JP2014047692A - Axial flow turbo machine - Google Patents

Axial flow turbo machine Download PDF

Info

Publication number
JP2014047692A
JP2014047692A JP2012190813A JP2012190813A JP2014047692A JP 2014047692 A JP2014047692 A JP 2014047692A JP 2012190813 A JP2012190813 A JP 2012190813A JP 2012190813 A JP2012190813 A JP 2012190813A JP 2014047692 A JP2014047692 A JP 2014047692A
Authority
JP
Japan
Prior art keywords
stationary blade
working fluid
suction
flow
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012190813A
Other languages
Japanese (ja)
Inventor
Shuichi Ozaki
修一 尾崎
Minoru Yamashita
穣 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012190813A priority Critical patent/JP2014047692A/en
Publication of JP2014047692A publication Critical patent/JP2014047692A/en
Ceased legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stator blade structure of an axial flow turbo machine capable of reducing a resonance response even in the case where a stator blade pass frequency and a rotor blade intrinsic frequency matches, by reducing an exciting force acting on a rotor blade at a specific stator blade pass frequency, without reducing step-down efficiency, in simple structure.SOLUTION: An axial flow turbo machine comprises: a rotor 5; a diaphragm outer ring 1 provided at an outer circumferential side of the rotor; a stator blade 3 fixed to an inner circumferential side of the diaphragm outer ring 1; and a rotor blade 4 fixed to the rotor 5 at a downstream side in a working fluid flowing direction of the stator blade 3. The diaphragm outer ring 1 includes a flow passage in which a part of a working fluid is blown into a main stream from a downstream side of a stator blade rear edge on an inner circumferential side wall surface 8 of the diaphragm outer ring 1 towards a stator blade outflow direction of the working fluid while bypassing the stator blade 3.

Description

本発明は、軸流ターボ機械に関する。   The present invention relates to an axial flow turbomachine.

軸流ターボ機械は、静翼と、静翼の下流側に配置された動翼からなる段落で構成された構造となっている。   The axial-flow turbomachine has a structure composed of a stationary blade and a paragraph composed of a moving blade disposed on the downstream side of the stationary blade.

静翼の上流側から流入した作動流体は、静翼間を通過して、所定の流出角で動翼上流側へと流れる。その際に、静翼後縁より下流の領域では、静翼の翼面で発達した境界層の影響により、作動流体の速度が遅い領域いわゆる静翼後流が形成される。   The working fluid flowing in from the upstream side of the stationary blade passes between the stationary blades and flows to the upstream side of the moving blade at a predetermined outflow angle. At that time, in the region downstream from the trailing edge of the stationary blade, a region where the working fluid is slow, so-called a stationary blade wake, is formed due to the influence of the boundary layer developed on the blade surface of the stationary blade.

静翼後流の数は後流を形成する静翼本数と一致するため、動翼がタービン軸周りを一周する間に、動翼の上流側にある静翼本数分だけ静翼後流を通過することになる。このとき動翼は、回転周波数と静翼本数との積で表される静翼通過周波数の流体励振力によって励振される。   Since the number of stator blade wakes matches the number of stator blades that form the wake, the rotor blades pass through the stator blade wakes by the number of stator blades upstream of the rotor blades as they move around the turbine axis. Will do. At this time, the moving blade is excited by a fluid exciting force having a stationary blade passing frequency represented by the product of the rotational frequency and the number of stationary blades.

静翼通過周波数と動翼固有振動数が一致した場合、共振により動翼に過大な変動応力が発生し、動翼が疲労破壊する可能性がある。従来では、かかる動翼の疲労破壊を防止するため、定格回転速度における静翼通過周波数と動翼固有振動数を離調させる設計を行う場合がある。   When the stationary blade passing frequency and the moving blade natural frequency match, excessive fluctuation stress is generated in the moving blade due to resonance, which may cause fatigue failure of the moving blade. Conventionally, in order to prevent fatigue failure of such a moving blade, there is a case where a design is made to detune the stationary blade passing frequency and the moving blade natural frequency at the rated rotational speed.

