing amount) is made different according to the number N C of assigned clusters of transmitting apparatus 100.
  • the transmission apparatus 100 and the reception apparatus 200 have a small frequency puncturing decision rule used when the number of allocation clusters N C of the transmission apparatus 100 is large, and the number of allocation clusters N C allocated to the transmission apparatus 100 is small. Two rules of the frequency puncturing decision rule used in the case are shared.
  • determination unit 151 (FIG. 6) of control unit 111 performs frequency puncturing determination rules used when the number of assigned clusters N C is large, and punctures used when the number of allocated clusters N C is small.
  • the frequency puncturing rate R f is determined based on the charing determination rule.
  • FIG. 17 shows a frequency puncturing decision table representing a frequency puncturing decision rule used when the number of assigned clusters N C is small, and represents a frequency puncturing decision rule used when the number of assigned clusters N C is large.
  • a frequency puncturing determination table is shown in FIG.
  • the frequency puncturing rate R f is the MCS, the number of assigned RBs N PRB , the receiving device 200 and the transmitting device 100 as in the first embodiment. And the delay spread in the propagation channel between.
  • FIG. 17 is compared with FIG. 12, under the condition that the MCS, the number of allocated RBs N PRB (the number of resources), and the FP index (delay spread) are the same, the frequency used when the number of allocated clusters N C is large. towards the puncturing determination table (FIG. 12), than the frequency puncturing determination table used when the number of allocated clusters N C is small (FIG. 17), the frequency puncturing rate R f is smaller.
  • the frequency puncturing rate R f is 0.7.
  • the frequency puncturing rate R f is 0.6.
  • the frequency puncturing rate R f becomes smaller as the number of assigned clusters N C increases. 12 and 17, the same applies to combinations of other MCS indexes, the number of assigned RBs N PRB, and FP indexes.
  • the transmission device 100 may be switched to frequency puncturing determination table (FIG. 12 and FIG. 17). For example, the transmission device 100 compares the preset threshold number assigned clusters N C. Then, the transmission apparatus 100 uses the frequency puncturing determination table shown in FIG. 12 when the allocated cluster number N C is equal to or larger than the threshold, and when the allocated cluster number N C is less than the threshold, the frequency puncturing determination shown in FIG. Use a table.
  • the transmission device 100 may determine the appropriate frequency puncturing rate R f in response to the occurrence degree of ISI by assigned cluster number N C (see FIGS. 16A and 16B).
  • transmitting apparatus 100 suppresses the occurrence of ISI due to frequency puncturing and suppresses the deterioration of error rate characteristics.
  • the transmitting apparatus 100 improves the error rate characteristics by obtaining a coding gain due to frequency puncturing.
  • transmission apparatus 100 has an appropriate frequency puncturing rate (in accordance with the number of allocated clusters of transmission apparatus 100 in addition to the propagation channel fluctuation status (the size of the delay spread)) ( That is, frequency puncturing can be performed using the ratio of the time puncturing amount and the frequency puncturing amount). Therefore, according to the present embodiment, good error rate characteristics can be obtained for any propagation channel and number of assigned clusters.
  • FIG. 18A shows the channel gain when receiving apparatus 200 (FIG. 7) receives a signal from transmitting apparatus 100 (FIG. 6) using one receiving antenna (that is, single antenna reception).
  • FIG. 18B shows antenna combining when the receiving apparatus 200 receives a signal from the transmitting apparatus 100 using a plurality of receiving antennas (the number of receiving antennas ⁇ 2) (that is, multi-antenna reception or antenna diversity reception). The latter channel gain is shown.
  • the channel gain after antenna combining obtained by multi-antenna reception is a cause of occurrence of ISI more than the channel gain obtained by single antenna reception shown in FIG. 18A.
  • the number of depressed subcarriers is small. That is, multi-antenna reception can reduce ISI more than single-antenna reception.
  • the frequency puncturing rate (that is, the ratio between the time puncturing amount and the frequency puncturing amount) is varied according to the number of receiving antennas used by the receiving apparatus 200.
  • the transmission device 100 and the reception device 200 use the frequency puncturing decision rule used when the number of reception antennas used by the reception device 200 is large (for example, two or more) and the number of reception antennas used by the reception device 200. Two rules of the frequency puncturing decision rule used when there are few (for example, one) are shared.
  • the determination unit 151 (FIG. 6) of the control unit 111 determines the frequency puncturing determination rule used when the number of reception antennas used by the reception device 200 is large and the number of reception antennas used by the reception device 200.
  • the frequency puncturing rate R f is determined based on the puncturing determination rule used when the number is small.
  • FIG. 17 shows a frequency puncturing decision table representing frequency puncturing decision rules used when the number of receiving antennas used by the receiving apparatus 200 is large, and the frequencies used when the number of receiving antennas used by the receiving apparatus 200 is small.
  • FIG. 12 shows a frequency puncturing determination table representing puncturing determination rules.
  • the frequency puncturing rate R f is the MCS, the number of assigned RBs N PRB , the receiving device 200 and the transmitting device 100 as in the first embodiment. And the delay spread in the propagation channel between.
  • the reception apparatus 200 uses the MCS, the number of assigned RBs N PRB (the number of resources), and the FP index (delay spread).
  • the frequency puncturing determination table (FIG. 12) used when the number of reception antennas is small is higher than the frequency puncturing determination table (FIG. 17) used when the number of reception antennas used by the receiving apparatus 200 is large.
  • the charing rate Rf becomes smaller.
  • the transmission device 100 may switch the frequency puncturing determination table (FIGS. 12 and 17) according to the number of reception antennas used by the reception device 200, for example.
  • the transmission apparatus 100 uses the frequency puncturing determination table illustrated in FIG. 12 when the number of reception antennas used by the reception apparatus 200 is small, and the frequency puncture illustrated in FIG. 17 when the number of reception antennas used by the reception apparatus 200 is large. Use the charing decision table.
  • the transmission apparatus 100 can determine an appropriate frequency puncturing rate R f according to the degree of occurrence of ISI (see FIGS. 18A and 18B) depending on the number of reception antennas of the reception apparatus 200.
  • the transmission device 100 when the number of reception antennas used by the reception device 200 is small (FIG. 18A), the transmission device 100 suppresses the occurrence of ISI due to frequency puncturing and suppresses the degradation of error rate characteristics. On the other hand, when the number of reception antennas used by the reception apparatus 200 is large (FIG. 18B), the transmission apparatus 100 improves the error rate characteristics by obtaining a coding gain due to frequency puncturing.
  • transmitting apparatus 100 has an appropriate frequency puncturing rate (in accordance with the number of reception antennas of receiving apparatus 200 in addition to the propagation channel fluctuation status (delay size)). That is, frequency puncturing can be performed using the ratio of the time puncturing amount and the frequency puncturing amount). Therefore, according to the present embodiment, good error rate characteristics can be obtained for any propagation channel and number of receiving antennas.
  • the number of receiving antennas of receiving apparatus 200 may be fixed and set, or the number of receiving antennas of receiving apparatus 200 may be dynamically switched according to the situation.
  • the reception device 200 When the number of reception antennas of the reception device 200 is fixed and set, the reception device 200 only needs to hold a frequency puncturing determination table corresponding to the number of reception antennas.
  • the reception device 200 when the number of reception antennas of the reception device 200 is dynamically switched, the reception device 200 holds a plurality of frequency puncturing determination tables according to the number of reception antennas, and the frequency according to the number of reception antennas actually used.
  • the puncturing determination table may be switched.
  • the determination method of the frequency puncturing rate according to the number of receiving antennas of the receiving apparatus 200 was demonstrated. That is, reception antenna diversity has been described as diversity. However, this embodiment may be applied to the number of transmission antennas (transmission antenna diversity) of transmission apparatus 100. In this case, in particular, in the eigenmode transmission scheme, the channel variation differs for each layer, and therefore the transmission apparatus 100 sets a different frequency puncturing rate for each layer.
  • the number of subcarriers having a channel gain within a certain threshold within a cluster allocated band may be used. Good.
  • the number of subcarriers in which the channel gain is equal to or less than a certain threshold within the entire band may be used.
  • the ratio of frequency puncturing to the total puncturing amount (frequency puncturing rate) is set in the frequency puncturing determination table shown in FIG. 12 or FIG.
  • the frequency puncturing rate instead of the frequency puncturing rate, for example, the number of symbols (or electric energy) to be thinned out by frequency puncturing may be set.
  • two frequency puncturing rate candidates are set, and two types (0, 1) (1 bit) are used as FP indexes.
  • two frequency puncturing rate candidates may be set, and four types (2 to 3) of (0 to 3) may be used as the FP index.
  • the number of subcarriers to be dropped, the delay spread, the number of assigned clusters, and the number of receiving antennas are used as indices representing factors that distort a signal (transmission signal or reception signal) between the transmission DFT and the reception IDFT.
  • indices representing factors that distort a signal transmission signal or reception signal
  • all of the parameters representing factors that distort the signal between the transmission DFT and the reception IDFT are subject to the index.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention is useful for mobile communication systems and the like.
