WO2013029448A1 - 一种利用赤泥制取热铁水及副产品的装置 - Google Patents

一种利用赤泥制取热铁水及副产品的装置 Download PDF

Info

Publication number
WO2013029448A1
WO2013029448A1 PCT/CN2012/079356 CN2012079356W WO2013029448A1 WO 2013029448 A1 WO2013029448 A1 WO 2013029448A1 CN 2012079356 W CN2012079356 W CN 2012079356W WO 2013029448 A1 WO2013029448 A1 WO 2013029448A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
red mud
slag
hot iron
iron water
Prior art date
Application number
PCT/CN2012/079356
Other languages
English (en)
French (fr)
Inventor
胡长春
胡晓雪
Original Assignee
Hu Changchun
Hu Xiaoxue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hu Changchun, Hu Xiaoxue filed Critical Hu Changchun
Publication of WO2013029448A1 publication Critical patent/WO2013029448A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • F27B19/04Combinations of furnaces of kinds not covered by a single preceding main group arranged for associated working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • C21B13/085Making spongy iron or liquid steel, by direct processes in rotary furnaces wherein iron or steel is obtained in a molten state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of metal smelting, and particularly relates to a device for taking hot iron water and by-products by using red mud. Background technique
  • Red mud its main components are: 5% ⁇ 25% alumina; 30% ⁇ 55% iron oxide; 5% ⁇ 25% silica; 3% ⁇ 9% sodium oxide; 10% ⁇ 15% sodium hydroxide; Titanium, magnesium oxide, calcium oxide, etc. 5% ⁇ 10%. It generally contains a large amount of iron oxide, and its appearance is similar to that of red soil. It is named; it is a polluted waste discharged from the aluminum industry when it is extracted from alumina. Its pH is very high, and the pH of the leachate is 12.1 ⁇ 13.0. In industrial production, an average of 1 to 2 tons of red mud is produced per ton of alumina produced.
  • the sodium salt content of 30 ⁇ 400 mg / L is a suitable range of public water sources, and the sodium salinity of the red mud liquid is as high as 26348 mg / L, so the red mud liquid with such high sodium salinity enters the water body, and its pollution is not said. And Yu.
  • the technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, and to provide a device for taking hot iron water and by-products by using red mud, which can solve the magnetic separation method (including superconducting magnetic separation method) in the prior art.
  • the problem that the re-election method or the flotation method cannot be selected at all can also solve the problem that the blast furnace method can't slag, so that the poisonous and polluted red mud can be resourced to obtain elemental iron; and the zero discharge of solid pollutants can be achieved.
  • the technical solution adopted by the present invention to solve the technical problems thereof is: a device for taking hot iron water and by-products by using red mud, comprising a rotary kiln, wherein a rotary gas outlet is arranged at the tail of the rotary kiln, and a discharge port is provided at the head.
  • the utility model is further characterized in that: a guiding trough is further arranged, a tailing end of the guiding trough is provided with a feeding port, and a head is provided with a slag opening, the feeding port is connected with the discharging port; in the guiding trough The head is mounted with at least one gas gun, the muzzle of the gas gun is directed toward the discharge of the tail of the flow guiding trough; and the inlet port serves as an outlet of the diversion trough;
  • the lower side of the head of the flow guiding groove is provided with a hot iron water outlet; the hot iron water outlet is lower than the slag outlet.
  • the inlet of the flow guiding groove and the discharge opening of the rotary kiln are connected by a passage made of refractory material.
  • three gas guns are mounted on the head of the flow guiding trough, and the muzzle of the gas gun is directed toward the blanking of the tail of the diversion trough.
  • At different heights on the left and right sides of the tail of the flow guiding groove at least one gas gun is disposed, and the muzzle of the gas gun is directed toward the blanking of the tail of the guiding trough.
  • the method further includes a melting furnace, the upper portion of the melting furnace is provided with a slag inlet, and the slag opening and the slag outlet of the guiding trough are connected by a refractory material; The mouth is also used as the outlet of the melting furnace.
  • the flue gas outlet of the rotary kiln is connected to a water curtain dust removal alkali absorption tower through a waste heat boiler.
  • the hot iron water outlet is connected to a ladle or a cast iron machine.
  • a middle portion of the melting furnace is provided with a cement clinker outlet, a lower portion is provided with a silicon titanium alloy outlet, and a bottom portion is provided with a bottom outlet.
  • the invention has the beneficial effects that it does not need to incorporate a large amount of calcium-containing compound, and does not need to use coke, so that the problem of the slag slag which cannot be solved by the blast furnace method in the prior art can be solved, and the problem is greatly reduced.
  • the production cost; the toxic red mud will be resourced to obtain elemental iron, and the recovery rate can reach over 99%, which solves the problem of red mud occupation and environmental pollution; and can also obtain such as silicon-aluminum alloy, superheated steam, By-products such as sodium salt and microcrystalline powder make large-scale industrial production of float crystallite possible.
