WO2013027239A1 - Axial flow turbine - Google Patents
Axial flow turbine Download PDFInfo
- Publication number
- WO2013027239A1 WO2013027239A1 PCT/JP2011/004682 JP2011004682W WO2013027239A1 WO 2013027239 A1 WO2013027239 A1 WO 2013027239A1 JP 2011004682 W JP2011004682 W JP 2011004682W WO 2013027239 A1 WO2013027239 A1 WO 2013027239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- turbine
- stage
- working fluid
- axial
- flow
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 66
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 31
- 239000012530 fluid Substances 0.000 claims abstract description 30
- 230000003068 static effect Effects 0.000 claims 2
- 230000035939 shock Effects 0.000 abstract description 10
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000000605 extraction Methods 0.000 description 18
- 238000005192 partition Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/32—Collecting of condensation water; Drainage ; Removing solid particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/141—Shape, i.e. outer, aerodynamic form
- F01D5/145—Means for influencing boundary layers or secondary circulations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/31—Application in turbines in steam turbines
Definitions
- the present invention relates to an axial flow turbine such as a steam turbine or a gas turbine.
- Patent Document 1 a plurality of turbine stages, each including a stationary blade fixed to an outer peripheral diaphragm and an inner peripheral diaphragm, and a moving blade fixed to a turbine rotor rotating around a turbine central axis, are provided in a working fluid flow path.
- An axial flow turbine having a function of converting kinetic energy generated when a high-pressure working fluid expands toward a low-pressure portion in a flow path into a rotational force by a turbine stage composed of stationary blades and moving blades is disclosed. Yes.
- the ring zone area is the product of the blade length and the average diameter obtained by adding the outer peripheral end diameter and the inner peripheral end diameter of the blade and dividing by two, and multiplying by the circular ratio. Therefore, in order to increase the ring zone area, the blade length and the average diameter are increased.
- the total specific enthalpy H 0 which is the sum of the enthalpy per unit mass of the working fluid (specific enthalpy) and the kinetic energy per unit mass divided by the square of the flow velocity divided by 2, is the rotation
- the value is substantially constant from the inner peripheral side close to the shaft to the outer peripheral side.
- the specific enthalpy h 1 between the stationary blade and the moving blade becomes larger toward the outer peripheral side than the inner peripheral side so as to balance with the swirling flow between the stationary blades. Accordingly, the specific enthalpy difference H 0 ⁇ h 1 becomes smaller toward the outer peripheral side.
- the velocity of the flow leaving the stationary blade is proportional to the square root of this specific enthalpy difference H 0 -h 1 . That is, the stationary blade outflow speed becomes smaller toward the outer peripheral side.
- the loss increases due to the supersonic speed of the relative inflow Mach number of the moving blades.
- Increasing the blade length and the average diameter increases the peripheral speed, which is the rotational speed of the moving blade.
- the peripheral speed of the moving blade is greatest at the outer peripheral end where the radial position is the largest, that is, at the tip of the moving blade. If the peripheral Mach number obtained by dividing the peripheral speed of the moving blade by the sonic speed exceeds 1 and becomes supersonic, and the rotational direction component of the flow from the stationary blade is not sufficient, the relative velocity of the flow flowing into the moving blade is Supersonic speed.
- an object of the present invention is to provide an axial flow turbine that can suppress shock wave loss due to an increase in annulus area and improve turbine efficiency.
- an axial turbine including a plurality of turbine stages each having a stationary stage fixed to a stationary body and a moving blade fixed to a turbine rotor in a working fluid flow path is provided outside the working fluid flow path. And a bypass flow path that bypasses at least one stage of the turbine stage and introduces a part of the working fluid from the upstream side in the working fluid flow direction to the turbine stage on the downstream side in the working fluid flow direction of the bypassed turbine stage.
- FIG. 1 is a meridional cross-sectional view showing a main structure of a turbine stage part of a general steam turbine.
- the steam high pressure part P 0 on the upstream side in the flow direction of the steam 1 as the working fluid hereinafter simply referred to as upstream side
- downstream side the downstream side in the steam flow direction
- the turbine stage includes a stationary blade 6 fixed between the outer peripheral diaphragm 4 and the inner peripheral diaphragm 5 and a moving blade 7 fixed to the turbine rotor 8 so as to face the downstream side of the stationary blade 6. Is done.
- the turbine stage is a multi-stage turbine composed of a plurality of stages
- a plurality of turbine stages are repeatedly provided from the high pressure part P 0 toward the low pressure part P 1 along the turbine central axis 9.
- the paragraph closest to the steam inlet of the high-pressure part P 0 is called the first paragraph
- the paragraph closest to the steam outlet of the low-pressure part P 1 is called the last paragraph.
- the casing 3 includes a diaphragm support 16 and an extraction chamber partition plate 17.
- the diaphragm support 16 has a plate-like structure having a thickness in the vertical direction on the paper surface, and a plurality of diaphragm supports 16 are provided around the rotation axis.
- the extraction chamber partition plate 17 has an axisymmetric structure around the rotation axis.
- a bleed chamber 18 is formed inside the casing 3. Part of the working steam that passes through the steam main flow path 2 is introduced into the extraction chamber, and is sent out of the turbine by extraction means (not shown). In FIG. 1, higher specific enthalpy and high-pressure working steam is extracted in the upstream extraction chamber.
- the turbine stage has four stages and the extraction chambers 18a, 18b, and 18c are provided.
- the number of stages and the number of extraction chambers are not particularly limited to this example.
- the turbine rotor 8 is mechanically connected to a generator (not shown).
- a generator not shown
- kinetic energy generated when high-pressure steam expands toward a low-pressure portion is converted into rotational force by a turbine stage composed of stationary blades 6 and moving blades 7, and is electrically generated by a generator via a turbine rotor 8. It converts into energy and generates electricity.
- FIG. 3 is a graph showing the specific enthalpy distribution in the blade height direction of the turbine last stage of the steam turbine shown in FIG.
- the horizontal axis represents the specific enthalpy, and the axial direction is determined so that the specific enthalpy increases toward the left as the working fluid vapor flows from left to right in FIG.
- the vertical axis represents the blade height direction
- BH represents the blade exit height.
- H 0 is the total specific enthalpy which is the sum of the specific enthalpy per unit mass at the paragraph inlet and the kinetic energy per unit mass divided by the square of the working fluid flow velocity divided by 2
- h 1 is the stationary and moving blade
- the specific enthalpy between and h 2 represents the specific enthalpy of the paragraph exit.
- the total specific enthalpy H 0 at the paragraph inlet is substantially constant in the blade height direction.
- the specific enthalpy h 1 between the stationary blades and the moving blades increases toward the outer peripheral side in the turbine radial direction (hereinafter simply referred to as the outer peripheral side) so as to balance with the centrifugal force mainly due to the swirling speed between the stationary blades.
- the specific enthalpy difference ⁇ h applied to the outer stationary vane is reduced, and the stationary blade outflow speed proportional to the square root of the specific enthalpy difference is also reduced.
- the tendency of the specific enthalpy difference and the stationary blade outflow speed of the stationary blade to decrease is that the blade diameter and the average diameter obtained by adding the outer peripheral end diameter and the inner peripheral end diameter of the blade and dividing by 2 are increased. As the annular area increases, the outer peripheral end position of the wing becomes more prominent as it comes to the outer peripheral side.
- FIG. 4 schematically shows the relationship among the stationary blade outflow speed, the moving blade peripheral speed, and the relative inflow speed of the moving blade when the peripheral speed of the moving blade is large.
- the steam flowing into the moving blade 7 becomes a flow having a relatively speed W (hereinafter referred to as a moving blade relative inflow velocity W).
- a triangle formed by the stationary blade outflow velocity vector V, the peripheral velocity vector U, and the moving blade relative inflow velocity vector W is referred to as a velocity triangle.
- the moving blade circumferential speed U increases, the moving blade relative speed W flowing into the moving blade 7 increases.
- FIG. 5 is a graph showing the blade height direction distribution of the blade relative inflow Mach number when the blade peripheral speed is high.
- the Mach number exceeds 1.0 and supersonic inflow occurs.
- the specific enthalpy difference H 0 -h 2 of the turbine stage itself is increased in order to increase the specific enthalpy difference ⁇ h of the outer stationary blade, the relative inflow Mach number of the moving blade at the inner peripheral end becomes 1.0.
- FIG. 2 is a meridional cross-sectional view of the main structure of the turbine stage part of the steam turbine according to the first embodiment of the present invention.
- the steam flow path to the final stage includes a steam main flow path 2 and a bypass flow path 11 provided outside the steam main flow path 2.
- the bypass flow path 11 is a flow path for introducing a part of the main steam flowing from the upstream side into a turbine stage downstream of the bypassed turbine stage by bypassing at least one stage of the turbine stage.
- a stationary blade bypass channel partition cover 12 is provided between the stationary blades 6a adjacent to each other in the circumferential direction at the final stage.
- a stationary blade bypass passage partition cover 12 divides the passage between the stationary blades into a steam main passage 2 on the inner peripheral side and a stationary blade bypass passage 19 on the outer peripheral side in the radial direction. Steam that flows down the bypass passage 11 flows into the stationary blade bypass passage 19, and the main steam flows into the steam main passage 2 on the inner peripheral side.