  • DESCRIPTION OF SYMBOLS 100 Transmission apparatus 101 Encoding part 102 Time puncturing part 103 Modulation part 104,203 DFT part 105 Frequency puncturing part 106 Mapping part 107,207 IDFT part 108 CP addition part 109,201 Antenna 110 Feedback information demodulation part 111 Control part 151 Determination unit 152 Setting unit 200 Receiver 202 CP removing unit 204 Channel estimating unit 205 Frequency equalizing unit 206 Demapping unit 208 Demodulating unit 209 Decoding unit 210 Feedback information generating unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 いかなる伝搬チャネルにおいても、良好な誤り率特性を得ることができるSC-FDMA送信装置。この装置において、決定部(151)は、総パンクチャリング量における、時間パンクチャリング量と周波数パンクチャリング量との割合をパンクチャリング決定ルールに基づいて決定し、設定部(152)は、上記割合に基づいて、時間パンクチャリング量及び周波数パンクチャリング量を設定する。ここで、上記パンクチャリング決定ルールでは、上記割合は、符号化データに対するMCSと、符号化データに対して割り当てられたリソース数と、受信装置と送信装置(100)との間の伝搬チャネルにおける遅延スプレッドとから特定される。

Description

SC-FDMA送信装置及び送信方法
 本発明は、送信装置及び送信方法に関する。
 3GPP LTE(3rd Generation Partnership Project Long Term Evolution)では、上りリンクのアクセス方式としてSC-FDMA(Single Carrier-Frequency Division Multiple Access)が採用されている。SC-FDMAの特徴は、シングルキャリア化による低いPAPR(Peak to Average Power Ratio)の実現、サブキャリア周波数への柔軟なデータ割当、受信側での周波数領域の信号処理におけるマルチパスに対する強い耐性等が挙げられる。
 SC-FDMAにおいて、例えば、送信側では、時間領域のシンボルがDFT(Discrete Fourier Transform)により周波数成分に変換され、各周波数成分がそれぞれ異なるサブキャリアにマッピングされ、更に、マッピングされた周波数成分がIDFT(Inverse Discrete Fourier Transform)により時間領域の波形に戻され、時間領域の信号にCP(Cyclic Prefix)が付加されることで、SC-FDMA信号が形成される。一方、受信側では、送信側からの時間領域の信号がDFTにより周波数成分に変換され、周波数成分に対して周波数等化処理が施され、周波数等化処理後の信号がIDFTにより時間領域の信号に戻される。このように、SC-FDMAでは、送信側のDFT(以下、送信DFTと呼ぶ)と受信側のIDFT(以下、受信IDFTと呼ぶ)とが対応し、送信側のIDFT(以下、送信IDFTと呼ぶ)と受信側のDFT(以下、受信DFTと呼ぶ)とが対応する。
 また、ターボ符号化の新しい符号化率制御方法として、周波数領域でのパンクチャリング(周波数パンクチャリング。freqency puncturing。以下、FPと呼ぶこともある)が注目されている(例えば、非特許文献1及び2参照)。周波数パンクチャリングは、基本的にSC-FDMAシステムにおいて適用されるパンクチャリング方法であり、送信DFT後の周波数領域の信号に対してパンクチャリングを実施する。
 ここで、周波数パンクチャリング、及び、ターボ符号化の従来の符号化率制御方法である時間領域でのパンクチャリング(時間パンクチャリング。time puncturing。以下、TPと呼ぶこともある)の動作について説明する(図1参照)。
 時間パンクチャリングは、ターボ符号化直後(つまり、送信DFTよりも前)の時間領域の符号化ビットに対して、ビット単位でパンクチャリングを実施する。例えば、図1では、10ビットの符号化ビットのうち、最後尾の2ビットがパンクチャされる(間引かれる)。一方、周波数パンクチャリングは、周波数領域の複数のシンボルに各符号化ビットが重畳されたパンクチャリング対象データをシンボル単位でパンクチャリングする。例えば、図1では、8つのサブキャリアにマッピングされた8シンボルのうち、高周波数側の2シンボルがパンクチャされる(間引かれる)。つまり、時間パンクチャリングでは、時間領域での一部の符号化ビット(又はシンボル)そのものが完全にパンクチャされる。これに対して、周波数パンクチャリングでは、各符号化ビットの一部の成分がそれぞれ同程度パンクチャされる。つまり、周波数パンクチャリングでは、時間パンクチャリングのように一部の符号化ビットそのものが完全にパンクチャされるわけではない。
 よって、送信電力を同一とする条件(つまり、パンクチャされる成分に対応する電力を同一とする条件)の下では、周波数パンクチャリングは、時間パンクチャリングと比較して1回の送信あたりのパリティビット数を増やすことができる。このように、周波数パンクチャリングでは、時間パンクチャリングと比較して、送信されるパリティビットの増加により、誤り訂正符号化利得を改善させることができる。ただし、送信電力を同一とする条件の下では、時間パンクチャリングと周波数パンクチャリングとでパンクチャリングされる総送信電力は同一であるので、周波数パンクチャリング後の信号では、時間パンクチャリング後の信号と比較して、ビット当たりの送信電力は減少する。
 一方で、周波数パンクチャリングは、送信DFTと受信IDFTとの間(つまり、送信DFT後、かつ、受信IDFT前)で各符号化ビットの周波数成分の一部をパンクチャする。このため、送信DFTで用いるDFT行列と、受信IDFTで用いるIDFT行列との間のユニタリ性(直交性)が崩れてしまい、符号間干渉が発生してしまう。これに対して、時間パンクチャリングは、送信DFTの前に符号化ビットの一部をパンクチャする。このため、送信DFTで用いるDFT行列と受信IDFTで用いるIDFT行列との間のユニタリ性を維持することができる。
 このように、周波数パンクチャリング及び時間パンクチャリングにおいて、「パリティビットの増加による誤り訂正符号化利得の改善」と「送信側のDFT行列と受信側のIDFT行列との間のユニタリ性の担保」との間にはトレードオフの関係が存在する。
 例えば、LTEでは、時間パンクチャリングにおいてパンクチャリングされるビット数(パンクチャリング数)Nは、次式(1)に従って算出される。
Figure JPOXMLDOC01-appb-M000001
 ここで、TBSはトランスポートブロックサイズ(Transport Block Size)を示し、ターボ符号化器への入力ビット数を表す。また、符号化率(オリジナル符号化率)Roはパンクチャリング前の符号化率を示す。例えば、LTEよりも更なる通信の高速化を実現する3GPP LTE-Advanced(以下、LTE-Advancedという)では、Ro=1/3となる。割当RB数NPRBは、送信データが割り当てられるRB数を示す。
 例えば、LTE-Advancedでは、式(1)に示す符号化率Ro、サブフレーム内のSC-FDMAシンボル数、及び、割当RB当りのサブキャリア数は、システムによって予め決定されている。一方、式(1)に示す、TBS、変調レベル、及び、割当RB数NPRBは、基地局でサブフレーム毎に決定され、下り制御チャネルを介して端末へ通知される。
 また、LTE-Advancedでは、図2A及び図2Bに示す2つのテーブルを用いて、TBSが決定される。図2Aは、MCS(Modulation and Coding Scheme)インデックスとTBSインデックスとの対応付けを示すテーブルであり、図2Bは、TBSインデックス及び割当RB数NPRBと、TBSとの対応付けを示すテーブルである。例えば、基地局と端末との間で、図2A及び図2Bのテーブルが共有される。
 基地局は、まず、データ送信を要求する端末の受信SINR又はデータ量等に応じて、MCSインデックス及び割当RB数NPRBを決定する。基地局は、決定したMCSインデックス及び割当RB数NPRBを端末へ通知する。次いで、基地局及び端末は、図2Aに示すテーブルを参照して、MCSインデックスから変調方式及びTBSインデックスを決定する。次いで、基地局及び端末は、図2Bに示すテーブルを参照して、TBSインデックス及び割当RB数NPRBから、TBSを決定する。
 例えば、MCSインデックスが11であり、割当RB数NPRBが50の場合について説明する。まず、図2Aを参照して、MCSインデックス=11に対応する、変調方式:16QAM及びTBSインデックス=10が決定される。次いで、図2Bを参照して、TBSインデックス=10及び割当RB数NPRB=50に対応するTBS=8760が決定される。
 このように、基地局及び端末において、図2A及び図2Bに示すテーブルを共有することで、基地局から端末へMCSインデックス及び割当RB数NPRBをフィードバックしさえすれば、端末は自機向けのTBSを特定することができる。以上により、端末は、式(1)においてパンクチャリング数Nを算出するために使用される全てのパラメータを特定することが可能となる。
 また、特許文献2には、スタティック(Additive White Gaussian Noise:AWGN)チャネルにおいて、時間パンクチャリング及び周波数パンクチャリングを組み合わせることで、時間パンクチャリングのみを用いる場合よりも誤り率特性が優れていることが示されている。一方、特許文献2には、マルチパスフェージングチャネルにおいて、時間パンクチャリング及び周波数パンクチャリングを組み合わせると、時間パンクチャリングのみを用いる場合よりも誤り率特性が劣化することも示されている。
 また、周波数リソース利用効率を向上させるための従来技術として、SC-FDMAシンボルを複数のクラスタ(cluster)に分割し、複数のクラスタを周波数リソースにマッピングするクラスタードSC-FDMA(clustered SC-FDMA)が提案されている。各クラスタは、複数のリソースブロック(Resource Block:RB)から構成される。クラスタードSC-FDMAでは、基地局は、端末が送信に使用するクラスタサイズ(クラスタを構成するシンボル数)及びクラスタの割当位置を決定し、決定した情報を下り制御チャネルで端末に通知する。例えば、基地局は、周波数領域において、平均受信SINR(Signal to Interference and Noise Ratio)の良いリソースをクラスタの割当位置に設定する。一方、端末は、下り制御チャネルを用いて通知されたクラスタサイズに相当するシンボル数を、DFT(送信DFT)への入力シンボル数に決定する。そして、端末は、DFT後のシンボルで構成される各クラスタを、下り制御チャネルを用いて通知された割当位置にマッピングする。マッピングされた各クラスタはIDFT後に送信される。
田原興一、樋口健一著、「周波数領域パンクチャリングを行うターボ符号の検討」、信学技報、RCS2010-33、2010年6月、pp.91-96(K.Tahara, K.Higuchi, "Frequency-Domain Punctured Turbo Codes," IEICE Technical Report, RCS2010-33, 2010-6, pp.91-96) 田原興一、樋口健一著、「周波数領域パンクチャリングを行うターボ符号におけるシステマチックビットとパリティビットを区別したパンクチャリングの検討」、信学技報、RCS2010-229、2011年1月、pp.179-184(K.Tahara, K.Higuchi, "Systematic-Parity Bits Separated Puncturing Method for Frequency-Domain Punctured Turbo Codes," IEICE Technical Report, RCS2010-229, 2011-1, pp.179-184)
 上述したクラスタードSC-FDMAに対して周波数パンクチャリングを適用して、チャネル利得が良好な周波数リソースにクラスタを割り当てることが考えられる。
 具体的には、クラスタードSC-FDMAに周波数パンクチャリングを適用した方式における端末の構成例を図3に示す。図3に示すように、周波数パンクチャリング(FP)は、送信するシンボル(又は間引くシンボル)を決定(選択)する機能と、シンボルを送信に使用される帯域(割当帯域)にマッピングする機能とを有する。この際、図3において、端末は、DFT(送信DFT)から出力されるシンボルから、式(1)で特定されるパンクチャリング数Nに相当するシンボル(図3では4シンボル)を間引く。また、端末は、基地局から通知された割当帯域(割当位置)に、パンクチャリング後のシンボルをマッピングする。
