WO2011077801A1 - Multistage radial turbine - Google Patents

Multistage radial turbine Download PDF

Info

Publication number
WO2011077801A1
WO2011077801A1 PCT/JP2010/067065 JP2010067065W WO2011077801A1 WO 2011077801 A1 WO2011077801 A1 WO 2011077801A1 JP 2010067065 W JP2010067065 W JP 2010067065W WO 2011077801 A1 WO2011077801 A1 WO 2011077801A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial turbine
radial
flow
turbine rotor
turning
Prior art date
Application number
PCT/JP2010/067065
Other languages
French (fr)
Japanese (ja)
Inventor
東森 弘高
八木 克記
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/380,247 priority Critical patent/US20120134797A1/en
Priority to RU2011152805/06A priority patent/RU2518703C2/en
Priority to EP10839038.6A priority patent/EP2518280A4/en
Priority to CN2010800282436A priority patent/CN102472114A/en
Publication of WO2011077801A1 publication Critical patent/WO2011077801A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/06Fluid supply conduits to nozzles or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/40Flow geometry or direction
    • F05D2210/43Radial inlet and axial outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved

Definitions

  • the present invention relates to a multistage radial turbine.
  • a plurality of centrifugal blades are fixed to a hub fixed to a rotating shaft, and air or gas, which is a working fluid that flows inward from the outer peripheral side in the radial direction with a flow path between substantially parallel disks, is a centrifugal blade.
  • the hub is rotated by acting on the structure and is substantially discharged in the axial direction.
  • a radial turbine may obtain a high expansion ratio in a single stage and is generally used in a single stage configuration.
  • Patent Document 1 since there is a rotating shaft for each radial turbine, bearings and shaft seals increase. For this reason, since bearing loss and leakage loss become large, the energy of the high-pressure working fluid cannot be efficiently converted into rotational power. For example, when power is supplied to one work, the rotational force is transmitted to each work shaft from each output shaft using, for example, a gear, so that there is a problem that the structure becomes large.
  • an object of the present invention is to provide a multistage radial turbine capable of reducing the number of bearings and improving conversion efficiency.
  • the present invention employs the following means. That is, according to one aspect of the present invention, there is provided a single rotating shaft and a plurality of radial turbine motions that are attached to the rotating shaft with a space therebetween and that flow out of the fluid flow flowing in from the radially outer side toward the substantially axial direction.
  • a plurality of nozzles installed on the upstream side of each of the radial turbine rotor blades for accelerating the fluid flow in the rotational direction, an outlet portion of the radial turbine rotor blade on the front stage side, and an upstream side of the nozzle on the rear stage side
  • a connection flow path portion that connects the fluid flow flowing in the axial direction from the radial turbine blade, and a U-shaped bend portion that turns outward in the radial direction
  • a vane portion having a plurality of turning vanes that turn in the rotational direction of the radial turbine rotor blade while guiding a fluid flow from the U-shaped bend portion radially outward, and radially outward from the vane portion.
  • Swirl A return bend portion for deflecting the flow of reluctant outflow radially inward, a multi-stage radial turbine is provided.
  • the fluid flow flowing in from the radially outer peripheral side is accelerated in the rotational direction by the nozzle and introduced into the outer peripheral portion of the radial turbine rotor blade.
  • the fluid introduced into the radial turbine blades flows axially out of the radial turbine blades, is turned radially outward through the U-shaped bend portion, and then, when passing through the vane portion, has a radius by the turning vane. It is turned in the rotational direction of the radial turbine rotor blade while being guided outward in the direction.
  • the flow that flows out from the vane portion while turning outward in the radial direction is turned inward in the radial direction through the return bend portion, and flows into the next-stage nozzle from the outer peripheral side in the radial direction.
  • the fluid flow repeats this and flows out from the radial turbine rotor blade at the final stage, for example, in a substantially axial direction.
  • rotation of each radial turbine rotor blade is transmitted to one rotating shaft, and a rotating shaft is rotated.
  • the bearing and the shaft seal only need to be provided for one rotary shaft. The number can be reduced as compared with those having a plurality of rotating shafts.
  • the structure of the radial turbine rotor blade and the rotating shaft can be the same as the conventional structure, and the increase in the size of the structure of the multistage radial turbine can be suppressed.
  • the U-shaped bend portion may be configured such that the downstream flow passage area at the vane portion side end is smaller than the upstream flow passage area at the radial turbine blade side end.
  • the U-shaped bend portion is configured such that the downstream flow passage area at the vane portion side end portion is smaller than the upstream flow passage area at the radial turbine rotor blade side end portion.
  • the flow can be accelerated. Thereby, the separation of the flow due to the influence of the low flow velocity region that may occur at the outlet portion of the radial turbine rotor blade can be suppressed.
  • the downstream channel area is 0.8 to 0.9 times or less the upstream channel area.
  • the low flow velocity region that may occur at the outlet of the radial turbine blade generally occupies 10 to 20% of the flow path area of the outlet of the radial turbine blade. According to this aspect, since the fluid flow can be accelerated by at least 10 to 20% in the U-shaped bend portion, the influence of the low-speed basin portion can be mitigated.
  • the turning vane is configured as an involute curve.
  • the change of the channel area in the entrance part between the turning vanes in a vane part and the channel area in an exit part can be made small. Thereby, the loss by deceleration and the loss by turning can be reduced in a vane part.
  • the bearing and the shaft seal need only be provided for one rotary shaft.
  • it can be reduced as compared with the one having a plurality of rotating shafts. Therefore, since the bearing loss and the leakage loss can be reduced, the energy of the high-pressure working fluid can be efficiently converted into rotational power.
  • the structure of the radial turbine rotor blade and the rotating shaft can be the same as the conventional structure, and the increase in the size of the structure of the multistage radial turbine can be suppressed.
  • FIG. 1 is a partial cross-sectional view showing a schematic configuration of a single-shaft multi-stage radial turbine (multi-stage radial turbine) according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line XX in FIG.
  • FIG. 1 is a partial cross-sectional view showing a schematic configuration of a single-shaft multi-stage radial turbine 1.
  • FIG. 2 is a sectional view taken along line XX of FIG.
  • the single-shaft multi-stage radial turbine 1 includes a rotating shaft 3, a plurality of, for example, two radial turbine blades 5, a casing 7, and a connection flow path portion 9.
  • One end of the rotary shaft 3 is supported on the casing 7 by a radial bearing (not shown), and the other end is supported by a radial bearing (not shown) and a thrust bearing (not shown).
  • the plurality of radial turbine blades 5 are attached at intervals in the axial direction L of the rotary shaft 3 and configured to flow out the fluid flow flowing in from the outer peripheral side in the radial direction K toward the substantially axial direction L. Yes.
  • the radial turbine rotor blade 5 includes a hub 11 fixed to the rotary shaft 3, centrifugal blades 13 fixed to the surface of the hub 11 at equal intervals in the circumferential direction, and a shroud attached to the tip of the centrifugal blade 13. 15 are provided.