- a blade bypass passage partition cover 13 is provided between the blades 7a adjacent in the circumferential direction of the final stage.
- the blade bypass passage partition cover 13 divides the passage between the rotor blades into the steam main passage 2 on the inner peripheral side and the blade bypass passage 20 on the outer peripheral side in the radial direction.
- the steam that flows down through the bypass flow path 11 and the stationary blade bypass flow path 19 mainly flows into the moving blade bypass flow path 20, and the main steam flow flows into the steam main flow path 2 on the inner peripheral side.
- the moving blade bypass flow path partition cover 13 includes a type in which a plurality of moving blades 7a are collected and fixed by one member, a type that is closely attached by a blade integrated cover having a pitch between blades, etc. Any form may be used as long as it has a function of dividing the flow path so that the steam of the steam main flow path 2 and the bypass flow path 11 are not in direct contact with each other.
- the bypass flow path 11 is a cylindrical flow path centered on the turbine central shaft 9 provided in the casing portion, and communicates the upstream extraction chamber 18b and the stationary blade bypass flow path 19 with each other.
- the extraction chamber 18b is an extraction chamber into which the extracted steam extracted immediately upstream of the turbine stage one upstream of the final stage flows.
- bypass flow path 11 a part of the steam extracted from the steam main flow path immediately upstream of the turbine stage one upstream of the final stage bypasses the turbine stage one upstream of the final stage, and the stationary blades of the final stage and It flows into the blade bypass passage. Therefore, steam having a high specific enthalpy is introduced from the upstream extraction chamber 18 b into the moving blade bypass passage 20 through the stationary blade bypass passage 19 by the bypass passage 11.
- the bypass channel 11 is provided with a plurality of extraction tubes 14 in the circumferential direction.
- FIG. 6 is a graph showing the specific enthalpy distribution in the blade height direction of the final stage of the steam turbine according to the present embodiment and one upstream stage thereof.
- the steam main flow path 2 is below the span position BH c , and the bypass flow path 11 is above.
- H 0 is the total specific enthalpy upstream of the stationary blade 6b shown in FIG.
- h 1 , H 2 , h 3 , and h 4 are specific enthalpy h and total specific enthalpy, respectively, upstream of the moving blade 7b, upstream of the stationary blade 6a, upstream of the moving blade 7a, and downstream of the moving blade 7a of the steam main flow path 2.
- h 3 ′ is a specific enthalpy h upstream of the moving blade 7 a of the bypass flow path 11.
- the specific enthalpy drop on the outer peripheral side of the final stage is conventionally ⁇ h, but in the bypass flow path, the specific enthalpy drop ⁇ h ′ on the outer periphery of the moving blade is increased because the specific enthalpy of the inlet is increased. Therefore, on the outer peripheral side, the steam outflow speed of the stationary blade increases and the steam inflow speed of the moving blade inlet decreases.
- FIG. 7 shows the blade height direction distribution of the moving blade inlet angle measured from the circumferential direction of the final stage of the steam turbine according to the present embodiment.
- the span height BH c it is designed such that the relative inflow angle of the main steam flow path and bypass flow of the rotor blade 7a is continuous.
- FIG. 8 is a graph showing the blade height direction distribution of the moving blade relative inflow Mach number in the final stage of the steam turbine according to the present embodiment shown in FIG. 2.
- M r3 ′ shown by a solid line is the moving blade relative inflow Mach number of the final stage of the steam turbine according to the present embodiment
- M r3 shown by a broken line is the relative inlet of the moving blade of the general last stage of the steam turbine shown in FIG. Mach number.
- the specific enthalpy difference of the stationary blade is increased from ⁇ h to ⁇ h ′, so that the stationary blade outflow speed on the outer peripheral side of the stationary blade is increased, and as described with reference to FIG. Sonic inflow is avoided.
- the specific enthalpy difference ⁇ h on the outer peripheral side of the stationary blade is increased by increasing the total specific enthalpy H 0 on the outer peripheral side of the final stage inlet.
- the stationary blade outflow speed can be increased. Therefore, the speed component in the turning direction of the stationary blade outflow speed component V can be increased, and the relative inflow speed of the moving blade flowing into the moving blade in the final stage can be reduced even though the circumferential speed U is the same. . Therefore, the supersonic inflow to the moving blade can be avoided, the generation of the shock wave at the moving blade inlet can be suppressed, and the loss accompanying the generation of the shock wave can be suppressed.
- the expansion rate of the meridian plane flow path that is, the increase rate of the flow path height of the paragraph outlet with respect to the flow path height of the turbine stage inlet increases.
- the axial length of the stage cannot generally be increased because of the restriction of the overall length of the turbine.
- the increase is generally realized by increasing the spread angle of the meridional flow path shape at the outer peripheral end or inner peripheral end of the stationary blade portion. It is known that if the spread angle of the meridional flow path is increased, peeling occurs and a loss occurs, which is particularly remarkable on the outer peripheral side.
- the working steam on the outer peripheral side passes through the bypass flow path substantially parallel to the axis, and therefore no separation occurs.
- the rotational force extracted by the paragraph composed of the stationary blade 6b and the moving blade 7b is reduced, but the decrease is extracted as rotational force in the paragraph composed of the stationary blade 6a and the moving blade 7a. Therefore, the rotational power of the turbine as a whole is not reduced. Rather, it is possible to increase the rotational force as the loss is reduced.
- the shroud cover 10 is provided on the outer peripheral side of the final stage rotor blade, but the shroud cover 10 is not necessarily required in the configuration of the present invention, and a configuration without the shroud cover 10 may be employed (FIG. 9).
- FIG. 10 is a meridional cross-sectional view showing the main structure of the turbine stage part of the steam turbine according to the second embodiment of the present invention.
- symbol is attached
- the steam pressure is designed to be substantially equal at a portion where the bypass flow passage 11 and the steam main flow passage 2 join the upstream portion of the final stage moving blade 7a downstream of the final stage stationary blade 6a. Since the steam merged from the bypass flow path 11 and the steam main flow path 2 does not drift in the radial direction, the blade bypass flow path partition cover 13 is unnecessary.
- the steam from the bypass flow path 11 and the steam main flow path 2 are not necessarily the same in speed and flow direction. Therefore, a shear layer is formed at the junction of the bypass flow path 11 and the steam main flow path 2, and energy loss occurs. However, the loss due to the shear layer is negligible for the shaft power generated in the final paragraph. Rather, since the centrifugal stress design value of the moving blade 7a can be afforded by eliminating the moving blade bypass flow path partition cover 13, it is possible to further increase the length of the blade and increase the annular zone area. The output can be increased without increasing.
- FIG. 11 is a meridional cross-sectional view illustrating a main structure of a turbine stage portion of a steam turbine according to a third embodiment of the present invention.
- symbol is attached
- the pressure and specific enthalpy level are low, and the working steam becomes wet steam.
- a liquid film is formed on the surface of the stationary blade 6a, and coarse droplets are discharged from the trailing edge of the stationary blade 6a to the moving blade 7a.
- Coarse droplets are refined by working steam between the stationary blades, but a part of them collides with the tip of the blade and erodes the blade 7a.
- the progress of erosion has a problem that it is accompanied by a decrease in shaft power and blade strength.
- the moisture removal slit 15 is provided in the outer wing portion located in the stationary blade bypass passage 19 of the stationary blade 6a.
- the stationary blade bypass channel partition cover 12, the outer wing portion of the stationary blade 6a, and the outer diaphragm 4a are formed hollow, and the steam upstream of the stationary blade 6a is the outer wing portion of the stationary blade bypass channel partition cover 12 and the stationary blade 6a. From the inside of the outer peripheral side diaphragm 4a, it is led out to the extraction chamber 18a.
- the moisture removal slit 15 communicates with the inside and outside of the stationary blade, and the pressure outside the stationary blade is higher than the inside of the stationary blade. Therefore, the liquid film formed on the stationary blade passes through the moisture removal slit 15 and is removed to the extraction chamber 18a. Since there are no coarse droplets discharged to the wake of the stationary blade 6a, no erosion of the moving blade occurs.
- the present invention is not limited to the final paragraph, and can be applied to the upstream paragraph. Further, the present invention is applicable not only to a steam turbine but also to a gas turbine.
- the first advantage is that wetting loss is reduced.
- the water film adhering to the blade surface of the moving blade 7 constituting the upstream stage of the final stage is collected on the outer peripheral side by centrifugal force, and toward the stationary blade 6a of the final stage. Released. Therefore, the degree of wetness increases on the outer peripheral side of the final paragraph inlet, which causes an increase in wet loss and an increase in erosion in the final stage where the moving blade peripheral speed is high.
- the present invention when the present invention is applied to the final stage of the steam turbine, the wetness, which is the mass fraction of the liquid phase, is small because the total inlet enthalpy on the outer periphery side of the final stage is large.
- the present invention reduces wet loss and can suppress the occurrence of erosion. Therefore, turbine efficiency can be improved and the reliability of the steam turbine can be improved.
- the second advantage is that the reliability of the wing can be improved.
- the Wilson line that transitions from superheated steam of a steam turbine to wet steam that is in a two-phase flow state is often located in the turbine stage one upstream of the last stage.