 このように、クラスタードSC-FDMAに対して周波数パンクチャリングを適用することで、チャネル品質(例えばSINR)が良好な帯域にクラスタがマッピングされる。このため、上述した、マルチパスフェージングチャネルで周波数パンクチャリングを適用することによる誤り率特性劣化の影響の緩和が期待できる。
 しかしながら、クラスタサイズは、各クラスタがマッピングされる各RBのSINRのみでなく、データ全体のサイズも考慮して決定される。このため、必ずしも良好なSINRのクラスタに送信シンボルがマッピングされるとは限らない。よって、各クラスタ内でもSINR特性が劣悪な状況、すなわち、チャネル利得の落ち込みが発生する状況が生じてしまう。特にマルチパスフェージングチャネルにおいては、このような状況が発生しやくすく、クラスタードSC-FDMAに周波数パンクチャリングを適用すると各クラスタ内の誤り率特性が劣化してしまう。
 本発明の目的は、いかなる伝搬チャネルにおいても、良好な誤り率特性を得ることができるSC-FDMA送信装置及び送信方法を提供することである。
 本発明のSC-FDMA送信装置は、符号化データの各ビットを時間領域のビット単位でパンクチャリングする時間パンクチャリング、及び、周波数領域の複数のシンボルに各ビットが重畳された前記符号化データをシンボル単位でパンクチャリングする周波数パンクチャリングを行う送信装置であって、時間パンクチャリング及び周波数パンクチャリングにおいて前記符号化データがパンクチャされる成分に相当する総電力量における、時間パンクチャリングでパンクチャされるビットに相当する第1の電力量と周波数パンクチャリングでパンクチャされるシンボルに相当する第2の電力量との割合を、パンクチャリング決定ルールに基づいて決定する、決定手段と、前記割合に基づいて、前記第1の電力量及び前記第2の電力量を設定する設定手段と、前記第1の電力量に従って、前記符号化データに対して時間パンクチャリングを行う第1のパンクチャリング手段と、前記第2の電力量に従って、時間パンクチャリング後の前記符号化データに対して周波数パンクチャリングを行う第2のパンクチャリング手段と、を具備し、前記パンクチャリング決定ルールでは、前記割合は、前記符号化データに対するMCSと、前記符号化データに対して割り当てられたリソース数と、受信装置と前記送信装置との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 本発明の送信方法は、符号化データの各ビットを時間領域のビット単位でパンクチャリングする時間パンクチャリング、及び、周波数領域の複数のシンボルに各ビットが重畳された前記符号化データをシンボル単位でパンクチャリングする周波数パンクチャリングを行う送信方法であって、時間パンクチャリング及び周波数パンクチャリングにおいて前記符号化データがパンクチャされる成分に相当する総電力量における、時間パンクチャリングでパンクチャされるビットに相当する第1の電力量と周波数パンクチャリングでパンクチャされるシンボルに相当する第2の電力量との割合を、パンクチャリング決定ルールに基づいて決定し、前記割合に基づいて、前記第1の電力量及び前記第2の電力量を設定し、前記第1の電力量に従って、前記符号化データに対して時間パンクチャリングを行い、前記第2の電力量に従って、時間パンクチャリング後の前記符号化データに対して周波数パンクチャリングを行い、前記パンクチャリング決定ルールでは、前記割合は、前記符号化データに対するMCSと、前記符号化データに対して割り当てられたリソース数と、受信装置と前記送信装置との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 本発明によれば、いかなる伝搬チャネルにおいても、良好な誤り率特性を得ることができる。
時間パンクチャリング及び周波数パンクチャリングを示す図 MCSとTBSと割当RB数との対応関係を示す図 周波数パンクチャリングが適用されたクラスタードSC-FDMAを示す図 本発明の各実施の形態に係る総パンクチャリング量、時間パンクチャリング量及び周波数パンクチャリング量の対応関係を示す図 本発明の実施の形態1に係る送信装置の主要構成を示すブロック図 本発明の実施の形態1に係る送信装置の構成を示すブロック図 本発明の実施の形態1に係る受信装置の構成を示すブロック図 本発明の実施の形態1に係る周波数パンクチャリング率と誤り率との関係を示す図 伝搬チャネルでのチャネル利得の落ち込みを示す図 ISIの発生要因の一例を示す図 本発明の実施の形態1に係る周波数パンクチャリングの適用可否を示す図 本発明の実施の形態1に係る周波数パンクチャリング率決定テーブルを示す図 本発明の実施の形態1に係る時間パンクチャリング処理の一例を示す図 本発明の実施の形態1に係る周波数パンクチャリング処理の一例を示す図 本発明の本実施の形態1に係る周波数パンクチャリングが適用されたクラスタードSC-FDMAを示す図 本発明の実施の形態2に係る割当クラスタ数に応じたチャネル推定精度を示す図 本発明の実施の形態2に係る周波数パンクチャリング率決定テーブルを示す図 本発明の実施の形態3に係る受信装置の受信アンテナ数に応じたチャネル利得を示す図
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。なお、各実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 以下の説明において、各実施の形態に係る送信装置(SC-FDMA装置)は例えば端末であり、各実施の形態に係る受信装置は例えば基地局である。
 なお、以下の説明では、各実施の形態に係る送信装置は、符号化データの各ビットを時間領域のビット単位でパンクチャリングする時間パンクチャリング(TP)、及び、周波数領域の複数のシンボルに各ビットが重畳されたパンクチャリング対象データをシンボル単位でパンクチャリングする周波数パンクチャリング(FP)を行う。
 また、以下の説明では、図4に示すように、時間パンクチャリングでパンクチャされるビットに相当する電力量を時間パンクチャリング量Nとし、周波数パンクチャリングでパンクチャされるシンボルに相当する電力量を周波数パンクチャリング量Nとする。また、式(2)に示すように、時間パンクチャリング量N及び周波数パンクチャリング量Nの合計(総電力量)を総パンクチャリング量Nとする。また、式(3)に示すように、総パンクチャリング量Nに占める、周波数パンクチャリング量Nの比率を、周波数パンクチャリング率Rとする。すなわち、以下では、総パンクチャリング量Nにおける、時間パンクチャリング量Nと周波数パンクチャリング量Nとの割合を、周波数パンクチャリング率Rとして表す場合について説明する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 (実施の形態1)
 図5は、本実施の形態に係る送信装置100の主要構成部を示す。図5に示す送信装置100は、時間パンクチャリング及び周波数パンクチャリングを行い、決定部151は、時間パンクチャリング及び周波数パンクチャリングにおいて符号化データがパンクチャされる成分に相当する総パンクチャリング量における、時間パンクチャリング量と周波数パンクチャリング量との割合をパンクチャリング決定ルールに基づいて決定し、設定部152は、上記割合に基づいて、時間パンクチャリング量及び周波数パンクチャリング量を設定し、時間パンクチャリング部102は、時間パンクチャリング量に従って符号化データに対して時間パンクチャリングを行い、周波数パンクチャリング部105は、周波数パンクチャリング量に従って時間パンクチャリング後の符号化データに対して周波数パンクチャリングを行う。ここで、上記パンクチャリング決定ルールでは、上記割合は、符号化データに対するMCSと、符号化データに対して割り当てられたリソース数と、受信装置と送信装置100との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 図6は、本実施の形態に係る送信装置の構成を示すブロック図である。
 符号化部101は、情報データに対して符号化(例えば、ターボ符号化)を施し、符号化ビットを生成する。符号化ビットはシステマチックビット(情報データそのもの)及びパリティビット(冗長データ)から構成される。符号化部101は、生成した符号化ビットを時間パンクチャリング部102に出力する。
 時間パンクチャリング部102は、CB(Circular Buffer)を備え、符号化部101から入力される符号化ビットを格納する。また、時間パンクチャリング部102には、後述する制御部111から時間パンクチャリング量Nが入力される。時間パンクチャリング部102は、時間パンクチャリング量Nに従って、符号化ビットに対して時間パンクチャリングを行う。換言すると、時間パンクチャリング部102は、CBに格納された符号化ビットから、時間パンクチャリング量Nに相当するビット数を間引く。このように、時間パンクチャリング部102は、CBに格納された符号化ビットから、送信単位のデータを抽出する。つまり、時間パンクチャリング(ビット単位のパンクチャリング)とは、ビット単位での抽出処理を行うことである。時間パンクチャリング部102は、抽出した符号化ビットを変調部103に出力する。
 変調部103は、フィードバック情報復調部110から入力される変調レベルに従って、時間パンクチャリング部102から入力される符号化ビットをディジタル変調して、変調シンボルを生成する。変調部103は、生成した変調シンボルをDFT部104に出力する。
 DFT部104は、変調部103から入力される変調シンボルに対してDFT処理(送信DFT)を施し、時間領域の信号を周波数領域の信号(シンボル)に変換する。DFT部104は、DFT後の変調シンボルを周波数パンクチャリング部105に出力する。
 周波数パンクチャリング部105には、制御部111から周波数パンクチャリング量Nが入力される。周波数パンクチャリング部105は、周波数パンクチャリング量Nに従って、DFT部104から入力される周波数領域の変調シンボルに対して周波数パンクチャリングを行う。そして、周波数パンクチャリング部105は、周波数パンクチャリング後の変調シンボルをマッピング部106に出力する。
 マッピング部106は、周波数パンクチャリング部105から入力される変調シンボルを、フィードバック情報復調部110から入力される割当帯域情報(割当クラスタ情報)に示される周波数リソースにマッピングする。すなわち、マッピング部106は、周波数パンクチャリング後のシンボルを分割して生成される複数のクラスタを、割当帯域情報に示される割当位置にそれぞれマッピングする。マッピング部106は、周波数リソースにマッピングされた変調シンボルをIDFT部107に出力する。
 IDFT部107は、マッピング部106から入力される変調シンボル(周波数領域)に対してIDFT処理(送信IDFT)を施し、周波数領域の信号を時間領域の信号に変換する。このとき、IDFT部107は、周波数パンクチャリングされた周波数リソース(サブキャリア)にはゼロを挿入(ゼロパディング)してIDFTを実施する。IDFT部107は、IDFT後の信号(時間領域)をCP(Cyclic Prefix)付加部108に出力する。
 CP付加部108には、パイロット信号(参照信号。図示せず)と、IDFT部107からの変調シンボル(つまり、データ信号)とが入力される。CP付加部108は、パイロット信号と変調シンボルとの多重信号の後尾部分と同じ信号をCPとして信号の先頭に付加して、SC-FDMA信号を生成する。生成されたSC-FDMA信号は、アンテナ109を介して送信される。
 フィードバック情報復調部110は、後述する受信装置200(図7)から送信されたフィードバック情報をアンテナ109を介して受信し、受信したフィードバック情報を復調する。
 フィードバック情報には、再送の有無を示す情報、MCSインデックス、割当RB数NPRB、送信データの割当位置を示す割当帯域情報、及び、周波数パンクチャリング率に関する情報であるFPインデックス等が含まれる。このFPインデックスは、送信装置100と受信装置200との間の伝搬チャネルにおける遅延スプレッドに基づいて生成されるフィードバック情報である。フィードバック情報復調部110は、例えば図2Aに示すテーブルを参照してMCSインデックスから特定される変調レベル(変調方式)を変調部103に出力する。また、フィードバック情報復調部110は、割当帯域情報をマッピング部106に出力する。また、フィードバック情報復調部110は、MCSインデックス、割当RB数NPRB、及び、FPインデックスを制御部111に出力する。
 制御部111は、決定部151及び設定部152を含む構成を採る。
