WO2013029400A1 - 一种可用于多芯片半导体led照明的二次配光透镜 - Google Patents

一种可用于多芯片半导体led照明的二次配光透镜 Download PDF

Info

Publication number
WO2013029400A1
WO2013029400A1 PCT/CN2012/076156 CN2012076156W WO2013029400A1 WO 2013029400 A1 WO2013029400 A1 WO 2013029400A1 CN 2012076156 W CN2012076156 W CN 2012076156W WO 2013029400 A1 WO2013029400 A1 WO 2013029400A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
recess
lens according
angle
Prior art date
Application number
PCT/CN2012/076156
Other languages
English (en)
French (fr)
Inventor
蒋金波
江文达
Original Assignee
惠州元晖光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州元晖光电股份有限公司 filed Critical 惠州元晖光电股份有限公司
Publication of WO2013029400A1 publication Critical patent/WO2013029400A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/002Refractors for light sources using microoptical elements for redirecting or diffusing light
    • F21V5/004Refractors for light sources using microoptical elements for redirecting or diffusing light using microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/046Refractors for light sources of lens shape the lens having a rotationally symmetrical shape about an axis for transmitting light in a direction mainly perpendicular to this axis, e.g. ring or annular lens with light source disposed inside the ring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an optical lens, and more particularly to a secondary light distribution lens that can be used for multi-chip semiconductor LED illumination. Background technique
  • LED secondary optical lenses are mainly smooth total reflection lenses.
  • the basic structure is as follows: a concave aspheric lens for collecting light on the top of the middle concave portion and a smooth total reflection for the outer one circle surface.
  • This lens is mainly suitable for the light distribution of single-chip LEDs, which can form a circular, highly efficient spot distribution.
  • multi-chip LEDs such lenses are imaged by the aspherical surface facing the chip, and the projected spot tends to form a square or petal-like chip shadow. Summary of the invention
  • the present invention provides a lens comprising: (a) a lens body; (b) a total reflection surface disposed on an outer side of the lens body, the total reflection surface a shape of a scaly polyhedron; (c) a recess formed at an intermediate position of a lower side of the lens body for accommodating an LED having a side surface and a top portion; (d) a microscopic portion formed at the top of the recess a lens array; and (e) an exit surface disposed at a top of the lens body; wherein a substantially uniform circular spot is formed by the lens.
  • the LED is a single chip or a multi chip.
  • the scaly polyhedron includes a diamond, diamond, square or spiral surface.
  • the shape of the side surface of the recess is a cylindrical surface, a tapered surface or a curved surface.
  • the exit surface includes one or more planes or curved surfaces.
  • the exit surface includes a concave or convex spherical surface, an aspherical surface, a Fresnel surface, a pincushion lens array or a wavy stripe surface.
  • Each of the scales of the scaly polyhedron of the reflecting surface has a curved surface of a plane or an arc.
  • the shape of the microlens array is circular, hexagonal, quadrangular, wavy or radial.
  • a portion of the light emitted from the LED that is directed toward the side of the recess passes through the side After the surface is incident on the reflective surface, the reflected light is emitted through the exit surface to form a light distribution of the girth angle, the full angle of the light beam is 2 ⁇ , and the ⁇ is between 2° and 45°, and the scaly reflective surface
  • each discrete scale generates its own range of light distribution, whereby the light distribution of the plurality of scales is superimposed to produce a relatively uniform spot distribution within a certain angle.
  • a part of the light emitted from the LED toward the top of the recess passes through the top and is incident on the exit surface and exits through the exit surface to form a light distribution of the girth angle, wherein the ⁇ is at 2° Between 45°, the microlens array is arranged for light mixing.
  • the light incident on the lowermost side of the reflecting surface, the reflected light passing through the exit surface is parallel to the optical axis, and the light incident on the uppermost side of the reflecting surface, the reflected light is emitted through the exit surface and the optical axis
  • the angle is ⁇ ; the light incident on the uppermost side and the lowermost side of the reflecting surface, the reflected light is emitted through the exit surface and the angle with the optical axis is distributed between 0° and ⁇ according to the ratio.
  • the numerical aperture angle of each of the microlenses at the top of the recess is a ⁇ angle, and the full angle of the beam is 2 ⁇ .
  • a flange is provided around the top of the lens body at a circumference, and a leg formed on the flange is used to fix the position of the lens body.
  • the bottom of the lens body is provided with a flat surface for connecting the side surface of the recess and the reflecting surface to facilitate fixing the lens body to the base of the LED.
  • the light mixing technique is incorporated into the secondary optical lens, and the intermediate microlens array and the side diamond, square or diamond-shaped scaly polyhedral reflecting surface are used for light mixing. , at the same time, the required beam angle is configured. A uniform circular spot can be achieved for any shape of the chip arrangement, and no shadows due to the shape of the chip can be seen.
  • the LEDs used can be single-chip and multi-chip, as well as red, green and blue.
  • Figure 1 is a cross-sectional view of a lens in accordance with a first embodiment of the present invention
  • Figure 2 shows a front view, an isometric view, a top view, a side view and a bottom view, respectively, of the lens of Figure 1;
  • Figure 3 shows a design principle of a lens according to a first embodiment of the present invention
  • Figure 4 shows the light distribution angles of the lens shown in Figure 1 at 5°, 18°, and 45°, respectively. Strong far field angular distribution;
  • Figure 5 (a) is a computer simulation of a lens according to a first embodiment of the present invention.
  • Figure 6 (a) shows a spot shape and an illuminance distribution of a lens at a distance of 1 m according to the first embodiment of the present invention
  • Figure 6 (b) is a view showing an outline illuminance of a lens according to a first embodiment of the present invention
  • Figure 7 is a far-field angular distribution (light distribution curve) of a light intensity of a lens according to a first embodiment of the present invention
  • Figure 8 is a cross-sectional view of a lens in accordance with a second embodiment of the present invention.
  • Figure 9 is a front view, an isometric view, a top view, a side view and a bottom view, respectively, of the lens of Figure 8;