- the Wilson line moves in the flow direction depending on the turbine load and steam conditions. Therefore, in the turbine stage where the Wilson line exists, the state of dry steam and wet steam is repeated, and corrosion pits are likely to occur.
- the turbine stage upstream of the final stage where the Wilson line is generated has a small blade length, so that the stress applied to the blade can be reduced, and the reliability of the blade is reduced due to corrosion pits. Can be suppressed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
In order to reduce a shock wave loss due to an increase in annulus area and a loss due to separation to thereby improve turbine efficiency in an axial flow turbine, an axial flow turbine is provided with a turbine stage configured from a stationary blade affixed to a stationary body and a moving blade affixed to a turbine rotor, and a working fluid flow path (2) having a plurality of turbine stages in the axial direction of the turbine. The axial flow turbine is provided with a bypass flow path (11) that is provided outside the working fluid flow path (2) and allows part of a working fluid flowing in from the upstream side in the flow direction of the working fluid to bypass the outer peripheral side of at least one of the turbine stages and to be introduced into a turbine stage located on the downstream side in the flow direction of the working fluid from the bypassed turbine stage.
Description
本発明は、蒸気タービンや、ガスタービン等の軸流タービンに関する。
The present invention relates to an axial flow turbine such as a steam turbine or a gas turbine.
特許文献1には、外周側ダイアフラムおよび内周側ダイアフラムに固定された静翼と、タービン中心軸回りに回転するタービンロータに固定された動翼とからなるタービン段落を作動流体流路内に複数備え、高圧の作動流体が流路内低圧部に向かって膨張する時に生じる運動エネルギーを、静翼と動翼とから構成されるタービン段落により回転力に変える機能を持つ軸流タービンが開示されている。
In Patent Document 1, a plurality of turbine stages, each including a stationary blade fixed to an outer peripheral diaphragm and an inner peripheral diaphragm, and a moving blade fixed to a turbine rotor rotating around a turbine central axis, are provided in a working fluid flow path. An axial flow turbine having a function of converting kinetic energy generated when a high-pressure working fluid expands toward a low-pressure portion in a flow path into a rotational force by a turbine stage composed of stationary blades and moving blades is disclosed. Yes.
軸流タービンでは、段落当たりの出力を増加させるために、単位時間当たりに流れる作動流体の質量である流量を増加させたい要求がある。流量を増加させ、段落当たりの出力を増加させることによって、段落数を変えずに発電量を増加させることが可能となる。
In axial flow turbines, there is a demand to increase the flow rate, which is the mass of the working fluid that flows per unit time, in order to increase the output per stage. By increasing the flow rate and increasing the output per paragraph, it is possible to increase the amount of power generation without changing the number of paragraphs.
ここで、流量を増加させるためには、作動流体が流れる部分のタービン回転軸方向からみた面積である環帯面積を大きくすることが有効であることが知られている。そこで、軸流タービンの場合には、環帯面積は翼長と、翼の外周端直径と内周端直径とを足して2で割った平均直径との積に円周率を掛けたものとなるため、環帯面積の増加のために、翼長と平均直径を大きくすることが行われている。
Here, in order to increase the flow rate, it is known that it is effective to increase the annular area, which is the area seen from the turbine rotation axis direction of the portion where the working fluid flows. Therefore, in the case of an axial turbine, the ring zone area is the product of the blade length and the average diameter obtained by adding the outer peripheral end diameter and the inner peripheral end diameter of the blade and dividing by two, and multiplying by the circular ratio. Therefore, in order to increase the ring zone area, the blade length and the average diameter are increased.
一般的に、タービン段落入口における、作動流体の単位質量当たりのエンタルピー(比エンタルピー)と、流速の二乗を2で割った単位質量当たりの運動エネルギーとの和である全比エンタルピーH0は、回転軸に近い内周側から外周側にかけて、略一定の値とされる。一方、静翼と動翼との間の比エンタルピーh1は、静動翼間の旋回流とバランスするように内周側に比べ外周側にいくほど大きくなる。従って、比エンタルピー差H0-h1は、外周側ほど小さくなる。静翼から出る流れの速度は、この比エンタルピー差H0-h1の二乗根に比例する。即ち、静翼流出速度は外周側ほど小さくなる。
Generally, at the turbine stage inlet, the total specific enthalpy H 0 , which is the sum of the enthalpy per unit mass of the working fluid (specific enthalpy) and the kinetic energy per unit mass divided by the square of the flow velocity divided by 2, is the rotation The value is substantially constant from the inner peripheral side close to the shaft to the outer peripheral side. On the other hand, the specific enthalpy h 1 between the stationary blade and the moving blade becomes larger toward the outer peripheral side than the inner peripheral side so as to balance with the swirling flow between the stationary blades. Accordingly, the specific enthalpy difference H 0 −h 1 becomes smaller toward the outer peripheral side. The velocity of the flow leaving the stationary blade is proportional to the square root of this specific enthalpy difference H 0 -h 1 . That is, the stationary blade outflow speed becomes smaller toward the outer peripheral side.
ところで、上述したように、環帯面積を大きくする、すなわち翼長や平均直径を大きくすると、外周側の比エンタルピー差H0-h1は、さらに小さくなり、静翼流出速度も小さくなる。このように、環帯面積を大きくすることにより、外周側の比エンタルピー差H0-h1と静翼流出速度が小さくなることは、以下に述べるような問題を引き起こす可能性がある。
By the way, as described above, when the annulus area is increased, that is, when the blade length and the average diameter are increased, the specific enthalpy difference H 0 -h 1 on the outer peripheral side is further reduced, and the stationary blade outflow speed is also reduced. As described above, when the annular area is increased, the specific enthalpy difference H 0 -h 1 on the outer peripheral side and the stationary blade outflow speed are reduced, which may cause the following problems.
すなわち、動翼の相対流入マッハ数が超音速となることによる損失の増加である。翼長や、平均直径を大きくすると、動翼の回転速度である周速が大きくなる。動翼の周速は、半径位置が一番大きい外周端、すなわち動翼先端部で最も大きくなる。動翼部の周速を音速で割った周速マッハ数が1を超えて超音速となり、静翼からの流れの回転方向成分が十分でないと、動翼に流入してくる流れの相対速度が超音速となる。相対流入速度が超音速となると、動翼上流側で不連続な圧力上昇を伴う衝撃波が発生し、衝撃波そのものによるエントロピー上昇に加え、衝撃波が翼面の境界層と干渉して、その不連続な圧力上昇により境界層厚さが増加する。さらにははく離を生じさせることなどによるエントロピー上昇も生じる。この衝撃波によるエントロピー上昇により、タービン段落の環帯面積を増加させ、作動流体の流量を増加させたにも関わらず、増加流量に相当する回転力すなわち出力が増えないことがある。そのため、限界周速を超えて環帯面積を大きくすることにより、段落当たりの出力増加を実現するためには、動翼流入部で生じる衝撃波を無くす、もしくは弱くすることが重要であり、そのためには、動翼相対流入速度を小さくする必要がある。
That is, the loss increases due to the supersonic speed of the relative inflow Mach number of the moving blades. Increasing the blade length and the average diameter increases the peripheral speed, which is the rotational speed of the moving blade. The peripheral speed of the moving blade is greatest at the outer peripheral end where the radial position is the largest, that is, at the tip of the moving blade. If the peripheral Mach number obtained by dividing the peripheral speed of the moving blade by the sonic speed exceeds 1 and becomes supersonic, and the rotational direction component of the flow from the stationary blade is not sufficient, the relative velocity of the flow flowing into the moving blade is Supersonic speed. When the relative inflow velocity becomes supersonic, a shock wave accompanied by a discontinuous pressure rise occurs on the upstream side of the blade, and in addition to the entropy rise due to the shock wave itself, the shock wave interferes with the boundary layer of the blade surface, and the discontinuous The boundary layer thickness increases with increasing pressure. In addition, entropy increases due to peeling. Due to the entropy increase due to the shock wave, the rotational force corresponding to the increased flow rate, that is, the output may not increase even though the annular zone area of the turbine stage is increased and the flow rate of the working fluid is increased. Therefore, it is important to eliminate or weaken the shock wave generated at the inlet of the moving blade in order to realize an increase in output per paragraph by enlarging the annular zone area beyond the limit peripheral speed. Therefore, it is necessary to reduce the relative inflow speed of the rotor blade.
そこで、本発明の目的は、環帯面積の増加による衝撃波損失を抑制し、タービン効率を向上させることができる軸流タービンを提供することにある。
Therefore, an object of the present invention is to provide an axial flow turbine that can suppress shock wave loss due to an increase in annulus area and improve turbine efficiency.
上記目的を達成するため、静止体に固定された静翼と、タービンロータに固定された動翼とからなるタービン段落を作動流体流路中に複数備える軸流タービンは、作動流体流路の外に設けられ、作動流体流れ方向上流側から作動流体の一部を、タービン段落の少なくとも一段をバイパスさせ、バイパスしたタービン段落の作動流体流れ方向下流側にあるタービン段落に導入するバイパス流路を備える。
In order to achieve the above object, an axial turbine including a plurality of turbine stages each having a stationary stage fixed to a stationary body and a moving blade fixed to a turbine rotor in a working fluid flow path is provided outside the working fluid flow path. And a bypass flow path that bypasses at least one stage of the turbine stage and introduces a part of the working fluid from the upstream side in the working fluid flow direction to the turbine stage on the downstream side in the working fluid flow direction of the bypassed turbine stage. .