  • the entire production process achieves zero discharge of solid pollutants, gas emission standards, true low carbon emissions, and environmental protection. It is a great circular economy project.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a second embodiment of the present invention.
  • the positions of the rotary kiln 1, the guide groove 2, and the melting furnace 3 are sequentially lowered, and the heights of their respective heads or lower portions relative to the tail or the upper portion thereof are as follows. All are low, that is: the head of the rotary kiln 1 is slightly shorter than the tail; the tail of the guide groove 2 is at the head of the rotary kiln 1, but higher than the head of the flow guide 2; the upper part of the melting furnace 3 It is lower than the head of the flow guiding groove 2, but higher than the lower portion of the melting furnace 3.
  • the utility model relates to a device for preparing hot iron water and by-products by using red mud, which comprises a rotary furnace 1, a guide trough 2, a melting furnace 3, a flue gas outlet 11 at the tail of the rotary furnace 1 and a discharge port 12 at the head.
  • the flue gas outlet 11 of the rotary kiln 1 is connected to a water curtain dust removing alkali absorption tower 14 through a waste heat boiler 13;
  • the inlet chute 2 is provided with a feed port 21 at the tail portion and a slag discharge port 22 at the head portion;
  • the inlet 21 of the tail of the diversion trough 2 and the outlet 12 of the head of the rotary kiln 1 are connected by a passage made of refractory material, and the inlet 21 is simultaneously used as an outlet of the diversion tank 2;
  • the lower side of the head of the flow guiding groove 2 is provided with a hot iron water outlet 24, which is lower than the slag opening 22 of the head of the guiding trough 2; the hot iron water outlet 24 is connected to the ladle 25 ;
  • the upper portion of the melting furnace 3 is provided with a slag opening 31, and the slag opening 31 and the slag opening 22 of the guiding trough 2 are connected by a refractory material; the slag opening 31 is simultaneously melted The air outlet of the sub-furnace 3;
  • the middle of the melting furnace is provided with a cement clinker outlet 32, a lower portion is provided with a silicon titanium alloy outlet 33, and a bottom portion is provided with a bottom outlet 34.
  • the hot iron water outlet 24 on the lower side of the head of the flow guiding groove 2 is connected to the cast iron machine 26; the others are the same as those in the first embodiment.
  • rotary kiln 1 As shown in Fig. 1 and 2, according to the ratio of weight percentage 1: 0.05 - 0.35: 0.2 0.5, red mud, lime, coal are taken, and they are mixed evenly, and mixed raw materials are added to the rotary kiln 1, rotary kiln 1
  • the internal temperature is between 800 and 1460 degrees Celsius; the mixed raw material is dried and pre-reduced in the rotary kiln 1 for 2 to 10 hours to produce a semi-molten material; the rotary kiln 1 is from the tail to the head.
  • the temperature is gradually increased from 800 degrees Celsius to 1460 degrees; the above-mentioned raw material is transferred from the discharge port 12 of the rotary kiln 1 through the inlet 21 of the flow guiding groove 2 into the flow guiding groove 2;
  • the port 21 serves as an air outlet of the guide groove 2 at the same time;
  • three gas guns 23 are installed at the head of the flow guiding groove 2, and a different height is arranged at different heights on the left and right sides of the tail portion of the guiding groove 2.
  • the gas gun 23, the muzzle of all the gas guns 23 faces the guide channel 2 At the end of the feed port 21 of the tail, the raw material is jetted and assisted; the temperature in the guide trough 2 is between 1450 and 1700 degrees Celsius, and the raw material is melted in the diversion tank 2 for 1-4 hours.
  • the slag iron is separated; the upper layer of slag is discharged from the slag outlet 22, the lower layer of hot iron water is discharged from the hot iron water outlet 24; the escaping hot molten iron enters the ladle 25 or the cast iron machine 26;
  • the slag discharged from the slag opening 22 of the flow guiding groove 2 enters the melting furnace 3 through the slag opening 31 of the melting furnace 3,
  • the temperature in the melting furnace 3 is set to 2250 ⁇ 2400 degrees Celsius; the metal reducing agent is added for 30 ⁇ 100 minutes; the cement clinker is obtained from the cement clinker outlet 32 of the melting furnace 3, and the silicon titanium aluminum from the melting furnace 3
  • the alloy outlet 33 is obtained from a silicon-titanium-aluminum alloy; if the content of titanium-aluminum in the red mud used is low, the following method is used: the slag discharged from the slag discharge port 22 of the flow guiding groove 2, and the slag passing through the melting furnace 3
  • the port 31 enters the melting furnace 3, the temperature in the melting furnace 3 is set to 1400 to 1700 degrees Celsius; the clarifying agent is added for 30 to 120 minutes; the microcrystalline powder is obtained from the bottom outlet 34 of the melting
  • the flue gas discharged from the flue gas outlet 11 at the tail of the rotary kiln 1 is superheated steam after passing through the waste heat boiler 13; and the sulphur dioxide, fluorine, arsenic and the like in the flue gas are absorbed by the water curtain dedusting alkali absorption tower 14 to dissolve the flue gas.
  • a sodium (or potassium)-containing alkaline aqueous solution a mixed liquid of sodium hydrogen sulfate, sodium fluoride, sodium fluorosilicate, sodium arsenate or the like is formed.