 決定部151は、フィードバック情報復調部110から入力される情報を用いて、総パンクチャリング量Nにおける、時間パンクチャリング量Nと周波数パンクチャリング量Nとの割合を、パンクチャリング決定ルールに基づいて決定する。ここでは、例えば、決定部151は、MCS(符号化率及び変調方式)、割当RB数NPRB、及び、FPインデックスを用いて、周波数パンクチャリング決定ルールを参照して、周波数パンクチャリング率Rを決定する。すなわち、パンクチャリング決定ルールでは、周波数パンクチャリング率R(時間パンクチャリング量Nと周波数パンクチャリング量Nとの割合)は、符号化データに対するMCS(符号化率及び変調方式)と、符号化データに対して割り当てられたリソース数(割当RB数NPRB)と、受信装置200と送信装置100との間の伝搬チャネルにおける遅延スプレッドとから特定される。ただし、上記遅延スプレッドは、受信装置200(例えば基地局)で算出されるものの、例えば下りリンク制御チャネルを用いてフィードバックされないことが想定される。そのため、送信装置100(例えば端末)では遅延スプレッドそのものを把握できないことが想定される。これに対して、決定部151は、受信装置200から例えば下りリンク制御チャネルを用いてフィードバックされる、MCSインデックス、割当RB数NPRB、及びFPインデックス(受信装置200と送信装置100との間の遅延スプレッドに基づいて生成される情報)と、決定部151が保持する周波数パンクチャリング決定ルールとを用いて、周波数パンクチャリング率Rを決定する。これにより、送信装置100では、上記遅延スプレッドそのものがフィードバックされない場合でも、上記遅延スプレッドに基づく周波数パンクチャリング率Rの決定処理を行うことができる。決定部151は、決定した周波数パンクチャリング率R(NとNとの割合)を設定部152に出力する。
 設定部152は、決定部151で決定された周波数パンクチャリング率Rに基づいて、周波数パンクチャリング量N及び時間パンクチャリング量Nを決定する。例えば、設定部152は、式(4)に従って、まず、総パンクチャリング量Nと周波数パンクチャリング率Rとから周波数パンクチャリング量Nを算出する。次いで、設定部152は、式(4)に従って、総パンクチャリング量Nと周波数パンクチャリング量Nとから時間パンクチャリング量Nを算出する。設定部152は、時間パンクチャリング量Nを時間パンクチャリング部102に出力し、周波数パンクチャリング量Nを周波数パンクチャリング部105に出力する。
Figure JPOXMLDOC01-appb-M000004
 また、制御部111は、フィードバック情報に含まれる再送の有無を示す情報に従って、送信データの再送制御を行う。
 図7は、本実施の形態に係る受信装置の構成を示すブロック図である。
 図7に示す受信装置200において、CP除去部202は、送信装置100(図6)から送信されるSC-FDMA信号(アナログ信号)をアンテナ201を介して受信し、受信したSC-FDMA信号からCPを除去する。
 DFT部203は、CP除去部202から入力される受信信号(時間領域)に対してDFT処理(受信DFT)を施し、時間領域の信号を周波数領域の信号に変換する。そして、DFT部203は、DFT後の信号、すなわち、周波数領域の信号をチャネル推定部204及び周波数等化部205に出力する。
 チャネル推定部204は、DFT部203から入力される周波数領域の信号に含まれるパイロット信号を用いてチャネル推定を行う。なお、チャネル推定部204でのチャネル推定に用いられるパイロット信号には、例えば、SRS(Sounding Reference Signal)及びDMRS(DeModulation Reference Signal)の2種類がある。SRSは、送信装置100の送信帯域全体に渡ってマッピングされ、例えば、受信装置200(後述するフィードバック情報生成部210)での各送信装置100へのリソース割当(クラスタ割当)に使用される。一方、DMRSは、送信装置100に割り当てられたリソース(クラスタ)内にマッピングされ、各送信装置100からの送信信号の復調処理に使用される。すなわち、チャネル推定部204は、DMRSを用いて求めたチャネル推定値を周波数等化部205へ出力し、SRSを用いて求めたチャネル推定値をフィードバック情報生成部210に出力する。また、チャネル推定部204は、SRSを用いて、送信帯域全体における各RBの平均SINRを推定し、推定結果をフィードバック情報生成部210に出力してもよい。
 周波数等化部205は、チャネル推定部204から入力されるチャネル推定値を用いて、DFT部203から入力される周波数領域の信号に含まれるデータ信号に対して周波数等化を行う。例えば、周波数等化部205は、チャネル推定値を用いて、周波数等化処理に用いる周波数等化重みを生成し、周波数等化重みをデータ信号(シンボル)が配置されたサブキャリア毎に乗算することで、干渉(例えば、マルチパスフェージング)の影響を除去する。周波数等化部205は、周波数等化後のデータ信号をデマッピング部206に出力する。
 デマッピング部206は、図示しない制御部から入力される割当帯域情報に基づいて、周波数等化部205から入力されるデータ信号(周波数領域の変調シンボル)から、対象装置(送信装置100)が使用している周波数リソースに割り当てられているクラスタをデマッピング(抽出)する。デマッピング部206は、デマッピング後の信号をIDFT部207に出力する。
 IDFT部207は、デマッピング部206から入力されるデータ信号(周波数領域の変調シンボル)に対してIDFT処理(受信IDFT)を施し、周波数領域の信号を時間領域の信号に変換する。そして、IDFT部207は、時間領域の信号を復調部208に出力する。
 復調部208は、IDFT部207から入力される信号に対して復調処理(例えば、IQ平面での軟判定処理)を施し、復調後の信号(例えば、軟判定ビット)を復号部209に出力する。
 復号部209は、復調部208から入力される信号を復号(例えば、ターボ復号)し、復号後の信号を受信データ(情報データ)として出力する。また、復号部209は、復号結果(復号の成否)をフィードバック情報生成部210に出力する。
 フィードバック情報生成部210は、チャネル推定部204から入力されるチャネル推定値に基づいて、送信装置100が送信する送信データに対するMCS、及び、送信データの割当位置を決定する。また、フィードバック情報生成部210は、チャネル推定値に基づいて、送信装置100と受信装置200との間の伝搬路(チャネル)における遅延スプレッドを算出する。そして、フィードバック情報生成部210は、算出した遅延スプレッドに基づいて周波数パンクチャリング率に関する情報であるFPインデックスを生成する。FPインデックスは、例えば、送信装置100に設定されたMCS及び割当RB数N
PRBが同一である条件下における遅延スプレッドの大きさに応じて決定される情報であり、周波数パンクチャリング率Rの複数の候補の中のいずれか1つを示す情報である。
 また、フィードバック情報生成部210は、復号部209から入力される復号結果に基づいて、再送の有無を示す情報(すなわち、ACK/NACK情報)を生成する。そして、フィードバック情報生成部210は、再送の有無、MCSを示すMCSインデックス、割当位置を示す割当帯域情報、及び、FPインデックスを含むフィードバック情報を生成し、フィードバック情報をアンテナ201を介して送信装置100へ送信する。
 次に、送信装置100(図6)の動作について説明する。
 ここで、図8に、周波数パンクチャリング率Rと誤り率との関係を示す。図8において、R=0は周波数パンクチャリングが行われないことを表し(つまり、時間パンクチャリング(TP)のみが行われる。)、R=1は周波数パンクチャリングのみが行われることを表す。
 総パンクチャリング量Nが一定の場合、図8に示すR=0から、Rが大きくなるほど、周波数パンクチャリングに起因する符号間干渉(ISI)の増大よりも符号化利得が増大する。よって、図8に示すように、R=0から或る値(最適点)までは誤り率が低下(改善)する。一方、図8に示すように、最適点よりもRが更に大きくなると、周波数パンクチャリングに起因する符号化利得の影響よりもISIの影響がより支配的となる。すなわち、符号化利得の増大による誤り率の改善度合よりも、ISIの増大による誤り率の劣化度合の方が大きくなる。よって、図8に示すように、最適点よりもRが大きくなると、誤り率が急激に増加(劣化)する。
 よって、周波数パンクチャリング率Rは、図8に示す最適点付近に制御されることが望ましい。
 一方、上述したISIの発生要因としては周波数パンクチャリング以外にも存在する。なお、ISIは、主に、送信装置100(例えば端末)のDFT(送信DFT)と受信装置200(例えば基地局)のIDFT(受信IDFT)との間での処理、及び、チャネル利得の歪みによって生じる。
 例えば、周波数パンクチャリング以外のISIの発生要因として、伝搬チャネルの落ち込み数が挙げられる。例えば、伝搬チャネルの落ち込み数は、チャネル利得が一定値未満となるサブキャリア数(以下、落ち込みサブキャリア数(N)と呼ぶ。)で表される。
 例えば、図9Aに示すように、周波数選択性が弱い(遅延スプレッドが小さい)フェージングチャネルでは、落ち込みサブキャリア数Nは少ない。よって、図9Aに示すように、周波数選択性が弱いフェージングチャネルでは、各クラスタ(クラスタA及びクラスタB)内でチャネル利得が落ち込む確率は低い。
 一方、図9Bに示すように、周波数選択性が強い(遅延スプレッドが大きい)フェージングチャネルでは、落ち込みサブキャリア数Nは多い。よって、図9Bに示すように、周波数選択性が強いフェージングチャネルでは、各クラスタ(クラスタA及びクラスタB)内でチャネル利得が落ち込む確率は高い。図9BではクラスタB内でチャネル利得の落ち込みが発生している。このように、周波数選択性が強い(遅延スプレッドが大きい)フェージングチャネル(マルチパスフェージングチャネル)では、クラスタードSC-FDMAに対して周波数パンクチャリングを適用することによる誤り特性劣化の影響がより大きくなる。
 すなわち、図10に示すように、周波数パンクチャリング(図10A参照)のみでなく、伝搬チャネルにおける落ち込みサブキャリアの増加(図10B参照)が、ISIの発生要因となる(図10C参照)。換言すると、図10Cに示すように、周波数パンクチャリングすることと、チャネル利得がゼロ付近に落ち込むこととは等価である。
 次に、落ち込みサブキャリア数Nの表現方法について述べる。
 落ち込みサブキャリア数Nを表現する方法として、例えば、単位帯域幅当たりの周波数選択性の強さを表す遅延スプレッド(τrms)、及び、符号化データ(複数のクラスタ)がマッピングされる帯域幅を表す割当RB数NPRB(クラスタサイズ)を用いることが考えられる。
 具体的には、遅延スプレッドτrmsが大きいほど、周波数選択性が強くなるので(図9B参照)、クラスタ内でチャネル利得が落ち込む確率は高くなる。つまり、遅延スプレッドτrmsが大きいほど、落ち込みサブキャリア数Nがより多くなる。よって、図11に示すように、遅延スプレッドτrmsが大きい場合には、送信装置100は、周波数パンクチャリングを適用せずに、時間パンクチャリングのみを適用することが好ましい。一方、図11に示すように、遅延スプレッドτrmsが小さい場合(図9A参照)、送信装置100は、周波数パンクチャリングを適用することが好ましい。
 また、マルチパスフェージングチャネルでは、割当RB数NPRBが多いほど(割当帯域幅が大きいほど)、クラスタ内でチャネル利得が落ち込む確率は高くなる。つまり、割当RB数NPRBが多いほど(割当帯域幅が大きいほど)、クラスタ内に含まれる落ち込みサブキャリア数Nがより多くなる。よって、図11に示すように、割当RB数NPRBが多い場合(割当帯域幅が大きい場合)、送信装置100は、周波数パンクチャリングを適用せずに、時間パンクチャリングのみを適用することが好ましい。一方、図11に示すように、割当RB数NPRBが少ない場合(割当帯域幅が小さい場合)、送信装置100は、周波数パンクチャリングを適用することが好ましい。
 そこで、本実施の形態では、送信装置100は、ISIの発生要因の一方である伝搬チャネルの状況(例えば、遅延スプレッド又は割当RB数で表される落ち込みサブキャリア数の増減)に応じて、ISIの発生要因の他方である周波数パンクチャリングを制御する。すなわち、送信装置100は、伝搬チャネルの状況に起因するISIが大きい場合、周波数パンクチャリングに起因するISIを低減するために、周波数パンクチャリング率を低くすればよい。また、送信装置100は、伝搬チャネルの状況に起因するISIが小さい場合、周波数パンクチャリングに起因するISIの発生よりも符号化利得の増大を優先させるために、周波数パンクチャリング率を高くすればよい。
 また、符号化率が低いほど、送信データに占めるパリティビット数はより多くなる。すなわち、符号化率が低いほど、符号化処理により得られる符号化利得は大きい。よって、図11に示すように、符号化率が低い場合、送信装置100は、周波数パンクチャリングよりも、時間パンクチャリングの適用を優先することが好ましい。一方、図11に示すように、符号化率が高い場合(符号化処理による符号化利得が小さい場合)、送信装置100は、周波数パンクチャリングを優先的に適用することが好ましい。
 よって、本実施の形態では、送信装置100は、符号化率に応じて、周波数パンクチャリングを制御してもよい。すなわち、送信装置100は、符号化率が低い場合、周波数パンクチャリングに起因する符号化利得の増大よりもISIの発生を優先して抑えるために、周波数パンクチャリング率を低くすればよい。また、送信装置100は、符号化率が高い場合、周波数パンクチャリングに起因する符号化利得の増大を優先させるために、周波数パンクチャリング率を高くすればよい。
 以下、本実施の形態に係る送信装置100の送信処理、及び、受信装置200のフィードバック情報の生成処理の動作について詳細に説明する。
 まず、上述した周波数パンクチャリング決定ルールを示す周波数パンクチャリング決定テーブルの一例を図12に示す。