本発明によれば、軸流タービンにおいて、環帯面積の増加による衝撃波損失を抑制し、タービン効率を向上させることができる。
According to the present invention, in an axial flow turbine, it is possible to suppress a shock wave loss due to an increase in annulus area and improve turbine efficiency.
以下、本発明を実施するための形態について、適宜図を参照して詳細に説明する。なお、各図面を通し、同等の構成要素には同一の符号を付してある。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings as appropriate. In addition, the same code | symbol is attached | subjected to the equivalent component through each drawing.
本発明の第1の実施の形態として、本発明を蒸気タービンの最終段落に適用した例について、以下説明する。
As a first embodiment of the present invention, an example in which the present invention is applied to the final paragraph of a steam turbine will be described below.
初めに、一般的な蒸気タービン段落部の基本構成および動作について説明する。
First, the basic configuration and operation of a general steam turbine stage will be described.
図1は、一般的な蒸気タービンのタービン段落部の要部構造を表す子午面断面図である。蒸気タービンのタービン段落は、作動流体である蒸気1の流れ方向上流側(以下、単に上流側と記載する)の蒸気高圧部P0と、蒸気流れ方向下流側(以下、単に下流側と記載する)の蒸気低圧部P1との間の蒸気主流路2に設けられている。タービン段落は、外周側ダイアフラム4と内周側ダイアフラム5との間に固定された静翼6と、静翼6の下流側に対向するようにタービンロータ8に固定された動翼7とで構成される。タービン段落が複数の段落から構成される多段落型タービンである場合、タービン中心軸9に沿って、高圧部P0から低圧部P1に向かって、タービン段落が複数個、繰り返されて設けられる。高圧部P0の蒸気入口に最も近い段落を初段落といい、低圧部P1の蒸気出口に最も近い段落を最終段落という。
FIG. 1 is a meridional cross-sectional view showing a main structure of a turbine stage part of a general steam turbine. In the turbine stage of the steam turbine, the steam high pressure part P 0 on the upstream side in the flow direction of the steam 1 as the working fluid (hereinafter simply referred to as upstream side) and the downstream side in the steam flow direction (hereinafter simply referred to as downstream side) are described. It is provided in the steam main flow path 2 between the vapor low-pressure portion P 1 of). The turbine stage includes a stationary blade 6 fixed between the outer peripheral diaphragm 4 and the inner peripheral diaphragm 5 and a moving blade 7 fixed to the turbine rotor 8 so as to face the downstream side of the stationary blade 6. Is done. When the turbine stage is a multi-stage turbine composed of a plurality of stages, a plurality of turbine stages are repeatedly provided from the high pressure part P 0 toward the low pressure part P 1 along the turbine central axis 9. . The paragraph closest to the steam inlet of the high-pressure part P 0 is called the first paragraph, and the paragraph closest to the steam outlet of the low-pressure part P 1 is called the last paragraph.
タービン段落は、その外周側ダイアフラム4がケーシング3に固定されている。ケーシング3は、ダイアフラム支持体16と抽気室仕切り板17からなる。ダイアフラム支持体16は、紙面鉛直方向に厚みを持つ板状の構造を持ち、回転軸周りに複数枚設けられる。抽気室仕切り板17は、回転軸周りに軸対称な構造となっている。ケーシング3内部には、抽気室18が形成されている。蒸気主流路2を通過する作動蒸気の一部は、抽気室に導入され、図示されていない抽出手段により、タービン外に送出される。図1では、上流側の抽気室ほど高比エンタルピー、高圧の作動蒸気が抽気される。なお本実施例ではタービン段落を4段、抽気室として18a,18b,18cを備える例を示したが、段数と抽気室の数はこの例に特に限定されるものではない。
In the turbine stage, the outer peripheral diaphragm 4 is fixed to the casing 3. The casing 3 includes a diaphragm support 16 and an extraction chamber partition plate 17. The diaphragm support 16 has a plate-like structure having a thickness in the vertical direction on the paper surface, and a plurality of diaphragm supports 16 are provided around the rotation axis. The extraction chamber partition plate 17 has an axisymmetric structure around the rotation axis. A bleed chamber 18 is formed inside the casing 3. Part of the working steam that passes through the steam main flow path 2 is introduced into the extraction chamber, and is sent out of the turbine by extraction means (not shown). In FIG. 1, higher specific enthalpy and high-pressure working steam is extracted in the upstream extraction chamber. In this embodiment, the turbine stage has four stages and the extraction chambers 18a, 18b, and 18c are provided. However, the number of stages and the number of extraction chambers are not particularly limited to this example.
タービンロータ8は、図示しない発電機に機械的に接続されている。蒸気タービンは、高圧の蒸気が低圧部に向かって膨張する時に生じる運動エネルギーを、静翼6と動翼7から構成されるタービン段落により回転力に変え、タービンロータ8を介して発電機で電気エネルギーに変換して発電を行う。
The turbine rotor 8 is mechanically connected to a generator (not shown). In the steam turbine, kinetic energy generated when high-pressure steam expands toward a low-pressure portion is converted into rotational force by a turbine stage composed of stationary blades 6 and moving blades 7, and is electrically generated by a generator via a turbine rotor 8. It converts into energy and generates electricity.
図3は、図1に図示した蒸気タービンのタービン最終段落部の、翼高さ方向の比エンタルピー分布を表したグラフである。横軸は、比エンタルピーであり、図1において作動流体である蒸気が左から右に流れていくのに合わせて、左に行くほど比エンタルピーが大きくなるように軸方向を決めている。縦軸は、翼高さ方向を表し、BHは、動翼出口高さを表す。
FIG. 3 is a graph showing the specific enthalpy distribution in the blade height direction of the turbine last stage of the steam turbine shown in FIG. The horizontal axis represents the specific enthalpy, and the axial direction is determined so that the specific enthalpy increases toward the left as the working fluid vapor flows from left to right in FIG. The vertical axis represents the blade height direction, and BH represents the blade exit height.
図3において、H0は、段落入口における単位質量当たりの比エンタルピーと作動流体流速の二乗を2で割った単位質量当たりの運動エネルギーとの和である全比エンタルピー、h1は静・動翼間の比エンタルピー、h2は段落出口の比エンタルピーを表す。段落入口の全比エンタルピーH0は、翼高さ方向に略一定である。静・動翼間の比エンタルピーh1は、主に静動翼間の旋回速度による遠心力とバランスするようにタービン半径方向外周側(以下、単に外周側と記載する)ほど大きくなる。結果として、外周側の静翼にかかる比エンタルピー差Δhが小さくなり、比エンタルピー差の二乗根に比例する静翼流出速度も小さくなる。この静翼にかかる比エンタルピー差と静翼流出速度が小さくなる傾向は、翼長や、翼の外周端直径と内周端直径とを足して2で割った平均直径が大きくなることにより、即ち環帯面積が大きくなることにより翼の外周端位置がより外周側になるほど顕著となる。
In FIG. 3, H 0 is the total specific enthalpy which is the sum of the specific enthalpy per unit mass at the paragraph inlet and the kinetic energy per unit mass divided by the square of the working fluid flow velocity divided by 2, and h 1 is the stationary and moving blade The specific enthalpy between and h 2 represents the specific enthalpy of the paragraph exit. The total specific enthalpy H 0 at the paragraph inlet is substantially constant in the blade height direction. The specific enthalpy h 1 between the stationary blades and the moving blades increases toward the outer peripheral side in the turbine radial direction (hereinafter simply referred to as the outer peripheral side) so as to balance with the centrifugal force mainly due to the swirling speed between the stationary blades. As a result, the specific enthalpy difference Δh applied to the outer stationary vane is reduced, and the stationary blade outflow speed proportional to the square root of the specific enthalpy difference is also reduced. The tendency of the specific enthalpy difference and the stationary blade outflow speed of the stationary blade to decrease is that the blade diameter and the average diameter obtained by adding the outer peripheral end diameter and the inner peripheral end diameter of the blade and dividing by 2 are increased. As the annular area increases, the outer peripheral end position of the wing becomes more prominent as it comes to the outer peripheral side.