  • Figure 10 is a design principle of a lens according to a second embodiment of the present invention.
  • Figure 11 (a) is a computer simulation of a lens according to a second embodiment of the present invention.
  • Figure 11 (b) is a ray tracing of a lens according to a second embodiment of the present invention.
  • Figure 12 (a) is a view of the spot shape and illuminance distribution of the lens at a distance of 1 m according to the second embodiment of the present invention
  • Figure 12 (b) is a view showing an outline illuminance of a lens according to a second embodiment of the present invention
  • Figure 13 is a far-field angular distribution (light distribution curve) of a light intensity of a lens according to a second embodiment of the present invention
  • Figure 15 is a front elevational view, an isometric view, a top view, a side view and a bottom view, respectively, of a lens according to a fourth embodiment of the present invention, wherein the outer reflective surface is a spiral scale;
  • Figure 16 shows a lens according to a fifth embodiment of the present invention, wherein the exit surface of the lens is convex;
  • Figure 17 shows a lens according to a sixth embodiment of the present invention, wherein the exit surface of the lens is concave;
  • Figure 18 shows a lens according to a seventh embodiment of the present invention, wherein the exit surface of the lens is a Fresnel surface;
  • Figure 19 shows a lens according to an eighth embodiment of the present invention, wherein the output face of the top of the lens is a pincushion lens array;
  • Figure 20 shows a lens according to a ninth embodiment of the present invention, wherein the top of the lens is wavy Stripe lens array. Specific real
  • FIG. 1 A cross-sectional view of a first embodiment of a secondary optical lens according to the present invention is shown in Fig. 1.
  • the recess is used to place a multi-chip LED light source, the top portion 2 of which is composed of a plurality of microlenses (microlens arrays).
  • the arrangement of the microlens arrays may be circular, hexagonal, quadrilateral, wavy, radial, and other irregular arrangements.
  • the side 1 of the recess is a cylindrical surface, a tapered surface or a curved curved surface.
  • the outer surface of the secondary light distribution lens has a total reflection surface 3, which is composed of a diamond-shaped, diamond-shaped, square-shaped or spiral-shaped scaly polyhedron;
  • the lens top 4 is an exit surface, which is one or more Plane or curved surface, which may be a concave or convex spherical surface, an aspherical surface, a Fresnel surface, a pincushion lens array, a wavy striped surface or other free curved surfaces;
  • a circle around the top of the lens 5 is a fixed flange It does not have an optical effect, it can be any shape, and it can have a pin on it to fix the position of the lens.
  • the bottom 6 of the lens is a flat surface for connecting the concave side 1 and the outer total reflection surface 3, which has no optical effect and is used to position the lens on the base of the LED.
  • Fig. 2 is a view of the lens 3 of the first embodiment of the present invention. It can be seen that the outer total reflection surface 3 of the lens is composed of a diamond-shaped, square or diamond-shaped scaly polyhedron, preferably a diamond-shaped polyhedron, and each small scale of the polyhedron may be a flat or curved curved surface. Since the light distribution of the smooth reflection surface to the incident light is continuous, when the LED light source is a multi-chip LED, bright spots or dark spots are more likely to occur, resulting in uneven distribution of the light spots. The scaly reflective surface used here is used to break the boundary of the light distribution. Each discrete scale produces its own range of light distribution.
  • the light distribution of multiple scales is superimposed to produce a uniform distribution of light spots within an angle.
  • Fig. 3 is a design principle of the lens described in the first embodiment.
  • a part of the light emitted from the LED to the side passes through the recessed side 1 and then enters the total reflection surface 3 on the outside of the lens, and the reflected light is emitted through the exit surface 4 at the top of the lens to form a girth angle (the full angle of the beam is 2 ⁇ ).
  • a part of the light emitted from the LED toward the middle passes through the microlens array at the top of the recess, and is also emitted from the exit surface 4 at the top of the lens, and its beam angle is also a distribution of ⁇ 9.
  • the light distribution characteristic of the outer reflecting surface 3 is: the edge light incident on the lowermost side of the reflecting surface 3, the reflected light and the optical axis OZ
  • the angle is 0 degree, that is, it is emitted parallel to the optical axis OZ; the edge light incident on the uppermost side of the reflecting surface 3, after the reflected light is emitted through the exit surface 4, the angle with the optical axis is ⁇ ; incident to the reflection
  • the light rays from other places in the middle of the face 3 are reflected by the exit surface 4, and the angle between the reflected light and the optical axis is evenly distributed between 0° and ⁇ according to the ratio.
  • the light distribution of the microlens array at the top of the lower concave portion of the lower side of the lens is characterized by: combining the exit surface 4 at the top of the lens, the numerical aperture angle of each microlens is a girth angle (the full angle is 2 ⁇ ), and the plurality of microlenses are out. After the light is superimposed, a uniform light distribution in the girth angle is formed, thereby mixing the light incident on the LED.
  • the light distribution angle ⁇ of the lens according to the present embodiment may be any value between 2° and 45° as needed (the full angle of the light beam is 2° to 90°).
  • 4 is a light distribution curve of the lens of the embodiment when the lenses are narrow, medium, and wide beams, respectively, with angles of 5°, 18°, and 45° (full angles of 10°, 36°, and 90°). .
  • Figure 5 (b) shows the ray tracing of the lens.
  • Figures 6(a) and 6(b) show the spot shape and illuminance distribution of the lens at a distance of 1 m. The spot is circular, and no square or petal-shaped shadow projected due to the shape of the chip array is visible.
  • Figure 7 shows the far-field angular distribution (light distribution curve) of the light intensity of the lens, and the beam angular width at half the intensity is ⁇ 18°.
  • the theoretical efficiency of the lens obtained by the simulation is 97.827%. Assuming that the transmittance of the lens material is 92%, the optical efficiency of the lens actually processed can reach 90%.
  • FIG. 8 A cross-sectional view of a second embodiment of the secondary optical lens according to the present invention is shown in Fig. 8.