Abstract

一种利用赤泥制取热铁水及副产品的装置,包括回转炉(1)、导流槽(2)、熔分炉(3),回转炉(1)设有烟气出口(11)、出料口(12),导流槽(2)设有入料口(21)、出渣口(22),入料口(21)与出料口(12)连通;在导流槽(2)头部安装至少一支燃气枪(23);导流槽(2)头部下侧,设置有热铁水出口(24),热铁水出口(24)连接钢水包(25)或铸铁机(26);熔分炉(3)设有与出渣口(22)连通的入渣口(31),还设有水泥熟料出口(32)、硅钛铝合金出口(33)、底部出口(34)。该装置解决了高炉法不能"吐渣"的问题,大大降低成本,且达到固体污染物零排放,气体达标排放,低碳排放,绿色环保。

Description

一种利用赤泥制取热铁水及副产品的装置 技术领域
本发明属于金属冶炼技术领域, 具体涉及一种利用赤泥制取热铁水及副产 品的装置。 背景技术
赤泥, 其主要成分为: 氧化铝 5% ~ 25%; 氧化铁 30% ~ 55%; 氧化硅 5% ~ 25%; 氧化钠 3% ~ 9%; 灼钠盐 10% ~ 15%; 氧化钛、 氧化镁、 氧化钙等 5% ~ 10%。 它一般含氧化铁量较大, 外观与赤色泥土相似, 因而得名; 它是制铝工 业提取氧化铝时排出的污染性废渣,其 pH值很高,浸出液的 pH值为 12.1 ~ 13.0。 在工业化生产中, 一般平均每生产 1吨氧化铝, 附带产生 1 ~ 2吨赤泥。 中国作 为世界第 4大氧化铝生产国, 每年排放的赤泥高达数千万吨, 而全世界每年产 生的赤泥约 7000万吨。 每年不断产生大量的赤泥不能充分有效的利用, 已经对 人类的生产、 生活造成多方面的直接和间接的影响, 所以最大限度的减少赤泥 的产量和危害, 实现多渠道、 大数量的资源化已迫在眉睫。 由于此前国内外对 赤泥尚无有效的工业化处理方法, 即使发达国家也多是排入海中或堆存。 中国 相关行业过去一般只能堆存, 既占用了大量土地, 又对土壤、 水源、 大气等造 成污染。 一般认为钠盐含量为 30 ~ 400 mg/L是公共水源的适合范围, 而赤泥附 液的钠盐度高达 26348mg/L, 如此高钠盐度的赤泥附液进入水体, 其污染不言 而喻。 为解决这一难题, 人们曾经试图使用高炉法、 磁选法(包括超导磁选法) 或浮选法, 提取赤泥中的铁, 并藉此 "消化" 大量堆存的赤泥, 但是, 因为赤 泥中的铁是以深度氧化铁、 铁盐等状态存在的, 故磁选法(包括超导磁选法)、 重选法或浮选法根本无法提取其中的铁; 而高炉法, 因为其中含有较大量的铝、 钛及其化合物, 由于这些物质非常粘稠, 不但阻止了高炉中的气固液三相反应 的进行, 而且使得高炉 "吐渣" 不能; 虽然可以掺入大量的含钙化合物以解决
"粘稠" 问题, 但就大大增加了生产成本, 基本没有了效益, 失去了实用性, 所以不再被使用。 发明内容
本发明要解决的技术问题是: 克服现有技术的不足, 提供一种利用赤泥制 取热铁水及副产品的装置,它既可以解决现有技术中磁选法(包括超导磁选法)、 重选法或浮选法根本无法选取的问题, 也可以解决高炉法 "吐渣" 不能的问题, 使得有毒害、 污染的赤泥资源化, 得到单质铁; 而且达到固体污染物零排放。