図4は、動翼の周速が大きい場合の、静翼流出速度と、動翼周速と、動翼の相対流入速度との関係を模式的に表す。高圧P0の蒸気は、静翼6を通過することによって、加速、転向され速度Vの流れとなる(以下、この速度を静翼流出速度Vと記載する)。この静翼流出速度Vを動翼7と一緒に回転する相対座標系で見ると、動翼7はタービン中心軸周りに周速Uで回転しているため(回転方向を矢印22で表す)、静翼流出速度ベクトルVと周速ベクトルUとの合成により、動翼7への流入する蒸気は相対的に速度Wの流れとなる(以下、動翼相対流入速度Wと記載する)。この静翼流出速度ベクトルV、周速ベクトルU、動翼相対流入速度ベクトルWによって形成される三角形を速度三角形と呼ぶ。速度三角形から明らかなように、動翼周速Uが大きくなると、動翼7に流入する動翼相対速度Wは大きくなる。動翼相対流入速度Wを小さくするためには、静翼流出速度Vを大きくする必要がある。
FIG. 4 schematically shows the relationship among the stationary blade outflow speed, the moving blade peripheral speed, and the relative inflow speed of the moving blade when the peripheral speed of the moving blade is large. Vapor pressure P 0, by passing through the stationary blade 6, the acceleration, the flow deflection by the speed V (hereinafter referred to as the speed and stator blade outlet velocity V). Looking at this stationary blade outflow velocity V in a relative coordinate system that rotates together with the moving blade 7, the moving blade 7 rotates at a peripheral speed U around the turbine central axis (the direction of rotation is indicated by an arrow 22). By combining the stationary blade outflow velocity vector V and the peripheral velocity vector U, the steam flowing into the moving blade 7 becomes a flow having a relatively speed W (hereinafter referred to as a moving blade relative inflow velocity W). A triangle formed by the stationary blade outflow velocity vector V, the peripheral velocity vector U, and the moving blade relative inflow velocity vector W is referred to as a velocity triangle. As apparent from the speed triangle, when the moving blade circumferential speed U increases, the moving blade relative speed W flowing into the moving blade 7 increases. In order to reduce the moving blade relative inflow velocity W, it is necessary to increase the stationary blade outflow velocity V.
ここで、段落入口の蒸気の状態量が固定されているとき、静翼流出速度Vを大きくするためには、静・動翼間での比エンタルピーh1を小さくして、静翼の比エンタルピー差Δhを大きくする必要がある。しかしながら、静・動翼間での比エンタルピーは静翼出口の旋回速度場によって外周側ほど大きくなり、翼長が長くなるほど、旋回速度場の影響が強くなるので、h1を小さくすることは難しくなる。すなわち、翼長が長くなるほど、静翼の比エンタルピー差Δhを大きくすることは難しくなり、静翼流出速度Vを大きくすることは難しくなる。
Here, when the state quantity of the steam at the paragraph inlet is fixed, in order to increase the stationary blade outflow velocity V, the specific enthalpy h 1 between the stationary and moving blades is decreased, and the specific enthalpy of the stationary blade is reduced. It is necessary to increase the difference Δh. However, specific enthalpy between the static-blades increases as the outer peripheral side by the swirl velocity field of the stationary blade outlet, as the blade length increases, the influence of the swirling velocity field is strong, it is difficult to reduce the h 1 Become. That is, as the blade length increases, it becomes more difficult to increase the specific enthalpy difference Δh of the stationary blade, and it is difficult to increase the stationary blade outflow velocity V.
図5は、動翼周速が大きい場合の、動翼相対流入マッハ数の翼高さ方向分布を表すグラフである。図5に示したように、翼の外周側では、マッハ数が1.0を超え、超音速流入となっていることがわかる。ここで、外周側の静翼の比エンタルピー差Δhを大きくするために、タービン段落の比エンタルピー差H0-h2自体を大きくすると、内周端の動翼相対流入マッハ数が1.0を超え超音速流入となるために、段落全体の比エンタルピー差を大きくすることでは、超音速流入の問題を解決することは難しい。
FIG. 5 is a graph showing the blade height direction distribution of the blade relative inflow Mach number when the blade peripheral speed is high. As shown in FIG. 5, it can be seen that on the outer peripheral side of the wing, the Mach number exceeds 1.0 and supersonic inflow occurs. Here, if the specific enthalpy difference H 0 -h 2 of the turbine stage itself is increased in order to increase the specific enthalpy difference Δh of the outer stationary blade, the relative inflow Mach number of the moving blade at the inner peripheral end becomes 1.0. In order to achieve supersonic inflow, it is difficult to solve the problem of supersonic inflow by increasing the specific enthalpy difference of the entire paragraph.
以上を踏まえて、本発明の第1の実施形態ついて、図面を用いて説明する。
Based on the above, the first embodiment of the present invention will be described with reference to the drawings.
本発明の第1の実施形態に係る蒸気タービンの基本構成および動作について説明する。
The basic configuration and operation of the steam turbine according to the first embodiment of the present invention will be described.
図2は、本発明の第1の実施形態に係る蒸気タービンのタービン段落部の要部構造の子午面断面図である。図2に示すように、本実施形態に係る蒸気タービンでは、最終段への蒸気流路が、蒸気主流路2と、蒸気主流路2の外側に設けたバイパス流路11からなる。バイパス流路11は、上流側から流入する蒸気主流の一部を、タービン段落の少なくとも一段をバイパスさせ、バイパスしたタービン段落の下流側にあるタービン段落に導入するための流路である。
FIG. 2 is a meridional cross-sectional view of the main structure of the turbine stage part of the steam turbine according to the first embodiment of the present invention. As shown in FIG. 2, in the steam turbine according to this embodiment, the steam flow path to the final stage includes a steam main flow path 2 and a bypass flow path 11 provided outside the steam main flow path 2. The bypass flow path 11 is a flow path for introducing a part of the main steam flowing from the upstream side into a turbine stage downstream of the bypassed turbine stage by bypassing at least one stage of the turbine stage.
また最終段の、周方向に隣設された静翼6a間には静翼バイパス流路仕切りカバー12が設けられている。静翼バイパス流路仕切りカバー12により、静翼間の流路が径方向に内周側の蒸気主流路2と外周側の静翼バイパス流路19とに仕切られている。静翼バイパス流路19には、バイパス流路11を流下した蒸気が流入し、内周側の蒸気主流路2には、蒸気主流が流入する。
Further, a stationary blade bypass channel partition cover 12 is provided between the stationary blades 6a adjacent to each other in the circumferential direction at the final stage. A stationary blade bypass passage partition cover 12 divides the passage between the stationary blades into a steam main passage 2 on the inner peripheral side and a stationary blade bypass passage 19 on the outer peripheral side in the radial direction. Steam that flows down the bypass passage 11 flows into the stationary blade bypass passage 19, and the main steam flows into the steam main passage 2 on the inner peripheral side.
同様に、最終段の周方向に隣設された動翼7a間には、動翼バイパス流路仕切りカバー13が設けられている。動翼バイパス流路仕切りカバー13により、動翼間の流路が半径方向に内周側の蒸気主流路2と外周側の動翼バイパス流路20とに仕切られている。動翼バイパス流路20には主にバイパス流路11および静翼バイパス流路19を流下した蒸気が流入し、内周側の蒸気主流路2には蒸気主流が流入する。動翼バイパス流路仕切りカバー13は、複数の動翼7aをまとめて、一つの部材で固定されるタイプや、翼間ピッチの翼一体カバーで密着するタイプなどがあるが、動翼内で、蒸気主流路2とバイパス流路11の蒸気が直接接することが無きよう、流路を分断する機能を有すれば、いずれの形態であってもよい。
Similarly, a blade bypass passage partition cover 13 is provided between the blades 7a adjacent in the circumferential direction of the final stage. The blade bypass passage partition cover 13 divides the passage between the rotor blades into the steam main passage 2 on the inner peripheral side and the blade bypass passage 20 on the outer peripheral side in the radial direction. The steam that flows down through the bypass flow path 11 and the stationary blade bypass flow path 19 mainly flows into the moving blade bypass flow path 20, and the main steam flow flows into the steam main flow path 2 on the inner peripheral side. The moving blade bypass flow path partition cover 13 includes a type in which a plurality of moving blades 7a are collected and fixed by one member, a type that is closely attached by a blade integrated cover having a pitch between blades, etc. Any form may be used as long as it has a function of dividing the flow path so that the steam of the steam main flow path 2 and the bypass flow path 11 are not in direct contact with each other.
バイパス流路11は、ケーシング部に設けられたタービン中心軸9を中心とする円筒状の流路であり、上流段の抽気室18bと静翼バイパス流路19とを連通している。抽気室18bは、最終段の1つ上流のタービン段落の直上流で抽気した抽気蒸気が流入する抽気室である。
The bypass flow path 11 is a cylindrical flow path centered on the turbine central shaft 9 provided in the casing portion, and communicates the upstream extraction chamber 18b and the stationary blade bypass flow path 19 with each other. The extraction chamber 18b is an extraction chamber into which the extracted steam extracted immediately upstream of the turbine stage one upstream of the final stage flows.
バイパス流路11により、最終段の1つ上流のタービン段落の直上流で蒸気主流路から抽気した蒸気の一部が、最終段の1つ上流のタービン段落をバイパスして最終段の静翼および動翼バイパス流路に流入する。よって、バイパス流路11により、上流段の抽気室18bから静翼バイパス流路19を介して動翼バイパス流路20に高比エンタルピーの蒸気が導入される。
By the bypass flow path 11, a part of the steam extracted from the steam main flow path immediately upstream of the turbine stage one upstream of the final stage bypasses the turbine stage one upstream of the final stage, and the stationary blades of the final stage and It flows into the blade bypass passage. Therefore, steam having a high specific enthalpy is introduced from the upstream extraction chamber 18 b into the moving blade bypass passage 20 through the stationary blade bypass passage 19 by the bypass passage 11.
なお、最終段の直上流の作動蒸気を抽気室18aに導入するために、バイパス流路11には、抽気管14が、周方向に、複数個、設けられている。
In addition, in order to introduce the working steam immediately upstream of the final stage into the extraction chamber 18a, the bypass channel 11 is provided with a plurality of extraction tubes 14 in the circumferential direction.