  • the exit surface at the top of the lens is divided into two sections 24a and 24b, of which 24a is a convex aspherical surface and 24b is a curved curved surface of a circular arc.
  • 24a is a convex aspherical surface
  • 24b is a curved curved surface of a circular arc.
  • the top portion 22 is also composed of a microlens array
  • the side surface 21 of the recess is a cylindrical surface, a tapered surface or a curved surface, and preferably a rotating surface with a circular arc of a bus bar.
  • the outer reflecting surface is also composed of a diamond-shaped, diamond-shaped, square-shaped or spiral-shaped scaly polyhedron, and a square-shaped polyhedron is preferable here.
  • a circle around the top of the lens 25 is a cylindrical surface for fixing, which does not have an optical effect, and a pin can be provided on the outer side to fix the position of the lens.
  • the lens bottom 26 is a flat surface for connecting the recessed side surface 21 and the outer total reflection surface 23 without optical effects.
  • FIG. 10 A view of the lens 3 of the second embodiment of the secondary optical lens according to the present invention is as shown in FIG.
  • the depression at the middle of the lower edge of the lens has a top portion 22 composed of a microlens array, and the arrangement of the microlens arrays may be circular, hexagonal, quadrilateral, wavy, radial, and other irregular arrangements.
  • a radial arrangement is preferred.
  • Figure 10 is a diagram showing the design principle of a lens according to a second embodiment of the present invention.
  • the lens is a narrow angle lens, and the lens light distribution can be designed in accordance with a collimated beam.
  • a part of the light emitted from the LED to the side passes through the recessed side surface 21 and then enters the scaly total reflection surface 23 on the outside of the lens, and the reflected light passes through the exit surface 24b of the outer ring of the lens and is collimated.
  • a part of the light emitted from the LED that is directed toward the middle passes through the microlens array of the recessed top 22, and is then emitted from the exit surface 24a at the top of the lens, and the light beam is also collimated. Since the exit surface of the lens has a light distribution curved surface 24a, which has an additional degree of freedom in light distribution design, for a plurality of chip LED light sources, a lens designed according to this structure can easily design a narrow beam angle.
  • this embodiment can also design a lens with a wide beam angle.
  • the outer ring reflecting surface 23 together with the exit surface 24b is configured to form a light distribution of the girth angle, the microlens array of the top 22 recessed under the lens and the exit surface are also required. 24a also forms a numerical aperture of the temple.
  • Fig. 1 1 (a) is a computer simulation of the present embodiment.
  • the light source of the LED is a 12-chip CREE MT-G
  • the luminous flux of the LED is 380 Lumen
  • the lens is a narrow-angle lens, which is designed according to the collimated beam.
  • Figure 11 (b) is a ray tracing of the lens of the second embodiment.
  • FIGS. 12(a) and 12(b) show the spot shape and illuminance distribution of the lens of the second embodiment at a distance of 1 m.
  • the spot is circular, and no square or petal-like projection due to the shape of the chip arrangement is observed. shadow.
  • Figure 13 shows the far-field angular distribution (light distribution curve) of the light intensity of the lens, and the beam angular width at half the intensity is about ⁇ 5. .
  • the theoretical efficiency of the lens obtained by the simulation is 98.252%. Assuming that the transmittance of the lens material is 92%, the optical efficiency of the lens actually processed can reach 90%.
  • Fig. 14 shows a third embodiment of the present invention, except that the outer total reflection surface 33 of the lens is composed of square scales, and all other structures of this embodiment are identical to those of the first embodiment.
  • This embodiment has the same beam angle, spot shape, and optical efficiency as the first embodiment.
  • Fig. 15 shows a fourth embodiment of the invention, except that the outer total reflection surface 43 of the lens is composed of spiral scales, and all other structures of this embodiment are identical to those of the first embodiment.
  • This embodiment has the same beam angle, spot shape, and optical efficiency as the first embodiment.
  • Figure 16 is a fifth embodiment of the lens of the present invention.
  • the lower portion of the lens of this embodiment is the same as Embodiment 1, but the exit face 54 at the top is convex, which may be spherical, aspherical, or a freeform surface.
  • the protruding exit surface can converge the emitted light to a certain distance to form a circular, or other shaped, converging spot.
  • Figure 17 is a sixth embodiment of the lens of the present invention.
  • the lower part of the lens of this embodiment Embodiment 1 is the same, but the exit surface 64 at the top is a concave surface, which may be a spherical surface, an aspheric surface, or a free curved surface.
  • the exit surface of the recess can diverge the outgoing light, and can form a circular shape with a relatively large irradiation range, or a spot of other shapes.
  • Figure 18 is a seventh embodiment of the lens of the present invention.
  • the lower portion of the lens of this embodiment is the same as that of Embodiment 1, but the exit surface 74 at the top is a Fresnel surface. Fresnel's exit surface distributes the concentrated concentrated light (or divergent light) more evenly for a more uniform spot distribution.
  • Figure 19 is an eighth embodiment of the lens of the present invention.
  • the lower portion of the lens of this embodiment is the same as that of Embodiment 1, but the exit surface 84 at the top is a pincushion lens array. Since the pillow lens has two different radii of curvature in the X and Y directions, the output beam of the lens is The two vertical directions of X and Y can have two different beam angles. This embodiment can output a rectangular spot having two different beam angles in the X and Y directions, which can be used for automotive lighting and traffic lighting.
  • Figure 20 is a ninth embodiment of the lens of the present invention.
  • the lower portion of the lens of this embodiment is the same as that of Embodiment 1, but the exit surface 94 at the top is a wavy stripe lens array, and the wavy stripe lens array can expand the outgoing beam in one direction, and the other direction Keep it upright.
  • This embodiment can produce a linear spot with a narrow angle of view and a wide angle in the other direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种用于半导体固态照明的透镜,其包括:透镜本体;设置在透镜本体的外侧上的全反射面(3),全反射面(3)的形状为鳞片状多面体;形成在透镜本体的下边中间位置的凹陷,其用于容纳LED,所述凹陷具有侧面(1)和顶部(2),凹陷的侧面(1)形状为柱面、锥面或回转曲面;形成在凹陷的顶部(2)的微透镜阵列;以及设置在透镜本体的顶部(2)的出射面(4),出射面(4)包括一个或多个平面或曲面;通过透镜形成一大致均匀的圆形光斑。