  • a gas passage through which gas (working fluid) passes is defined by the hub 11, the centrifugal blade 13, and the shroud 15.
  • the side of the gas passage that is separated from the rotating shaft 3 is a gas inlet portion 21, and the rotating shaft 3 side is a gas outlet portion (outlet portion) 23.
  • An inlet flow path 17 having a donut shape is formed in the casing 7 on the outer peripheral side in the radial direction K of the gas inlet portion 21.
  • the inlet channel 17 is configured such that gas flows along the radial direction K inward from the outside in the radial direction K.
  • a nozzle 19 having a blade shape for accelerating the gas flow in the rotational direction R is installed on the downstream side of the inlet channel 17, in other words, on the upstream side of the radial turbine rotor blade 5.
  • connection channel 9 is a channel dug in the casing 7 and connects the gas outlet 23 of the radial turbine rotor blade 5 on the upstream side and the upstream side of the nozzle 19 on the downstream side.
  • the gas flow flowing out in the axial direction L from the radial turbine rotor blade 5 is converted to a U-shaped bend portion 25 that turns outward in the radial direction K, and a gas flow from the U-shaped bend portion 25.
  • a vane portion 29 having a plurality of turning vanes 27 that turn in the rotation direction R of the radial turbine rotor blade 5, and flows out from the vane portion 29 while turning outward in the radial direction K.
  • the downstream flow area A2 at the end on the vane section 29 side in the U-shaped bend section 25 is 0.8 to 0.9 times or less the upstream flow area A1 at the end on the radial turbine blade 5 side. Yes. That is, the downstream flow path area A2 is smaller than the upstream flow path area A1.
  • This ratio is determined in consideration of at least the size of the low flow velocity region T generated at the outlet of the radial turbine rotor blade 5.
  • the low speed region T is generally generated so as to occupy 10 to 20% of the outlet flow path area of the radial turbine rotor blade 5, that is, the upstream flow path area A1.
  • the downstream flow passage area A2 is preferably smaller than the upstream flow passage area A1, but may be substantially equal or larger depending on the use situation.
  • the turning vane 27 of the vane portion 29 is configured to form an involute-shaped curve, as shown in FIG.
  • the amount of change between the flow passage area A3 at the inlet portion between the turning vanes 27 and the flow passage area A4 at the outlet portion is between the turning vanes 33 expanding linearly as shown by the two-dot chain line in FIG.
  • the amount of change between the channel area A5 at the inlet portion and the channel area A6 at the outlet portion can be significantly reduced.
  • the turning vane 27 preferably forms an involute curve, but is not limited thereto and may be appropriately shaped.
  • the nozzle 19 accelerates the gas flow G ⁇ b> 1 in the circumferential direction R and supplies the gas flow G ⁇ b> 1 to the gas inlet portion 21 located on the outer peripheral portion of the radial turbine rotor blade 5.
  • the gas introduced into the radial turbine rotor blade 5 is expanded when passing through a gas passage defined by the hub 11, the centrifugal blade 13, and the shroud 15. With this expansion, the centrifugal blade 13 is pushed and moves in the rotation direction R. Since the hub 11 rotates in the rotation direction R due to the movement of the centrifugal blade 13, the rotating shaft 3 rotates.
  • the gas flow flowing out in the axial direction L from the gas outlet portion 23 of the radial turbine rotor blade passes through the U-shaped bend portion 25 and is turned outward in the radial direction K.
  • the downstream flow passage area A2 of the U-shaped bend portion 25 is 0.8 to 0.9 times or less of the upstream flow passage area A1
  • the gas flow through the U-shaped bend portion 25 is reduced. Is accelerated by, for example, 10 to 20% or more in response to the reduction of the channel area.
  • a low-speed region T which generally occupies 10 to 20% of the flow path area, is generated at the front and rear positions of the gas outlet 23 of the radial turbine rotor blade 5, but at least a corresponding amount is accelerated by the U-shaped bend 25. Therefore, the low speed region T can be substantially eliminated. In other words, the influence of the low-speed basin T portion can be mitigated.
  • the flow separation is caused by the curvature of the surface of the shroud 15 on the downstream side by the accumulation of the low flow velocity region T generated at the gas outlet 23 of the radial turbine rotor blade 5. Occurrence can be suppressed. Further, when the downstream flow area A2 can be made smaller than 0.8 to 0.9 times the upstream flow area A1, it is more difficult to peel off, so the curvature of each part is made smaller. be able to. Thereby, since the total axial length of the multistage configuration can be particularly shortened, the overall length of the single-shaft radial turbine 1 can be shortened, and the single-shaft radial turbine 1 can be configured in a small size.
  • the gas flow is turned in the rotation direction R of the radial turbine rotor blade 5 while being guided outward in the radial direction K by the turning vane 27 when passing through the vane portion 29.
  • the turning vane 27 is configured to form an involute-shaped curve, the amount of change between the flow passage area A3 at the inlet portion and the flow passage area A4 at the outlet portion between the turning vanes 27 is small. It has been made smaller. Thereby, in the vane part 29, the loss by the deceleration of a gas flow and the loss by turning can be reduced.
  • the angle of the turning vane 27 the flow angle at the inlet of the downstream nozzle 19 can be adjusted. For example, if the flow angle at the inlet of the nozzle 19 is adjusted to be 40 to 50 degrees from the circumferential direction, the inlet collision loss of the nozzle 19 can be reduced.
  • the flow flowing out from the vane portion 29 while turning outward in the radial direction K is turned inward in the radial direction K through the return bend portion 31 and flows into the inlet channel 17 of the next stage from the outer peripheral side in the radial direction K. It is done.
  • the gas flow G ⁇ b> 2 supplied from the return bend portion 31 flows into the nozzle 19 in the radial direction K from the outer peripheral side in the radial direction K toward the inner side through the inlet channel 17.
  • the nozzle 19 accelerates the gas flow G ⁇ b> 2 in the circumferential direction R and supplies the gas flow G ⁇ b> 2 to the gas inlet portion 21 located on the outer peripheral portion of the radial turbine rotor blade 5.
  • the gas introduced into the radial turbine rotor blade 5 is expanded when passing through a gas passage defined by the hub 11, the centrifugal blade 13, and the shroud 15. With this expansion, the centrifugal blade 13 is pushed and moves in the rotation direction R. Since the hub 11 rotates in the rotation direction R due to the movement of the centrifugal blade 13, the rotating shaft 3 rotates.
  • the gas flow flowing out in the axial direction L from the gas outlet 23 of the radial turbine rotor blade is discharged out of the uniaxial radial turbine 1 through a discharge passage (not shown).
  • the bearing and the shaft seal are provided for the single rotating shaft 3.
  • the bearing loss and the leakage loss can be reduced, the energy of the high-pressure working fluid can be efficiently converted into rotational power.
  • the heat drop can be converted into rotational power with a set of single-shaft radial turbines.
  • the structure of the radial turbine rotor blade 5 and the rotary shaft 3 can be the same as that of the conventional structure, and the size of the single-shaft multi-stage radial turbine 1 can be suppressed from being increased.
  • the present invention is not limited to the embodiment described above, and various modifications may be made without departing from the spirit of the present invention.
  • the radial turbine rotor blade 5 has two stages, but it may have three or more stages.
  • the adjacent radial turbine rotor blades 5 are connected to each other by the connection flow path portions 9.