離調設計では、静翼本数の調整により静翼通過周波数を変更して、動翼固有振動数と一致しないようにするため、設計時に選択できる静翼本数が限定されるといった問題がある。   In the detuning design, there is a problem that the number of stationary blades that can be selected at the time of design is limited because the stationary blade passing frequency is changed by adjusting the number of stationary blades so as not to coincide with the natural frequency of the moving blade.

また、静翼通過周波数と動翼固有振動数が一致した場合でも、動翼が疲労破壊しないように、充分な耐振強度を有した動翼を採用するため、翼幅の増大による材料費の増大や性能向上の妨げになるといった問題がある。   In addition, even if the stationary blade passage frequency and the natural frequency of the moving blade match, the moving blade has sufficient vibration resistance so that the moving blade will not be damaged by fatigue. And there is a problem that hinders performance improvement.

以上のように、軸流ターボ機械の段落設計において、静翼通過周波数で動翼に作用する励振力が、材料費の増大や性能向上の妨げになるため、励振力の要因となる静翼後流すなわち速度欠損を低減することが望まれている。   As described above, in the stage design of an axial-flow turbomachine, the excitation force acting on the moving blade at the stationary blade passing frequency hinders increase in material cost and performance improvement. It is desirable to reduce flow or velocity deficits.

本技術分野の従来技術として、特開2007−278187号公報(特許文献1)がある。この公報には、翼の上流側から下流側に流れる流体の一部が流体流路を介して速度欠損領域に噴出される。このため、後流を弱めることができ騒音及び振動を低減させることが可能となると記載されている。   As a prior art in this technical field, there is JP-A-2007-278187 (Patent Document 1). In this publication, a part of the fluid flowing from the upstream side to the downstream side of the blade is ejected to the velocity deficient region through the fluid flow path. For this reason, it is described that the wake can be weakened and noise and vibration can be reduced.

特開2007−278187号公報JP 2007-278187 A

一般的な蒸気タービンは、静翼と、静翼の下流側に配置された動翼からなる段落が、軸流方向に複数並んだ構造となっており、動翼に流入する流れは、静翼を通過した流れとなるため、静翼を通過する際に生じる速度欠損を含んだ流れが動翼に流入する。   A general steam turbine has a structure in which a plurality of stages including a stationary blade and a moving blade arranged on the downstream side of the stationary blade are arranged in the axial flow direction. Therefore, the flow including velocity deficiency generated when passing through the stationary blade flows into the moving blade.

そのため、速度欠損が大きい場合、動翼に流入する流れの速度変動が大きくなり、動翼に作用する励振力が増大する一因となるため、速度欠損を低減する必要がある。   For this reason, when the speed deficit is large, the speed fluctuation of the flow flowing into the moving blade increases, and the excitation force acting on the moving blade increases, so it is necessary to reduce the speed deficit.

前記特許文献1では、速度欠損領域に流体を噴出するための流体流路が翼の正圧面から負圧面あるいは後縁に導通され形成されていることを特徴とすると記載されている。   In Patent Document 1, it is described that a fluid flow path for ejecting a fluid to a velocity deficient region is formed to be conducted from a pressure surface of a blade to a suction surface or a trailing edge.

しかしながら、速度欠損領域へ噴出する流れを翼の正圧面から吸い込む構造では、翼面上に吸い込み孔を設置しなければならず、吸い込み孔周りの流れ場が乱れて、吸い込み孔が無い構造に比べて効率が低下する可能性がある。   However, in the structure where the flow jetted into the velocity deficit region is sucked from the pressure surface of the blade, the suction hole must be installed on the blade surface, and the flow field around the suction hole is disturbed, compared to the structure without the suction hole. Efficiency may be reduced.

また、一般的な蒸気タービンの高中圧段では、作動流体の圧力が高く、高強度の翼が採用されている。そのため、前記特許文献1に示してあるように、翼面に複数の孔を設置する構造では、クラックなどの問題が生じる可能性があり強度上好ましくないため、より高強度の翼を採用する必要があり、材料費の増大や性能向上の妨げになるといった可能性がある。   Moreover, in the high and medium pressure stage of a general steam turbine, the pressure of the working fluid is high, and high-strength blades are employed. Therefore, as shown in Patent Document 1, the structure in which a plurality of holes are installed on the blade surface may cause problems such as cracks, which is not preferable in terms of strength. Therefore, it is necessary to employ a higher strength blade. There is a possibility that the material cost will increase and the performance will be hindered.