Description

可用于多芯片半导体 LED照明的二次配光透镜 技术领域
本发明涉及一种光学透镜,尤其是可用于多芯片半导体 LED照明的二次 配光透镜。 背景技术
现有的大部分 LED二次光学透镜主要是光滑的全反射透镜, 其基本结 构为: 中间内凹部分的顶部有一个用于聚光的光滑的非球面透镜, 外侧一圈 为光滑的全反射面。 这种透镜主要适用于单芯片的 LED 的配光, 其可以成 圆形、 效率较高的光斑分布。但对于多芯片的 LED, 这种透镜由于中间非球 面对芯片的成像, 投射出来的光斑往往会形成方形的或者花瓣状的芯片阴 影。 发明内容
为了解决现有技术中的以上问题,本发明提供了一种透镜,其包括: (a) 透镜本体; (b)设置在所述透镜本体的外侧上的全反射面, 所述全反射面的 形状为鳞片状多面体; (c)形成在所述透镜本体的下边中间位置的凹陷, 其 用于容纳 LED,所述凹陷具有侧面和顶部; (d)形成在所述凹陷的所述顶部 的微透镜阵列; 以及 (e) 设置在所述透镜本体的顶部的出射面; 其中, 通 过所述透镜形成一大致均匀的圆形光斑。
所述 LED是单芯片或多芯片。
所述鳞片状多面体包括菱形、 钻石形、 四方形或螺旋形表面。
所述凹陷的侧面的形状为柱面、 锥面或者回转曲面。
所述出射面包括一个或多个平面或曲面。
所述出射面包括凹的或凸的球面、 非球面、 菲涅尔面、 枕形透镜阵列或 波浪形条纹面。
所述反射面的所述鳞片状多面体的每个鳞片具有平面或弧形的曲面。 所述微透镜阵列的形状是圆形、 六边形、 四边形、 波浪形或放射状。 优选地, 从 LED发出的射向所述凹陷的侧面的一部分光, 经过所述侧 面之后入射到所述反射面上, 其反射光线经过所述出射面射出后形成士 Θ角 的光分布, 光束全角为 2Θ, Θ在 2°到 45°之间, 所述鳞片状的反射面用来打 破光分布的边界, 每个离散的鳞片都生成自己一个范围的光分布, 藉此多个 鳞片的光分布叠加后产生在一定角度内比较均匀的光斑分布。
优选地, 从 LED发出的射向所述凹陷顶部的一部分光, 经过所述顶部 之后入射到所述出射面并经所述出射面射出后形成士 Θ角的光分布,其中 Θ在 2°到 45°之间, 所述微透镜阵列被设置用于混光。
优选地, 入射到反射面最下边的那根光线, 其反射光线经过出射面射出 后平行于光轴, 入射到反射面最上边的那根光线, 其反射光线经过出射面射 出后与光轴的夹角为 Θ; 入射到反射面最上边与最下边之间的光线, 其反射 光线经过出射面射出后与光轴的夹角根据比率分布在 0°~θ之间。
结合所述出射面,在所述凹陷的顶部的每个微透镜的数值孔径角都为士 Θ角, 光束全角为 2Θ。
优选地, 在所述透镜本体的顶部沿周围一圈设有法兰, 形成在所述法兰 上的卡脚用于固定透镜本体的位置。
优选地, 所述透镜本体的底部设有平面, 用来连接所述凹陷的侧面与所 述反射面, 以促进将所述透镜本体固定于所述 LED的基座上。
根据本发明所提出的非成像光学的配光技术,将混光技术结合到二次光 学透镜中, 利用中间的微透镜阵列和侧面菱形、 四方形或钻石形的鳞片状多 面体反射面进行混光, 同时配成所需要的光束角度。 对任何形状的芯片排列 都可以实现比较均匀的圆形光斑, 看不到由于芯片形状所成像出来的阴影。 其所使用的 LED可以是单芯片及多芯片的, 以及红绿蓝不同颜色的。 附图说明
参照以上和以下的描述并与附图结合起来考虑可以更好地理解本发明所 呈现的特征, 从而能更加快地明了这些特征, 其中:
图 1为根据本发明第一实施例的透镜的剖面图;
图 2分别示出了图 1所示透镜的正视图、 等轴视图、 俯视图、 侧视图和 底视图;
图 3示出了根据本发明第一实施例的透镜的设计原理;
图 4分别显示了图 1所示透镜的配光角度 Θ分别为 5°、 18°、 45°时的光 强的远场角度分布;
图 5(a) 根据本发明第一实施例的透镜的计算机模拟;
和 5(b)为图 1所示透镜的光线追迹;
图 6 (a)示出了根据本发明第一实施例的透镜在 1米远处的光斑形状及照 度分布;
图 6 (b) 示出了根据本发明第一实施例的透镜的轮廓照度图; 图 7 为根据本发明第一实施例的透镜的光强的远场角度分布 (配光曲 线);
图 8为根据本发明第二实施例的透镜的剖面图;
图 9分别示出了图 8中透镜的正视图、 等轴视图、 俯视图、 侧视图和底 视图;
图 10为根据本发明第二实施例的透镜的设计原理;
图 11 (a)为根据本发明第二实施例的透镜的计算机模拟;
图 11(b)为根据本发明第二实施例的透镜的光线追迹;
图 12 (a)为根据本发明第二实施例透镜在 1米远处的光斑形状及照度分 布;
图 12 (b) 示出了根据本发明第二实施例的透镜的轮廓照度图; 图 13根据本发明第二实施例的透镜的光强的远场角度分布 (配光曲线); 图 14分别示出了根据本发明第三实施例的透镜的正视图、 等轴视图、 俯视图、 侧视图和底视图, 其中外侧反射面为四方形鳞片;
图 15分别示出了根据本发明第四实施例的透镜的正视图、 等轴视图、 俯视图、 侧视图和底视图, 其中外侧反射面为螺旋形鳞片;
图 16示出了根据本发明第五实施例的透镜, 其中透镜顶部出射面为凸 面;
图 17示出了根据本发明第六实施例的透镜, 其中透镜顶部出射面为凹 面;
图 18示出了根据本发明第七实施例的透镜, 其中透镜顶部出射面为菲 涅尔 (Fresnel) 面;
图 19示出了根据本发明第八实施例的透镜, 其中透镜顶部的输出面为 枕形透镜阵列;
图 20示出了根据本发明第九实施例的透镜, 其中透镜的顶部为波浪形 的条纹透镜阵列。 具体实鮮式
本发明所涉及的二次光学透镜的第一实施例的剖面图如图 1所示。该透 镜下边中间的位置有一个凹陷。 该凹陷用来放置多芯片的 LED光源, 其顶 部 2由许多微透镜(微透镜阵列)组成。微透镜阵列的排列形状可以为圆形、 六边形、 四边形、 波浪形、 放射状以及其他不规则排列。 凹陷的侧面 1为一 圆柱面、 锥面或者弧形的回转曲面。 此二次配光透镜的外侧有一个全反射面 3, 该全反射面由菱形、 钻石形、 四方形或螺旋形的鳞片状多面体组成; 透 镜顶部 4为出射面, 其为一个或一个以上的平面或者曲面, 其可以是凹的或 凸的球面、 非球面、 菲涅尔面、 枕形透镜阵列、 波浪形条纹面或者是其他自 由曲面; 透镜顶部的周围一圈 5为固定用的法兰, 其不起光学的作用, 其可 以是任何形状, 其上面可以有卡脚, 用以固定透镜的位置。 透镜底部 6为平 面, 用来连接凹陷的侧面 1以及外侧全反射面 3, 其不具有光学作用, 其用 于将透镜定位于 LED的基座上。
图 2为本发明所涉及的第一实施例的透镜 3视图。 图中可以看出: 透镜 的外侧全反射面 3由菱形、 四方形或钻石形的鳞片状多面体组成, 这里优选 为钻石形多面体, 多面体的每个小鳞片可以为平面或者是弧形的曲面。 由于 光滑反射面对入射光线的配光是连续的, 当 LED光源为多芯片 LED时, 会 比较容易产生亮斑或暗斑, 导致光斑的分布不均匀。 这里采用的鳞片状的反 射面, 其用来打破光线分布的边界, 每个离散的鳞片都生成自己一个范围的 光分布, 多个鳞片的光分布叠加后产生在一个角度内比较均匀的光斑分布。 另外该二次光学透镜下边中间的位置有一个凹陷, 其用于放置 LED, 其顶部 2由微透镜阵列组成, 该微透镜阵列对从 LED入射的光线也起到混光作用, 形成一个角度范围内比较均匀的光分布。