Abstract

Provided is a multistage radial turbine wherein the number of bearings can be reduced to improve the conversion efficiency. The multistage radial turbine is provided with a plurality of radial turbine rotor blades (5) which are spaced and attached to a single rotary shaft (3), a plurality of nozzles (19), each of which is disposed upstream of each radial turbine rotor blade and accelerates flow of fluid in the rotational direction, and a connection passage portion (9) for connecting a gas outlet portion (23) of the former stage-side radial turbine rotor blades (5) to the upstream side of the latter stage-side nozzles (19). The connection passage portion (9) is provided with a U-shaped bending portion (25) for turning the flow of fluid discharged from the radial turbine rotor blades (5) in the axial direction, a vane portion (29) having a plurality of turning vanes (27) for turning the flow of fluid from the U-shaped bending portion (25) in the rotational direction (R) of the radial turbine rotor blades (5) while radially and outwardly introducing the flow, and a return bending portion (31) for radially and inwardly turning the flow of fluid discharged from the vane portion (29) while radially and outwardly swirling.

Description

多段ラジアルタービンMultistage radial turbine
 本発明は、多段ラジアルタービンに関するものである。 The present invention relates to a multistage radial turbine.
 ラジアルタービンは、回転軸に固定されたハブに複数の遠心翼が固定され、ほぼ平行な円板間を流路として半径方向外周側から内向きに流れる作動流体である空気やガスが、遠心翼に作用してハブを回転させるとともにほぼ軸方向に流出される構成となっている。
 ラジアルタービンは、単段で高い膨張比が得られることもあり、一般に単段構成で用いられている。
In a radial turbine, a plurality of centrifugal blades are fixed to a hub fixed to a rotating shaft, and air or gas, which is a working fluid that flows inward from the outer peripheral side in the radial direction with a flow path between substantially parallel disks, is a centrifugal blade. The hub is rotated by acting on the structure and is substantially discharged in the axial direction.
A radial turbine may obtain a high expansion ratio in a single stage and is generally used in a single stage configuration.
 高い圧力比で大きな熱落差を持つ作動流体のエネルギーを有効に活用するために、ラジアルタービンを多段構成、すなわち、作動流体を直列に活用することが提案されている。
 たとえば、特許文献1に示されるように、複数のラジアルタービンを並列に並べ、1のラジアルタービンから排出された流体流れを次のラジアルタービンの入り口に導入し、作動流体のエネルギーを回収するものが提案されている。これは、各ラジアルタービンが異なる回転数を持つ軸を有し、それぞれの軸の回転を用いて仕事をさせている。
In order to effectively use the energy of a working fluid having a large heat drop at a high pressure ratio, it has been proposed to use a radial turbine in a multistage configuration, that is, to use the working fluid in series.
For example, as shown in Patent Document 1, a plurality of radial turbines are arranged in parallel, and a fluid flow discharged from one radial turbine is introduced into the inlet of the next radial turbine to recover the energy of the working fluid. Proposed. This is because each radial turbine has a shaft with a different rotational speed, and the rotation of each shaft is used to work.
特開昭59-79096号公報JP 59-79096 A
 特許文献1に示されるものでは、各ラジアルタービン毎に回転軸が存在するので、軸受と軸シールが多くなる。このため、軸受損失と漏れ損失が大きくなるので、高圧力の作動流体のエネルギーを効率よく回転動力に変換できていない。
 たとえば、一つの作業に動力を供給する場合、作業用の軸に各出力軸から、たとえば、ギアを用いて回転力を伝達させているので、構造が大型化するという課題がある。
In what is shown in Patent Document 1, since there is a rotating shaft for each radial turbine, bearings and shaft seals increase. For this reason, since bearing loss and leakage loss become large, the energy of the high-pressure working fluid cannot be efficiently converted into rotational power.
For example, when power is supplied to one work, the rotational force is transmitted to each work shaft from each output shaft using, for example, a gear, so that there is a problem that the structure becomes large.
 本発明は、このような事情に鑑み、軸受数を低減し、変換効率を向上させ得る多段ラジアルタービンを提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a multistage radial turbine capable of reducing the number of bearings and improving conversion efficiency.
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明の一態様は、一本の回転軸と、該回転軸に間隔をあけて取り付けられ、半径方向外周側から流入する流体流れを略軸方向に向けて流出する複数のラジアルタービン動翼と、それぞれ各該ラジアルタービン動翼の上流側に設置され、流体流れを回転方向に加速する複数のノズルと、前段側の前記ラジアルタービン動翼の出口部と後段側の前記ノズルの上流側を接続する接続流路部と、が備えられ、前記接続流路部には、前記ラジアルタービン動翼から軸方向に流出した流体流れを、半径方向外向きに転向するU字型ベンド部と、該U字型ベンド部からの流体流れを半径方向外向きに導きながら、前記ラジアルタービン動翼の回転方向に転向する複数枚の転向ベーンを有するベーン部と、該ベーン部から半径方向外向きに旋回しながら流出する流れを半径方向内向きに転向するリターンベンド部と、が備えられている多段ラジアルタービンである。
In order to solve the above problems, the present invention employs the following means.
That is, according to one aspect of the present invention, there is provided a single rotating shaft and a plurality of radial turbine motions that are attached to the rotating shaft with a space therebetween and that flow out of the fluid flow flowing in from the radially outer side toward the substantially axial direction. A plurality of nozzles installed on the upstream side of each of the radial turbine rotor blades for accelerating the fluid flow in the rotational direction, an outlet portion of the radial turbine rotor blade on the front stage side, and an upstream side of the nozzle on the rear stage side A connection flow path portion that connects the fluid flow flowing in the axial direction from the radial turbine blade, and a U-shaped bend portion that turns outward in the radial direction; A vane portion having a plurality of turning vanes that turn in the rotational direction of the radial turbine rotor blade while guiding a fluid flow from the U-shaped bend portion radially outward, and radially outward from the vane portion. Swirl A return bend portion for deflecting the flow of reluctant outflow radially inward, a multi-stage radial turbine is provided.
 本態様によれば、半径方向外周側から流入する流体流れは、ノズルによって回転方向に加速されてラジアルタービン動翼の外周部に導入される。ラジアルタービン動翼に導入された流体は、ラジアルタービン動翼から軸方向に流出し、U字型ベンド部を通って半径方向外向きに転向され、次いで、ベーン部を通る際、転向ベーンによって半径方向外向きに導かれながら、ラジアルタービン動翼の回転方向に転向される。ベーン部から半径方向外向きに旋回しながら流出する流れは、リターンベンド部を通って半径方向内向きに転向され、次段のノズルに半径方向外周側から流入させられる。流体流れは、これを繰り返して、最終段のラジアルタービン動翼から、たとえば、略軸方向に流出される。そして、各ラジアルタービン動翼の回転が一本の回転軸に伝えられ、回転軸が回転される。
 このように、複数のラジアルタービン動翼は、一本の回転軸に間隔をあけて取り付けられているので、軸受および軸シールは一本の回転軸に対して備えられていればよく、当然ながら複数の回転軸を有するものに比べて少なくすることができる。
 したがって、軸受損失と漏れ損失を小さくできるので、高圧力の作動流体のエネルギーを効率よく回転動力に変換することができる。
 さらに、ラジアルタービン動翼および回転軸の構造は、従来と同様な構造とでき、多段ラジアルタービンの構造の大型化を抑制することができる。
