WO2013027998A2 - 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템 - Google Patents

발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템 Download PDF

Info

Publication number
WO2013027998A2
WO2013027998A2 PCT/KR2012/006636 KR2012006636W WO2013027998A2 WO 2013027998 A2 WO2013027998 A2 WO 2013027998A2 KR 2012006636 W KR2012006636 W KR 2012006636W WO 2013027998 A2 WO2013027998 A2 WO 2013027998A2
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
light
current
transistor
Prior art date
Application number
PCT/KR2012/006636
Other languages
English (en)
French (fr)
Other versions
WO2013027998A3 (ko
Inventor
김준형
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2013027998A2 publication Critical patent/WO2013027998A2/ko
Publication of WO2013027998A3 publication Critical patent/WO2013027998A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/345Current stabilisation; Maintaining constant current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/46Details of LED load circuits with an active control inside an LED matrix having LEDs disposed in parallel lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Embodiments relate to a light emitting device package, a lighting device and a lighting system including the same, in which a color temperature changes according to an applied current.
  • LED Light Emitting Device
  • the light emitting device has advantages of low power consumption, semi-permanent life, fast response speed, safety and environmental friendliness compared to conventional light sources such as fluorescent lamps and incandescent lamps. Accordingly, many studies have been conducted to replace the existing light source with a light emitting device, and the light emitting device has been increasingly used as a light source for lighting devices such as various liquid crystal display devices, electronic displays, and street lamps that are used indoors and outdoors.
  • a white light emitting device package as an illumination device light source is increasing, and the concept of so-called emotional lighting has recently appeared.
  • a white light source of a cool white system having a high color temperature and a warm white system having a low color temperature can be selected and used according to a user's taste and application.
  • a method of arranging a plurality of warm white light emitting device packages and a plurality of cool white light emitting device packages and adjusting their brightness or adjusting the ratio of the number of them is used to adjust the overall color temperature.
  • color bands may occur.
  • the embodiment provides a light emitting device package in which the color temperature changes according to an applied current in order to solve the above problems.
  • the light emitting device package includes at least two light emitting devices, and a lead part electrically connected to the light emitting device and supplying power to the light emitting device from the outside, wherein at least two light emitting devices of the light emitting devices are mutually
  • the ratio of the current flowing through the light emitting elements having different color coordinates may be changed to change the color coordinates of the emission color.
  • the lighting apparatus may include a housing and the light emitting device package disposed in the housing.
  • a lighting system includes a power terminal unit having one end and another end to which power is applied, a current control unit connected to one end of the power terminal unit, and the light emitting device package connected between the current control unit and the other end of the power terminal unit.
  • the current adjusting unit may adjust the intensity of the current flowing in the light emitting device package according to an input value from the outside.
  • the at least two light emitting devices having different color coordinates may include a first light emitting device and a second light emitting device connected in parallel with the first light emitting device and having a different color coordinate from the first light emitting device.
  • the current value flowing through the light emitting device has a constant value regardless of the current value input to the lead portion, and the current value flowing through the first light emitting element may change as the current value input to the lead portion changes.
  • the first light emitting device includes a blue light emitting device and a yellow phosphor or any one of a blue light emitting device and a green and yellow phosphor
  • the second light emitting device is a blue light emitting device and a yellow phosphor or a blue light emitting device and a red and yellow Any one of the phosphors.
  • the apparatus may further include a constant current circuit electrically connected to the light emitting element and the lead part, wherein the constant current circuit is connected to the second light emitting element, and a current value flowing through the second light emitting element is input to the lead part. It can be made to have a constant value regardless of the strength of the current.
  • the constant current circuit further includes a first transistor, a second transistor, a first resistor, a second resistor, a first contact, and a second contact, wherein the first contact and the second contact are connected to an external circuit,
  • the first contact is connected to the anode of the second light emitting device
  • the cathode of the second light emitting device is connected to the first terminal of the first transistor
  • the second terminal of the first transistor of the second resistor Is connected to one end
  • the other end of the second resistor is connected to the second contact
  • the second contact is connected to a second terminal of the second transistor
  • the third terminal of the second transistor is connected to the second resistor.
  • a first terminal of the second transistor is connected to one end of the first transistor, a first terminal of the second transistor is connected to one end of the first resistor, and the first resistor is connected to the first resistor of the first transistor. The other end of may be connected to the first contact.
  • the color temperature of the emission color may vary within the range of 2,300K to 8,000K according to the intensity of the current input to the lead portion.
  • the color temperature of the emission color may increase.
  • the color temperature of the emission color may be increased, and the brightness of the emitted light may be increased.
  • the second light emitting device may be a light emitting device having a lowest color temperature among the at least two light emitting devices.
  • the first light emitting device may have a color temperature of any one of 6,000K to 8,000K
  • the second light emitting device may have a color temperature of any one of 2,300K to 4,000K.
  • the substrate may further include a substrate, an insulating layer disposed on the substrate, a metal layer disposed on the insulating layer, and a via hole penetrating through the substrate, the insulating layer, and the metal layer, wherein the at least two light emitting devices are disposed on the metal layer.
  • a substrate an insulating layer disposed on the substrate, a metal layer disposed on the insulating layer, and a via hole penetrating through the substrate, the insulating layer, and the metal layer, wherein the at least two light emitting devices are disposed on the metal layer.
  • the color temperature may be controlled by one light emitting device package to realize cool white, warm white, and middle white colors.
  • the driving circuit for driving the emotional lighting can be simplified.
  • FIG. 1 is an exploded view showing a light emitting device package according to an embodiment.
  • FIG. 2 is a cross-sectional view illustrating the first and second light emitting devices of FIG. 1, respectively.
  • FIG. 3 is a circuit diagram illustrating a driving circuit according to an embodiment.
  • FIG. 4 is a two-dimensional graph illustrating spectral distribution according to wavelengths when two light sources having different color coordinates and two light sources are mixed.
  • 5 is a two-dimensional color coordinate graph showing the color coordinates of the light emitting device package according to the embodiment.
  • FIG. 6 is an enlarged two-dimensional color coordinate graph of an area indicated by a thick lined rectangle in FIG. 5.
  • FIG. 7 is a perspective view illustrating a lighting device including a light emitting device package according to an embodiment.
  • FIG. 8 is a circuit diagram illustrating a lighting system including a light emitting device package according to an embodiment.
  • each component will be described with reference to the drawings.
  • the thickness or size of each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not necessarily reflect the actual size.
  • FIG. 1 is an exploded view illustrating a light emitting device package in which a color temperature changes according to an applied current
  • FIG. 2 is a cross-sectional view illustrating first and second light emitting devices of FIG. 1, respectively.
  • the light emitting device package includes a substrate 100, a driving circuit 110 mounted in the substrate 100, a first insulating layer 120 disposed on the substrate 100, and a substrate ( 100, a second insulating layer 130 disposed below, a metal layer 140 disposed on the first insulating layer 120, a first light emitting device 150 and a second light emitting device 160 disposed on the metal layer 140. ), A lead unit 170 disposed under the second insulating layer 130, and the metal layer 140, the first insulating layer 120, the substrate 100, the second insulating layer 130, and It may include a via hole 180 penetrating the lead portion 170.
  • the light emitting device package configured as described above and whose color temperature changes according to an applied current will be described in detail for each component as follows.
  • the substrate 100 serves as a body of the light emitting device package.
  • the light emitting device package may be classified into a plastic package, a ceramic package, a metal package, a silicon package, and the like according to a material used as the substrate 100.
  • What material to use as the substrate 100 may be selected in consideration of the heat dissipation effect, mass production potential, cost, characteristics of other components, the purpose and use of the product, and other various matters.
  • the package may be manufactured by stacking in multiple layers, and a circuit may be mounted between the stacks.
  • the silicon substrate 100 when used, the reflectance dependence on the emission wavelength is low, and the wafer can be manufactured in an integrated form at the wafer level.
  • the driving circuit 110 for driving the first light emitting device 150 and the second light emitting device 160 may be mounted in the substrate 100.
  • the driving circuit 110 drives the light emitting device to perform a desired function according to the purpose and purpose of the light emitting device package. A method of configuring the driving circuit 110 according to the embodiment will be described later in detail.
  • the first insulating layer 120 may be disposed on the substrate 100.
  • the first insulating layer 120 serves to block electrical connection between the substrate 100 and the metal layer 140. However, when the substrate 100 is made of a nonconductive material, the first insulating layer 120 may not be disposed.
  • the second insulating layer 130 may be disposed under the substrate 100.
  • the second insulating layer 130 serves to block electrical connection between the substrate 100 and the lead unit 170. However, when the substrate 100 is made of a nonconductive material, the second insulating layer 130 may not be disposed.
  • the metal layer 140 may be disposed on the first insulating layer 120, and the first light emitting device 150 and the second light emitting device 160 may be disposed on the metal layer 140.
  • the metal layer 140 may be electrically connected to the first light emitting device 150 and the second light emitting device 160.
  • the metal layer 140 may be electrically connected to the driving circuit 110 for driving the first light emitting device 150 and the second light emitting device 160. That is, the metal layer 140 may serve as an electric conductor that connects the components in the light emitting device package.
  • the metal layer 140 may also play a role of releasing heat generated in the light emitting device package and a support for supporting the first light emitting device 150 and the second light emitting device 160.
  • the first light emitting device 150 and the second light emitting device 160 may be disposed on the metal layer 140.
  • the light emitting device package according to the embodiment may include at least two light emitting devices. That is, the first light emitting device 150 and the second light emitting device 160 are only examples according to the embodiment, and the light emitting device may be additionally disposed according to a desired purpose and design change.
  • the first light emitting device 150 and the second light emitting device 160 are types of solid devices that convert electrical energy into light, and generally include an active layer of semiconductor material interposed between two opposite doped layers. When a bias is applied across the two doped layers, holes and electrons are injected into the active layer and then recombined there to generate light, and the light emitted from the active layer is emitted in all directions and exits the light emitting device through all exposed surfaces. Will be released.
  • At least two of the at least two light emitting devices according to the embodiment may have different color coordinates.
  • the light emission colors of the light emitting devices may be colors corresponding to an arbitrary point on a color coordinate.
  • the white light emitting device package is increasing as a light source of the lighting device
  • the light emission colors of the first light emitting device 150 and the second light emitting device 160 according to the embodiment are respectively different from each other on the black body radiation curve.
  • the following description assumes an index case corresponding to two different points.
  • any one of the first light emitting device 150 and the second light emitting device 160 may have a color temperature of 6,000K to 8,000K. In addition, the other may have a color temperature of 2,300K to 4,000K.
  • the first light emitting device 150 is a cool white light emitting device having a color temperature of 6,000K to 8,000K and the second light emitting device 160 is a warm white light emitting device having a color temperature of 2,300K to 4,000K. Let's explain.
  • the first light emitting device 150 includes a blue light emitting device 303 and green and yellow phosphors 305 on the substrate 301 to realize the color temperature of the first light emitting device 150.
  • the second light emitting device 160 includes a blue light emitting device 403 and red and yellow phosphors 405 on the substrate 401.
  • the first light emitting device 150 may include a blue light emitting device and a yellow phosphor
  • the second light emitting device 160 may include a blue light emitting device and a yellow phosphor.
  • the yellow phosphor emits light having a main wavelength in the range of 540 nm to 585 nm in response to blue light (430 nm to 480 nm).
  • the green phosphor emits light having a main wavelength in the range of 510 nm to 535 nm in response to blue light (430 nm to 480 nm).
  • the red phosphor emits light having a main wavelength in the range of 600 nm to 650 nm in response to blue light (430 nm to 480 nm).
  • the first light emitting device 150 may emit blue light
  • the second light emitting device 160 may emit red light
  • the first light emitting device 150 may emit blue light in a short wavelength band (400 nm to 470 nm)
  • the second light emitting device 160 may emit blue light in a long wavelength band (470 nm to 500 nm).
  • the first light emitting device 150 may emit blue light
  • the second light emitting device 160 may emit green light.
  • the lead unit 170 may be disposed under the second insulating layer 130.
  • the lead unit 170 may be made of a conductive material.
  • the lead unit 170 may be electrically connected to the driving circuit 110 for driving the first light emitting device 150 and the second light emitting device 160.
  • the lead unit 170 may be exposed to the outside of the light emitting device package and may be connected to an external circuit. Therefore, the lead unit 170 may serve as an electric conductor for supplying power to the light emitting device package from the outside.
  • a via hole 180 penetrating through the metal layer 140, the first insulating layer 120, the substrate 100, the second insulating layer 130, and the lead unit 170 may be formed.
  • the via hole 180 may be formed using a dry etching or wet etching method. Of course, it can be formed using various other methods as desired.
  • the via hole 180 may serve as a passage through which conductive wires are arranged to allow electrical connection between other components. That is, when the conductive wire is disposed to allow electrical connection between the metal layer 140 and the driving circuit 110, the driving circuit 110, and the lead unit 170, the via hole 180 may be formed.
  • the light emitting device package of FIG. 1 may be encapsulated by a molding part (not shown).
  • a transparent compound for molding, a resin, an epoxy, or the like may be used.
  • the lens may be molded by transfer molding, compression molding, or the like. The lens may serve to diffuse light emitted from the first light emitting device 150 and the second light emitting device 160.
  • a Fresnel lens, a shell lens, etc. may be applied, and a lensless structure may also be used.
  • the configuration of the driving circuit 110 for driving the first light emitting device 150 and the second light emitting device 160 according to the embodiment will be described in detail.
  • FIG. 3 is a circuit diagram illustrating a driving circuit 110 for driving the first light emitting device 150 and the second light emitting device 160 according to the embodiment.
  • the first light emitting device 150 and the second light emitting device 160 may be connected in parallel.
  • An anode portion of the first light emitting device 150 may be connected to the first contact point 190 and a cathode portion of the first light emitting device 150 may be connected to the fourth contact point 193.