 図12に示す周波数パンクチャリング決定テーブルでは、MCSインデックス(0~26)、割当RB数NPRB(1~110)及びFPインデックス(0,1)と、周波数パンクチャリング率Rとが対応付けられている。すなわち、図12に示す周波数パンクチャリング決定テーブルでは、周波数パンクチャリング率Rは、MCSと、割当RB数NPRBと、受信装置200と送信装置100との間の伝搬チャネルにおける遅延スプレッド(FPインデックス)とから特定される。より詳細には、図12に示す周波数パンクチャリング決定テーブルでは、MCSと、割当RB数NPRBと、上記遅延スプレッド(FPインデックス)とから、周波数パンクチャリング率Rの複数の候補の中のいずれか1つが特定される。
 なお、図12において、MCSインデックス0~10に対応する変調方式はQPSKであり、MCSインデックス11~19に対応する変調方式は16QAMであり、MCSインデックス20~26に対応する変調方式は64QAMである。
 また、図12において、同一変調方式では、MCSインデックスが大きいほど符号化率がより高い。例えば、図12に示すQPSKに対応するMCSインデックス0~10のうち、MCSインデックス10に対応する符号化率が最も高く、MCSインデックス0に対応する符号化率が最も低い。図12に示す16QAM及び64QAMにそれぞれ対応するMCSインデックスについても同様である。
 また、図12では、FPインデックス=0,1と、周波数パンクチャリング率Rの2つの候補とがそれぞれ対応付けられている。例えば、図12において、MCSインデックス=10、割当RB数NPRB=110の場合、FPインデックス=0と周波数パンクチャリング率Rの候補(0.5)とが対応付けられ、FPインデックス=1と周波数パンクチャリング率Rの候補(0.7)とが対応付けられている。すなわち、MCSインデックス及び割当RB数NPRBが同一である条件下では、FPインデックス=0は低い周波数パンクチャリング率Rに対応し、FPインデックス=1は高い周波数パンクチャリング率Rに対応する。
 送信装置100及び受信装置200は、図12に示す周波数パンクチャリング決定テーブルを共有する。
 次に、受信装置200におけるフィードバック情報の生成処理について説明する。
 受信装置200のフィードバック情報生成部210は、送信装置100と受信装置200との間の伝搬チャネルにおける遅延スプレッドτrmsに基づいて、FPインデックス(xfp)を生成する。例えば、フィードバック情報生成部210は、式(5)に示すように、遅延スプレッドτrmsが予め設定された閾値τthよりも小さい場合、FPインデックス=1を生成する。一方、フィードバック情報生成部210は、式(5)に示すように、遅延スプレッドτrmsが予め設定された閾値τth以上の場合、FPインデックス=0を生成する。
Figure JPOXMLDOC01-appb-M000005
 すなわち、フィードバック情報生成部210は、遅延スプレッドτrmsが予め設定された閾値τthよりも小さい場合(つまり、落ち込みサブキャリア数Nが少ないと想定される場合)、高い周波数パンクチャリング率Rを指示すべく、FPインデックス=1を生成する。一方、フィードバック情報生成部210は、遅延スプレッドτrmsが予め設定された閾値τth以上の場合(つまり、落ち込みサブキャリア数Nが多いと想定される場合)、低い周波数パンクチャリング率Rを指示すべく、FPインデックス=0を生成する。
 例えば、図12において、MCSインデックス=10であり、割当RB数NPRB=50の場合について説明する。この場合、図12に示すように、周波数パンクチャリング率Rの候補(周波数パンクチャリング率の組み合わせCFP)は(0.6,0.8)となる。この場合、式(6)に示すように、遅延スプレッドτrmsが閾値τthよりも小さい場合、FPインデックス=1が生成され、周波数パンクチャリング率Rの候補CFP=(0.6,0.8)のうち、高い周波数パンクチャリング率R=0.8が選択される。一方、式(6)に示すように、遅延スプレッドτrmsが閾値τth以上の場合、FPインデックス=0が生成され、周波数パンクチャリング率Rの候補CFP=(0.6,0.8)のうち、低い周波数パンクチャリング率R=0.6が選択される。
Figure JPOXMLDOC01-appb-M000006
 そして、受信装置200(フィードバック情報生成部210)は、生成したFPインデックス(xfp)を送信装置100へフィードバックする。なお、LTE-Advancedでは、上述したように、受信装置200は、MCSインデックス及び割当RB数NPRBも送信装置100へフィードバックする。すなわち、送信装置100と受信装置200とで図12に示す周波数パンクチャリング決定テーブルを共有することで、例えば、LTE-Advancedでは、受信装置200は、周波数パンクチャリング率Rの候補を示すFPインデックスのみを、フィードバック情報に新たに追加すればよい。
 次に、送信装置100における周波数パンクチャリング量及び時間パンクチャリング量の設定処理について説明する。
 送信装置100のフィードバック情報復調部110は、受信装置200からフィードバックされるフィードバック情報(MCSインデックス、割当RB数NPRB及びFPインデックス(xfp)を含む)を受信する。
 次いで、制御部111において、決定部151は、図12に示す周波数パンクチャリング決定テーブル、及び、受信装置200からフィードバックされるMCSインデックス、割当RB数NPRB及びFPインデックス(xfp)に基づいて、周波数パンクチャリング率Rを決定する。
 例えば、MCSインデックス=10、割当RB数NPRB=50、FPインデックスx
fp=0の場合について説明する。この場合、決定部151は、図12に示す周波数パンクチャリング決定テーブルを参照して、周波数パンクチャリング率R=0.6を決定する。
 また、上述したように、決定部151は、受信装置200からフィードバックされるMCSインデックスに基づいて、図2Aのテーブルを参照して、TBSインデックスを特定する。また、決定部151は、特定したTBSインデックス、及び、受信装置200からフィードバックされる割当RB数NPRBに基づいて、図2Bのテーブルを参照して、TBSを特定する。これにより、決定部151は、例えば、式(1)に従って、総パンクチャリング量(ここではNと表す)を算出する。
 次いで、制御部111の設定部152は、決定部151で決定された総パンクチャリング量N、及び、周波数パンクチャリング率Rに基づいて、式(4)に従って、周波数パンクチャリング量Nを設定する。また、設定部152は、総パンクチャリング量N、及び、周波数パンクチャリング量Nに基づいて、式(4)に従って、時間パンクチャリング量Nを設定する。
 そして、時間パンクチャリング部102は、図13に示すように、設定部152で設定された時間パンクチャリング量N(図13では2ビットに相当)に従って、符号化ビット(図13では10ビット)に対して時間パンクチャリングを行う。図13では、時間パンクチャリング部102は、10ビットの符号化ビットから2ビットを間引いて、8ビットの符号化データを抽出する。
 また、周波数パンクチャリング部105は、図14に示すように、設定部152で設定された周波数パンクチャリング量N(図14では2シンボルに相当)に従って、変調シンボル(図14では8シンボル)に対して周波数パンクチャリングを行う。図14では、周波数パンクチャリング部105は、8シンボルの変調シンボルから2シンボルを間引いて、6シンボルの変調シンボルを得る。
 次に、図12に示す周波数パンクチャリング決定テーブル(周波数パンクチャリング決定ルール)の特徴について説明する。以下、上記特徴として、「遅延スプレッド」、「割当帯域幅」、「符号化率」及び「変調レベル」について説明する。
 <遅延スプレッド>
 図12に示す周波数パンクチャリング決定テーブルにおいて、MCSインデックス及び割当RB数NPRBが同一である条件下では、遅延スプレッドが大きいほど、周波数パンクチャリング率Rはより小さくなる。
 具体的には、図12に示す周波数パンクチャリング決定テーブルでは、MCSインデックス及び割当RB数NPRBが同一である条件下では、FPインデックス=0(遅延スプレッドが大きい場合)に対応する周波数パンクチャリング率Rは、FPインデックス=1(遅延スプレッドが小さい場合)に対応する周波数パンクチャリング率R以下となる。
 これにより、送信装置100は、遅延スプレッドが大きい場合(例えば図9B参照)、周波数パンクチャリング率Rを小さくすることで、周波数パンクチャリングに起因するISIの発生を低減する。すなわち、送信装置100は、遅延スプレッドが大きい場合(チャネル利得の落ち込みに起因するISIの発生が多い場合)、図10Cに示すISIの発生要因のうち、周波数パンクチャリングに起因するISI発生を抑えることで、誤り率特性の劣化を抑える。
 一方、送信装置100は、遅延スプレッドが小さい場合(例えば図9A参照)、周波数パンクチャリング率Rを大きくする。すなわち、送信装置100は、遅延スプレッドが小さい場合にはチャネル利得の落ち込みに起因するISIの発生が少ないので、周波数パンクチャリングに起因するISIの発生を抑えるよりも、周波数パンクチャリングに起因する符号化利得を得ることを優先して、誤り率特性を改善させる。
 <割当帯域幅(割当RB数NPRB)>
 図12に示す周波数パンクチャリング決定テーブルにおいて、MCSインデックス及びFPインデックス(遅延スプレッド)が同一である条件下では、割当RB数NPRB(リソース数)が多いほど、周波数パンクチャリング率Rはより小さくなる。
 例えば、図12において、MCSインデックス=10、FPインデックス=0の場合について説明する。この場合、割当RB数NPRB=1では周波数パンクチャリング率R=0.7となり、割当RB数NPRB=50では周波数パンクチャリング率R=0.6となり、割当RB数NPRB=110では周波数パンクチャリング率R=0.5となる。
 同様に、図12において、MCSインデックス=10、FPインデックス=1の場合について説明する。この場合、割当RB数NPRB=1では周波数パンクチャリング率R=0.9となり、割当RB数NPRB=50では周波数パンクチャリング率R=0.8となり、割当RB数NPRB=110では周波数パンクチャリング率R=0.7となる。
 このように、MCSインデックス及びFPインデックスが同一の条件下では、割当RB数NPRBが多くなるほど、周波数パンクチャリング率Rはより小さくなる。図12において、他のMCSインデックス及びFPインデックスの組み合わせについても同様である。
 上述したように、マルチパスフェージングチャネルでは、送信データが割り当てられる帯域幅が広くなるほど(割当RB数NPRBが多いほど)、割当帯域内(クラスタ内)でチャネル利得が落ち込む確率は高くなる。すなわち、マルチパスフェージングチャネルでは、割当RB数NPRBが多いほど、チャネル利得の落ち込みに起因するISIの発生が多くなる。このため、マルチパスフェージングチャネルにおいて、送信装置100は、割当RB数NPRBが多い場合、周波数パンクチャリング率Rを小さくすることで、周波数パンクチャリングに起因するISIの発生を低減する。すなわち、送信装置100は、割当RB数NPRBが多い場合には、図10Cに示すISIの発生要因のうち、周波数パンクチャリングに起因するISI発生を抑えることで、誤り率特性の劣化を抑える。
 一方、送信装置100は、割当RB数NPRBが少ない場合、周波数パンクチャリング率Rを大きくする。すなわち、送信装置100は、割当RB数NPRBが少ない場合には、割当帯域内(クラスタ内)でチャネル利得の落ち込みに起因するISIの発生が少ないので、周波数パンクチャリングに起因するISIの発生を抑えるよりも、周波数パンクチャリングに起因する符号化利得を得ることを優先して、誤り率特性を改善させる。
 <符号化率>
 図12に示す周波数パンクチャリング決定テーブルにおいて、MCSに示される変調レベル、割当RB数NPRB(リソース数)及びFPインデックス(遅延スプレッド)が同一である条件下では、MCSに示される符号化率が低いほど、周波数パンクチャリング率Rはより小さくなる。
 例えば、図12において、MCSに示される変調方式がQPSK、割当RB数NPRB=1、及び、FPインデックス=0の場合について説明する。この場合、MCSインデックス=0では、周波数パンクチャリング率R=0.2となり、MCSインデックス=1では、周波数パンクチャリング率R=0.3となり、MCSインデックス=10では、周波数パンクチャリング率R=0.7となる。
 同様に、図12において、MCSに示される変調方式がQPSK、割当RB数NPRB=50、及び、FPインデックス=0の場合について説明する。この場合、MCSインデックス=0では、周波数パンクチャリング率R=0.1となり、MCSインデックス=1では、周波数パンクチャリング率R=0.2となり、MCSインデックス=10では、周波数パンクチャリング率R=0.6となる。
 このように、MCSに示される変調方式、割当RB数NPRB及びFPインデックスが同一の条件下では、MCSに示される符号化率が低いほど、周波数パンクチャリング率Rはより小さくなる。図12において、他の変調方式、割当RB数NPRB及FPインデックスの組み合わせについても同様である。