图 3为第一实施例所述的透镜的设计原理。 从 LED发出的射向侧面的 一部分光, 经过凹陷侧面 1之后入射到透镜外侧的全反射面 3上, 其反射光 线经过透镜顶部的出射面 4射出后形成士 Θ角 (光束全角为 2Θ) 的光分布。 从 LED发出的射向中间的一部分光, 透过凹陷顶部的微透镜阵列之后, 也 从透镜顶部的出射面 4射出, 其光束角也为 ±9的分布。 外侧反射面 3的配 光特征为: 入射到反射面 3最下边的那根边缘光线, 其反射光线与光轴 OZ 的夹角为 0度, 即平行于光轴 OZ射出; 入射到反射面 3最上边的那根边缘 光线, 其反射光线经过出射面 4射出后, 与光轴的夹角为 Θ; 入射到反射面 3 中间其他地方的光线, 其反射光线经过出射面 4射出后, 其与光轴的夹角根 据比率均匀地分配在 0°~θ之间。此透镜下边中间凹陷的顶部的微透镜阵列的 配光特征在于:结合透镜顶部的出射面 4,每个微透镜的数值孔径角都为士 Θ 角(全角为 2Θ ) , 多个微透镜的出射光叠加后形成士 Θ角内均匀的光分布, 从 而对 LED入射的光线起到混光作用。 本实施方案所述的透镜的配光角度 Θ, 根据需要可以为 2°到 45°之间的任意值 (光束全角 2Θ为 4°~90°)。
图 4为当透镜分别为窄、 中、 宽光束, Θ角分别为 5°、 18°、 45° (全角 为 10°、 36°、 90° ) 时, 该实施方案所述透镜的配光曲线。
图 5 (a) 为根据本发明第一实施例的计算机模拟, 假设 LED 的光源为 12颗芯片的 CREE MT-G, LED的光通量为 380Lumen, 透镜按照光束全角 36。 来设计 (即 θ=18°)。 图 5 (b ) 为该透镜的光线追迹。 图 6 (a) , 6 (b)为该透镜 在 1米远处的光斑形状及照度分布, 光斑为圆形, 看不到因为芯片排列的形 状而投射出来的方形或花瓣形的阴影。 图 7为该透镜的光强的远场角度分布 (配光曲线), 光强一半位置处的光束角宽度为 ± 18°。 模拟结果所得透镜的 理论效率为 97. 827%, 假设透镜材料的透过率为 92%, 则实际加工出来透镜 的光学效率可达到 90%。
本发明所涉及的二次光学透镜的第二实施例的剖面图如图 8所示。图中 透镜顶部的出射面分成了 2个部分 24a和 24b, 其中 24a为凸出的非球面, 24b为母线为圆弧的回转曲面。 透镜下边中间的位置也有一个凹陷, 其顶部 22也由微透镜阵列组成, 凹陷的侧面 21为一柱面、 锥面或者回转曲面, 这 里优选为一个母线为圆弧的回转面。 外侧反射面也由菱形、 钻石形、 四方形 或螺旋形的鳞片状多面体组成, 这里优选为四方形菱片状多面体。 透镜顶部 的周围一圈 25为固定用的圆柱面, 其不起光学的作用, 其外侧可以设置卡 脚, 用以固定透镜的位置。 透镜底部 26为一个平面, 其用以连接凹陷的侧 面 21以及外侧全反射面 23, 不具有光学作用。
本发明所涉及的二次光学透镜的第二实施例的透镜 3 的视图如图 9所 示。 从底视图中可以看出, 透镜下边中间位置的凹陷, 其顶部 22 由微透镜 阵列组成, 微透镜排列的排列形状可以为圆形、 六边形、 四边形、 波浪形、 放射状以及其他不规则排列, 这里优选为放射状的排列方式。 图 10为本发明所涉及的第二实施例所述的透镜的设计原理。 所述透镜 为窄角度透镜, 透镜配光可以按照准直光束进行设计。 从 LED发出的射向 侧面的一部分光, 经过凹陷的侧面 21之后入射到透镜外侧的鳞片状全反射 面 23上,其反射光线经过透镜顶部外圈的出射面 24b之后准直射出。从 LED 发出的射向中间的一部分光, 透过凹陷顶部 22的微透镜阵列之后, 从透镜 顶部的出射面 24a射出, 其光束也准直射出。 由于透镜顶部的出射面多了一 个配光曲面 24a,其多了一个配光设计的自由度,对于多个芯片的 LED光源, 按照此结构设计的透镜可以比较容易设计出很窄的光束角。当然本实施方案 也可以设计出宽光束角的透镜,只要外圈反射面 23连同出射面 24b,配成士 Θ角的光分布, 同样也需要透镜下边凹陷的顶部 22的微透镜阵列连同出射面 24a也形成 Θ角的数值孔径。
图 1 1 (a)为本实施方案的计算机模拟, 这里假设 LED的光源为 12颗芯 片的 CREE MT-G, LED的光通量为 380Lumen, 透镜为窄角度透镜, 按照准直 光束设计。 图 11 (b ) 为第二实施例透镜的光线追迹。
图 12 (a)、 12 (b)为第二实施例的透镜在 1 米远处的光斑形状及照度分 布, 光斑为圆形, 看不到因为芯片排列形状而投射出来的方形或花瓣状的阴 影。 图 13为该透镜的光强的远场角度分布(配光曲线), 光强一半位置处的 光束角宽度约为 ± 5。。 模拟结果所得透镜的理论效率为 98. 252%, 假设透镜 材料的透过率为 92%, 则实际加工出来透镜的光学效率可达到 90%。
本发明所涉及的二次光学透镜, 其还有其他几种实施例。 图 14为本发 明所述的第三实施例, 除了透镜的外侧全反射面 33 由四方形鳞片组成外, 该实施方案的其他所有的结构与第一实施例均一致。该实施方案的与第一实 施例有相同的光束角、 光斑形状及光学效率。
图 15为该发明所述的第四实施例, 除了透镜的外侧全反射面 43由螺旋 形鳞片组成外, 该实施方案的其他所有的结构与第一实施例均一致。 该实施 方案的与第一实施例有相同的光束角、 光斑形状及光学效率。
图 16为本发明所述透镜的第五实施例。 该实施方案透镜的下部分与实 施方案 1相同, 但其顶部的出射面 54为凸面, 其可以为球面、 非球面、 或 者是自由曲面。突出的出射面可以将出射光会聚到一定的距离,形成圆形的, 或者其他形状的会聚光点。
图 17为本发明所述透镜的第六实施例。 该实施方案透镜的下部分与实 施方案 1相同, 但其顶部的出射面 64为凹面, 其可以为球面、 非球面、 或 者是自由曲面。 凹陷的出射面可以将出射光发散, 可以形成照射范围比较大 的圆形的, 或者其他形状的光斑。
图 18为本发明所述透镜的第七实施例。 该实施方案透镜的下部分与实 施方案 1相同, 但其顶部的出射面 74为菲涅尔 (Fresnd) 面。 菲涅尔的出 射面可以将出射的会聚光(或者发散光)分布得更均匀, 实现更均匀的光斑 分布。
图 19为本发明所述透镜的第八实施例。 该实施方案透镜的下部分与实 施方案 1相同, 但其顶部的出射面 84为枕形透镜阵列, 由于枕形透镜在 X 和 Y方向有两个不同的曲率半径, 导致该透镜的输出光束在 X与 Y两个垂 直的方向可以有两个不同的光束角。 该实施方案可以输出在 X和 Y方向具 有两个不同光束角的长方形的光斑, 可以用于汽车照明和交通照明。
图 20为本发明所述透镜的第九实施例。 该实施方案透镜的下部分与实 施方案 1相同, 但其顶部的出射面 94为波浪形的条纹透镜阵列, 波浪形的 条纹透镜阵列可以将出射光束在一个方向上进行扩束, 而另一个方向上保持 准直。 该实施方案可以产生一个方向角度很窄、 另一个方向角度很宽的线条 形的光斑。
尽管就某些特定的方面描述了本发明,但是一些附加的修改和改变对本 领域内普通技术人员是显而易见的。 因此应理解的是, 可以以不同于具体描 述的方式实施本发明, 包括在尺寸、 形状和材料方面的各种改变, 而不超出 本发明的范围和精神。因而本发明实施方式的所有方面应认为是示意性而非 限定性的。