  • the anode portion of the second light emitting device 160 may be connected to the second contact point 191 and the cathode portion of the second light emitting device 160 may be connected to the collector of the first transistor 196.
  • the emitter of the first transistor 196 may be connected to the sixth contact 195.
  • the second resistor 199 may be connected between the sixth contact 195 and the third contact 192.
  • the first resistor 198 may be connected between the second contact 191 and the fifth contact 194.
  • the base of the first transistor 196 may be connected to the fifth contact 194.
  • the collector of the second transistor 197 may be connected to the fifth contact 194.
  • the base of the second transistor 197 may be connected to the sixth contact 195.
  • the emitter of the second transistor 197 may be connected to the third contact 192.
  • the circuit composed of the first resistor 198, the second resistor 199, the first transistor 196, and the second transistor 197 between the second contact 191 and the third contact 192 is a constant current circuit. Accordingly, the constant current circuit may allow a current having a constant intensity to flow between the second contact 191 and the third contact 192 regardless of the strength of the current input to the entire circuit.
  • the second transistor 197 When a voltage drop greater than the potential barrier of the second transistor 197 occurs in the second resistor 199, the second transistor 197 is operated. As a result, when the collector current of the second transistor 197 increases, a voltage drop occurs in the first resistor 198. When a voltage drop occurs in the first resistor 198, the base current of the first transistor 196 decreases. When the base current of the first transistor 196 decreases, the collector current of the first transistor 196 decreases. As a result, when the emitter current of the first transistor 196 decreases, the magnitude of the voltage drop generated by the second resistor 199 decreases. When the magnitude of the voltage drop generated by the second resistor 199 becomes smaller than the potential barrier of the second transistor 197, the second transistor 197 does not operate.
  • the second transistor 197 When the second transistor 197 is not operated, the base current of the first transistor 196 increases. When the base current of the first transistor 196 increases, the collector current of the first transistor 196 increases. As a result, when the emitter current of the first transistor 196 increases, the magnitude of the voltage drop generated by the second resistor 199 increases. When a voltage drop greater than the potential barrier of the second transistor 197 occurs in the second resistor 199, the second transistor 197 is operated.
  • the strength of the current flowing between the second contact 191 and the third contact 192 may be stabilized to a constant value.
  • the current input to the entire circuit may be divided into the first light emitting device 150 and the second light emitting device 160.
  • a current having a constant intensity may flow in the second light emitting element 160 regardless of the intensity of the current input to the entire circuit. Therefore, regardless of the current value input to the entire circuit, the remaining current value by subtracting a predetermined value of the current flowing through the second light emitting element 160 from the current value input to the entire circuit may flow to the first light emitting element 150. .
  • a current of 500 mA is input to the entire circuit.
  • a current of 450 mA may flow through the first light emitting device 150
  • a current of 50 mA may flow through the second light emitting device 160. That is, in this case, the ratio of the current flowing through the first light emitting device 150 and the second light emitting device 160 is 9: 1.
  • a current of 200 mA is input to the entire circuit.
  • a current of 150 mA flows through the first light emitting device 150 and a current of 50 mA flows through the second light emitting device 160. That is, in this case, the ratio of the current flowing through the first light emitting device 150 and the second light emitting device 160 is 3: 1.
  • the first transistor 196 and the second transistor 197 are npn transistors, but pnp transistors may be used in some embodiments. When the pnp transistor is used, the connection direction of the first light emitting device 150 and the second light emitting device 160 may be reversed.
  • circuit diagram shown in FIG. 3 is only one example of an implementation method of the driving circuit 110 for controlling the current flowing through the first light emitting device 150 and the second light emitting device 160, and various circuit configurations may be possible. .
  • FIG. 4 is a two-dimensional graph illustrating spectral distribution according to wavelengths when two light sources having different color coordinates and two light sources are mixed.
  • a spectral distribution according to wavelengths measured for each of two arbitrary light sources LIGHT1 and LIGHT2 having different color coordinates is shown.
  • the spectroscopic distribution according to the measured wavelength is shown when two light sources LIGHT1 and LIGHT2 having the same luminance are mixed (LIGHT1 + LIGHT2).
  • At least two light sources exist, and at least two light sources have different color coordinates.
  • the colors of the light sources appear to be mixed. At this time, the closer the light sources are to each other, the better the color looks.
  • the brightness of the mixed light sources is the sum of the brightness of each light source.
  • the mixed color is close to the color of each light source in proportion to the light intensity of each light source. Therefore, the color coordinates of the mixed colors become a point in the polygon formed by using the color coordinates of each light source as a vertex in a graph showing the color coordinates in two dimensions.
  • the mixed color has a median value of the colors of the two light sources LIGHT1 and LIGHT2. Will appear.
  • first light emitting device 150 and the second light emitting device 160 are used as a light source of a light emitting device package will be described in more detail with reference to an embodiment.
  • FIG. 5 is a two-dimensional color coordinate graph showing the color coordinates of the light emitting device package according to the embodiment.
  • FIG. 6 is a two-dimensional color coordinate graph showing an enlarged area shown in FIG. 5 by a rectangle with a thick line. 5 and 6, color coordinates of the first light emitting device 150 and the second light emitting device 160 are indicated by A and B, respectively.
  • a current of 500 mA is input to the light emitting device package according to the embodiment.
  • a current of 50 mA is set to flow through the second light emitting device 160 regardless of the intensity of the current input to the light emitting device package according to the embodiment.
  • a current of 450 mA may flow through the first light emitting device 150
  • a current of 50 mA may flow through the second light emitting device 160. That is, in this case, the ratio of the current flowing through the first light emitting device 150 and the second light emitting device 160 is 9: 1.
  • the intensity of light emitted from the light emitting device may be proportional to the intensity of a current flowing through the light emitting device. Therefore, the ratio of the intensity of light emitted from the first light emitting device 150 and the second light emitting device 160 may be 9: 1.
  • the light emitted from the light emitting device package according to the embodiment has a color in which the colors of the first light emitting device 150 and the second light emitting device 160 serving as light sources are mixed.
  • the color coordinate of the mixed color may be a point in a line connecting A and B in FIG. 5.
  • the first light emitting device 150 is a cool white light emitting device having a color temperature of 6,000K to 8,000K
  • the second light emitting device 160 is a warm white light emitting device having a color temperature of 2,300K to 4,000K. Since it is assumed, the color temperature of light emitted from the light emitting device package according to the embodiment may be in the range of 2,300K to 8,000K.
  • the mixed color is closer to the colors of the first light emitting device 150 and the second light emitting device 160 in proportion to the brightness of the first light emitting device 150 and the second light emitting device 160. Therefore, the color coordinates of the light emitted from the light emitting device package according to the embodiment may be a point denoted by C. In this case, the ratio of the length between A and C and the length between C and B may be 1: 9.
  • a current of 200 mA is input to the light emitting device package according to the embodiment.
  • a current of 50 mA is set to flow through the second light emitting device 160 regardless of the intensity of the current input to the light emitting device package according to the embodiment.
  • a current of 150 mA flows through the first light emitting device 150 and a current of 50 mA flows through the second light emitting device 160. That is, in this case, the ratio of the current flowing through the first light emitting device 150 and the second light emitting device 160 is 3: 1.
  • the intensity of light emitted from the light emitting device may be proportional to the intensity of a current flowing through the light emitting device. Therefore, the ratio of the intensity of light emitted from the first light emitting device 150 and the second light emitting device 160 may be 3: 1.
  • the light emitted from the light emitting device package according to the embodiment has a color in which the colors of the first light emitting device 150 and the second light emitting device 160 serving as light sources are mixed.
  • the color coordinate of the mixed color may be a point in a line connecting A and B in FIG. 5.
  • the mixed color is closer to the colors of the first light emitting device 150 and the second light emitting device 160 in proportion to the brightness of the first light emitting device 150 and the second light emitting device 160. Therefore, the color coordinates of the light emitted from the light emitting device package according to the embodiment may be a point denoted by D. In this case, the ratio of the length between A and D and the length between D and B may be 1: 3.
  • the color coordinates of the light emitted from the light emitting device package may be changed from C to D.
  • the intensity of the current input to the light emitting device package according to the embodiment is reduced, the color temperature of light emitted from the light emitting device package may be lowered.
  • the intensity of the current input to the light emitting device package according to the embodiment increases, the color temperature of light emitted from the light emitting device package may increase.
  • the brightness of light emitted from the light emitting device serving as the light source may be proportional to the intensity of the current flowing through the light emitting device, and the brightness of the mixed light sources may be the sum of the brightness of the respective light sources. Therefore, the brightness of light emitted from the light emitting device package according to the embodiment may be proportional to the intensity of the current input to the light emitting device package. Therefore, when the intensity of the current input to the light emitting device package according to the embodiment is reduced, the color temperature of light emitted from the light emitting device package may be lowered and the light intensity of the light may be lowered. On the contrary, when the intensity of the current input to the light emitting device package according to the embodiment increases, the color temperature of the light emitted from the light emitting device package may be increased and the light intensity of the light may be increased.
  • a lighting device having a color temperature of a white system having a cool emission color may be mainly used.
  • a lighting device having a color temperature of a white system having a warm emission color may be mainly used.
  • the brightness of the light may be relatively high, and when relaxing or listening to music, the light may be relatively low.
  • the light emitting device package according to the embodiment when the intensity of the input current increases, the light emission color may approach the color temperature of the cool white system and the brightness of the light may increase. In addition, in the light emitting device package according to the embodiment, when the intensity of the input current decreases, the light emission color may be close to the color temperature of the warm white system, and the light intensity may be lowered. Therefore, the light emitting device package according to the embodiment can be used as a light source for indoor lighting, in particular for emotional lighting because the color temperature and brightness of the light emitting color can be simultaneously adjusted only by adjusting the intensity of the input current. In addition, the light emitting device package according to the embodiment may simplify the driving circuit for driving the emotional lighting.
  • the light emitting device package in order to increase the intensity of the light emitted from the light emitting device package and the color temperature as the intensity of the input current is increased, as in the driving circuit 110 described above, light emission is performed.
  • the light emitting device having the lowest color temperature among at least two light emitting devices disposed in the device package may be connected to the constant current circuit. That is, as the intensity of the input current increases, the intensity of the current flowing through the light emitting elements having a relatively higher color temperature should be increased. Therefore, the light emitting element having the lowest color temperature among the light emitting elements has a higher current input to the light emitting device package. It is possible to allow a constant current to flow regardless of the intensity.
  • the light emitting device package according to the embodiment has a color temperature of the first light emitting device 150 having a cool white system color temperature and a warm white system in one light emitting device package as described above, in order to solve the above problems.
  • the second light emitting device 160 may be disposed.
  • the first light emitting device 150 according to the intensity of the current applied to the light emitting device package including a driving circuit 110 for controlling the current flowing through the first light emitting device 150 and the second light emitting device 160 and The ratio of the current flowing through the second light emitting device 160 may be changed.
  • the color temperature of the light emitted from the light emitting device package may be adjusted within a range between the color temperature of the first light emitting device 150 and the color temperature of the second light emitting device 160.
  • the color temperature of the light emitted from the light emitting device package may be adjusted and the brightness of the light may be adjusted.
  • FIG. 7 is a perspective view illustrating a lighting device including a light emitting device package according to an embodiment.
  • the lighting device 1500 is connected to the case 1510, the light emitting module 1530 disposed on the case 1510, the cover 1550 connected to the case 1510, and the case 1510, and is external. It may include a connection terminal 1570 powered from a power supply.
  • the case 1510 may be formed of a material having good heat dissipation such as metal and a resin material.
  • the light emitting module 1530 may include a board 1531 and at least one light emitting device package 1533 according to an embodiment mounted on the board 1531.
  • the plurality of light emitting device packages 1533 may be arranged to be spaced apart from each other in a radial structure on the board 1531.
  • the board 1531 may be an insulated substrate on which a circuit pattern is printed, and may include, for example, a printed circuit board (PCB), a metal core PCB, a flexible PCB, a ceramic PCB, an FR-4 substrate, and the like.
  • PCB printed circuit board
  • metal core PCB metal core PCB
  • flexible PCB flexible PCB
  • ceramic PCB ceramic PCB
  • FR-4 substrate an FR-4 substrate
  • the board 1531 may be formed of a material that effectively reflects light, and the surface of the board 1531 may be formed of a white or silver color that effectively reflects light.
  • At least one light emitting device package 1533 may be disposed on the board 1531.
  • Each of the light emitting device packages 1533 may include at least one light emitting diode (LED) chip.
  • the LED chip can include LEDs emitting red, green, blue or white and UV LEDs emitting UV.
  • the light emitting module 1530 may have a combination of various light emitting device packages 1533 to obtain a desired color and brightness.
  • the light emitting module 1530 may have a combination of white, red, and green LEDs to achieve high CRI.
  • connection terminal 1570 may be electrically connected to the light emitting module 1530 for power supply.
  • the connection terminal 1570 may be threadedly connected to an external power in a socket type, but is not limited thereto.
  • the connection terminal 1570 may be made of a pin type and inserted into external power, or may be connected to external power through a power line.
  • FIG. 8 is a circuit diagram illustrating a lighting system including a light emitting device package according to an embodiment.
  • the lighting system 2000 includes a power supply terminal unit 2010 having one end and the other end to which power is applied, a current control unit 2020 connected to one end of the power supply terminal unit 2010, and a current control unit 2020. ) And the light emitting device package 2030 according to the embodiment connected between the other end of the power supply terminal unit 2010.
  • the current controller 2020 may adjust the intensity of the current flowing in the light emitting device package 2030 according to an input value from the outside.
  • the input value from the outside may be input by a user of the lighting system or may be input by another external circuit.
  • the input value from the outside may be a fixed predetermined value or may be a dynamically changing value.
  • the current controller 2020 may receive the input value and adjust the current value input to the lead portion of the light emitting device package 2030.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