According to this aspect, the fluid flow flowing in from the radially outer peripheral side is accelerated in the rotational direction by the nozzle and introduced into the outer peripheral portion of the radial turbine rotor blade. The fluid introduced into the radial turbine blades flows axially out of the radial turbine blades, is turned radially outward through the U-shaped bend portion, and then, when passing through the vane portion, has a radius by the turning vane. It is turned in the rotational direction of the radial turbine rotor blade while being guided outward in the direction. The flow that flows out from the vane portion while turning outward in the radial direction is turned inward in the radial direction through the return bend portion, and flows into the next-stage nozzle from the outer peripheral side in the radial direction. The fluid flow repeats this and flows out from the radial turbine rotor blade at the final stage, for example, in a substantially axial direction. And rotation of each radial turbine rotor blade is transmitted to one rotating shaft, and a rotating shaft is rotated.
As described above, since the plurality of radial turbine rotor blades are attached to one rotary shaft with a space therebetween, the bearing and the shaft seal only need to be provided for one rotary shaft. The number can be reduced as compared with those having a plurality of rotating shafts.
Therefore, since the bearing loss and the leakage loss can be reduced, the energy of the high-pressure working fluid can be efficiently converted into rotational power.
Furthermore, the structure of the radial turbine rotor blade and the rotating shaft can be the same as the conventional structure, and the increase in the size of the structure of the multistage radial turbine can be suppressed.
 前記態様では、前記U字型ベンド部は、前記ベーン部側端部の下流部流路面積が前記ラジアルタービン動翼側端部の上流部流路面積よりも小さく構成されている構成としてもよい。 In the above aspect, the U-shaped bend portion may be configured such that the downstream flow passage area at the vane portion side end is smaller than the upstream flow passage area at the radial turbine blade side end.
 このようにU字型ベンド部は、ベーン部側端部の下流部流路面積がラジアルタービン動翼側端部の上流部流路面積よりも小さく構成されているので、U字型ベンド部で流体流れを加速することができる。
 これにより、ラジアルタービン動翼の出口部で発生する可能性がある低流速域の影響による流れの剥離を抑制することができる。
In this way, the U-shaped bend portion is configured such that the downstream flow passage area at the vane portion side end portion is smaller than the upstream flow passage area at the radial turbine rotor blade side end portion. The flow can be accelerated.
Thereby, the separation of the flow due to the influence of the low flow velocity region that may occur at the outlet portion of the radial turbine rotor blade can be suppressed.
 前記構成では、前記下流部流路面積は、前記上流部流路面積の0.8~0.9倍以下とされていることが好適である。 In the above configuration, it is preferable that the downstream channel area is 0.8 to 0.9 times or less the upstream channel area.
 ラジアルタービン動翼の出口部で発生する可能性がある低流速域は、一般にラジアルタービン動翼の出口部の流路面積の10~20%を占めている。
 本態様によると、U字型ベンド部で、流体流れを少なくとも10~20%加速することができるので、この低速流域部分の影響を緩和することができる。
The low flow velocity region that may occur at the outlet of the radial turbine blade generally occupies 10 to 20% of the flow path area of the outlet of the radial turbine blade.
According to this aspect, since the fluid flow can be accelerated by at least 10 to 20% in the U-shaped bend portion, the influence of the low-speed basin portion can be mitigated.
 前記態様では、前記転向ベーンは、インボリュート状の曲線に構成されていることが好適である。 In the above aspect, it is preferable that the turning vane is configured as an involute curve.
 このようにすると、ベーン部における転向ベーン間の入口部での流路面積と出口部での流路面積の変化を小さくできる。
 これにより、ベーン部において、減速による損失や転向による損失を低減することができる。
If it does in this way, the change of the channel area in the entrance part between the turning vanes in a vane part and the channel area in an exit part can be made small.
Thereby, the loss by deceleration and the loss by turning can be reduced in a vane part.
 本発明によると、複数のラジアルタービン動翼は、一本の回転軸に間隔をあけて取り付けられているので、軸受および軸シールは一本の回転軸に対して備えられていればよく、当然ながら、複数の回転軸を有するものに比べて少なくすることができる。
 したがって、軸受損失と漏れ損失を小さくできるので、高圧力の作動流体のエネルギーを効率よく回転動力に変換することができる。
 さらに、ラジアルタービン動翼および回転軸の構造は、従来と同様な構造とでき、多段ラジアルタービンの構造の大型化を抑制することができる。
According to the present invention, since the plurality of radial turbine rotor blades are attached to one rotary shaft with a space therebetween, the bearing and the shaft seal need only be provided for one rotary shaft. However, it can be reduced as compared with the one having a plurality of rotating shafts.
Therefore, since the bearing loss and the leakage loss can be reduced, the energy of the high-pressure working fluid can be efficiently converted into rotational power.
Furthermore, the structure of the radial turbine rotor blade and the rotating shaft can be the same as the conventional structure, and the increase in the size of the structure of the multistage radial turbine can be suppressed.
本発明の一実施形態にかかる一軸多段ラジアルタービン(多段ラジアルタービン)の概略構成を示す部分断面図である。1 is a partial cross-sectional view showing a schematic configuration of a single-shaft multi-stage radial turbine (multi-stage radial turbine) according to an embodiment of the present invention. 図1のX-X断面図である。FIG. 2 is a sectional view taken along line XX in FIG.
 以下、本発明の一実施形態にかかる一軸多段ラジアルタービン1について、図1および図2を参照して説明する。
 図1は、一軸多段ラジアルタービン1の概略構成を示す部分断面図である。図2は、図1のX-X断面図である。
Hereinafter, a single-shaft multistage radial turbine 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a partial cross-sectional view showing a schematic configuration of a single-shaft multi-stage radial turbine 1. FIG. 2 is a sectional view taken along line XX of FIG.
 一軸多段ラジアルタービン1には、回転軸3と、複数、たとえば、2個のラジアルタービン動翼5と、ケーシング7と、接続流路部9と、が備えられている。
 回転軸3は、ケーシング7に、その一端がラジアル軸受(図示略)により支持され、他端がラジアル軸受(図示略)およびスラスト軸受(図示略)により支持されている。
 複数のラジアルタービン動翼5は、回転軸3の軸方向Lに間隔をあけて取り付けられ、半径方向Kの外周側から流入する流体流れを略軸方向Lに向けて流出するように構成されている。
The single-shaft multi-stage radial turbine 1 includes a rotating shaft 3, a plurality of, for example, two radial turbine blades 5, a casing 7, and a connection flow path portion 9.
One end of the rotary shaft 3 is supported on the casing 7 by a radial bearing (not shown), and the other end is supported by a radial bearing (not shown) and a thrust bearing (not shown).
The plurality of radial turbine blades 5 are attached at intervals in the axial direction L of the rotary shaft 3 and configured to flow out the fluid flow flowing in from the outer peripheral side in the radial direction K toward the substantially axial direction L. Yes.
 ラジアルタービン動翼5には、回転軸3に固定されたハブ11と、ハブ11の表面に円周方向に等間隔で多数固定された遠心翼13と、遠心翼13の先端に取り付けられたシュラウド15とが備えられている。
 ラジアルタービン動翼5には、ハブ11と、遠心翼13と、シュラウド15とでガス(作動流体)が通過するガス通路が画成されている。このガス通路の回転軸3から離隔した側がガス入口部21となり、回転軸3側がガス出口部(出口部)23となる。
The radial turbine rotor blade 5 includes a hub 11 fixed to the rotary shaft 3, centrifugal blades 13 fixed to the surface of the hub 11 at equal intervals in the circumferential direction, and a shroud attached to the tip of the centrifugal blade 13. 15 are provided.