本发明解决其技术问题所釆用的技术方案是:一种利用赤泥制取热铁水及副 产品的装置, 包括回转炉, 所述回转炉尾部设有烟气出口、 头部设有出料口, 其特征在于: 还包括一导流槽, 所述导流槽尾部设有入料口、 头部设有出渣口, 所述入料口与所述出料口连通; 在所述导流槽头部, 安装有至少一支燃气枪, 所述燃气枪的枪口朝向所述导流槽尾部的下料处; 所述入料口同时作为导流槽 的出气口;
所述导流槽头部下侧,设置有热铁水出口;所述热铁水出口低于所述出渣口。 优选的, 所述导流槽的入料口与所述回转炉的出料口, 通过由耐火材料砌 成的通道连通。
优选的, 在所述导流槽头部, 安装有三支燃气枪, 所述燃气枪的枪口均朝向 所述导流槽尾部的下料处。
优选的,在所述导流槽尾部左右两侧的不同高度处, 分别设置有至少一支燃 气枪, 所述燃气枪的枪口均朝向所述导流槽尾部的下料处。
优选的, 还包括一熔分炉, 所述熔分炉上部设置有入渣口, 所述入渣口与所 述导流槽的出渣口通过由耐火材料砌成通道连通; 所述入渣口同时作为熔分炉 的出气口。
优选的, 所述回转炉的烟气出口经过一余热锅炉与一水幕除尘碱吸收塔连 通。
优选的, 所述热铁水出口连接一钢水包或一铸铁机。
优选的,所述熔分炉中部设有一水泥熟料出口 ,下部设有一硅钛铝合金出口 , 底部设有一底部出口。
与现有技术相比, 本发明的有益效果是: 它不必掺入大量的含钙化合物, 也不必须使用焦炭, 就可以解决现有技术中高炉法 "吐渣" 不能的问题, 大大 地降低了生产成本; 将使有毒的赤泥资源化, 得到单质铁, 其回收率可达 99% 以上, 解决了赤泥占地、 污染环境的问题; 还可以得到诸如硅钛铝合金、 过热 蒸汽、 钠盐、 微晶石粉等副产品, 且使得浮法微晶石的大规模工业化生产成为 可能。 而且整个生产过程达到固体污染物零排放, 气体达标排放, 真正的低碳 排放, 绿色环保。 是一个大好的循环经济项目。 附图说明
图 1是本发明实施例一的结构示意图;
图 2是本发明实施例二的结构示意图。
图中标记为:
1、 回转炉; 11、 烟气出口; 12、 出料口; 13、 余热锅炉; 14、 水幕除尘碱 吸收塔; 2、 导流槽; 21、 入料口; 22、 出渣口; 23、 燃气枪; 24、 热铁水出口; 25、 钢水包; 26、 铸铁机; 3、 熔分炉; 31、 入渣口; 32、 水泥熟料出口; 33、 硅钛铝合金出口; 34、 底部出口。 具体实施方式
下面结合附图实施例, 对本发明做进一步描述:
实施例一
如图 1所示, 安装时, 回转炉 1、 导流槽 2、 熔分炉 3三者所处的位置是依 次降低的, 而且它们各自本身的头部或下部相对于其尾部或上部的高度都低, 亦即: 回转炉 1的头部较其尾部略氏; 导流槽 2的尾部氏于回转炉 1的头部, 但高于导流槽 2的头部; 熔分炉 3的上部低于导流槽 2的头部,但高于熔分炉 3 的下部。
一种利用赤泥制取热铁水及副产品的装置, 包括回转炉 1、 导流槽 2、 熔分 炉 3 , 所述回转炉 1尾部设有烟气出口 11、 头部设有出料口 12, 所述回转炉 1 的烟气出口 11经过余热锅炉 13与一水幕除尘碱吸收塔 14连通; 所述导流槽 2 尾部设有入料口 21、 头部设有出渣口 22; 所述导流槽 2尾部的入料口 21与所 述回转炉 1头部的出料口 12通过由耐火材料砌成的通道连通, 所述入料口 21 同时作为导流槽 2的出气口;
在所述导流槽 2头部, 安装有三支燃气枪 23 , 在所述导流槽 2尾部左右两 侧的不同高度处,分别设置有一支燃气枪 23 , 所述燃气枪 23的枪口均朝向所述 导流槽 2尾部的入料口 21的下料处;