본 발명의 실시예는 인가하는 전류에 따라 색온도가 변화하는 발광 소자 패키지에 관한 것으로서, 적어도 둘 이상의 발광 소자, 및 발광 소자와 전기적으로 연결되고, 외부로부터 발광 소자에 전원을 공급하는 리드부를 포함하고, 발광 소자 중 적어도 두 개의 발광 소자는 서로 다른 색좌표를 갖고, 리드부에 입력되는 전류의 세기가 변화되면 서로 다른 색좌표를 갖는 발광 소자에 흐르는 전류의 비율이 변화하여 발광색의 색좌표가 변화하는 발광 소자 패키지를 제공한다.

Description

발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템
실시예는 인가하는 전류에 따라 색온도가 변화하는 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템에 관한 것이다.
발광 다이오드 소자(LED; Light Emitting Device)는 전기 에너지를 빛으로 변환하는 반도체 소자의 일종이다. 발광 소자는 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다. 이에 기존의 광원을 발광 소자로 대체하기 위한 많은 연구가 진행되고 있으며, 이미 발광 소자는 실내외에서 사용되는 각종 액정표시장치, 전광판, 가로등 등의 조명 장치의 광원으로서 사용이 증가되고 있는 추세이다.
특히, 조명 장치 광원으로서 백색 발광 소자 패키지의 사용이 증가되고 있으며, 최근에는 이른바 감성 조명이라는 개념이 등장하였다. 이로써 색온도가 높은 시원한 백색(cool white) 계통과 색온도가 낮은 따뜻한 백색(warm white) 계통의 백색 광원을 사용자의 취향 및 용도에 맞게 선택하여 사용할 수 있게 되었다. 최근에는 복수개의 따뜻한 백색 발광 소자 패키지와 복수개의 시원한 백색 발광 소자 패키지를 배치하고 이들의 광도를 조절하거나 이들의 개수의 비율을 조절하여 전체적인 색온도를 조절하는 방법이 사용되기도 한다.
그러나 이와 같이 복수개의 따뜻한 백색 발광 소자 패키지와 복수개의 시원한 백색 발광 소자 패키지를 사용하여 구현하는 경우 색반(색띠)이 발생하는 문제가 있다.
실시예는 상기와 같은 문제점을 해결하기 위하여 인가하는 전류에 따라 색온도가 변화하는 발광 소자 패키지를 제공한다.
실시예에 따른 발광 소자 패키지는 적어도 둘 이상의 발광 소자, 및 상기 발광 소자와 전기적으로 연결되고, 외부로부터 상기 발광 소자에 전원을 공급하는 리드부를 포함하고, 상기 발광 소자 중 적어도 두 개의 발광 소자는 서로 다른 색좌표를 갖고, 상기 리드부에 입력되는 전류의 세기가 변화되면 상기 서로 다른 색좌표를 갖는 발광 소자에 흐르는 전류의 비율이 변화하여 발광색의 색좌표가 변화할 수 있다.
실시예에 따른 조명 장치는 하우징, 및 상기 하우징 내에 배치되는 상기 발광 소자 패키지를 포함할 수 있다.
실시예에 따른 조명 시스템은 전원이 인가되는 일단 및 타단을 갖는 전원 단자부, 상기 전원 단자부의 일단에 연결되는 전류 조절부, 및 상기 전류 조절부와 상기 전원 단자부의 타단 사이에 연결되는 상기 발광 소자 패키지를 포함하고, 상기 전류 조절부는 외부로부터의 입력값에 따라 상기 발광 소자 패키지에 흐르는 전류의 세기를 조절할 수 있다.
또한, 상기 서로 다른 색좌표를 갖는 적어도 두 개의 발광 소자는 제1발광 소자 및 상기 제1발광 소자와 병렬로 연결되고 상기 제1발광 소자와 다른 색좌표를 갖는 제2발광 소자를 포함하고, 상기 제2발광 소자에 흐르는 전류값은 상기 리드부에 입력되는 전류값에 무관하게 일정한 값을 갖고, 상기 제1발광 소자에 흐르는 전류값은 상기 리드부에 입력되는 전류값이 변화함에 따라 변화할 수 있다.
또한, 상기 제1발광 소자는 청색 발광 소자와 황색 형광체 또는 청색 발광 소자와 녹색 및 황색 형광체 중 어느 하나를 포함하고, 상기 제2발광 소자는 청색 발광 소자와 황색 형광체 또는 청색 발광 소자와 적색 및 황색 형광체 중 어느 하나를 포함한다.
또한, 상기 발광 소자 및 상기 리드부와 전기적으로 연결되는 정전류 회로를 더 포함하고, 상기 정전류 회로는 상기 제2발광 소자와 연결되고, 상기 제2발광 소자에 흐르는 전류값이 상기 리드부에 입력되는 전류의 세기에 무관하게 일정한 값을 갖도록 할 수 있다.
또한, 상기 정전류 회로는 제1트랜지스터, 제2트랜지스터, 제1저항, 제2저항, 제1접점 및 제2접점을 더 포함하고, 상기 제1접점 및 상기 제2접점은 외부 회로와 연결되고, 상기 제1접점은 상기 제2발광 소자의 애노드와 연결되고, 상기 제2발광 소자의 캐소드는 상기 제1트랜지스터의 제1단자와 연결되고, 상기 제1트랜지스터의 제2단자는 상기 제2저항의 일단과 연결되고, 상기 제2저항의 타단은 상기 제2접점과 연결되고, 상기 제2접점은 상기 제2트랜지스터의 제2단자와 연결되고, 상기 제2트랜지스터의 제3단자는 상기 제2저항의 일단과 연결되고, 상기 제2트랜지스터의 제1단자는 상기 제1트랜지스터의 제3단자와 연결되고, 상기 제2트랜지스터의 제1단자는 상기 제1저항의 일단과 연결되고, 상기 제1저항의 타단은 상기 제1접점과 연결될 수 있다.
또한, 상기 리드부에 입력되는 전류의 세기에 따라 발광색의 색온도가 2,300K 내지 8,000K의 범위 내에서 변화할 수 있다.
또한, 상기 리드부에 입력되는 전류의 세기가 커지면 발광색의 색온도가 높아질 수 있다.
또한, 상기 리드부에 입력되는 전류의 세기가 커지면 발광색의 색온도가 높아짐과 함께, 나오는 빛의 광도가 높아질 수 있다.
또한, 상기 제2발광 소자는 상기 적어도 둘 이상의 발광 소자 중 가장 낮은 색온도를 갖는 발광 소자일 수 있다.
또한, 상기 제1발광 소자는 6,000K 내지 8,000K 중 어느 하나의 색온도를 갖고, 상기 제2발광 소자는 2,300K 내지 4,000K 중 어느 하나의 색온도를 가질 수 있다.
또한, 기판, 상기 기판 위에 배치되는 절연층, 상기 절연층 위에 배치되는 금속층, 및 상기 기판, 상기 절연층 및 상기 금속층을 관통하는 비아홀을 더 포함하고, 상기 적어도 둘 이상의 발광 소자는 상기 금속층 위에 배치될 수 있다.
실시예에 따르면 하나의 발광 소자 패키지로 색온도를 조절하여 시원한 백색, 따뜻한 백색 및 중간 백색의 색감을 구현할 수 있다.
또한, 실시예에 따르면 감성 조명을 구동시키기 위한 구동 회로를 단순화시킬 수 있다.
도 1은 실시예에 따른 발광 소자 패키지를 나타낸 분해도이다.
도 2는 도 1의 제1, 제2발광 소자를 각각 나타낸 단면도이다.
도 3은 실시예에 따른 구동 회로를 나타낸 회로도이다.
도 4는 색좌표가 서로 다른 두 개의 광원과 두 광원이 혼색된 경우의 파장에 따른 스펙트럼 분포를 나타낸 2차원 그래프이다.
도 5는 실시예에 따른 발광 소자 패키지의 색좌표를 나타낸 2차원 색좌표 그래프이다.
도 6은 도 5에서 굵은 선으로 된 사각형으로 표시된 영역을 확대하여 나타낸 2차원 색좌표 그래프이다.
도 7은 실시예에 따른 발광 소자 패키지를 포함하는 조명 장치를 나타낸 사시도이다.
도 8은 실시예에 따른 발광 소자 패키지를 포함하는 조명 시스템을 나타낸 회로도이다.
이하, 첨부된 도면을 참조하여 실시예에 대해 상세히 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다.
또한, 각 구성요소의 상 또는 아래에 대한 기준은 도면을 기준으로 설명한다. 도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
본 발명에 따른 실시예의 설명에 있어서, 어느 한 구성요소가 다른 구성요소의 “상(위) 또는 하(아래)(on or under)”에 형성되는 것으로 기재되는 경우에 있어, “상(위) 또는 하(아래)(on or under)”는 두 개의 구성요소가 서로 직접(directly) 접촉되거나 하나 이상의 다른 구성요소가 상기 두 구성요소 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)(on or under)”로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함된다. 또한, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 이외의 다른 구성요소를 제외한다는 의미가 아니라 이외의 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
발광 소자 패키지의 전체 구성
도 1은 실시예에 따른, 인가하는 전류에 따라 색온도가 변화하는 발광 소자 패키지를 나타낸 분해도이고, 도 2는 도 1의 제1, 제2발광 소자를 각각 나타낸 단면도이다.
도 1에 나타난 바와 같이, 실시예에 따른 발광 소자 패키지는 기판(100), 기판(100) 내에 실장되는 구동 회로(110), 기판(100) 위에 배치되는 제1절연층(120), 기판(100) 아래에 배치되는 제2절연층(130), 제1절연층(120) 위에 배치되는 금속층(140), 금속층(140) 위에 배치되는 제1발광 소자(150) 및 제2발광 소자(160), 제2절연층(130) 아래에 배치되는 리드부(170), 및 상기 금속층(140), 상기 제1절연층(120), 상기 기판(100), 상기 제2절연층(130) 및 상기 리드부(170)를 관통하는 비아홀(180)을 포함할 수 있다.