 上述したように、符号化率が低いほど、符号化データに占めるパリティビットはより多くなり、符号化利得はより大きくなる。すなわち、符号化率が低い場合には十分な符号化利得が得られる。このため、送信装置100は、符号化率が低い場合、周波数パンクチャリング率Rを小さくすることで、周波数パンクチャリングに起因する符号化利得の向上よりも、周波数パンクチャリングに起因するISI発生を抑えることを優先して、誤り率特性の劣化を抑える。
 一方、送信装置100は、符号化率が高い場合、周波数パンクチャリング率Rを大きくする。すなわち、送信装置100は、符号化率が高い場合には十分な符号化利得が得られないので、周波数パンクチャリングによる符号化利得を得ることで、誤り率特性を向上させる。
 なお、周波数パンクチャリング決定テーブルにおける、上述した符号化率の具体的な表現方法の一例として、式(7)に示す符号化率Rがある。式(7)に示すように、符号化率Rは、パンクチャリング前の符号化ビット(TBS/R:分母)に対するパンクチャリング後の符号化ビット((TBS/R)-N:分子)の割合を表す。つまり、符号化率Rが低いほど、符号化ビット内でパンクチャされたビットの割合はより大きくなる。すなわち、符号化率Rが低いほど、符号化ビットに含まれるパリティビット数は少なくなる可能性が高くなり、符号化利得は小さくなる。換言すると、符号化率Rが高いほど、符号化ビットに含まれるパリティビット数は多くなる可能性が高くなり、符号化利得は大きくなる。よって、符号化率Rが低い場合(符号化ビットに含まれるパリティビットが少ない場合)、送信装置100は、周波数パンクチャリングを適用することが好ましい。一方、符号化率Rが高い場合(符号化ビットに含まれるパリティビットが多い場合)、送信装置100は、周波数パンクチャリングを適用せずに、時間パンクチャリングのみを適用することが好ましい。すなわち、式(7)に示す符号化率Rを用いる場合、送信装置100及び受信装置200は、変調レベル、割当RB数NPRB(リソース数)及びFPインデックス(遅延スプレッド)が同一である条件下において、符号化率Rが高いほど、周波数パンクチャリング率Rがより小さくなる周波数パンクチャリング決定ルールを用いればよい。
Figure JPOXMLDOC01-appb-M000007
 <変調レベル>
 図12に示す周波数パンクチャリング決定テーブルにおいて、MCSに示される符号化率、割当RB数NPRB(リソース数)及びFPインデックス(遅延スプレッド)が同一である条件下では、MCSに示される変調レベル(変調方式)が高いほど、周波数パンクチャリング率Rはより小さくなる。
 例えば、図12において、MCSに示される最も高い符号化率にそれぞれ対応するMCSインデックス=10,19,26、割当RB数NPRB=1、及び、FPインデックス=0の場合について説明する。
 この場合、変調方式=QPSK(MCSインデックス=10)では、周波数パンクチャリング率R=0.7となり、変調方式=16QAM(MCSインデックス=19)では、周波数パンクチャリング率R=0.6となり、変調方式=64QAM(MCSインデックス=26)では、周波数パンクチャリング率R=0.5となる。
 このように、MCSに示される符号化率、割当RB数NPRB及びFPインデックスが同一の条件下では、MCSに示される変調レベル(変調方式)が高いほど、周波数パンクチャリング率Rはより小さくなる。図12において、他の符号化率、割当RB数NPRB及びFPインデックスの組み合わせについても同様である。
 変調レベルが高いほど、ビットがマッピングされる信号点(constellation point)間距離はより狭くなるので、干渉に対する耐性が弱くなり、誤り率特性が劣化する。このため、送信装置100は、変調レベルが高い場合、周波数パンクチャリング率Rを小さくすることで、周波数パンクチャリングに起因するISIの発生を抑える。すなわち、送信装置100は、変調レベルが高い場合には、周波数パンクチャリングに起因する符号化利得の向上よりも、周波数パンクチャリングによるISI発生を抑えることを優先して、誤り率特性の劣化を抑える。
 一方、送信装置100は、変調レベルが低い場合、周波数パンクチャリング率Rを大きくする。すなわち、送信装置100は、変調レベルが低い場合には、周波数パンクチャリングによる符号化利得を得ることで、誤り率特性を向上させる。
 以上、図12に示す周波数パンクチャリング決定テーブルの特徴について説明した。
 このように、送信装置100は、受信装置200からのフィードバック情報に基づいて、時間パンクチャリング(TP)及び周波数パンクチャリング(FP)の双方のパンクチャリングの制御を行う(図15参照)。具体的には、送信装置100は、総パンクチャリング量における、時間パンクチャリング量と周波数パンクチャリング量との割合(ここでは周波数パンクチャリング率)を、パンクチャリング決定ルール(ここでは周波数パンクチャリング決定テーブル)に基づいて決定する。また、パンクチャリング決定ルールでは、時間パンクチャリング量と周波数パンクチャリング量との割合(周波数パンクチャリング率)は、符号化データに対するMCS(符号化率及び変調レベル)と、符号化データに対して割り当てられたリソース数と、受信装置200と送信装置100との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 図12に示すパンクチャリング決定テーブルでは、例えば、遅延スプレッドで表される、伝搬チャネルでのチャネル利得の落ち込みに起因するISIの増減が考慮された周波数パンクチャリング率が設定されている。すなわち、本実施の形態では、クラスタードSC-FDMAに周波数パンクチャリングが適用される場合、送信装置100は、マルチパスフェージングチャネルにおけるISIの発生要因(ここでは一定のチャネル利得の閾値を下回る伝搬チャネル)を考慮して、周波数パンクチャリング率を決定する。
 これにより、送信装置100は、伝搬チャネルの変動状況(遅延スプレッドの大小)に応じた適切な周波数パンクチャリング率(すなわち、時間パンクチャリング量と周波数パンクチャリング量との割合)を用いて、周波数パンクチャリングを行うことができる。すなわち、送信装置100は、伝搬チャネルでのチャネル利得の落ち込みが多い場合、周波数パンクチャリング率を小さくして、符号化利得の向上よりも、ISIの発生を優先的に抑える。一方、送信装置100は、伝搬チャネルでのチャネル利得の落ち込みが少ない場合、周波数パンクチャリング率を大きくして、ISI発生の低減よりも、符号化利得を優先的に向上させる。
 よって、本実施の形態によれば、いかなる伝搬チャネルにおいても、良好な誤り率特性を得ることができる。
 また、本実施の形態では、周波数パンクチャリングが適用されたクラスタードSC-FDMAにおいて、周波数パンクチャリングを決定するための受信装置200からのフィードバック情報として、FPインデックスを用いた。すなわち、LTE-Advancedにおいて、図12に示す周波数パンクチャリング決定テーブルを用いる場合には、受信装置200は、1ビット(0又は1)のFPインデックスのみを新たなフィードバック情報として送信装置100へ通知すればよい。よって、本実施の形態によれば、LTE-Advancedと比較して、周波数パンクチャリング率を決定するために追加するシグナリング量を最小限に抑えつつ、良好な誤り率特性を得ることができる。
 (実施の形態2)
 本実施の形態では、更に、送信装置に割り当てられるクラスタ数(割当クラスタ数。以下、Nで表す)に応じて周波数パンクチャリング率が設定される場合について説明する。
 受信装置200(図7)は、例えば、DMRSを用いたチャネル推定値に基づいて、送信装置100(図6)から送信されるクラスタの復調処理を行う。このDMRSは、クラスタが割り当てられる周波数帯域にマッピングされる。また、受信装置200は、例えば、推定対象であるサブキャリア、及び、推定対象のサブキャリアの両側に隣接するサブキャリアの3サブキャリアを用いて、各周波数帯域(サブキャリア)のチャネル推定値(例えば、SINR)を推定する。このため、クラスタの端のサブキャリアが推定対象である場合、受信装置200は、推定対象のサブキャリアに隣接する一方のサブキャリア(DMRSがマッピングされていないサブキャリア)を用いることができない。
 よって、図16A及び図16Bに示すように、各クラスタの中央付近の周波数ではチャネル推定精度は良好となるのに対して、各クラスタの両端付近の周波数ではチャネル推定精度が劣悪となる。
 図16Aと図16Bとを比較すると、割当クラスタ数が少ない場合(図16A)と比較して、クラスタ数が多い場合(図16B)の方が、クラスタの両端に該当するサブキャリア数が多くなるため、チャネル推定精度が劣悪となるサブキャリアがより多くなる。すなわち、割当クラスタ数が多くなるほど、ISIが増加してしまう。
 そこで、本実施の形態では、送信装置100の割当クラスタ数Nに応じて、周波数パンクチャリング率(すなわち、時間パンクチャリング量と周波数パンクチャリング量との比率)を異ならせる。
 具体的には、送信装置100及び受信装置200は、送信装置100の割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定ルール、及び、送信装置100に割り当てられる割当クラスタ数Nが少ない場合に用いられる周波数パンクチャリング決定ルールの2つのルールを共有する。
 すなわち、送信装置100において、制御部111の決定部151(図6)は、割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定ルールと、割当クラスタ数Nが少ない場合に用いられるパンクチャリング決定ルールと、に基づいて周波数パンクチャリング率Rを決定する。
 ここで、割当クラスタ数Nが少ない場合に用いられる周波数パンクチャリング決定ルールを表す周波数パンクチャリング決定テーブルを図17に示し、割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定ルールを表す周波数パンクチャリング決定テーブルを図12に示す。
 図17及び図12に示す2つの周波数パンクチャリング決定テーブルでは、実施の形態1と同様、周波数パンクチャリング率Rは、MCSと、割当RB数NPRBと、受信装置200と送信装置100との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 ただし、図17と図12とを比較すると、MCS、割当RB数NPRB(リソース数)及びFPインデックス(遅延スプレッド)が同一である条件下では、割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定テーブル(図12)の方が、割当クラスタ数Nが少ない場合に用いられる周波数パンクチャリング決定テーブル(図17)よりも、周波数パンクチャリング率Rはより小さくなる。
 例えば、MCSインデックス=10、割当RB数NPRB=50、FPインデックス=0の場合について説明する。この場合、割当クラスタ数Nが少ない場合に用いられる周波数パンクチャリング決定テーブル(図17)では、周波数パンクチャリング率Rは0.7となる。一方、割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定テーブル(図12)では、周波数パンクチャリング率Rは0.6となる。
 同様に、MCSインデックス=10、割当RB数NPRB=50、FPインデックス=1の場合について説明する。この場合、割当クラスタ数Nが少ない場合に用いられる周波数パンクチャリング決定テーブル(図17)では、周波数パンクチャリング率Rは0.9となる。一方、割当クラスタ数Nが多い場合に用いられる周波数パンクチャリング決定テーブル(図12)では、周波数パンクチャリング率Rは0.8となる。
 このように、MCSインデックス、割当RB数NPRB及びFPインデックスが同一の条件下では、割当クラスタ数Nが多いほど、周波数パンクチャリング率Rはより小さくなる。図12及び図17において、他のMCSインデックス、割当RB数NPRB及びFPインデックスの組み合わせについても同様である。
 送信装置100は、例えば、割当クラスタ数Nに応じて、周波数パンクチャリング決定テーブル(図12及び図17)を切り替えればよい。例えば、送信装置100は、割当クラスタ数Nと予め設定された閾値とを比較する。そして、送信装置100は、割当クラスタ数Nが閾値以上の場合、図12に示す周波数パンクチャリング決定テーブルを使用し、割当クラスタ数Nが閾値未満の場合、図17に示す周波数パンクチャリング決定テーブルを使用する。
 これにより、送信装置100は、割当クラスタ数NによるISIの発生度合(図16A及び図16B参照)に応じて適切な周波数パンクチャリング率Rを決定することができる。
 すなわち、送信装置100は、割当クラスタ数Nが多い場合(図16B)、周波数パンクチャリングに起因するISI発生を抑え、誤り率特性の劣化を抑える。一方、送信装置100は、割当クラスタ数Nが少ない場合(図16A)、周波数パンクチャリングに起因する符号化利得を得ることで、誤り率特性を向上させる。
 こうすることで、本実施の形態によれば、送信装置100は、伝搬チャネルの変動状況(遅延スプレッドの大小)に加え、送信装置100の割当クラスタ数にも応じた適切な周波数パンクチャリング率(すなわち、時間パンクチャリング量と周波数パンクチャリング量との割合)を用いて、周波数パンクチャリングを行うことができる。よって、本実施の形態によれば、いかなる伝搬チャネル及び割当クラスタ数においても、良好な誤り率特性を得ることができる。