In the radial turbine rotor blade 5, a gas passage through which gas (working fluid) passes is defined by the hub 11, the centrifugal blade 13, and the shroud 15. The side of the gas passage that is separated from the rotating shaft 3 is a gas inlet portion 21, and the rotating shaft 3 side is a gas outlet portion (outlet portion) 23.
 ガス入口部21の半径方向K外周側のケーシング7には、ドーナツ形状をした入口流路17が形成されている。入口流路17は、半径方向K外側から内向きに半径方向Kに沿ってガスが流れるように構成されている。
 入口流路17の下流側、言い換えると、ラジアルタービン動翼5の上流側には、ガス流れを回転方向Rに加速する翼型を有するノズル19が設置されている。
An inlet flow path 17 having a donut shape is formed in the casing 7 on the outer peripheral side in the radial direction K of the gas inlet portion 21. The inlet channel 17 is configured such that gas flows along the radial direction K inward from the outside in the radial direction K.
A nozzle 19 having a blade shape for accelerating the gas flow in the rotational direction R is installed on the downstream side of the inlet channel 17, in other words, on the upstream side of the radial turbine rotor blade 5.
 接続流路部9は、ケーシング7に掘設された流路で、前段側のラジアルタービン動翼5のガス出口部23と後段側のノズル19の上流側とを接続するものである。
 接続流路部9には、ラジアルタービン動翼5から軸方向Lに流出したガス流れを、半径方向K外向きに転向するU字型ベンド部25と、U字型ベンド部25からのガス流れを半径方向K外向きに導きながら、ラジアルタービン動翼5の回転方向Rに転向する複数枚の転向ベーン27を有するベーン部29と、ベーン部29から半径方向K外向きに旋回しながら流出するガスを半径方向K内向きに転向するリターンベンド部31と、が備えられている。
The connection channel 9 is a channel dug in the casing 7 and connects the gas outlet 23 of the radial turbine rotor blade 5 on the upstream side and the upstream side of the nozzle 19 on the downstream side.
In the connecting flow path portion 9, the gas flow flowing out in the axial direction L from the radial turbine rotor blade 5 is converted to a U-shaped bend portion 25 that turns outward in the radial direction K, and a gas flow from the U-shaped bend portion 25. And a vane portion 29 having a plurality of turning vanes 27 that turn in the rotation direction R of the radial turbine rotor blade 5, and flows out from the vane portion 29 while turning outward in the radial direction K. And a return bend portion 31 for turning the gas inward in the radial direction K.
 U字型ベンド部25におけるベーン部29側端部の下流部流路面積A2は、ラジアルタービン動翼5側端部の上流部流路面積A1の0.8~0.9倍以下とされている。すなわち、下流部流路面積A2は上流部流路面積A1よりも小さくされている。
 この比率は、少なくともラジアルタービン動翼5の出口部に発生する低流速域Tの大きさを勘案して決定される。低速領域Tは、一般に、ラジアルタービン動翼5の出口部流路面積、すなわち、上流部流路面積A1の10~20%を占めるように発生する。
 下流部流路面積A2は上流部流路面積A1よりも小さくされているのが好ましいが、使用状況に応じて略等しくあるいは大きくしてもよい。
The downstream flow area A2 at the end on the vane section 29 side in the U-shaped bend section 25 is 0.8 to 0.9 times or less the upstream flow area A1 at the end on the radial turbine blade 5 side. Yes. That is, the downstream flow path area A2 is smaller than the upstream flow path area A1.
This ratio is determined in consideration of at least the size of the low flow velocity region T generated at the outlet of the radial turbine rotor blade 5. The low speed region T is generally generated so as to occupy 10 to 20% of the outlet flow path area of the radial turbine rotor blade 5, that is, the upstream flow path area A1.
The downstream flow passage area A2 is preferably smaller than the upstream flow passage area A1, but may be substantially equal or larger depending on the use situation.
 ベーン部29の転向ベーン27は、図2に示されるように、インボリュート状の曲線を形成するように構成されている。
 ベーン部29における転向ベーン27間の入口部での流路面積A3と出口部での流路面積A4との変化量は、図2に二点鎖線で示した直線状に拡大する転向ベーン33間の入口部での流路面積A5と出口部での流路面積A6との変化量に比べて格段に小さくすることができる。
 転向ベーン27は、インボリュート状の曲線を構成するのが好ましいが、それに限定されず適宜形状とされてよい。
The turning vane 27 of the vane portion 29 is configured to form an involute-shaped curve, as shown in FIG.
In the vane portion 29, the amount of change between the flow passage area A3 at the inlet portion between the turning vanes 27 and the flow passage area A4 at the outlet portion is between the turning vanes 33 expanding linearly as shown by the two-dot chain line in FIG. The amount of change between the channel area A5 at the inlet portion and the channel area A6 at the outlet portion can be significantly reduced.
The turning vane 27 preferably forms an involute curve, but is not limited thereto and may be appropriately shaped.
 以上のように構成された本実施形態にかかる一軸多段ラジアルタービン1の動作について説明する。
 図示しないガス源から1段目の入口流路17へ供給されるガス流れG1は、入口流路17を通って半径方向K外周側から内側に向かって半径方向Kにノズル19へ流入する。
 ノズル19は、このガス流れG1を円周方向Rに加速し、ラジアルタービン動翼5の外周部に位置するガス入口部21へ供給する。
The operation of the single-shaft multi-stage radial turbine 1 according to the present embodiment configured as described above will be described.
A gas flow G1 supplied from a gas source (not shown) to the first-stage inlet channel 17 flows into the nozzle 19 in the radial direction K from the outer peripheral side in the radial direction K toward the inner side through the inlet channel 17.
The nozzle 19 accelerates the gas flow G <b> 1 in the circumferential direction R and supplies the gas flow G <b> 1 to the gas inlet portion 21 located on the outer peripheral portion of the radial turbine rotor blade 5.
 ラジアルタービン動翼5に導入されたガスは、ハブ11、遠心翼13およびシュラウド15とで画成されるガス通路を通る際、膨張される。この膨張に伴い遠心翼13が押され、回転方向Rに移動する。この遠心翼13の移動によってハブ11が回転方向Rに回転移動するので、回転軸3が回転する。
 ラジアルタービン動翼のガス出口部23から軸方向Lに流出したガス流れは、U字型ベンド部25を通って半径方向K外向きに転向される。
The gas introduced into the radial turbine rotor blade 5 is expanded when passing through a gas passage defined by the hub 11, the centrifugal blade 13, and the shroud 15. With this expansion, the centrifugal blade 13 is pushed and moves in the rotation direction R. Since the hub 11 rotates in the rotation direction R due to the movement of the centrifugal blade 13, the rotating shaft 3 rotates.
The gas flow flowing out in the axial direction L from the gas outlet portion 23 of the radial turbine rotor blade passes through the U-shaped bend portion 25 and is turned outward in the radial direction K.
 このとき、U字型ベンド部25の下流部流路面積A2は、上流部流路面積A1の0.8~0.9倍以下とされているので、U字型ベンド部25を通るガス流れは、流路面積の縮小に対応して、たとえば、10~20%以上加速される。
 ラジアルタービン動翼5のガス出口部23の前後位置には、一般に流路面積の10~20%を占める低速領域Tが発生するが、U字型ベンド部25で少なくともそれに対応する分は加速されるので、低速領域Tを略解消することができる。言い換えると、低速流域T部分の影響を緩和することができる。
At this time, since the downstream flow passage area A2 of the U-shaped bend portion 25 is 0.8 to 0.9 times or less of the upstream flow passage area A1, the gas flow through the U-shaped bend portion 25 is reduced. Is accelerated by, for example, 10 to 20% or more in response to the reduction of the channel area.