상술한 바와 같이 구성된, 인가하는 전류에 따라 색온도가 변화하는 발광 소자 패키지를 구성요소별로 상세하게 설명하면 다음과 같다.
기판(100)은 발광 소자 패키지의 몸체 역할을 한다. 발광 소자 패키지는 기판(100)으로 사용된 소재에 따라 플라스틱 패키지, 세라믹 패키지, 금속 패키지, 실리콘 패키지 등으로 분류되기도 한다. 기판(100)으로 어떠한 소재를 사용할 것인가에 관하여는 방열 효과, 양산 가능성, 비용, 다른 구성요소의 특성, 제품의 목적?용도 및 기타 제반사항을 고려하여 선택될 수 있다.
발광 소자 패키지용 기판(100) 재료로 실리콘을 사용하는 경우에는, 다층으로 적층하여 패키지를 제조할 수 있으며, 적층부 사이 사이에 회로를 실장할 수 있다. 또한, 실리콘 기판(100)을 사용하는 경우에는, 발광 파장에 의한 반사율 의존도가 낮고 웨이퍼 레벨의 집적화된 형태로도 제작할 수 있어 다품종 대량생산할 수 있는 장점도 가지고 있다.
기판(100) 내에는 제1발광 소자(150) 및 제2발광 소자(160)를 구동하기 위한 구동 회로(110)가 실장될 수 있다. 구동 회로(110)는 발광 소자 패키지의 목적?용도에 따라 원하는 기능을 수행하도록 발광 소자를 구동하는 역할을 한다. 실시예에 따른 구동 회로(110)를 구성하는 방법에 관하여는 이후에 자세히 설명하기로 한다.
기판(100) 위에는 제1절연층(120)이 배치될 수 있다. 제1절연층(120)은 기판(100)과 금속층(140)의 전기적 연결을 차단하는 역할을 한다. 다만, 기판(100)이 비전도성 물질로 이루어져 있는 경우에는 제1절연층(120)을 배치하지 않아도 무방하다.
기판(100) 아래에는 제2절연층(130)이 배치될 수 있다. 제2절연층(130)은 기판(100)과 리드부(170)의 전기적 연결을 차단하는 역할을 한다. 다만, 기판(100)이 비전도성 물질로 이루어져 있는 경우에는 제2절연층(130)을 배치하지 않아도 무방하다.
제1절연층(120) 위에는 금속층(140)이 배치될 수 있고, 금속층(140) 위에는 제1발광 소자(150) 및 제2발광 소자(160)가 배치될 수 있다. 금속층(140)은 제1발광 소자(150) 및 제2발광 소자(160)와 전기적으로 연결될 수 있다. 또한 금속층(140)은 제1발광 소자(150) 및 제2발광 소자(160)를 구동하기 위한 구동 회로(110)와 전기적으로 연결될 수 있다. 즉, 금속층(140)은 발광 소자 패키지 내에서 구성요소간을 연결해 주는 전기 도선의 역할을 할 수 있다.
또한 금속층(140)은 발광 소자 패키지 내에서 발생하는 열을 방출시켜주는 역할과 제1발광 소자(150) 및 제2발광 소자(160)를 지지해 주는 버팀대의 역할도 할 수 있다.
금속층(140) 위에는 제1발광 소자(150) 및 제2발광 소자(160)가 배치될 수 있다. 다만, 실시예에 따른 발광 소자 패키지는 적어도 둘 이상의 발광 소자를 포함할 수 있다. 즉, 제1발광 소자(150) 및 제2발광 소자(160)는 실시예에 따른 예시일 뿐이며 원하는 목적 및 설계 변경에 따라 발광 소자가 추가적으로 배치될 수 있다.
제1발광 소자(150) 및 제2발광 소자(160)는 전기에너지를 빛으로 변환시키는 고체 소자의 일종으로서, 일반적으로 2개의 상반된 도핑층 사이에 개재된 반도체 재료의 활성층을 포함한다. 2개의 도핑층 양단에 바이어스가 인가되면은, 정공과 전자가 활성층으로 주입된 후 그 곳에서 재결합되어 빛이 발생되며, 활성층에서 발생된 빛은 모든 방향으로 방출되어 모든 노출 표면을 통해 발광 소자 밖으로 방출되게 된다.
실시예에 따른 적어도 둘 이상의 발광 소자들 중 적어도 두 개의 발광 소자는 색좌표가 서로 다를 수 있다. 상기 발광 소자들의 발광색은 각각 색좌표 상의 임의의 점에 해당하는 색일 수 있다.
다만, 조명 장치의 광원으로서 백색 발광 소자 패키지의 사용이 증가하고 있으므로, 이하에서는 실시예에 따른 제1발광 소자(150) 및 제2발광 소자(160)의 발광색이 각각 흑체 복사 곡선 상의 임의의 서로 다른 두 점에 해당하는 색인 경우를 가정하여 설명하기로 한다.
제1발광 소자(150) 및 제2발광 소자(160) 중 어느 하나는 6,000K 내지 8,000K의 색온도를 가질 수 있다. 또한, 다른 하나는 2,300K 내지 4,000K의 색온도를 가질 수 있다. 이하에서는 제1발광 소자(150)가 6,000K 내지 8,000K의 색온도를 갖는 시원한 백색 발광 소자이며 제2발광 소자(160)가 2,300K 내지 4,000K의 색온도를 갖는 따뜻한 백색 발광 소자인 경우를 가정하여 설명하기로 한다.
도 2에 나타난 바와 같이, 제1발광 소자(150)의 색온도를 구현하기 위하여 제1발광 소자(150)는 기판(301) 상에 청색 발광 소자(303)와 녹색 및 황색 형광체(305)를 포함하고, 제2발광 소자(160)의 색온도를 구현하기 위하여 제2발광 소자(160)는 기판(401) 상에 청색 발광 소자(403)와 적색 및 황색 형광체(405)를 포함한다. 여기서, 제1발광 소자(150)는 청색 발광 소자와 황색 형광체를 포함할 수 있고, 제2발광 소자(160)는 청색 발광 소자와 황색 형광체를 포함할 수 있다.
이때, 황색 형광체는 청색광(430nm ~ 480nm)에 응답하여 540nm부터 585nm 범위에서 주 파장을 갖는 광을 방출한다. 녹색 형광체는 청색광(430nm ~ 480nm)에 응답하여 510nm부터 535nm 범위에서 주 파장을 갖는 광을 방출한다. 적색 형광체는 청색광(430nm ~ 480nm)에 응답하여 600nm부터 650nm 범위에서 주 파장을 갖는 광을 방출한다.
즉, 청색 발광 소자로부터 나오는 청색광의 일부는 형광체를 여기하고, 이로써 제1발광 소자(150) 및 제2발광 소자(160)는 형광체로부터 발생되는 빛과 청색 발광 소자로부터 발생되는 청색광이 혼색되어 상기 각 색온도를 갖는 백색광을 발하게 된다. 한편, 도시하지 않았지만, 제1발광 소자(150)는 청색광을 발하고, 제2발광 소자(160)는 적색광을 발할 수 있다. 또한, 제1발광 소자(150)는 짧은 파장대(400nm ~ 470nm)의 청색광을 발하고, 제2발광 소자(160)는 긴 파장대(470nm ~ 500nm)의 청색광을 발할 수 있다. 또한, 제1발광 소자(150)는 청색광을 발하고, 제2발광 소자(160)는 녹색광을 발할 수 있다.
제2절연층(130) 아래에는 리드부(170)가 배치될 수 있다. 리드부(170)는 전도성 물질로 이루어질 수 있다. 리드부(170)는 제1발광 소자(150) 및 제2발광 소자(160)를 구동하기 위한 구동 회로(110)와 전기적으로 연결될 수 있다. 리드부(170)는 발광 소자 패키지의 외부로 노출되어 외부 회로와 연결될 수 있다. 따라서 리드부(170)는 외부로부터 발광 소자 패키지에 전원을 공급하는 전기 도선의 역할을 할 수 있다.
또한 금속층(140), 제1절연층(120), 기판(100), 제2절연층(130) 및 리드부(170)를 관통하는 비아홀(180)이 형성될 수 있다. 비아홀(180)은 드라이 에칭(dry etching) 또는 웨트 에칭(wet etching) 방법을 이용하여 형성될 수 있다. 물론 원하는 바에 따라 여러 가지 다른 방법을 이용하여 형성될 수 있다. 비아홀(180)은 다른 구성요소간에 전기적 연결이 이루어질 수 있도록 도선이 배치되는 통로 역할을 할 수 있다. 즉, 금속층(140)과 구동 회로(110), 구동 회로(110)와 리드부(170) 사이에 전기적 연결이 이루어질 수 있도록 도선이 배치될 때에는 비아홀(180)을 통할 수 있다.
도 1의 발광 소자 패키지는 몰딩부(미도시됨)에 의해 봉지될 수 있다. 몰딩부를 구성하는 물질로는 몰딩용 투명 컴파운드나 레진, 에폭시 등이 이용될 수 있다. 또한, 트랜스퍼 몰딩이나 컴프레션 몰딩 등으로 렌즈가 성형될 수 있다. 렌즈는 제1발광 소자(150) 및 제2발광 소자(160)로부터 나오는 빛을 확산시키는 역할을 할 수 있다. 이 때 렌즈는 반구형 렌즈 외에 프레스넬(Fresnel) 렌즈, 포탄형 렌즈 등이 적용될 수 있으며 또한 렌즈가 없는 구조도 가능하다.
이하에서는 실시예에 따른, 제1발광 소자(150) 및 제2발광 소자(160)를 구동시키는 구동 회로(110)의 구성에 대하여 자세히 설명하기로 한다.
구동 회로(110)의 구성
도 3은 실시예에 따른 제1발광 소자(150) 및 제2발광 소자(160)를 구동시키는 구동 회로(110)를 나타낸 회로도이다.
도 3을 참조하면, 제1발광 소자(150)와 제2발광 소자(160)는 병렬로 연결될 수 있다. 제1발광 소자(150)의 애노드 부분은 제1접점(190)과 연결되고 제1발광 소자(150)의 캐소드 부분은 제4접점(193)과 연결될 수 있다. 제2발광 소자(160)의 애노드 부분은 제2접점(191)과 연결되고 제2발광 소자(160)의 캐소드 부분은 제1트랜지스터(196)의 컬렉터에 연결될 수 있다.