図6は、本実施の形態に係る蒸気タービン最終段落と、その1つ上流側段落の、翼高さ方向の比エンタルピー分布を表すグラフである。スパン位置BHcより下が蒸気主流路2、上がパイパス流路11である。H0は、図2に示した静翼6bの上流側の全比エンタルピーである。同様に、h1、H2、h3、h4は、それぞれ、蒸気主流路2の動翼7b上流、静翼6a上流、動翼7a上流、動翼7a下流の比エンタルピーh、全比エンタルピーHである。h3′は、バイパス流路11の動翼7a上流における比エンタルピーhである。最終段外周側の比エンタルピー落差は従来Δhであったが、バイパス流路では、入口の比エンタルピーが大きくなったため、動翼外周の比エンタルピー落差Δh′は、大きくなっている。よって、外周側では、静翼の蒸気流出速度が増加し、動翼入口の蒸気流入速度は減少する。
FIG. 6 is a graph showing the specific enthalpy distribution in the blade height direction of the final stage of the steam turbine according to the present embodiment and one upstream stage thereof. The steam main flow path 2 is below the span position BH c , and the bypass flow path 11 is above. H 0 is the total specific enthalpy upstream of the stationary blade 6b shown in FIG. Similarly, h 1 , H 2 , h 3 , and h 4 are specific enthalpy h and total specific enthalpy, respectively, upstream of the moving blade 7b, upstream of the stationary blade 6a, upstream of the moving blade 7a, and downstream of the moving blade 7a of the steam main flow path 2. H. h 3 ′ is a specific enthalpy h upstream of the moving blade 7 a of the bypass flow path 11. The specific enthalpy drop on the outer peripheral side of the final stage is conventionally Δh, but in the bypass flow path, the specific enthalpy drop Δh ′ on the outer periphery of the moving blade is increased because the specific enthalpy of the inlet is increased. Therefore, on the outer peripheral side, the steam outflow speed of the stationary blade increases and the steam inflow speed of the moving blade inlet decreases.
図7に、本実施の形態に係る蒸気タービン最終段落の周方向から測った動翼入口角の翼高さ方向分布を示す。本実施例では、スパン高さBHcにおいて、主蒸気流路側とバイパス流路側の動翼7aの相対流入角度が連続となるように設計している。
FIG. 7 shows the blade height direction distribution of the moving blade inlet angle measured from the circumferential direction of the final stage of the steam turbine according to the present embodiment. In this embodiment, in the span height BH c, it is designed such that the relative inflow angle of the main steam flow path and bypass flow of the rotor blade 7a is continuous.
図8は、図2に示した本実施の形態に係る蒸気タービン最終段落の動翼相対流入マッハ数の翼高さ方向分布を表すグラフである。実線で示したMr3′が本実施の形態に係る蒸気タービン最終段落の動翼相対流入マッハ数、破線で示したMr3が図1に示した一般的な蒸気タービン最終段落の動翼相対流入マッハ数である。最終段のバイパス流路部では、静翼の比エンタルピー差をΔhからΔh′に大きくしたため、静翼外周側の静翼流出速度が大きくなり、図8を用いて説明したように動翼に対する超音速流入が回避できている。
FIG. 8 is a graph showing the blade height direction distribution of the moving blade relative inflow Mach number in the final stage of the steam turbine according to the present embodiment shown in FIG. 2. M r3 ′ shown by a solid line is the moving blade relative inflow Mach number of the final stage of the steam turbine according to the present embodiment, and M r3 shown by a broken line is the relative inlet of the moving blade of the general last stage of the steam turbine shown in FIG. Mach number. In the final-stage bypass passage, the specific enthalpy difference of the stationary blade is increased from Δh to Δh ′, so that the stationary blade outflow speed on the outer peripheral side of the stationary blade is increased, and as described with reference to FIG. Sonic inflow is avoided.
本実施の形態に係る蒸気タービンによれば、最終段落入口部の外周側の全比エンタルピーH0を大きくすることで、静翼外周側の比エンタルピー差Δhを大きくしている。これにより静翼流出速度を大きくすることができる。従って、静翼流出速度成分Vの旋回方向の速度成分も大きくすることができ、周速Uが同じにも係らず、最終段落の動翼に流入する動翼相対流入速度を減速させることができる。よって、動翼への超音速流入を回避でき、動翼入口の衝撃波の発生を抑制し、衝撃波の発生に伴う損失を抑制できる。
According to the steam turbine according to the present embodiment, the specific enthalpy difference Δh on the outer peripheral side of the stationary blade is increased by increasing the total specific enthalpy H 0 on the outer peripheral side of the final stage inlet. Thereby, the stationary blade outflow speed can be increased. Therefore, the speed component in the turning direction of the stationary blade outflow speed component V can be increased, and the relative inflow speed of the moving blade flowing into the moving blade in the final stage can be reduced even though the circumferential speed U is the same. . Therefore, the supersonic inflow to the moving blade can be avoided, the generation of the shock wave at the moving blade inlet can be suppressed, and the loss accompanying the generation of the shock wave can be suppressed.
ところで、タービン段落の環帯面積を大きくすると、子午面流路の拡大率、すなわちタービン段落入口の流路高さに対する、段落出口の流路高さの増加率が大きくなる。一方、タービン段落の環帯面積を大きくしても、段落の軸方向長さは、タービン全体の長さに制約があるために一般的にはあまり大きくできず、子午面流路の拡大率の増大は、静翼部の外周端や内周端の子午面流路形状の広がり角を大きくすることで実現されることが一般的である。子午面流路の広がり角を大きくすると、はく離が発生し、損失となることが知られており、外周側で、特に顕著である。本実施例では、外周側の作動蒸気は、軸と略平行にバイパス流路を通過するため、はく離が発生することはない。
By the way, when the annular zone area of the turbine stage is increased, the expansion rate of the meridian plane flow path, that is, the increase rate of the flow path height of the paragraph outlet with respect to the flow path height of the turbine stage inlet increases. On the other hand, even if the annular zone area of the turbine stage is increased, the axial length of the stage cannot generally be increased because of the restriction of the overall length of the turbine. The increase is generally realized by increasing the spread angle of the meridional flow path shape at the outer peripheral end or inner peripheral end of the stationary blade portion. It is known that if the spread angle of the meridional flow path is increased, peeling occurs and a loss occurs, which is particularly remarkable on the outer peripheral side. In the present embodiment, the working steam on the outer peripheral side passes through the bypass flow path substantially parallel to the axis, and therefore no separation occurs.
なお、本実施形態では、静翼6bと動翼7bからなる段落により取り出される回転力は小さくなるが、その低下分は、静翼6aと動翼7aとからなる段落で回転力として取り出すことができるため、タービン全体としての回転力は減らない。むしろ、損失の低下した分、回転力は増加させることが可能となる。
In the present embodiment, the rotational force extracted by the paragraph composed of the stationary blade 6b and the moving blade 7b is reduced, but the decrease is extracted as rotational force in the paragraph composed of the stationary blade 6a and the moving blade 7a. Therefore, the rotational power of the turbine as a whole is not reduced. Rather, it is possible to increase the rotational force as the loss is reduced.
本実施形態では、最終段動翼外周側に、シュラウドカバー10を設けたが、本発明の構成にシュラウドカバー10は、必ずしも必要ではなく、シュラウドカバー10を設けない形態でもよい(図9)。
In the present embodiment, the shroud cover 10 is provided on the outer peripheral side of the final stage rotor blade, but the shroud cover 10 is not necessarily required in the configuration of the present invention, and a configuration without the shroud cover 10 may be employed (FIG. 9).
また本実施形態では、タービン段落を一段バイパスする例を示したが、これに限定されず、一段以上バイパスしても良い。
In this embodiment, an example in which the turbine stage is bypassed by one stage has been described, but the present invention is not limited to this, and one or more stages may be bypassed.
次に、本発明の第2の実施形態について図面を用いて説明する。図10は、本発明の第2の実施形態に係る蒸気タービンのタービン段落部の要部構造を表す子午面断面図である。なお、第1の実施形態と同等の構成要素には同一の符号を付し、説明を省略する。本実施例では、最終段の静翼6a下流で、最終段の動翼7aの上流部のバイパス流路11と蒸気主流路2から合流する部位において、蒸気圧力をほぼ同等に設計している。バイパス流路11と蒸気主流路2から合流した蒸気が、径方向に偏流しないため、動翼バイパス流路仕切りカバー13が不要である。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 10 is a meridional cross-sectional view showing the main structure of the turbine stage part of the steam turbine according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component equivalent to 1st Embodiment, and description is abbreviate | omitted. In the present embodiment, the steam pressure is designed to be substantially equal at a portion where the bypass flow passage 11 and the steam main flow passage 2 join the upstream portion of the final stage moving blade 7a downstream of the final stage stationary blade 6a. Since the steam merged from the bypass flow path 11 and the steam main flow path 2 does not drift in the radial direction, the blade bypass flow path partition cover 13 is unnecessary.