A low-speed region T, which generally occupies 10 to 20% of the flow path area, is generated at the front and rear positions of the gas outlet 23 of the radial turbine rotor blade 5, but at least a corresponding amount is accelerated by the U-shaped bend 25. Therefore, the low speed region T can be substantially eliminated. In other words, the influence of the low-speed basin T portion can be mitigated.
 このように低速領域Tの影響を緩和することができるので、ラジアルタービン動翼5のガス出口部23に発生する低流速域Tの集積によって、下流側のシュラウド15面の曲率により流れの剥離を発生することを抑制できる。
 さらに、下流部流路面積A2を上流部流路面積A1の0.8~0.9倍よりもより小さくすることができる場合には、より剥離し難くできるので、各部の曲率をより小さくすることができる。
 これにより、特に多段構成の総軸長を短くできるので、一軸ラジアルタービン1の全体長さを短くでき、一軸ラジアルタービン1を小型に構成することができる。
Since the influence of the low speed region T can be mitigated in this way, the flow separation is caused by the curvature of the surface of the shroud 15 on the downstream side by the accumulation of the low flow velocity region T generated at the gas outlet 23 of the radial turbine rotor blade 5. Occurrence can be suppressed.
Further, when the downstream flow area A2 can be made smaller than 0.8 to 0.9 times the upstream flow area A1, it is more difficult to peel off, so the curvature of each part is made smaller. be able to.
Thereby, since the total axial length of the multistage configuration can be particularly shortened, the overall length of the single-shaft radial turbine 1 can be shortened, and the single-shaft radial turbine 1 can be configured in a small size.
 次いで、ガス流れは、ベーン部29を通る際、転向ベーン27によって半径方向K外向きに導かれながら、ラジアルタービン動翼5の回転方向Rに転向される。
 このとき、転向ベーン27は、インボリュート状の曲線を形成するように構成されているので、転向ベーン27間の入口部での流路面積A3と出口部での流路面積A4との変化量が小さくされている。これにより、ベーン部29において、ガス流れの減速による損失や転向による損失を低減することができる。
 さらに、この転向ベーン27の角度を調整することによって、下流側のノズル19の入口の流れ角を調整できる。たとえば、ノズル19の入口の流れ角を周方向から40~50度になるように調整すると、ノズル19の入口衝突損失を低減することができる。
Next, the gas flow is turned in the rotation direction R of the radial turbine rotor blade 5 while being guided outward in the radial direction K by the turning vane 27 when passing through the vane portion 29.
At this time, since the turning vane 27 is configured to form an involute-shaped curve, the amount of change between the flow passage area A3 at the inlet portion and the flow passage area A4 at the outlet portion between the turning vanes 27 is small. It has been made smaller. Thereby, in the vane part 29, the loss by the deceleration of a gas flow and the loss by turning can be reduced.
Furthermore, by adjusting the angle of the turning vane 27, the flow angle at the inlet of the downstream nozzle 19 can be adjusted. For example, if the flow angle at the inlet of the nozzle 19 is adjusted to be 40 to 50 degrees from the circumferential direction, the inlet collision loss of the nozzle 19 can be reduced.
 ベーン部29から半径方向K外向きに旋回しながら流出する流れは、リターンベンド部31を通って半径方向K内向きに転向され、次段の入口流路17に半径方向K外周側から流入させられる。
 リターンベンド部31から供給されるガス流れG2は、入口流路17を通って半径方向K外周側から内側に向かって半径方向Kにノズル19へ流入する。
 ノズル19は、このガス流れG2を円周方向Rに加速し、ラジアルタービン動翼5の外周部に位置するガス入口部21へ供給する。
The flow flowing out from the vane portion 29 while turning outward in the radial direction K is turned inward in the radial direction K through the return bend portion 31 and flows into the inlet channel 17 of the next stage from the outer peripheral side in the radial direction K. It is done.
The gas flow G <b> 2 supplied from the return bend portion 31 flows into the nozzle 19 in the radial direction K from the outer peripheral side in the radial direction K toward the inner side through the inlet channel 17.
The nozzle 19 accelerates the gas flow G <b> 2 in the circumferential direction R and supplies the gas flow G <b> 2 to the gas inlet portion 21 located on the outer peripheral portion of the radial turbine rotor blade 5.
 ラジアルタービン動翼5に導入されたガスは、ハブ11、遠心翼13およびシュラウド15とで画成されるガス通路を通る際、膨張される。この膨張に伴い遠心翼13が押され、回転方向Rに移動する。この遠心翼13の移動によって、ハブ11が回転方向Rに回転移動するので、回転軸3が回転する。
 ラジアルタービン動翼のガス出口部23から軸方向Lに流出したガス流れは、図示しない排出流路を通って一軸ラジアルタービン1の外へ排出される。
The gas introduced into the radial turbine rotor blade 5 is expanded when passing through a gas passage defined by the hub 11, the centrifugal blade 13, and the shroud 15. With this expansion, the centrifugal blade 13 is pushed and moves in the rotation direction R. Since the hub 11 rotates in the rotation direction R due to the movement of the centrifugal blade 13, the rotating shaft 3 rotates.
The gas flow flowing out in the axial direction L from the gas outlet 23 of the radial turbine rotor blade is discharged out of the uniaxial radial turbine 1 through a discharge passage (not shown).
 このように、複数のラジアルタービン動翼5は、一本の回転軸3に間隔をあけて取り付けられているので、軸受および軸シールは一本の回転軸3に対して備えられていればよく、当然ながら複数の回転軸を有するものに比べて少なくすることができる。
 したがって、軸受損失と漏れ損失とを小さくすることができるので、高圧力の作動流体のエネルギーを効率よく回転動力に変換することができる。しかも一式の一軸ラジアルタービンで、その熱落差を回転動力に変換できる。
 さらに、ラジアルタービン動翼5および回転軸3の構造は、従来と同様な構造とできることも相まって、一軸多段ラジアルタービン1の構造の大型化を抑制することができる。
As described above, since the plurality of radial turbine blades 5 are attached to the single rotating shaft 3 at intervals, it is sufficient that the bearing and the shaft seal are provided for the single rotating shaft 3. Of course, it can be reduced as compared with the one having a plurality of rotating shafts.
Therefore, since the bearing loss and the leakage loss can be reduced, the energy of the high-pressure working fluid can be efficiently converted into rotational power. Moreover, the heat drop can be converted into rotational power with a set of single-shaft radial turbines.
Furthermore, the structure of the radial turbine rotor blade 5 and the rotary shaft 3 can be the same as that of the conventional structure, and the size of the single-shaft multi-stage radial turbine 1 can be suppressed from being increased.
 本発明は、以上説明した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変形を行ってもよい。
 たとえば、本実施形態では、ラジアルタービン動翼5は2段としているが、これは3段以上としてもよい。この場合、隣り合うラジアルタービン動翼5間は、それぞれ接続流路部9によって接続される。
The present invention is not limited to the embodiment described above, and various modifications may be made without departing from the spirit of the present invention.
For example, in this embodiment, the radial turbine rotor blade 5 has two stages, but it may have three or more stages. In this case, the adjacent radial turbine rotor blades 5 are connected to each other by the connection flow path portions 9.
1 一軸ラジアルタービン
3 回転軸
5 ラジアルタービン動翼
9 接続流路部
19 ノズル
25 U字型ベンド部
27 転向ベーン
29 ベーン部
31 リターンベンド部
A1 上流部流路面積
A2 下流部流路面積
K 半径方向
L 軸方向
R 回転方向
DESCRIPTION OF SYMBOLS 1 Single-shaft radial turbine 3 Rotating shaft 5 Radial turbine rotor blade 9 Connection flow path part 19 Nozzle 25 U-shaped bend part 27 Turning vane 29 Vane part 31 Return bend part A1 Upstream flow area A2 Downstream flow area K Radial direction L Axial direction R Rotation direction