제1트랜지스터(196)의 이미터는 제6접점(195)과 연결될 수 있다. 제2저항(199)은 제6접점(195)과 제3접점(192) 사이에 연결될 수 있다. 제1저항(198)은 제2접점(191)과 제5접점(194) 사이에 연결될 수 있다. 제1트랜지스터(196)의 베이스는 제5접점(194)과 연결될 수 있다. 제2트랜지스터(197)의 컬렉터는 제5접점(194)과 연결될 수 있다. 제2트랜지스터(197)의 베이스는 제6접점(195)과 연결될 수 있다. 제2트랜지스터(197)의 이미터는 제3접점(192)과 연결될 수 있다.
제2접점(191)과 제3접점(192) 사이에 제1저항(198), 제2저항(199), 제1트랜지스터(196) 및 제2트랜지스터(197)로 구성된 회로는 정전류 회로이다. 이로써 정전류 회로는 전체 회로에 입력되는 전류의 세기에 무관하게 제2접점(191)과 제3접점(192) 사이에 일정한 세기의 전류가 흐르도록 할 수 있다.
제2저항(199)에서 제2트랜지스터(197)의 전위장벽 이상의 전압 강하가 발생하면 제2트랜지스터(197)가 작동하게 된다. 이로써 제2트랜지스터(197)의 컬렉터 전류가 증가하면 제1저항(198)에서 전압 강하가 발생하게 된다. 제1저항(198)에서 전압 강하가 발생하면 제1트랜지스터(196)의 베이스 전류가 감소하게 된다. 제1트랜지스터(196)의 베이스 전류가 감소하면 제1트랜지스터(196)의 컬렉터 전류가 감소하게 된다. 이로써 제1트랜지스터(196)의 이미터 전류가 감소하게 되면 제2저항(199)에서 발생하는 전압 강하의 크기가 작아지게 된다. 제2저항(199)에서 발생하는 전압 강하의 크기가 제2트랜지스터(197)의 전위장벽 이하로 작아지게 되면 제2트랜지스터(197)가 작동하지 않게 된다. 제2트랜지스터(197)가 작동하지 않게 되면 제1트랜지스터(196)의 베이스 전류가 증가하게 된다. 제1트랜지스터(196)의 베이스 전류가 증가하면 제1트랜지스터(196)의 컬렉터 전류가 증가하게 된다. 이로써 제1트랜지스터(196)의 이미터 전류가 증가하게 되면 제2저항(199)에서 발생하는 전압 강하의 크기가 커지게 된다. 제2저항(199)에서 제2트랜지스터(197)의 전위장벽 이상의 전압 강하가 발생하면 제2트랜지스터(197)가 작동하게 된다.
상기와 같은 과정이 계속 반복되면서 제2접점(191)과 제3접점(192) 사이에 흐르는 전류의 세기는 일정한 값으로 안정될 수 있다.
전체 회로에 입력된 전류는 제1발광 소자(150)와 제2발광 소자(160)로 나뉘어 흐를 수 있다. 제2발광 소자(160)에는 상술한 바와 같이 전체 회로에 입력된 전류의 세기와 무관하게 일정한 세기의 전류가 흐를 수 있다. 따라서 전체 회로에 입력된 전류값에 무관하게 전체 회로에 입력된 전류값에서 제2발광 소자(160)에 흐르는 일정 크기의 전류값을 뺀 나머지 전류값은 제1발광 소자(150)에 흐를 수 있다.
예를 들어, 전체 회로에 입력된 전류의 세기와 무관하게 제2발광 소자(160)에 50mA의 전류가 흐르도록 설정된 경우를 가정하여 설명하기로 한다.
첫번째 예로서, 전체 회로에 500mA의 전류가 입력된 경우를 가정하기로 한다. 이 경우, 제1발광 소자(150)에는 450mA의 전류가 흐르게 되며 제2발광 소자(160)에는 50mA의 전류가 흐를 수 있다. 즉, 이 경우 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 비율은 9:1이 된다.
두번째 예로서, 전체 회로에 200mA의 전류가 입력된 경우를 가정하기로 한다. 이 경우, 제1발광 소자(150)에는 150mA의 전류가 흐르게 되며 제2발광 소자(160)에는 50mA의 전류가 흐를 수 있다. 즉, 이 경우 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 비율은 3:1이 된다.
도 3에서 제1트랜지스터(196) 및 제2트랜지스터(197)는 npn형 트랜지스터이나, 실시예에 따라서는 pnp형 트랜지스터가 사용될 수도 있다. pnp형 트랜지스터가 사용되는 경우, 제1발광 소자(150) 및 제2발광 소자(160)의 연결 방향도 반대가 될 수 있다.
한편, 도 3에 나타난 회로도는 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 제어를 위한 구동 회로(110)의 구현 방법 중 일례일 뿐이며, 이외에도 다양한 회로 구성이 가능하다.
이하에서는 상술한 바와 같이 구성한 구동 회로(110)의 기능적 효과에 대하여 자세히 설명하기로 한다.
구동 회로(110)의 작동에 따른 색좌표 변화
도 4는 색좌표가 서로 다른 두 개의 광원과 두 광원이 혼색된 경우의 파장에 따른 스펙트럼 분포를 나타낸 2차원 그래프이다.
도 4를 참조하면, 색좌표가 서로 다른 임의의 두 개의 광원(LIGHT1, LIGHT2) 각각에 대하여 측정된 파장에 따른 스펙트럼 분포가 나타나 있다. 또한 광도가 동일한 두 개의 광원(LIGHT1, LIGHT2)이 혼합된 경우(LIGHT1+LIGHT2)에 대하여 측정된 파장에 따른 스펙트럽 분포가 나타나 있다.
적어도 둘 이상의 광원이 존재하고, 그 중에서 적어도 두 개의 광원은 서로 다른 색좌표를 갖는 경우를 가정하기로 한다. 광원들을 서로 인접하게 배치하고 충분히 떨어진 거리에서 광원들을 바라보면 광원들의 색이 혼합되어 보이게 된다. 이 때 광원들이 서로 가까이 배치되어 있을수록 색이 잘 혼합되어 보이게 된다.
이 때 혼합된 광원의 광도는 각 광원들의 광도의 합이 된다. 또한 혼합된 색은 각 광원의 광도에 비례하여 각 광원의 색에 근접하게 된다. 따라서 혼합된 색의 색좌표는 색좌표를 2차원으로 나타낸 그래프에서 각 광원의 색좌표를 꼭지점으로 하여 이루어지는 다각형 내의 한 점이 된다. 또한 광도가 동일한 두 개의 광원(LIGHT1, LIGHT2)이 혼합된 경우(LIGHT1+LIGHT2) 그 혼합된 색은 두 개의 광원(LIGHT1, LIGHT2)의 색의 중간값을 가지게 되므로 도 3에 나타난 바와 같은 스펙트럼 분포가 나타나게 된다.
이하에서는 실시예에 따라 제1발광 소자(150) 및 제2발광 소자(160)가 발광 소자 패키지의 광원으로 사용되는 경우를 예로 들어 보다 자세히 설명하기로 한다.
도 5는 실시예에 따른 발광 소자 패키지의 색좌표를 나타낸 2차원 색좌표 그래프이다. 또한 도 6은 도 5에서 굵은 선으로 된 사각형으로 표시된 영역을 확대하여 나타낸 2차원 색좌표 그래프이다. 도 5 및 도 6을 참조하면, 제1발광 소자(150) 및 제2발광 소자(160)의 색좌표가 각각 A, B로 표시되어 있다.
첫번째 예로서, 실시예에 따른 발광 소자 패키지에 500mA의 전류가 입력된 경우를 가정하기로 한다. 또한 실시예에 따른 발광 소자 패키지에 입력된 전류의 세기와 무관하게 제2발광 소자(160)에 50mA의 전류가 흐르도록 설정된 경우를 가정하기로 한다. 이 경우, 제1발광 소자(150)에는 450mA의 전류가 흐르게 되며 제2발광 소자(160)에는 50mA의 전류가 흐를 수 있다. 즉, 이 경우 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 비율은 9:1이 된다.
일반적으로 발광 소자에서 나오는 빛의 광도는 발광 소자에 흐르는 전류의 세기에 비례할 수 있다. 따라서 제1발광 소자(150)와 제2발광 소자(160)에서 나오는 빛의 광도의 비율은 9:1이 될 수 있다.
실시예에 따른 발광 소자 패키지에서 나오는 빛은 광원이 되는 제1발광 소자(150) 및 제2발광 소자(160)의 색이 혼합된 색을 갖게 된다. 이 때 혼합된 색의 색좌표는 도 5에서 A와 B를 잇는 선분 내의 한 점일 수 있다. 상술한 바와 같이 제1발광 소자(150)는 6,000K 내지 8,000K의 색온도를 갖는 시원한 백색 발광 소자이며 제2발광 소자(160)는 2,300K 내지 4,000K의 색온도를 갖는 따뜻한 백색 발광 소자인 경우를 가정하였으므로, 실시예에 따른 발광 소자 패키지로부터 나오는 빛의 색온도는 2,300K 내지 8,000K의 범위 내에 속할 수 있다.
또한 혼합된 색은 제1발광 소자(150) 및 제2발광 소자(160)의 광도에 비례하여 제1발광 소자(150) 및 제2발광 소자(160)의 색에 근접하게 된다. 따라서 실시예에 따른 발광 소자 패키지에서 나오는 빛의 색좌표는 C로 표시된 점일 수 있다. 이 때 A와 C 사이의 길이와 C와 B 사이의 길이의 비율은 1:9일 수 있다.
두번째 예로서, 실시예에 따른 발광 소자 패키지에 200mA의 전류가 입력된 경우를 가정하기로 한다. 또한 실시예에 따른 발광 소자 패키지에 입력된 전류의 세기와 무관하게 제2발광 소자(160)에 50mA의 전류가 흐르도록 설정된 경우를 가정하기로 한다. 이 경우, 제1발광 소자(150)에는 150mA의 전류가 흐르게 되며 제2발광 소자(160)에는 50mA의 전류가 흐를 수 있다. 즉, 이 경우 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 비율은 3:1이 된다.