 (実施の形態3)
 本実施の形態では、更に、受信装置が用いる受信アンテナ数に応じて周波数パンクチャリング率が設定される場合について説明する。
 図18Aは、受信装置200(図7)が1本の受信アンテナを用いて送信装置100(図6)からの信号を受信する場合(つまり、シングルアンテナ受信)のチャネル利得を示す。一方、図18Bは、受信装置200が複数の受信アンテナ(受信アンテナ数≧2本)を用いて送信装置100からの信号を受信する場合(つまり、マルチアンテナ受信。又はアンテナダイバーシチ受信)のアンテナ合成後のチャネル利得を示す。
 図18Aと図18Bとを比較すると、図18Bに示すように、マルチアンテナ受信によって得られるアンテナ合成後のチャネル利得は、図18Aに示すシングルアンテナ受信により得られるチャネル利得よりも、ISIの発生要因となる落ち込みサブキャリア数が少ない。すなわち、マルチアンテナ受信の方がシングルアンテナ受信よりもISIを低減できる。
 そこで、本実施の形態では、受信装置200が用いる受信アンテナ数に応じて、周波数パンクチャリング率(すなわち、時間パンクチャリング量と周波数パンクチャリング量との比率)を異ならせる。
 具体的には、送信装置100及び受信装置200は、受信装置200が用いる受信アンテナ数が多い場合(例えば2本以上)に用いられる周波数パンクチャリング決定ルール、及び、受信装置200が用いる受信アンテナ数が少ない場合(例えば1本)に用いられる周波数パンクチャリング決定ルールの2つのルールを共有する。
 すなわち、送信装置100において、制御部111の決定部151(図6)は、受信装置200が用いる受信アンテナ数が多い場合に用いられる周波数パンクチャリング決定ルールと、受信装置200が用いる受信アンテナ数が少ない場合に用いられるパンクチャリング決定ルールと、に基づいて周波数パンクチャリング率Rを決定する。
 ここで、受信装置200が用いる受信アンテナ数が多い場合に用いられる周波数パンクチャリング決定ルールを表す周波数パンクチャリング決定テーブルを図17に示し、受信装置200が用いる受信アンテナ数が少ない場合に用いられる周波数パンクチャリング決定ルールを表す周波数パンクチャリング決定テーブルを図12に示す。
 図17及び図12に示す2つの周波数パンクチャリング決定テーブルでは、実施の形態1と同様、周波数パンクチャリング率Rは、MCSと、割当RB数NPRBと、受信装置200と送信装置100との間の伝搬チャネルにおける遅延スプレッドとから特定される。
 ただし、図17と図12とを比較すると、実施の形態2と同様、MCS、割当RB数NPRB(リソース数)及びFPインデックス(遅延スプレッド)が同一である条件下では、受信装置200が用いる受信アンテナ数が少ない場合に用いられる周波数パンクチャリング決定テーブル(図12)の方が、受信装置200が用いる受信アンテナ数が多い場合に用いられる周波数パンクチャリング決定テーブル(図17)よりも、周波数パンクチャリング率Rはより小さくなる。
 送信装置100は、例えば、受信装置200が用いる受信アンテナ数に応じて、周波数パンクチャリング決定テーブル(図12及び図17)を切り替えればよい。例えば、送信装置100は、受信装置200が用いる受信アンテナ数が少ない場合、図12に示す周波数パンクチャリング決定テーブルを使用し、受信装置200が用いる受信アンテナ数が多い場合、図17に示す周波数パンクチャリング決定テーブルを使用する。
 これにより、送信装置100は、受信装置200の受信アンテナ数によるISIの発生度合(図18A及び図18B参照)に応じて適切な周波数パンクチャリング率Rを決定することができる。
 すなわち、送信装置100は、受信装置200が用いる受信アンテナ数が少ない場合(図18A)、周波数パンクチャリングに起因するISI発生を抑え、誤り率特性の劣化を抑える。一方、送信装置100は、受信装置200が用いる受信アンテナ数が多い場合(図18B)、周波数パンクチャリングに起因する符号化利得を得ることで、誤り率特性を向上させる。
 こうすることで、本実施の形態によれば、送信装置100は、伝搬チャネルの変動状況(遅延スプレッドの大小)に加え、受信装置200の受信アンテナ数にも応じた適切な周波数パンクチャリング率(すなわち、時間パンクチャリング量と周波数パンクチャリング量との割合)を用いて、周波数パンクチャリングを行うことができる。よって、本実施の形態によれば、いかなる伝搬チャネル及び受信アンテナ数においても、良好な誤り率特性を得ることができる。
 なお、本実施の形態において、受信装置200の受信アンテナ数を固定して設定してもよく、状況に応じて受信装置200の受信アンテナ数を動的に切り替えてもよい。受信装置200の受信アンテナ数を固定して設定する場合、受信装置200は、当該受信アンテナ数に対応する周波数パンクチャリング決定テーブルのみを保持すればよい。一方、受信装置200の受信アンテナ数を動的に切り替える場合、受信装置200は、受信アンテナ数に応じた複数の周波数パンクチャリング決定テーブルを保持し、実際に使用する受信アンテナ数に応じて、周波数パンクチャリング決定テーブルを切り替えればよい。
 なお、本実施の形態において、受信装置200の受信アンテナ数に応じた周波数パンクチャリング率の決定方法について説明した。つまり、ダイバーシチとして受信アンテナダイバーシチについて説明した。しかし、送信装置100の送信アンテナ数(送信アンテナダイバーシチ)に対して本実施の形態を適用してもよい。この場合、特に、固有モード伝送方式では、レイヤ毎にチャネル変動が異なるので、送信装置100は、レイヤ毎に異なる周波数パンクチャリング率を設定することになる。
 以上、本発明の各実施の形態について説明した。
 なお、上記実施の形態において、遅延スプレッド(単位帯域幅あたりの周波数選択性の強さ)の代わりに、クラスタの割当帯域内における、チャネル利得が或る閾値以下となるサブキャリア本数を用いてもよい。又は、遅延スプレッドの代わりに、全帯域内における、チャネル利得が或る閾値以下となるサブキャリア本数を用いてもよい。
 また、上記実施の形態では、図12又は図17に示す周波数パンクチャリング決定テーブルにおいて、総パンクチャリング量に占める周波数パンクチャリング量の比率(周波数パンクチャリング率)が設定される場合について説明した。しかし、周波数パンクチャリング決定テーブルでは、周波数パンクチャリング率の代わりに、例えば、周波数パンクチャリングによって間引かれるシンボル数(又は電力量)が設定されてもよい。
 また、上記実施の形態では、図12及び図17に示すように、周波数パンクチャリング率の候補が2つ設定され、FPインデックスとして、(0,1)の2種類(1ビット)を用いる場合について説明したが、これに限らない。例えば、周波数パンクチャリング率の候補を4つ設定し、FPインデックスとして、(0~3)の4種類(2ビット)を用いてもよい。
 また、上記実施の形態では、送信DFTと受信IDFTとの間で信号(送信信号又は受信信号)を歪ませる要因を表す指標として落ち込みサブキャリア数、遅延スプレッド、割当クラスタ数、受信アンテナ数を用いる場合について説明した。しかし、送信DFTと受信IDFTとの間で信号を歪ませる要因を表すパラメータのすべてが上記指標の対象となる。
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2011年8月30日出願の特願2011-186911の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、移動通信システム等に有用である。
 100 送信装置
 101 符号化部
 102 時間パンクチャリング部
 103 変調部
 104,203 DFT部
 105 周波数パンクチャリング部
 106 マッピング部
 107,207 IDFT部
 108 CP付加部
 109,201 アンテナ
 110 フィードバック情報復調部
 111 制御部
 151 決定部
 152 設定部
 200 受信装置
 202 CP除去部
 204 チャネル推定部
 205 周波数等化部
 206 デマッピング部
 208 復調部
 209 復号部
 210 フィードバック情報生成部

Claims (12)

  1.  符号化データの各ビットを時間領域のビット単位でパンクチャリングする時間パンクチャリング、及び、周波数領域の複数のシンボルに各ビットが重畳された前記符号化データをシンボル単位でパンクチャリングする周波数パンクチャリングを行う送信装置であって、
     時間パンクチャリング及び周波数パンクチャリングにおいて前記符号化データがパンクチャされる成分に相当する総電力量における、時間パンクチャリングでパンクチャされるビットに相当する第1の電力量と周波数パンクチャリングでパンクチャされるシンボルに相当する第2の電力量との割合を、パンクチャリング決定ルールに基づいて決定する、決定手段と、
     前記割合に基づいて、前記第1の電力量及び前記第2の電力量を設定する設定手段と、
     前記第1の電力量に従って、前記符号化データに対して時間パンクチャリングを行う第1のパンクチャリング手段と、
     前記第2の電力量に従って、時間パンクチャリング後の前記符号化データに対して周波数パンクチャリングを行う第2のパンクチャリング手段と、
     を具備し、
     前記パンクチャリング決定ルールでは、前記割合は、前記符号化データに対するMCS(Modulation and Coding Scheme)と、前記符号化データに対して割り当てられたリソース数と、受信装置と前記送信装置との間の伝搬チャネルにおける遅延スプレッドとから特定される、
     送信装置。
  2.  前記パンクチャリング決定ルールでは、前記MCSと、前記リソース数と、前記遅延スプレッドとから、前記割合の複数の候補の中のいずれか1つが特定される、
     請求項1記載の送信装置。
  3.  前記決定手段は、前記パンクチャリング決定ルールに基づいて、周波数パンクチャリング率を決定し、前記周波数パンクチャリング率は、前記第1の電力量と前記第2の電力量との合計値である前記総電力量に占める、前記第2の電力量の比率であり、
     前記設定手段は、前記周波数パンクチャリング率に基づいて、前記第1の電力量及び前記第2の電力量を設定する、
     請求項1記載の送信装置。
  4.  前記パンクチャリング決定ルールにおいて、前記MCS及び前記リソース数が同一である条件下では、前記遅延スプレッドが大きいほど、前記周波数パンクチャリング率はより小さい、
     請求項1記載の送信装置。
  5.  前記遅延スプレッドに基づいて生成されるフィードバック情報を前記受信装置から受信する受信手段、を更に具備し、
     前記決定手段は、前記パンクチャリング決定ルール、及び、前記フィードバック情報を用いて、前記周波数パンクチャリング率を決定し、
     前記フィードバック情報は、前記MCS及び前記リソース数が同一である条件下において、前記遅延スプレッドの大きさに応じて選択される、前記周波数パンクチャリング率の複数の候補の中のいずれか1つを示す、
     請求項4記載の送信装置。
  6.  前記パンクチャリング決定ルールにおいて、前記MCS及び前記遅延スプレッドが同一である条件下では、前記リソース数が多いほど、前記周波数パンクチャリング率はより小さい、
     請求項1記載の送信装置。
  7.  前記パンクチャリング決定ルールにおいて、前記MCSに示される変調レベル、前記リソース数及び前記遅延スプレッドが同一である条件下では、前記MCSに示される符号化率が低いほど、前記周波数パンクチャリング率はより小さい、
     請求項1記載の送信装置。
  8.  前記パンクチャリング決定ルールにおいて、前記MCSに示される符号化率、前記リソース数及び前記遅延スプレッドが同一である条件下では、前記MCSに示される変調レベルが高いほど、前記周波数パンクチャリング率はより小さい、
     請求項1記載の送信装置。
  9.  前記決定手段は、前記受信装置が備えるアンテナ数が少ない場合に用いられる第1のパンクチャリング決定ルールと、前記受信装置が備えるアンテナ数が多い場合に用いられる第2のパンクチャリング決定ルールと、に基づいて前記周波数パンクチャリング率を決定し、
     前記MCS、前記リソース数及び前記遅延スプレッドが同一である条件下では、前記第1のパンクチャリング決定ルールの方が、前記第2のパンクチャリング率決定ルールよりも、前記周波数パンクチャリング率はより小さい、
     請求項3記載の送信装置。
  10.  前記送信装置は、前記符号化データを構成する周波数領域の複数のシンボルを分割して複数のクラスタを生成し、
     前記決定手段は、前記クラスタの数が多い場合に用いられる第1のパンクチャリング決定ルールと、前記クラスタの数が少ない場合に用いられる第2のパンクチャリング決定ルールと、に基づいて前記周波数パンクチャリング率を決定し、
     前記MCS、前記リソース数及び前記遅延スプレッドが同一である条件下では、前記第1のパンクチャリング決定ルールの方が、前記第2のパンクチャリング率決定ルールよりも、前記周波数パンクチャリング率はより小さい、
     請求項3記載の送信装置。
  11.  前記パンクチャリング決定ルールは、前記送信装置及び前記受信装置で共有される、
     請求項1記載の送信装置。