Claims (4)

  1.  一本の回転軸と、
     該回転軸に間隔をあけて取り付けられ、半径方向外周側から流入する流体流れを略軸方向に向けて流出する複数のラジアルタービン動翼と、
     それぞれ各該ラジアルタービン動翼の上流側に設置され、流体流れを回転方向に加速する複数のノズルと、
     前段側の前記ラジアルタービン動翼の出口部と後段側の前記ノズルの上流側を接続する接続流路部と、が備えられ、
     前記接続流路部には、前記ラジアルタービン動翼から軸方向に流出した流体流れを、半径方向外向きに転向するU字型ベンド部と、
     該U字型ベンド部からの流体流れを半径方向外向きに導きながら、前記ラジアルタービン動翼の回転方向に転向する複数枚の転向ベーンを有するベーン部と、
     該ベーン部から半径方向外向きに旋回しながら流出する流れを半径方向内向きに転向するリターンベンド部と、が備えられている多段ラジアルタービン。
    One rotating shaft,
    A plurality of radial turbine rotor blades attached to the rotating shaft at intervals and flowing out the fluid flow flowing in from the radially outer peripheral side substantially in the axial direction;
    A plurality of nozzles, each installed upstream of each radial turbine blade, for accelerating fluid flow in the rotational direction;
    A connecting flow path portion connecting the outlet portion of the radial turbine rotor blade on the front stage side and the upstream side of the nozzle on the rear stage side, and
    In the connection flow path portion, a fluid flow that flows out in the axial direction from the radial turbine rotor blade, a U-shaped bend portion that turns outward in the radial direction, and
    A vane portion having a plurality of turning vanes that turn in the rotational direction of the radial turbine blade while guiding the fluid flow from the U-shaped bend portion radially outward;
    A multi-stage radial turbine comprising: a return bend portion that turns a flow that flows out from the vane portion in a radial direction while turning outward in the radial direction.
  2.  前記U字型ベンド部は、前記ベーン部側端部の下流部流路面積が前記ラジアルタービン動翼側端部の上流部流路面積よりも小さく構成されている請求項1に記載された多段ラジアルタービン。 2. The multistage radial according to claim 1, wherein the U-shaped bend portion is configured such that a downstream flow passage area of the vane portion side end portion is smaller than an upstream flow passage area of the radial turbine blade side end portion. Turbine.
  3.  前記下流部流路面積は、前記上流部流路面積の0.8~0.9倍以下とされている請求項2に記載された多段ラジアルタービン。 The multi-stage radial turbine according to claim 2, wherein the downstream flow path area is 0.8 to 0.9 times or less of the upstream flow path area.
  4.  前記転向ベーンは、インボリュート状の曲線に構成されている請求項1から請求項3のいずれか1項に記載された多段ラジアルタービン。 The multi-stage radial turbine according to any one of claims 1 to 3, wherein the turning vanes are configured in an involute curve.
PCT/JP2010/067065 2009-12-24 2010-09-30 Multistage radial turbine WO2011077801A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/380,247 US20120134797A1 (en) 2009-12-24 2010-09-30 Multi-stage radial turbine
RU2011152805/06A RU2518703C2 (en) 2009-12-24 2010-09-30 Multistage radial turbine
EP10839038.6A EP2518280A4 (en) 2009-12-24 2010-09-30 Multistage radial turbine
CN2010800282436A CN102472114A (en) 2009-12-24 2010-09-30 Multi-stage radial turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292600 2009-12-24
JP2009292600A JP2011132877A (en) 2009-12-24 2009-12-24 Multistage radial turbine