일반적으로 발광 소자에서 나오는 빛의 광도는 발광 소자에 흐르는 전류의 세기에 비례할 수 있다. 따라서 제1발광 소자(150)와 제2발광 소자(160)에서 나오는 빛의 광도의 비율은 3:1이 될 수 있다. 실시예에 따른 발광 소자 패키지에서 나오는 빛은 광원이 되는 제1발광 소자(150) 및 제2발광 소자(160)의 색이 혼합된 색을 갖게 된다. 이 때 혼합된 색의 색좌표는 도 5에서 A와 B를 잇는 선분 내의 한 점일 수 있다. 또한 혼합된 색은 제1발광 소자(150) 및 제2발광 소자(160)의 광도에 비례하여 제1발광 소자(150) 및 제2발광 소자(160)의 색에 근접하게 된다. 따라서 실시예에 따른 발광 소자 패키지에서 나오는 빛의 색좌표는 D로 표시된 점일 수 있다. 이 때 A와 D 사이의 길이와 D와 B 사이의 길이의 비율은 1:3일 수 있다.
즉, 실시예에 따른 발광 소자 패키지에 입력되는 전류를 500mA에서 200mA로 변화시키는 경우, 발광 소자 패키지로부터 나오는 빛의 색좌표는 C에서 D로 변화될 수 있다. 다시 말해서, 실시예에 따른 발광 소자 패키지에 입력되는 전류의 세기가 작아지면 발광 소자 패키지로부터 나오는 빛의 색온도가 낮아질 수 있다. 반대로, 실시예에 따른 발광 소자 패키지에 입력되는 전류의 세기가 커지면 발광 소자 패키지로부터 나오는 빛의 색온도가 높아질 수 있다.
일반적으로, 광원이 되는 발광 소자에서 나오는 빛의 광도는 발광 소자에 흐르는 전류의 세기에 비례할 수 있고, 혼합된 광원의 광도는 각 광원들의 광도의 합이 될 수 있다. 따라서 실시예에 따른 발광 소자 패키지에서 나오는 빛의 광도는 발광 소자 패키지에 입력되는 전류의 세기에 비례할 수 있다. 그러므로 실시예에 따른 발광 소자 패키지에 입력되는 전류의 세기가 작아지면 발광 소자 패키지로부터 나오는 빛의 색온도가 낮아짐과 동시에 빛의 광도가 낮아질 수 있다. 반대로, 실시예에 따른 발광 소자 패키지에 입력되는 전류의 세기가 커지면 발광 소자 패키지로부터 나오는 빛의 색온도가 높아짐과 동시에 빛의 광도가 높아질 수 있다.
감성 조명의 경우 공부, 업무 또는 이성적 사고능력이 필요한 작업을 수행하는 경우에는 발광색이 시원한 백색 계통의 색온도를 갖는 조명 장치가 주로 사용될 수 있다. 또한 휴식, 음악 감상 또는 감성적 사고능력이 필요한 작업을 수행하는 경우에는 발광색이 따뜻한 백색 계통의 색온도를 갖는 조명 장치가 주로 사용될 수 있다. 통상적으로 공부나 업무 등을 할 때에는 조명의 광도가 상대적으로 높은 편이 좋을 수 있고, 휴식이나 음악 감상 등을 할 때에는 조명의 광도가 상대적으로 낮은 편이 좋을 수 있다.
실시예에 따른 발광 소자 패키지는 입력되는 전류의 세기가 커지면 발광색이 시원한 백색 계통의 색온도에 가까워짐과 동시에 빛의 광도가 높아질 수 있다. 또한, 실시예에 따른 발광 소자 패키지는 입력되는 전류의 세기가 작아지면 발광색이 따뜻한 백색 계통의 색온도에 가까워짐과 동시에 빛의 광도가 낮아질 수 있다. 따라서, 실시예에 따른 발광 소자 패키지는 입력되는 전류의 세기의 조절만으로 발광색의 색온도 및 광도를 동시에 조절 가능하므로 실내 조명, 특히 감성 조명을 위한 광원으로서 활용이 가능하다. 또한 실시예에 따른 발광 소자 패키지는 감성 조명을 구동시키기 위한 구동 회로를 단순화시킬 수 있다.
실시예에 따른 발광 소자 패키지와 같이, 입력되는 전류의 세기가 커짐에 따라 발광 소자 패키지로부터 나오는 빛의 광도가 높아짐과 동시에 색온도가 높아지도록 하기 위해서는, 상술한 구동 회로(110)에서와 같이, 발광 소자 패키지 내에 배치되는 적어도 둘 이상의 발광 소자들 중 가장 낮은 색온도를 갖는 발광 소자가 정전류 회로에 연결되도록 할 수 있다. 즉, 입력되는 전류의 세기가 커지면 상대적으로 더 높은 색온도를 갖는 발광 소자들에 흐르는 전류의 세기가 커지도록 해야 하므로, 발광 소자들 중 가장 낮은 색온도를 갖는 발광 소자에는 발광 소자 패키지에 입력되는 전류의 세기에 무관하게 일정한 세기의 전류가 흐르도록 할 수 있다.
최근에는 감성 조명에 대한 관심이 높아지고 있으며 복수개의 따뜻한 백색 발광 소자 패키지와 복수개의 시원한 백색 발광 소자 패키지를 인접하게 배치하고 이들의 광도를 조절하거나 이들의 개수의 비율을 조절하여 전체적인 색온도를 조절하는 방법이 사용되기도 한다. 그러나 이와 같이 광원이 되는 복수개의 따뜻한 백색 발광 소자 패키지와 복수개의 시원한 백색 발광 소자 패키지를 인접하게 배치하여 구현하는 경우 광원들이 배치되는 간격으로 인하여 색반(색띠)이 발생할 수 있는 문제점이 있다.
광원들이 서로 가까이 배치되어 있을수록 색이 잘 혼합되어 보이게 된다. 따라서 실시예에 따른 발광 소자 패키지는 상기와 같은 문제점을 해결하기 위하여, 상술한 바와 같이 하나의 발광 소자 패키지 내에 시원한 백색 계통의 색온도를 갖는 제1발광 소자(150)와 따뜻한 백색 계통의 색온도를 갖는 제2발광 소자(160)가 배치될 수 있다. 또한 제1발광 소자(150)와 제2발광 소자(160)에 흐르는 전류의 제어를 위한 구동 회로(110)를 포함하여 발광 소자 패키지에 인가되는 전류의 세기에 따라 제1발광 소자(150) 및 제2발광 소자(160)에 흐르는 전류의 비율이 변화되도록 할 수 있다. 이로써 발광 소자 패키지로부터 나오는 빛의 색온도가, 제1발광 소자(150)의 색온도와 제2발광 소자(160)의 색온도 사이의 범위 내에서 조절되도록 할 수 있다. 또한 발광 소자 패키지로부터 나오는 빛의 색온도가 조절됨과 동시에 빛의 광도가 조절되도록 할 수 있다.
조명 장치
도 7은 실시예에 따른 발광 소자 패키지를 포함하는 조명 장치를 나타낸 사시도이다.
도 7을 참조하면, 조명 장치(1500)는 케이스(1510), 케이스(1510) 위에 배치되는 발광 모듈(1530), 케이스(1510)와 연결되는 커버(1550) 및 케이스(1510)에 연결되며 외부 전원 공급원으로부터 전력을 공급받는 접속 터미널(1570)을 포함할 수 있다.
케이스(1510)는 금속 및 레진 물질과 같은 방열성이 좋은 물질로 형성될 수 있다.
발광 모듈(1530)은 보드(Board, 1531) 및 보드(1531) 위에 탑재되는 실시 예에 따른 적어도 하나의 발광 소자 패키지(1533)를 포함할 수 있다. 복수의 발광 소자 패키지(1533)는 보드(1531) 위에 방사상 구조로 서로 일정한 거리로 이격되어 배열될 수 있다.
보드(1531)는 회로 패턴이 인쇄된 절연 기판일 수 있고, 예를 들어, PCB (printed circuit board), 메탈 코어 PCB, 플렉서블 PCB, 세라믹 PCB, FR-4 기판 등을 포함할 수 있다.
또한, 보드(1531)는 빛을 효과적으로 반사하는 물질로 형성될 수 있고, 보드 (1531)의 표면은 빛을 효과적으로 반사하는 흰색 또는 은색의 색으로 형성될 수 있다.
적어도 하나의 발광 소자 패키지(1533)가 보드(1531) 상에 배치될 수 있다. 발광 소자 패키지(1533) 각각은 적어도 하나의 발광 다이오드(LED) 칩을 포함할 수 있다. LED 칩은 적색, 녹색, 청색 또는 백색을 방출하는 LED 및 UV 를 방출하는 UV LED 를 포함할 수 있다.
발광 모듈(1530)은 원하는 색 및 휘도를 얻도록 다양한 발광 소자 패키지(1533)의 조합을 가질 수 있다. 예를 들어, 발광 모듈(1530)은 높은 CRI 를 얻도록 백색, 적색, 녹색 LED 의 조합을 가질 수 있다.
접속 터미널(1570)은 전력 공급을 위해 발광 모듈(1530)에 전기적으로 연결될 수 있다. 접속 터미널(1570)은 외부 전력에 소켓 타입으로 나사식으로 연결될 수 있으나, 이에 한정되지 않는다. 예를 들어, 접속 터미널(1570)은 핀 타입으로 만들어져 외부 전력에 삽입될 수 있으며, 전력선을 통해 외부 전력에 접속될 수도 있다.
조명 시스템
도 8은 실시예에 따른 발광 소자 패키지를 포함하는 조명 시스템을 나타낸 회로도이다.
도 8을 참조하면, 조명 시스템(2000)은 전원이 인가되는 일단 및 타단을 갖는 전원 단자부(2010), 전원 단자부(2010)의 일단에 연결되는 전류 조절부(2020), 및 전류 조절부(2020)와 전원 단자부(2010)의 타단 사이에 연결되는 실시예에 따른 발광 소자 패키지(2030)를 포함할 수 있다.
전류 조절부(2020)는 외부로부터의 입력값에 따라 발광 소자 패키지(2030)에 흐르는 전류의 세기를 조절할 수 있다. 상기 외부로부터의 입력값은 조명 시스템의 사용자에 의해 입력된 것일 수도 있고, 다른 외부 회로에 의해 입력된 것일 수도 있다. 또한 상기 외부로부터의 입력값은 고정적으로 미리 정해진 값일 수도 있고, 동적으로 변화되는 값일 수도 있다. 전류 조절부(2020)는 이러한 입력값을 입력받아 발광 소자 패키지(2030)의 리드부에 입력되는 전류값을 조절할 수 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (11)