所述导流槽 2头部下侧, 设置有热铁水出口 24, 所述热铁水出口 24低于所 述导流槽 2头部的出渣口 22; 所述热铁水出口 24连接钢水包 25;
所述熔分炉 3上部设置有入渣口 31 , 所述入渣口 31与所述导流槽 2的出渣 口 22通过由耐火材料砌成通道连通; 所述入渣口 31同时作为熔分炉 3的出气 口;
所述熔分炉中部设有一水泥熟料出口 32 , 下部设有一硅钛铝合金出口 33 , 底部设有一底部出口 34。
实施例二
如图 2所示, 所述导流槽 2头部下侧的热铁水出口 24连接铸铁机 26; 其它 均与实施例一中的相同。
本发明的工作过程如下:
如图 1、 2所示, 按照重量百分比 1 : 0.05 - 0.35: 0.2 0.5的比例, 取赤泥、 石灰、 煤, 并将它们混合均匀, 制成混合生料加入到回转窑 1 中, 回转窑 1 内 温度在摄氏 800 ~ 1460度; 混合生料在回转窑 1内经过 2 ~ 10小时, 进行烘干、 预还原, 生成呈半熔融状态的还原料; 回转窑 1 内从尾部至头部的温度, 从摄 氏 800度渐升至 1460度; 将上述的还原料由回转窑 1的出料口 12, 经导流槽 2 的入料口 21 , 进入到导流槽 2内; 所述入料口 21同时作为导流槽 2的出气口; 在所述导流槽 2头部安装了三支燃气枪 23 , 在所述导流槽 2尾部左右两侧的不 同高度处,分别设置了一支燃气枪 23 ,所有燃气枪 23的枪口均朝向所述导流槽 2尾部的入料口 21的下料处, 对还原料进行喷气、 助燃; 导流槽 2内温度在摄 氏 1450 ~ 1700度, 还原料在导流槽 2内经过 1 ~ 4小时, 进行熔融、 渣铁分离; 上层的渣由出渣口 22排出, 下层的热铁水由热铁水出口 24流出; 流出的热铁 水进入钢水包 25或铸铁机 26;
如果所用赤泥中, 钛铝的含量较高, 就釆用如下方法: 由导流槽 2的出渣口 22排出的渣, 经熔分炉 3的入渣口 31进入熔分炉 3内,熔分炉 3内温度设为摄 氏 2250 ~ 2400度; 加入金属还原剂, 保持 30 ~ 100分钟; 由熔分炉 3的水泥熟 料出口 32得到水泥熟料, 由熔分炉 3的硅钛铝合金出口 33得到硅钛铝合金; 如果所用赤泥中, 钛铝的含量较低, 就釆用如下方法: 由导流槽 2的出渣口 22排出的渣, 经熔分炉 3的入渣口 31进入熔分炉 3内,熔分炉 3内温度设为摄 氏 1400 ~ 1700度; 加入澄清剂, 保持 30 ~ 120分钟; 由熔分炉 3的底部出口 34 得到微晶石粉;
从回转炉 1尾部的烟气出口 11排放出的烟气, 经由余热锅炉 13后得到过 热蒸汽; 再经由水幕除尘碱吸收塔 14吸收烟气中的二氧化硫、 氟、 砷等废气, 使之溶于含钠 (或钾)碱性水溶液, 生成了硫酸氢钠、 氟化钠、 氟硅酸钠、 砷 酸钠等的混合液体。
以上所述, 仅是本发明的较佳实施例而已, 并非是对本发明作其它形式的 限制, 任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改 型为等同变化的等效实施例。 但是凡是未脱离本发明技术方案内容, 依据本发 明的技术实质对以上实施例所作的任何简单修改、 等同变化与改型, 仍属于本 发明技术方案的保护范围。