Publications (1)

Publication Number Publication Date
WO2011077801A1 true WO2011077801A1 (en) 2011-06-30

Family

ID=44195347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067065 WO2011077801A1 (en) 2009-12-24 2010-09-30 Multistage radial turbine

Country Status (6)

Country Link
US (1) US20120134797A1 (en)
EP (1) EP2518280A4 (en)
JP (1) JP2011132877A (en)
CN (1) CN102472114A (en)
RU (1) RU2518703C2 (en)
WO (1) WO2011077801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654304C2 (en) * 2015-02-11 2018-05-17 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Multistage gas power turbine with cantilever mounting

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000381A (en) * 2012-06-22 2014-01-03 주식회사 에이치케이터빈 Reaction type turbine
RU2668185C2 (en) * 2014-03-11 2018-09-26 Нуово Пиньоне СРЛ Turbomachine assembly
DE102014219821A1 (en) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Return step
DE102014223833A1 (en) 2014-11-21 2016-05-25 Siemens Aktiengesellschaft Return step
KR102050205B1 (en) 2018-03-26 2019-11-28 배명순 Generation apparatus using water power
CN109139121A (en) * 2018-08-30 2019-01-04 上海理工大学 A kind of combined turbine
DE102019001876B3 (en) * 2019-03-15 2020-06-10 Tivadar Menyhart Method, device and system for operating internal combustion engines with a significantly increased pressure ratio and vehicle with this system
CN114183210A (en) * 2021-12-02 2022-03-15 中国船舶重工集团公司第七0三研究所 Compact cylinder structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226085A (en) * 1962-10-01 1965-12-28 Bachl Herbert Rotary turbine
US4130989A (en) * 1970-11-19 1978-12-26 Wirth Richard E Automotive turbine engine
JPS61116031A (en) * 1984-11-12 1986-06-03 Kobe Steel Ltd Gas turbine
JPS64561B2 (en) * 1983-08-10 1989-01-06 Ebara Mfg
JP2007503546A (en) * 2003-08-27 2007-02-22 ティーティーエル ダイナミクス リミッテッド Energy recovery system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB239228A (en) * 1925-08-28 1926-07-01 Joseph Van Den Bossche Improvements in multi-stage turbines
US3378229A (en) * 1965-07-16 1968-04-16 Gen Electric Radial flow turbine
SU552434A1 (en) * 1973-03-05 1977-03-30 Предприятие П/Я В-2803 The method of assembly of a centrifugal turbomachine
CH606763A5 (en) * 1975-12-16 1978-11-15 Sulzer Ag
US4344737A (en) * 1978-01-30 1982-08-17 The Garrett Corporation Crossover duct
JPH0646035B2 (en) * 1988-09-14 1994-06-15 株式会社日立製作所 Multi-stage centrifugal compressor
US5344285A (en) * 1993-10-04 1994-09-06 Ingersoll-Dresser Pump Company Centrifugal pump with monolithic diffuser and return vane channel ring member
EP0886070B1 (en) * 1996-03-06 2003-05-28 Hitachi, Ltd. Centrifugal compressor and diffuser for the centrifugal compressor
CN100337013C (en) * 2005-09-28 2007-09-12 黄少斌 Radial-flow steam turbine
JP4927129B2 (en) * 2009-08-19 2012-05-09 三菱重工コンプレッサ株式会社 Radial gas expander

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226085A (en) * 1962-10-01 1965-12-28 Bachl Herbert Rotary turbine
US4130989A (en) * 1970-11-19 1978-12-26 Wirth Richard E Automotive turbine engine
JPS64561B2 (en) * 1983-08-10 1989-01-06 Ebara Mfg
JPS61116031A (en) * 1984-11-12 1986-06-03 Kobe Steel Ltd Gas turbine
JP2007503546A (en) * 2003-08-27 2007-02-22 ティーティーエル ダイナミクス リミッテッド Energy recovery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2518280A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2654304C2 (en) * 2015-02-11 2018-05-17 Федеральное государственное бюджетное научное учреждение Федеральный научный агроинженерный центр ВИМ (ФГБНУ ФНАЦ ВИМ) Multistage gas power turbine with cantilever mounting

Also Published As

Publication number Publication date
CN102472114A (en) 2012-05-23
RU2518703C2 (en) 2014-06-10
JP2011132877A (en) 2011-07-07
EP2518280A1 (en) 2012-10-31
RU2011152805A (en) 2014-02-27
EP2518280A4 (en) 2017-07-26
US20120134797A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2011077801A1 (en) Multistage radial turbine
JP6323454B2 (en) Centrifugal compressor and turbocharger
JP5019721B2 (en) Method and apparatus for assembling a gas turbine engine
JP4691002B2 (en) Mixed flow turbine or radial turbine
JP6468414B2 (en) Compressor vane, axial compressor, and gas turbine
EP3018297B1 (en) Sealing device and turbo machine
JP2008157237A (en) Turbofan engine assembly
JP2010216321A (en) Moving blade of steam turbine, and steam turbine using the same
WO2011034044A1 (en) Discharge scroll and turbomachine
WO2014087690A1 (en) Centrifugal compressor
WO2018181343A1 (en) Centrifugal compressor
JP2013032748A (en) Steam turbine
JP5287873B2 (en) Turbofan engine
WO2018124068A1 (en) Turbine and gas turbine
EP2971547B1 (en) Cantilever stator with vortex initiation feature
JP2009036118A (en) Axial-flow exhaust gas turbine
WO2018155546A1 (en) Centrifugal compressor
CN110418896B (en) Return stage and radial turbine fluid energy machine
EP2527617B1 (en) A vortex reducer
JP5693112B2 (en) Axial turbine and method for exhausting flow from an axial turbine
JP2012177357A (en) Radial turbine and supercharger
JP2011074804A (en) Nozzle of steam turbine
WO2018155189A1 (en) Rotating machine and exhaust member of rotating machine
WO2019107488A1 (en) Multi-stage centrifugal compressor, casing, and return vane
JP2005240713A (en) Centrifugal compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028243.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10069/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010839038

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13380247

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011152805

Country of ref document: RU