ここで、バイパス流路11と蒸気主流路2からの蒸気は、速度、流れ方向が必ずしも同一でない。よって、バイパス流路11、蒸気主流路2の合流部でせん断層が形成され、エネルギー損失が発生する。しかしながら、せん断層による損失は、最終段落で生成される軸動力に対し、微々たるものである。むしろ、動翼バイパス流路仕切りカバー13を無くすことにより、動翼7aの遠心応力設計値に余裕ができるため、さらなる長翼化が可能となり、環帯面積増加を増加させることが出来るため、損失を増加させることなく、出力を増加できる。
Here, the steam from the bypass flow path 11 and the steam main flow path 2 are not necessarily the same in speed and flow direction. Therefore, a shear layer is formed at the junction of the bypass flow path 11 and the steam main flow path 2, and energy loss occurs. However, the loss due to the shear layer is negligible for the shaft power generated in the final paragraph. Rather, since the centrifugal stress design value of the moving blade 7a can be afforded by eliminating the moving blade bypass flow path partition cover 13, it is possible to further increase the length of the blade and increase the annular zone area. The output can be increased without increasing.
次に、本発明の第3の実施形態について図面を用いて説明する。図11は、本発明の第3の実施形態に係る蒸気タービンのタービン段落部の要部構造を表す子午面断面図である。なお、第1の実施形態と同等の構成要素には同一の符号を付し、説明を省略する。蒸気タービンの最終段では、圧力、比エンタルピーレベルが低く、作動蒸気は湿り蒸気となる。静翼6a表面に液膜が形成され、静翼6a後縁から、粗大な液滴が、動翼7aに放出される。粗大液滴は、静動翼間で、作動蒸気により、微細化されるが、一部は、動翼先端に衝突し、動翼7aを壊食する。壊食の進行は、軸動力、翼強度の低下を伴うという問題がある。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a meridional cross-sectional view illustrating a main structure of a turbine stage portion of a steam turbine according to a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the component equivalent to 1st Embodiment, and description is abbreviate | omitted. In the final stage of the steam turbine, the pressure and specific enthalpy level are low, and the working steam becomes wet steam. A liquid film is formed on the surface of the stationary blade 6a, and coarse droplets are discharged from the trailing edge of the stationary blade 6a to the moving blade 7a. Coarse droplets are refined by working steam between the stationary blades, but a part of them collides with the tip of the blade and erodes the blade 7a. The progress of erosion has a problem that it is accompanied by a decrease in shaft power and blade strength.
以上の課題に対し、本発明の実施形態では、静翼6aの静翼バイパス流路19に位置する外周側翼部に湿分除去スリット15を設けている。静翼バイパス流路仕切りカバー12、静翼6aの外周側翼部、外周側ダイアフラム4aを中空に形成し、静翼6a上流の蒸気が静翼バイパス流路仕切りカバー12、静翼6aの外周側翼部、外周側ダイアフラム4aの内部から、抽気室18aに導出される。湿分除去スリット15は、静翼内外と連通しており、静翼内部に対し、静翼外部の圧力が高い。よって、静翼に形成された液膜は、湿分除去スリット15を通過し、抽気室18aに除去される。静翼6a後流に放出される粗大液滴がなくなるため、動翼の壊食は起こらない。
For the above problems, in the embodiment of the present invention, the moisture removal slit 15 is provided in the outer wing portion located in the stationary blade bypass passage 19 of the stationary blade 6a. The stationary blade bypass channel partition cover 12, the outer wing portion of the stationary blade 6a, and the outer diaphragm 4a are formed hollow, and the steam upstream of the stationary blade 6a is the outer wing portion of the stationary blade bypass channel partition cover 12 and the stationary blade 6a. From the inside of the outer peripheral side diaphragm 4a, it is led out to the extraction chamber 18a. The moisture removal slit 15 communicates with the inside and outside of the stationary blade, and the pressure outside the stationary blade is higher than the inside of the stationary blade. Therefore, the liquid film formed on the stationary blade passes through the moisture removal slit 15 and is removed to the extraction chamber 18a. Since there are no coarse droplets discharged to the wake of the stationary blade 6a, no erosion of the moving blade occurs.
以上、本発明を蒸気タービンの最終段落に適用した例を説明したが、最終段落に限られずさらに上流側の段落でも適用可能である。また、本発明は、蒸気タービンに限らずガスタービンにも適用可能である。
As described above, the example in which the present invention is applied to the final paragraph of the steam turbine has been described. However, the present invention is not limited to the final paragraph, and can be applied to the upstream paragraph. Further, the present invention is applicable not only to a steam turbine but also to a gas turbine.
なお、本発明を蒸気タービンの最終段落に適用した場合には、先に各実施形態で説明した利点の他に、以下の2つの利点がある。
In addition, when the present invention is applied to the final paragraph of the steam turbine, there are the following two advantages in addition to the advantages described in the embodiments.
一つ目の利点は、湿り損失が低減することである。図1に示した一般的な蒸気タービンでは、最終段落の上流側段落を構成する動翼7翼面に付着した水膜が遠心力により外周側に集められ、最終段落の静翼6aに向かって放出される。そのため、最終段落入口の外周側で湿り度が大きくなり、これが動翼周速の大きい最終段落での湿り損失増加や、エロージョン増加の原因となる。一方、本発明を蒸気タービンの最終段落に適用した場合、最終段落外周側の入口全比エンタルピーが大きいために、液相の質量分率である湿り度が小さくなる。湿り度が小さくなる結果、本発明では湿り損失が小さくなり、エロージョンの発生も抑制できる。そのため、タービン効率を向上でき、蒸気タービンの信頼性も向上できる。
The first advantage is that wetting loss is reduced. In the general steam turbine shown in FIG. 1, the water film adhering to the blade surface of the moving blade 7 constituting the upstream stage of the final stage is collected on the outer peripheral side by centrifugal force, and toward the stationary blade 6a of the final stage. Released. Therefore, the degree of wetness increases on the outer peripheral side of the final paragraph inlet, which causes an increase in wet loss and an increase in erosion in the final stage where the moving blade peripheral speed is high. On the other hand, when the present invention is applied to the final stage of the steam turbine, the wetness, which is the mass fraction of the liquid phase, is small because the total inlet enthalpy on the outer periphery side of the final stage is large. As a result of the reduced wetness, the present invention reduces wet loss and can suppress the occurrence of erosion. Therefore, turbine efficiency can be improved and the reliability of the steam turbine can be improved.
二つ目の利点は、翼の信頼性を向上できることである。蒸気タービンの過熱蒸気から二相流状態である湿り蒸気に移行するウイルソン線は、最終段落の1つ上流側のタービン段落に位置することが多い。ウイルソン線は、タービン負荷や蒸気条件によって、流れ方向に動くため、ウイルソン線が存在するタービン段落では、乾き蒸気と湿り蒸気の状態が繰り返され、腐食ピットが発生しやすい。しかしながら、本発明を最終段落に適用した場合、ウイルソン線が生じる最終段落の1つ上流側のタービン段落は、翼長が小さいため、翼にかかる応力を小さくでき、腐食ピットによる翼の信頼性低下を抑制できる。
The second advantage is that the reliability of the wing can be improved. The Wilson line that transitions from superheated steam of a steam turbine to wet steam that is in a two-phase flow state is often located in the turbine stage one upstream of the last stage. The Wilson line moves in the flow direction depending on the turbine load and steam conditions. Therefore, in the turbine stage where the Wilson line exists, the state of dry steam and wet steam is repeated, and corrosion pits are likely to occur. However, when the present invention is applied to the final paragraph, the turbine stage upstream of the final stage where the Wilson line is generated has a small blade length, so that the stress applied to the blade can be reduced, and the reliability of the blade is reduced due to corrosion pits. Can be suppressed.