Claims

权利要求书
1、 一种利用赤泥制取热铁水及副产品的装置, 包括回转炉, 所述回转炉尾 部设有烟气出口、 头部设有出料口, 其特征在于: 还包括一导流槽, 所述导流 槽尾部设有入料口、 头部设有出渣口, 所述入料口与所述出料口连通; 在所述 导流槽头部, 安装有至少一支燃气枪, 所述燃气枪的枪口朝向所述导流槽尾部 的下料处; 所述入料口同时作为导流槽的出气口;
所述导流槽头部下侧,设置有热铁水出口;所述热铁水出口低于所述出渣口。
2、 根据权利要求 1所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 所述导流槽的入料口与所述回转炉的出料口, 通过由耐火材料砌成的通道 连通。
3、 根据权利要求 2所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 在所述导流槽头部, 安装有三支燃气枪, 所述燃气枪的枪口均朝向所述导 流槽尾部的下料处。
4、 根据权利要求 1至 3任一所述的利用赤泥制取热铁水及副产品的装置, 其特征在于: 在所述导流槽尾部左右两侧的不同高度处, 分别设置有至少一支 燃气枪, 所述燃气枪的枪口均朝向所述导流槽尾部的下料处。
5、 根据权利要求 4所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 还包括一熔分炉, 所述熔分炉上部设置有入渣口, 所述入渣口与所述导流 槽的出渣口通过由耐火材料砌成通道连通; 所述入渣口同时作为熔分炉的出气 口。
6、 根据权利要求 5所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 所述回转炉的烟气出口经过一余热锅炉与一水幕除尘碱吸收塔连通。
7、 根据权利要求 6所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 所述热铁水出口连接一钢水包或一铸铁机。
8、 根据权利要求 7所述的利用赤泥制取热铁水及副产品的装置, 其特征在 于: 所述熔分炉中部设有一水泥熟料出口, 下部设有一硅钛铝合金出口, 底部 设有一底部出口。
PCT/CN2012/079356 2011-09-04 2012-07-30 一种利用赤泥制取热铁水及副产品的装置 WO2013029448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110271401.7 2011-09-04
CN2011102714017A CN102344983B (zh) 2011-09-04 2011-09-04 一种利用赤泥制取热铁水及副产品的装置

Publications (1)

Publication Number Publication Date
WO2013029448A1 true WO2013029448A1 (zh) 2013-03-07

Family

ID=45544054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079356 WO2013029448A1 (zh) 2011-09-04 2012-07-30 一种利用赤泥制取热铁水及副产品的装置

Country Status (2)