Claims

1、 一种透镜, 其包括:
(a) 透镜本体;
(b) 设置在所述透镜本体的外侧上的全反射面 (3, 23, 33, 43 ), 所 述全反射面 (3, 23, 33, 43 ) 的形状为鳞片状多面体;
(c) 形成在所述透镜本体的下边中间位置的凹陷, 其用于容纳 LED, 所述凹陷具有侧面 (1, 21 ) 和顶部 (2, 22);
(d) 形成在所述凹陷的所述顶部 (2, 22) 的微透镜阵列; 以及
(e) 设置在所述透镜本体的顶部的出射面 (4, 24a, 24b);
其特征在于, 通过所述透镜形成一大致均匀的圆形光斑。
2、 如权利要求 1所述的透镜, 其特征在于, 所述 LED是单芯片或多芯 片, 以及红绿蓝不同颜色的。
3、 如权利要求 1所述的透镜, 其特征在于, 所述鳞片状多面体包括菱 形、 钻石形、 四方形或螺旋形表面。
4、 如权利要求 1-3 中任意一项所述的透镜, 其特征在于, 所述凹陷的 侧面 (1, 21 ) 的形状为柱面、 锥面或者回转曲面。
5、 如权利要求 1-3 中任意一项所述的透镜, 其特征在于, 所述出射面 (4, 24a, 24b) 包括一个或多个平面或曲面。
6、 如权利要求 1-3 中任意一项所述的透镜, 其特征在于, 所述出射面 (4, 24a, 24b) 包括凹的或凸的球面、 非球面、 菲涅尔面、 枕形透镜阵列 或波浪形条纹面。
7、 如权利要求 1-3 中任意一项所述的透镜, 其特征在于, 所述反射面 (3, 23, 33, 43 ) 的所述鳞片状多面体的每个鳞片具有平面或弧形的曲面。
8、 如权利要求 1-3 中任意一项所述的透镜, 其特征在于, 所述微透镜 阵列的形状是圆形、 六边形、 四边形、 波浪形或放射状。
9、 如权利要求 1-3中任意一项所述的透镜, 其特征在于, 从 LED发出 的射向所述凹陷的侧面 (1, 21 ) 的一部分光, 经过所述侧面 (1, 21 ) 之后 入射到所述反射面 (3, 23, 33, 43 ) 上, 其反射光线经过所述出射面 (4, 24a, 24b ) 射出后形成士 Θ角的光分布, 光束全角为 2Θ, Θ在 2。到 45。之间, 所述鳞片状的反射面 (3, 23, 33, 43 ) 用来打破光分布的边界, 每个离散 的鳞片都生成自己一个范围的光分布, 藉此多个鳞片的光分布叠加后产生在 一定角度内比较均匀的光斑分布。
10、如权利要求 1-3中任意一项所述的透镜, 其特征在于, 从 LED发出 的射向所述凹陷顶部 (2, 22) 的一部分光, 经过所述顶部之后入射到所述 出射面 (4, 24a, 24b ) 并经所述出射面 (4, 24a, 24b ) 射出后形成士 Θ角 的光分布, 其中 Θ在 2°到 45°之间, 所述微透镜阵列被设置用于混光。
11、 如权利要求 9所述的透镜, 其特征在于, 入射到反射面 (3, 23, 33, 43 ) 最下边的那根光线, 其反射光线经过所述出射面 (4, 24a, 24b ) 射出后平行于光轴, 入射到反射面 (3, 23, 33, 43 ) 最上边的那根光线, 其反射光线经过所述出射面 (4, 24a, 24b )射出后与光轴的夹角为 Θ; 入射 到反射面 (3, 23, 33, 43 ) 最上边与最下边之间的光线, 其反射光线经过 所述出射面(4, 24a, 24b )射出后与光轴的夹角根据比率分布在 0。~θ之间。
12、如权利要求 10所述的透镜,其特征在于,结合所述出射面(4, 24a, 24b) , 在所述凹陷的顶部 (2, 22) 的每个微透镜的数值孔径角都为士 Θ角, 光束全角为 2Θ。
13、 如权利要求 1-3中任意一项所述的透镜, 其特征在于, 在所述透镜 本体的顶部沿周围一圈 (5, 25 ) 设有法兰, 形成在所述法兰上的卡脚用于 固定透镜本体的位置。
14、 如权利要求 1-3中任意一项所述的透镜, 其特征在于, 所述透镜本 体的底部 (6, 26) 设有平面, 用来连接所述凹陷的侧面 (1, 21) 与所述反 射面 (3, 23, 33, 43), 以促进将所述透镜本体固定于所述 LED的基座上。
PCT/CN2012/076156 2011-08-29 2012-05-28 一种可用于多芯片半导体led照明的二次配光透镜 WO2013029400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110252596.0 2011-08-29
CN2011102525960A CN102954440A (zh) 2011-08-29 2011-08-29 可用于多芯片半导体led照明的二次配光透镜