1 蒸気
2 蒸気主流路
3 ケーシング
4a,4b,4c,4d 外周側ダイアフラム
5a,5b,5c,5d 内周側ダイアフラム
6a,6b,6c,6d 静翼
7a,7b,7c,7d 動翼
8 タービンロータ
9 タービン中心軸
10 シュラウドカバー
11 バイパス流路
12 静翼バイパス流路仕切りカバー
13 動翼バイパス流路仕切りカバー
14 抽気管
15 湿分除去スリット
16 ダイアフラム支持体
17 抽気室仕切り板
18 抽気室
19 静翼バイパス流路
20 動翼バイパス流路 DESCRIPTION OFSYMBOLS 1 Steam 2 Steam main flow path 3 Casing 4a, 4b, 4c, 4d Outer peripheral side diaphragm 5a, 5b, 5c, 5d Inner peripheral side diaphragm 6a, 6b, 6c, 6d Stator blade 7a, 7b, 7c, 7d Rotor blade 8 Turbine rotor 9 Turbine center shaft 10 Shroud cover 11 Bypass passage 12 Stator blade bypass passage partition cover 13 Moving blade bypass passage partition cover 14 Extraction pipe 15 Moisture removal slit 16 Diaphragm support 17 Extraction chamber partition plate 18 Extraction chamber 19 Stabilization blade Bypass passage 20 Rotor bypass passage
2 蒸気主流路
3 ケーシング
4a,4b,4c,4d 外周側ダイアフラム
5a,5b,5c,5d 内周側ダイアフラム
6a,6b,6c,6d 静翼
7a,7b,7c,7d 動翼
8 タービンロータ
9 タービン中心軸
10 シュラウドカバー
11 バイパス流路
12 静翼バイパス流路仕切りカバー
13 動翼バイパス流路仕切りカバー
14 抽気管
15 湿分除去スリット
16 ダイアフラム支持体
17 抽気室仕切り板
18 抽気室
19 静翼バイパス流路
20 動翼バイパス流路 DESCRIPTION OF
Claims (7)
- 静止体に固定された静翼とタービンロータに固定された動翼とからなるタービン段落と、該タービン段落をタービン軸方向に複数有する作動流体流路とを備える軸流タービンであって、
前記作動流体流路の外に設けられ、作動流体流れ方向上流側から流入する作動流体の一部を、前記タービン段落の少なくとも一段をバイパスさせ、バイパスした前記タービン段落の作動流体流れ方向下流側にある前記タービン段落に導入するバイパス流路を備えることを特徴とする軸流タービン。 An axial turbine comprising a turbine stage comprising a stationary blade fixed to a stationary body and a moving blade fixed to a turbine rotor, and a working fluid flow path having a plurality of turbine stages in the turbine axial direction,
A part of the working fluid that is provided outside the working fluid flow path and flows in from the upstream side in the working fluid flow direction bypasses at least one stage of the turbine stage, and is downstream of the bypassed working stage in the working fluid flow direction. An axial-flow turbine comprising a bypass flow passage introduced into the turbine stage. - 請求項1記載の軸流タービンであって、
前記バイパス流路を流下したバイパス流が導入されるタービン段落の静翼間流路は、前記バイパス流が流入する外周側と、前記作動流体流路を流下する作動流体主流が流入する内周側とに径方向に仕切られていることを特徴とする軸流タービン。 An axial turbine according to claim 1,
The flow path between the stationary blades of the turbine stage into which the bypass flow that has flowed down the bypass flow path is introduced are the outer peripheral side into which the bypass flow flows and the inner peripheral side into which the main working fluid flow that flows down the working fluid flow path. And an axial turbine characterized by being partitioned in a radial direction. - 請求項2記載の軸流タービンであって、
前記バイパス流は、該バイパス流が導入されるタービン段落の少なくとも一段以上上流で抽気した抽気蒸気であることを特徴とする軸流タービン。 An axial turbine according to claim 2,
The axial flow turbine, wherein the bypass flow is extracted steam extracted at least one stage upstream of a turbine stage into which the bypass flow is introduced. - 請求項3記載の軸流タービンであって、
前記バイパス流が導入されるタービン段落の動翼間流路は、前記バイパス流が流入する外周側と、前記作動流体流路を流下する作動流体主流が流入する内周側とに径方向に仕切られていることを特徴とする軸流タービン。 An axial turbine according to claim 3,
The passage between the blades of the turbine stage into which the bypass flow is introduced is radially divided into an outer peripheral side into which the bypass flow flows and an inner peripheral side into which the working fluid main flow flows down the working fluid flow channel. An axial-flow turbine characterized in that - 請求項3記載の軸流タービンであって、
前記バイパス流が導入されるタービン段落の動翼の上流部、かつ、前記バイパス流と前記作動流体主流が合流する部位において、両流れの静圧が同等であることを特徴とする軸流タービン。 An axial turbine according to claim 3,
An axial flow turbine characterized in that static pressures of both flows are equal in an upstream portion of a moving blade of a turbine stage into which the bypass flow is introduced and a portion where the bypass flow and the main working fluid flow merge. - 請求項3記載の軸流タービンであって、
前記バイパス流が導入されるタービン段落の直上流蒸気を抽気する構造を有することを特徴とする軸流タービン。 An axial turbine according to claim 3,
An axial turbine having a structure for extracting steam immediately upstream of a turbine stage into which the bypass flow is introduced. - 請求項4記載の軸流タービンであって、
前記バイパス流路を流下したバイパス流が導入されるタービン段落の静翼は、前記バイパス流が通過する外周側翼部が、中空構造で、かつ内外を連通するスリットを有しており、
前記外周側翼部の内部を、前記バイパス流よりも静圧の低い作動流体流路からの抽気流が通過する構造を有することを特徴とする軸流タービン。 An axial turbine according to claim 4,
The stationary blade of the turbine stage into which the bypass flow flowing down the bypass flow path is introduced, the outer wing portion through which the bypass flow passes has a hollow structure and has a slit that communicates the inside and the outside,
An axial turbine having a structure in which a bleed air flow from a working fluid flow path having a static pressure lower than that of the bypass flow passes through the inside of the outer peripheral wing portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/004682 WO2013027239A1 (en) | 2011-08-24 | 2011-08-24 | Axial flow turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/004682 WO2013027239A1 (en) | 2011-08-24 | 2011-08-24 | Axial flow turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027239A1 true WO2013027239A1 (en) | 2013-02-28 |
Family
ID=47746021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004682 WO2013027239A1 (en) | 2011-08-24 | 2011-08-24 | Axial flow turbine |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013027239A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021124021A (en) * | 2020-01-31 | 2021-08-30 | 三菱重工業株式会社 | Turbine |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1597467A (en) * | 1923-09-12 | 1926-08-24 | Westinghouse Electric & Mfg Co | Turbine blading |
JPS63117105A (en) * | 1986-11-06 | 1988-05-21 | Mitsubishi Heavy Ind Ltd | Moisture removing device for blade cascade of steam turbine |
JPH08232604A (en) * | 1995-02-27 | 1996-09-10 | Toshiba Corp | Erosion preventing device for steam turbine |
JPH10331604A (en) * | 1997-05-30 | 1998-12-15 | Toshiba Corp | Steam turbine plant |
JP2007211660A (en) * | 2006-02-08 | 2007-08-23 | Toyota Motor Corp | Chip turbine fan |
JP2011069308A (en) * | 2009-09-28 | 2011-04-07 | Hitachi Ltd | Axial flow turbine |
JP2011099380A (en) * | 2009-11-06 | 2011-05-19 | Hitachi Ltd | Axial flow turbine |
-
2011
- 2011-08-24 WO PCT/JP2011/004682 patent/WO2013027239A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1597467A (en) * | 1923-09-12 | 1926-08-24 | Westinghouse Electric & Mfg Co | Turbine blading |
JPS63117105A (en) * | 1986-11-06 | 1988-05-21 | Mitsubishi Heavy Ind Ltd | Moisture removing device for blade cascade of steam turbine |
JPH08232604A (en) * | 1995-02-27 | 1996-09-10 | Toshiba Corp | Erosion preventing device for steam turbine |
JPH10331604A (en) * | 1997-05-30 | 1998-12-15 | Toshiba Corp | Steam turbine plant |
JP2007211660A (en) * | 2006-02-08 | 2007-08-23 | Toyota Motor Corp | Chip turbine fan |
JP2011069308A (en) * | 2009-09-28 | 2011-04-07 | Hitachi Ltd | Axial flow turbine |
JP2011099380A (en) * | 2009-11-06 | 2011-05-19 | Hitachi Ltd | Axial flow turbine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021124021A (en) * | 2020-01-31 | 2021-08-30 | 三菱重工業株式会社 | Turbine |
CN115003898A (en) * | 2020-01-31 | 2022-09-02 | 三菱重工业株式会社 | Turbine engine |
JP7368260B2 (en) | 2020-01-31 | 2023-10-24 | 三菱重工業株式会社 | turbine |
US11852032B2 (en) | 2020-01-31 | 2023-12-26 | Mitsubishi Heavy Industries, Ltd. | Turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8727713B2 (en) | Rotor oscillation preventing structure and steam turbine using the same | |
US9726197B2 (en) | Turbomachine element | |
EP3018297B1 (en) | Sealing device and turbo machine | |
JP5308995B2 (en) | Axial flow turbine | |
JP5023125B2 (en) | Axial flow turbine | |
WO2011077801A1 (en) | Multistage radial turbine | |
JP5956286B2 (en) | Steam turbine stationary blade structure and steam turbine | |
EP2484912B1 (en) | Wet gas compressor systems | |
JP2013032748A (en) | Steam turbine | |
US3378229A (en) | Radial flow turbine | |
JP2012188957A (en) | Axial flow turbine | |
EP2226471B1 (en) | Working fluid extraction in an axial turbine | |
JP2012202260A (en) | Impeller and turbo machine including the same | |
EP3249157A1 (en) | Steam turbine | |
JP6518526B2 (en) | Axial flow turbine | |
WO2013027239A1 (en) | Axial flow turbine | |
JP5651532B2 (en) | Steam turbine | |
JPWO2013027239A1 (en) | Axial flow turbine | |
JP6145372B2 (en) | Steam turbine blade and steam turbine using the same | |
JP5470285B2 (en) | Axial flow turbine | |
RU2460905C2 (en) | Axial-flow fan or compressor impeller and fan of bypass fanjet incorporating said impeller | |
JP6804265B2 (en) | System for integrating turbine parts | |
JP6302172B2 (en) | Turbine and method for reducing impact loss in a turbine | |
JP6067533B2 (en) | Geothermal turbine | |
JP2014047692A (en) | Axial flow turbo machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11871109 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013529782 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11871109 Country of ref document: EP Kind code of ref document: A1 |