  1. 적어도 둘 이상의 발광 소자; 및
    상기 발광 소자와 전기적으로 연결되고, 외부로부터 상기 발광 소자에 전원을 공급하는 리드부
    를 포함하고,
    상기 발광 소자 중 적어도 두 개의 발광 소자는 서로 다른 색좌표를 갖고, 상기 리드부에 입력되는 전류의 세기가 변화되면 상기 서로 다른 색좌표를 갖는 발광 소자에 흐르는 전류의 비율이 변화하여 발광색의 색좌표가 변화하는 발광 소자 패키지.
  2. 제1항에 있어서,
    상기 서로 다른 색좌표를 갖는 적어도 두 개의 발광 소자는 제1발광 소자 및 상기 제1발광 소자와 병렬로 연결되고 상기 제1발광 소자와 다른 색좌표를 갖는 제2발광 소자를 포함하고,
    상기 제2발광 소자에 흐르는 전류값은 상기 리드부에 입력되는 전류값에 무관하게 일정한 값을 갖고, 상기 제1발광 소자에 흐르는 전류값은 상기 리드부에 입력되는 전류값이 변화함에 따라 변화하는 발광 소자 패키지.
  3. 제2항에 있어서,
    상기 제1발광 소자는 청색 발광 소자와 황색 형광체 또는 청색 발광 소자와 녹색 및 황색 형광체 중 어느 하나를 포함하고, 상기 제2발광 소자는 청색 발광 소자와 황색 형광체 또는 청색 발광 소자와 적색 및 황색 형광체 중 어느 하나를 포함하는 발광 소자 패키지.
  4. 제2항에 있어서,
    상기 발광 소자 및 상기 리드부와 전기적으로 연결되는 정전류 회로
    를 더 포함하고,
    상기 정전류 회로는 상기 제2발광 소자와 연결되고, 상기 제2발광 소자에 흐르는 전류값이 상기 리드부에 입력되는 전류의 세기에 무관하게 일정한 값을 갖도록 하는 발광 소자 패키지.
  5. 제4항에 있어서,
    상기 정전류 회로는 제1트랜지스터, 제2트랜지스터, 제1저항, 제2저항, 제1접점 및 제2접점을 포함하고,
    상기 제1접점 및 상기 제2접점은 외부 회로와 연결되고, 상기 제1접점은 상기 제2발광 소자의 애노드와 연결되고, 상기 제2발광 소자의 캐소드는 상기 제1트랜지스터의 제1단자와 연결되고, 상기 제1트랜지스터의 제2단자는 상기 제2저항의 일단과 연결되고, 상기 제2저항의 타단은 상기 제2접점과 연결되고, 상기 제2접점은 상기 제2트랜지스터의 제2단자와 연결되고, 상기 제2트랜지스터의 제3단자는 상기 제2저항의 일단과 연결되고, 상기 제2트랜지스터의 제1단자는 상기 제1트랜지스터의 제3단자와 연결되고, 상기 제2트랜지스터의 제1단자는 상기 제1저항의 일단과 연결되고, 상기 제1저항의 타단은 상기 제1접점과 연결되는 발광 소자 패키지.
  6. 제2항에 있어서,
    상기 리드부에 입력되는 전류의 세기에 따라 발광색의 색온도가 2,300K 내지 8,000K의 범위 내에서 변화하는 발광 소자 패키지.
  7. 제2항에 있어서,
    상기 리드부에 입력되는 전류의 세기가 커지면 발광색의 색온도가 높아짐과 함께, 나오는 빛의 광도가 높아지는 발광 소자 패키지.
  8. 제2항에 있어서,
    상기 제2발광 소자는 상기 적어도 둘 이상의 발광 소자 중 가장 낮은 색온도를 갖는 발광 소자인 발광 소자 패키지.
  9. 제2항에 있어서,
    상기 제1발광 소자는 6,000K 내지 8,000K 중 어느 하나의 색온도를 갖고, 상기 제2발광 소자는 2,300K 내지 4,000K 중 어느 하나의 색온도를 갖는 발광 소자 패키지.
  10. 하우징; 및
    상기 하우징 내에 배치되는 제1항 내지 제9항 중 어느 한 항에 따른 발광 소자 패키지
    를 포함하는 조명 장치.
  11. 전원이 인가되는 일단 및 타단을 갖는 전원 단자부;
    상기 전원 단자부의 일단에 연결되는 전류 조절부; 및
    상기 전류 조절부와 상기 전원 단자부의 타단 사이에 연결되는 제1항 내지 제9항 중 어느 한 항에 따른 발광 소자 패키지
    를 포함하고,
    상기 전류 조절부는 외부로부터의 입력값에 따라 상기 발광 소자 패키지에 흐르는 전류의 세기를 조절하는 조명 시스템.
PCT/KR2012/006636 2011-08-22 2012-08-21 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템 WO2013027998A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110083434A KR101884599B1 (ko) 2011-08-22 2011-08-22 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템
KR10-2011-0083434 2011-08-22