Publications (1)

Publication Number Publication Date
WO2013029400A1 true WO2013029400A1 (zh) 2013-03-07

Family

ID=47755275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076156 WO2013029400A1 (zh) 2011-08-29 2012-05-28 一种可用于多芯片半导体led照明的二次配光透镜

Country Status (3)

Country Link
CN (1) CN102954440A (zh)
TW (1) TWI476458B (zh)
WO (1) WO2013029400A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062847A1 (en) * 2013-11-04 2015-05-07 Koninklijke Philips N.V. Collimator with improved light mixing and colour mixing properties.
FR3025285A1 (fr) * 2014-09-03 2016-03-04 Zodiac Aero Electric Dispositif optique pour projecteur d'eclairage et/ou de signalisation pour aeronef et projecteur comprenant un tel dispositif optique
GB2540483A (en) * 2013-01-10 2017-01-18 Aurora Ltd Improved lenses
WO2018200983A1 (en) * 2017-04-27 2018-11-01 Lutron Ketra, Llc Total internal reflection lens having a tapered sidewall entry and a concave spherical exit bounded by a compound parabolic concentrator outer surface to lessen glare while maintaining color mixing and beam control of an led light source
CN109027765A (zh) * 2017-06-09 2018-12-18 杭州海康威视数字技术股份有限公司 补光透镜、补光灯及摄像机
US10591134B2 (en) 2016-01-19 2020-03-17 Lutron Ketra, Llc Lens for improved color mixing and beam control of an LED light source
US20200133012A1 (en) * 2018-10-26 2020-04-30 Viavi Solutions Inc. Optical element and optical system
US11106025B2 (en) 2016-01-19 2021-08-31 Lutron Technology Company Llc Total internal reflection lens having a straight sidewall entry and a concave spherical exit bounded by a compound parabolic concentrator outer surface to improve color mixing of an LED light source

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102865549A (zh) * 2012-09-12 2013-01-09 北京星光影视设备科技股份有限公司 一种光束角可调的二次光学透镜
CN104033840A (zh) * 2013-03-07 2014-09-10 长春理工大学 一种用于舞台灯二次配光的复合透镜
CN104033841A (zh) * 2013-03-07 2014-09-10 长春理工大学 一种用于舞台灯二次配光的透镜
CN104075237B (zh) * 2013-03-29 2018-07-27 海洋王(东莞)照明科技有限公司 光学系统及具有该光学系统的照明装置
CN104180208A (zh) * 2013-05-24 2014-12-03 海洋王(东莞)照明科技有限公司 灯具及其透镜
CN103343922B (zh) * 2013-06-28 2016-05-25 宁波福泰电器有限公司 仿白炽灯灯光的led射灯
CN103438399A (zh) * 2013-07-18 2013-12-11 浙江中博光电科技有限公司 用于led灯具的二次光学透镜
CN103883978A (zh) * 2014-03-07 2014-06-25 东莞市浩霖光学实业有限公司 一种led一体式反光杯透镜
CN104949063A (zh) * 2014-03-27 2015-09-30 海洋王(东莞)照明科技有限公司 Led灯具及其透镜
CN104834095B (zh) * 2014-10-17 2017-05-17 深圳市科曼医疗设备有限公司 基于多颜色光束的匀光装置及光学系统
CN104834031B (zh) * 2014-11-12 2017-05-17 深圳市科曼医疗设备有限公司 多焦点匀光透镜及光学系统
US10761308B2 (en) * 2015-02-05 2020-09-01 Signify Holding B.V. Color correcting collimation of light from a color over position light source
CN104696889B (zh) * 2015-03-31 2017-08-29 福建鸿博光电科技有限公司 一种组合式配光系统
CN105043150A (zh) * 2015-08-28 2015-11-11 中山市绿涛电子科技有限公司 一种可展开式散热器
CN108413354A (zh) * 2018-02-27 2018-08-17 江苏大学 一种led黑板灯透镜
CN111812885A (zh) 2019-04-10 2020-10-23 展晶科技(深圳)有限公司 光学透镜、背光模组和显示装置
TWI700842B (zh) * 2019-04-10 2020-08-01 榮創能源科技股份有限公司 光學透鏡、背光模組及顯示裝置
CN111797445A (zh) * 2020-07-14 2020-10-20 深圳市千百辉照明工程有限公司 一种led花形照明透镜的设计方法及透镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563004B2 (en) * 2006-01-17 2009-07-21 Acuity Brands, Inc. Volumetric downlight light fixture
US20110051394A1 (en) * 2007-09-10 2011-03-03 Lighting Science Group Corp. Warm white lighting device
CN201787486U (zh) * 2010-04-01 2011-04-06 飞利浦(中国)投资有限公司 光学透镜以及使用该光学透镜的照明设备
JP2011095660A (ja) * 2009-11-02 2011-05-12 Mitsubishi Electric Corp 光反射部材及びレンズ及び照明器具
CN201852037U (zh) * 2010-11-24 2011-06-01 霍永峰 Led照明灯具配光用的透镜及其灯具
CN102162625A (zh) * 2011-01-30 2011-08-24 深圳市众明半导体照明有限公司 一种大角度led和led灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM328539U (en) * 2007-08-30 2008-03-11 hong-fei Lin LED light gathering lampshade
TW201126111A (en) * 2010-01-25 2011-08-01 Foxconn Tech Co Ltd Lens and LED module using the same
CN201652173U (zh) * 2010-04-09 2010-11-24 包永浩 光束角可调的大功率led二次光学透镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563004B2 (en) * 2006-01-17 2009-07-21 Acuity Brands, Inc. Volumetric downlight light fixture
US20110051394A1 (en) * 2007-09-10 2011-03-03 Lighting Science Group Corp. Warm white lighting device
JP2011095660A (ja) * 2009-11-02 2011-05-12 Mitsubishi Electric Corp 光反射部材及びレンズ及び照明器具
CN201787486U (zh) * 2010-04-01 2011-04-06 飞利浦(中国)投资有限公司 光学透镜以及使用该光学透镜的照明设备
CN201852037U (zh) * 2010-11-24 2011-06-01 霍永峰 Led照明灯具配光用的透镜及其灯具
CN102162625A (zh) * 2011-01-30 2011-08-24 深圳市众明半导体照明有限公司 一种大角度led和led灯