  12.  符号化データの各ビットを時間領域のビット単位でパンクチャリングする時間パンクチャリング、及び、周波数領域の複数のシンボルに各ビットが重畳された前記符号化データをシンボル単位でパンクチャリングする周波数パンクチャリングを行う送信方法であって、
     時間パンクチャリング及び周波数パンクチャリングにおいて前記符号化データがパンクチャされる成分に相当する総電力量における、時間パンクチャリングでパンクチャされるビットに相当する第1の電力量と周波数パンクチャリングでパンクチャされるシンボルに相当する第2の電力量との割合を、パンクチャリング決定ルールに基づいて決定し、
     前記割合に基づいて、前記第1の電力量及び前記第2の電力量を設定し、
     前記第1の電力量に従って、前記符号化データに対して時間パンクチャリングを行い、
     前記第2の電力量に従って、時間パンクチャリング後の前記符号化データに対して周波数パンクチャリングを行い、
     前記パンクチャリング決定ルールでは、前記割合は、前記符号化データに対するMCSと、前記符号化データに対して割り当てられたリソース数と、受信装置と前記送信装置との間の伝搬チャネルにおける遅延スプレッドとから特定される、
     送信方法。
PCT/JP2012/005167 2011-08-30 2012-08-16 Sc-fdma送信装置及び送信方法 WO2013031119A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/241,290 US9386547B2 (en) 2011-08-30 2012-08-16 SC-FDMA transmission device and transmission method
JP2013531049A JP5826852B2 (ja) 2011-08-30 2012-08-16 Sc−fdma送信装置及び送信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-186911 2011-08-30
JP2011186911 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031119A1 true WO2013031119A1 (ja) 2013-03-07

Family

ID=47755651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005167 WO2013031119A1 (ja) 2011-08-30 2012-08-16 Sc-fdma送信装置及び送信方法

Country Status (3)

Country Link
US (1) US9386547B2 (ja)
JP (1) JP5826852B2 (ja)
WO (1) WO2013031119A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031496A1 (ja) * 2014-08-27 2016-03-03 三菱電機株式会社 送信装置、送信方法、受信装置、および受信方法
JP2019501607A (ja) * 2015-12-22 2019-01-17 シェンチェン スーパー データ リンク テクノロジー リミテッド デコード方法、装置及びシステム
US11863329B2 (en) 2016-08-12 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control signaling on PUSCH with shortened transmission time interval (TTI)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525516B2 (en) * 2011-08-30 2016-12-20 Panasonic Corporation Transmission device and transmission method
US10003387B2 (en) * 2013-03-15 2018-06-19 Intel Deutschland Gmbh Communications terminal, a network component, a method for transmitting a signal, and a method for providing feedback information to a communications terminal
DE102014103702B4 (de) * 2014-03-18 2017-08-03 Intel IP Corporation Verfahren und Vorrichtung zum Verarbeiten von Ressourcenblöcken
US9331881B2 (en) * 2014-09-03 2016-05-03 Motorola Solutions, Inc. Methods and systems for embedding supplementary data channel in OFDM-based communication systems
US9386606B2 (en) 2014-09-03 2016-07-05 Motorola Solutions, Inc. Methods and systems for embedding supplementary data channel in LTE-based communication systems
US20160227539A1 (en) * 2015-01-30 2016-08-04 Alcatel-Lucent Usa Inc. Frequency Resource And/Or Modulation & Coding Scheme Indicator For Machine Type Communication Device
US11935145B2 (en) 2015-03-05 2024-03-19 Quitchet, Llc Enhanced safety tracking in real estate transactions
JP2020017781A (ja) * 2016-11-14 2020-01-30 株式会社Nttドコモ 通信装置、及びデータ受信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131156A1 (ja) * 2008-04-22 2009-10-29 国立大学法人大阪大学 無線通信システム、送信装置、受信装置及び通信方法
WO2011155468A1 (ja) * 2010-06-09 2011-12-15 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置及び無線通信方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879511B2 (en) * 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US20090138785A1 (en) * 2006-03-17 2009-05-28 Mitsubishi Electric Corporation Communication device, decoding device, information transmission method, and decoding method
JP5167760B2 (ja) * 2007-10-24 2013-03-21 富士通株式会社 無線通信システムにおける上り通信方法並びに無線通信システム、無線端末及び無線基地局
KR101533240B1 (ko) * 2008-08-25 2015-07-03 주식회사 팬택 이동통신 시스템에서 레이트 매칭을 제어하기 위한 레이트 매칭 장치 및 그 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131156A1 (ja) * 2008-04-22 2009-10-29 国立大学法人大阪大学 無線通信システム、送信装置、受信装置及び通信方法
WO2011155468A1 (ja) * 2010-06-09 2011-12-15 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI TAHARA ET AL.: "Systematic-Parity Bits Separated Puncturing Method for Frequency-Domain Punctured Turbo Codes", IEICE TECHNICAL REPORT, RCS, MUSEN TSUSHIN SYSTEM, vol. 110, no. 369, 13 January 2011 (2011-01-13), pages 179 - 184 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031496A1 (ja) * 2014-08-27 2016-03-03 三菱電機株式会社 送信装置、送信方法、受信装置、および受信方法
JPWO2016031496A1 (ja) * 2014-08-27 2017-04-27 三菱電機株式会社 送信装置、送信方法、受信装置、および受信方法
US10027519B2 (en) 2014-08-27 2018-07-17 Mitsubishi Electric Corporation Transmission apparatus, transmission method, reception apparatus, and reception method
JP2019501607A (ja) * 2015-12-22 2019-01-17 シェンチェン スーパー データ リンク テクノロジー リミテッド デコード方法、装置及びシステム
US11863329B2 (en) 2016-08-12 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Uplink control signaling on PUSCH with shortened transmission time interval (TTI)

Also Published As

Publication number Publication date
US9386547B2 (en) 2016-07-05
JP5826852B2 (ja) 2015-12-02
JPWO2013031119A1 (ja) 2015-03-23
US20140226586A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5826852B2 (ja) Sc−fdma送信装置及び送信方法
US7782896B2 (en) Wireless communication apparatus and wireless communication method
JP4990406B2 (ja) 集積回路
JP4887358B2 (ja) 無線通信システム、無線送信装置、およびリソース割当方法
JP4592523B2 (ja) 無線送信装置および無線受信装置
KR101606610B1 (ko) 단말 장치 및 매핑 방법
US8917697B2 (en) Radio communication control method, radio base station apparatus and mobile terminal apparatus
JP5159639B2 (ja) 基地局装置およびマッピング方法
KR20120125262A (ko) 단말 및 그 통신 방법
US10873414B2 (en) Terminal apparatus, base station apparatus, and communication method
US8630313B2 (en) Signal mapping method and communication device
WO2010122910A1 (ja) 無線通信システム、基地局装置および移動局装置
WO2013031118A1 (ja) 送信装置及び送信方法
US10050820B2 (en) Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system
WO2017217182A1 (ja) 基地局、端末及び通信方法
Takeda et al. Investigation on rate matching and soft buffer splitting for LTE-advanced carrier aggregation
US8861630B2 (en) Reception apparatus and reception method for improving MIMO transmission
KR20070050118A (ko) Ofdma 이동 통신 시스템의 채널할당방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828320

Country of ref document: EP

Kind code of ref document: A1