Publications (2)

Publication Number Publication Date
WO2013027998A2 true WO2013027998A2 (ko) 2013-02-28
WO2013027998A3 WO2013027998A3 (ko) 2013-04-25

Family

ID=47742680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006636 WO2013027998A2 (ko) 2011-08-22 2012-08-21 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템

Country Status (3)

Country Link
US (1) US20130049632A1 (ko)
KR (1) KR101884599B1 (ko)
WO (1) WO2013027998A2 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242536A (ja) * 2010-05-17 2011-12-01 Canon Inc 表示装置
KR20150092674A (ko) 2014-02-05 2015-08-13 삼성전자주식회사 발광 소자 및 발광 소자 패키지
CN106465510B (zh) * 2014-03-20 2019-10-01 东芝高新材料公司 发光装置以及led灯泡
WO2016108397A1 (en) * 2014-12-29 2016-07-07 Samsung Electronics Co., Ltd. Display apparatus, and method of controlling the same
KR102400151B1 (ko) * 2017-05-31 2022-05-20 서울반도체 주식회사 엘이디 패키지 세트 및 이를 포함하는 엘이디 벌브

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818162B1 (ko) * 2007-05-14 2008-03-31 루미마이크로 주식회사 색온도 조절이 가능한 백색 led 장치
KR20080100315A (ko) * 2008-10-24 2008-11-17 서울반도체 주식회사 발광 장치
KR20090001104A (ko) * 2007-06-29 2009-01-08 서울반도체 주식회사 다양한 색온도를 갖는 발광 장치
JP2009277705A (ja) * 2008-05-12 2009-11-26 Koa Corp パッケージ発光部品およびその製造法
KR20100012849A (ko) * 2009-09-14 2010-02-08 서울반도체 주식회사 웜화이트 발광장치 및 그것을 포함하는 백라이트 모듈

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723912B1 (ko) 2006-03-03 2007-05-31 주식회사 대진디엠피 발광 장치
JP5024789B2 (ja) * 2007-07-06 2012-09-12 Nltテクノロジー株式会社 発光制御回路、発光制御方法、面照明装置及び該面照明装置を備えた液晶表示装置
KR100958024B1 (ko) * 2008-08-05 2010-05-17 삼성엘이디 주식회사 발광 다이오드 패키지 및 그 제조방법
JP5471330B2 (ja) * 2009-07-14 2014-04-16 日亜化学工業株式会社 発光ダイオード駆動回路及び発光ダイオードの点灯制御方法
US8710754B2 (en) * 2011-09-12 2014-04-29 Juno Manufacturing Llc Dimmable LED light fixture having adjustable color temperature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818162B1 (ko) * 2007-05-14 2008-03-31 루미마이크로 주식회사 색온도 조절이 가능한 백색 led 장치
KR20090001104A (ko) * 2007-06-29 2009-01-08 서울반도체 주식회사 다양한 색온도를 갖는 발광 장치
JP2009277705A (ja) * 2008-05-12 2009-11-26 Koa Corp パッケージ発光部品およびその製造法
KR20080100315A (ko) * 2008-10-24 2008-11-17 서울반도체 주식회사 발광 장치
KR20100012849A (ko) * 2009-09-14 2010-02-08 서울반도체 주식회사 웜화이트 발광장치 및 그것을 포함하는 백라이트 모듈

Also Published As

Publication number Publication date
US20130049632A1 (en) 2013-02-28
KR101884599B1 (ko) 2018-08-02
WO2013027998A3 (ko) 2013-04-25
KR20130021106A (ko) 2013-03-05

Similar Documents

Publication Publication Date Title
KR102287651B1 (ko) 발광장치
US8503500B2 (en) Alternating current light emitting device
JP6369784B2 (ja) 発光装置、及びそれを用いた照明用光源及び照明装置
US8901829B2 (en) Solid state lighting apparatus with configurable shunts
WO2010013893A1 (en) Warm white light emitting apparatus and back light module comprising the same
WO2013115439A1 (ko) 히트싱크 및 이를 포함하는 엘이디 조명장치
US20090262527A1 (en) High-Voltage Light Emitting Diode Circuit Having a Plurality of Critical Voltages and Light Emitting Diode Device Using the Same
WO2018221952A1 (ko) 엘이디 패키지 세트 및 이를 포함하는 엘이디 벌브
WO2009157664A2 (ko) 반도체 소자 패키지
WO2013005971A2 (ko) 조명 장치
WO2013027998A2 (ko) 발광 소자 패키지, 이를 포함하는 조명 장치 및 조명 시스템
WO2017090956A1 (ko) 광원 모듈 및 이를 구비한 조명 장치
JP6616088B2 (ja) Ledアセンブリー及びこのledアセンブリーを用いたled電球
KR20130133696A (ko) 다 방향으로 발광하는 발광다이오드 칩 형성용 사파이어 기판, 발광다이오드 칩 및 발광장치
WO2010074371A1 (ko) 칩온보드형 발광 다이오드 패키지 및 그것의 제조 방법
WO2014017005A1 (ja) 発光モジュール
WO2011040671A1 (ko) 발광다이오드 조명기구
WO2016202213A1 (zh) 一种led日光管
CN113921688A (zh) 一种新型多彩led光源
CN107068845A (zh) 组合式半导体结构及灯具
WO2013058548A1 (en) Lighting device
CN216698417U (zh) 一种新型多彩led光源
WO2011129514A1 (ko) 열전냉각소자가 내장된 엘이디 패키지
WO2010107239A2 (ko) 발광 다이오드 장치의 제조방법과 발광 다이오드 패키지 및 발광 다이오드 모듈, 그리고 이를 구비한 조명등기구
WO2011027981A2 (ko) Led 패키지용 렌즈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826002

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826002

Country of ref document: EP

Kind code of ref document: A2