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540483B (en) * 2013-01-10 2017-09-13 Aurora Ltd Improved lenses
GB2540483A (en) * 2013-01-10 2017-01-18 Aurora Ltd Improved lenses
WO2015062847A1 (en) * 2013-11-04 2015-05-07 Koninklijke Philips N.V. Collimator with improved light mixing and colour mixing properties.
US10036533B2 (en) 2013-11-04 2018-07-31 Philips Lighting Holding B.V. Collimator with improved light mixing and colour mixing properties
US10435174B2 (en) 2014-09-03 2019-10-08 Zodiac Aero Electric Optical device for lighting and/or signaling light for aircraft and light comprising such an optical device
FR3025285A1 (fr) * 2014-09-03 2016-03-04 Zodiac Aero Electric Dispositif optique pour projecteur d'eclairage et/ou de signalisation pour aeronef et projecteur comprenant un tel dispositif optique
ES2573552R1 (es) * 2014-09-03 2016-11-10 Zodiac Aero Electric Dispositivo óptico para proyector de iluminación y/o de señalización para aeronave y proyector que comprende tal dispositivo óptico.
US11681131B2 (en) 2016-01-19 2023-06-20 Lutron Technology Company Llc Total internal reflection lens to improve color mixing of an LED light source
US10591134B2 (en) 2016-01-19 2020-03-17 Lutron Ketra, Llc Lens for improved color mixing and beam control of an LED light source
US11106025B2 (en) 2016-01-19 2021-08-31 Lutron Technology Company Llc Total internal reflection lens having a straight sidewall entry and a concave spherical exit bounded by a compound parabolic concentrator outer surface to improve color mixing of an LED light source
US11346527B2 (en) 2016-01-19 2022-05-31 Lutron Technology Company Llc Lens for improved color mixing and beam control of an LED light source
US11885945B2 (en) 2016-01-19 2024-01-30 Lutron Technology Company Llc Total internal reflection lens to improve color mixing of an LED light source
US11920780B2 (en) 2016-01-19 2024-03-05 Lutron Technology Company Llc Lens for improved color mixing and beam control of an LED light source
WO2018200983A1 (en) * 2017-04-27 2018-11-01 Lutron Ketra, Llc Total internal reflection lens having a tapered sidewall entry and a concave spherical exit bounded by a compound parabolic concentrator outer surface to lessen glare while maintaining color mixing and beam control of an led light source
CN109027765A (zh) * 2017-06-09 2018-12-18 杭州海康威视数字技术股份有限公司 补光透镜、补光灯及摄像机
CN109027765B (zh) * 2017-06-09 2021-05-18 杭州海康威视数字技术股份有限公司 补光透镜、补光灯及摄像机
US20200133012A1 (en) * 2018-10-26 2020-04-30 Viavi Solutions Inc. Optical element and optical system
US12092836B2 (en) * 2018-10-26 2024-09-17 Viavi Solutions Inc. Optical element and optical system

Also Published As

Publication number Publication date
TW201310084A (zh) 2013-03-01
CN102954440A (zh) 2013-03-06
TWI476458B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
TWI476458B (zh) 一種可用於多晶片半導體led照明的二次配光透鏡
TWI497777B (zh) 一種多面體的二次光學透鏡
US8740417B2 (en) Secondary light distribution lens for multi-chip semiconductor (LED) lighting
US8789969B2 (en) Compact LED light engine with reflector cups and highly directional lamps using same
US10317579B2 (en) Optical device with a collimator and lenslet arrays
US10295153B2 (en) Optical system for producing uniform illumination
US9175832B2 (en) Faceted LED street lamp lens
US8733981B2 (en) Lens with multiple curved surfaces for LED projecting lamp
JP2016534513A5 (zh)
WO2015132290A1 (en) Beam shaping system and an illumination system using the same
JP6096180B2 (ja) 発光ダイオード光源
TW201024625A (en) Optical element for illumination device
TWI471616B (zh) Lens module for light emitting diode light source
CN104180304B (zh) Led灯具及其配光透镜
JP2012009356A (ja) 車両用灯具
US20040036014A1 (en) Optical assemblies for concentration of radial light distribution within confined luminaire packages
CN202835182U (zh) 用于大功率led光源的菲涅尔透镜
TWI579504B (zh) 發光裝置
TWM457136U (zh) 用於光線發射系統之二次光學結構
TW201610357A (zh) 發光裝置及其透鏡
TW201310078A (zh) 光學透鏡、led光學元件及led照明燈具
TW201122358A (en) LED module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08.05.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12827643

Country of ref document: EP

Kind code of ref document: A1