Country Link
CN (1) CN102344983B (zh)
WO (1) WO2013029448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673682A (zh) * 2016-12-30 2017-05-17 钢研晟华工程技术有限公司 一种利用固废生产铁合金和耐火材料的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102344983B (zh) * 2011-09-04 2013-08-28 胡长春 一种利用赤泥制取热铁水及副产品的装置
CN102758045A (zh) * 2012-06-02 2012-10-31 胡长春 一种利用铝土矿或赤泥进行无渣生产的装置
RU2619406C2 (ru) * 2014-12-26 2017-05-15 Александр Васильевич Петров Способ комплексной переработки красного и нефелинового шламов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195754A1 (en) * 2001-06-26 2002-12-26 Onahama Smelting And Refining Co., Ltd Shredder dust feeding device, reverberatory furnace provided with this feeding device, and furnace for burning shredder dust
US20090090216A1 (en) * 2006-04-25 2009-04-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing molten iron and apparatus for producing molten iron
CN102061350A (zh) * 2011-01-12 2011-05-18 董亚飞 一种短流程的赤泥综合利用方法及设备
CN102344983A (zh) * 2011-09-04 2012-02-08 胡长春 一种利用赤泥制取热铁水及副产品的装置
CN202220184U (zh) * 2011-09-04 2012-05-16 胡长春 一种利用赤泥制取热铁水及副产品的装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201811564U (zh) * 2010-09-15 2011-04-27 吉林吉恩镍业股份有限公司 多段式高温还原回转窑

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195754A1 (en) * 2001-06-26 2002-12-26 Onahama Smelting And Refining Co., Ltd Shredder dust feeding device, reverberatory furnace provided with this feeding device, and furnace for burning shredder dust
US20090090216A1 (en) * 2006-04-25 2009-04-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing molten iron and apparatus for producing molten iron
CN102061350A (zh) * 2011-01-12 2011-05-18 董亚飞 一种短流程的赤泥综合利用方法及设备
CN102344983A (zh) * 2011-09-04 2012-02-08 胡长春 一种利用赤泥制取热铁水及副产品的装置
CN202220184U (zh) * 2011-09-04 2012-05-16 胡长春 一种利用赤泥制取热铁水及副产品的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673682A (zh) * 2016-12-30 2017-05-17 钢研晟华工程技术有限公司 一种利用固废生产铁合金和耐火材料的方法
CN106673682B (zh) * 2016-12-30 2020-03-20 钢研晟华工程技术有限公司 一种利用固废生产铁合金和耐火材料的方法

Also Published As

Publication number Publication date
CN102344983A (zh) 2012-02-08
CN102344983B (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
WO2013029447A1 (zh) 一种利用赤泥制取热铁水及副产品的工艺方法
CN101074457B (zh) 一种垃圾焚烧飞灰重金属的熔融分离处理方法
CN104528834B (zh) 人造金红石母液资源化利用新方法
CN105238938A (zh) 一种铜精矿连续生产阳极铜的三连炉工艺
CN112570419B (zh) 一种铝灰回收利用方法、无害化铝灰及其应用
CN114672643B (zh) 一种高铁赤泥和熔融钢渣协同利用方法
CN103121717B (zh) 一种混炼铬铁矿和铬铁制备铬酸钠的方法及其装置
CN102732662A (zh) 一种利用铝土矿或赤泥进行无渣生产的工艺方法
WO2013029448A1 (zh) 一种利用赤泥制取热铁水及副产品的装置
CN105002371A (zh) 一种采用四连炉生产阳极铜的工艺
CN105384364A (zh) 一种电炉钢渣改质剂及其电炉钢渣改质的方法
CN108034819B (zh) 一种采用富氧熔炼方法提取铜的方法
CN205170895U (zh) 一种回转窑co2和氩气用于转炉冶炼的控制装置
CN104513897A (zh) 超高比例烟气循环的铁矿烧结方法
CN202220184U (zh) 一种利用赤泥制取热铁水及副产品的装置
CN104176753A (zh) 从粉煤灰中提取复合氧化铝的方法
CN202610256U (zh) 一种利用铝土矿或赤泥进行无渣生产的装置
CN204490904U (zh) 高炉焖炉结构
CN106498164A (zh) 一种采用节能环保型富氧熔炼炉处理有色金属物料的工艺方法
CN106086257A (zh) 一种钢铁企业高炉渣余热回收装置和方法
CN105274278A (zh) 一种回转窑co2和氩气用于转炉冶炼的控制装置和方法
CN106222349B (zh) 一种利用熔池熔炼炉处理含铁原料的方法及装置
CN102758045A (zh) 一种利用铝土矿或赤泥进行无渣生产的装置
CN205796799U (zh) 一种电解锰阳极渣处理铅氮硫的设备系统
CN109487085A (zh) 一种旋转火法回收钯铂的工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827509

Country of ref document: EP

Kind code of ref document: A1