そこで本発明は、翼面に吸い込み孔を設置しない簡単な構造で、静翼後流の速度欠損を回復させ、ある特定の静翼通過周波数で動翼に作用する静翼後流に起因する励振力を低減し、静翼通過周波数と動翼固有振動数が一致した場合でも共振応答を小さくできる軸流ターボ機械の静翼構造を提供する。   Therefore, the present invention has a simple structure in which no suction hole is provided on the blade surface, recovers the speed deficit of the stationary blade wake, and excites due to the stationary blade wake acting on the moving blade at a certain stationary blade passing frequency. Provided is a stationary blade structure for an axial-flow turbomachine capable of reducing the resonance and reducing the resonance response even when the stationary blade passage frequency and the moving blade natural frequency coincide with each other.

上記課題を解決するため、本発明は、ロータと、該ロータの外周側に設けられた円環状構造体と、該円環状構造体の内周側に固定された静翼と、該静翼の作動流体流れ方向下流側でロータに固定された動翼とを備える軸流ターボ機械において、円環状構造体は、作動流体の一部を、静翼をバイパスして円環状構造体の内周側壁面の静翼後縁部下流から作動流体の静翼流出方向に向かって作動流体主流中に吹き出させる流路を備える。   In order to solve the above problems, the present invention provides a rotor, an annular structure provided on the outer peripheral side of the rotor, a stationary blade fixed on the inner peripheral side of the annular structure, In an axial-flow turbomachine comprising a moving blade fixed to a rotor on the downstream side in the working fluid flow direction, the annular structure is configured such that a part of the working fluid bypasses the stationary blade and the inner peripheral side of the annular structure. A flow path is provided for blowing out into the working fluid main flow from the downstream of the trailing edge of the stationary blade on the wall surface toward the stationary blade outflow direction of the working fluid.

本発明によれば、簡単な構造で、静翼下流側に形成される静翼後流の速度欠損を回復できるため、静翼通過周波数で動翼に作用する速度欠損に起因する励振力を低減し、静翼通過周波数と動翼固有振動数が一致した場合でも共振応答を小さくできる軸流ターボ機械の静翼構造を提供することができる。   According to the present invention, since the speed deficit of the stationary blade wake formed on the downstream side of the stationary blade can be recovered with a simple structure, the excitation force due to the velocity deficiency acting on the moving blade at the stationary blade passing frequency is reduced. In addition, it is possible to provide a stationary blade structure of an axial-flow turbomachine that can reduce the resonance response even when the stationary blade passing frequency and the moving blade natural frequency coincide with each other.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

蒸気タービンの段落構造の例である。It is an example of the paragraph structure of a steam turbine. 蒸気タービンの静翼列を径方向から見た展開図の例である。It is an example of the expanded view which looked at the stationary blade row | line | column of the steam turbine from radial direction. 本発明の第1の実施例に係る段落構造を示す図である。It is a figure which shows the paragraph structure based on 1st Example of this invention. 図3に示した吹き出し部の構造を説明する図である。It is a figure explaining the structure of the blowing part shown in FIG. 本発明の作用について説明する図である。It is a figure explaining the effect | action of this invention. 本発明の第2の実施例に係る段落構造を示す図である。It is a figure which shows the paragraph structure based on 2nd Example of this invention. 本発明の第3の実施例に係る段落構造を示す図である。It is a figure which shows the paragraph structure based on the 3rd Example of this invention. 図7に示した吸い込み部の構造を説明する図である。It is a figure explaining the structure of the suction part shown in FIG. 図8に示した吸い込み部を応用した一例を示す図である。It is a figure which shows an example which applied the suction part shown in FIG. 図8に示した吸い込み部を応用した他の一例を示す図である。It is a figure which shows another example which applied the suction part shown in FIG.

以下、本発明の実施例について図面を用いて説明する。なお、以下に説明する実施例は、軸流ターボ機械の一例として蒸気タービンに本発明を適用した例であるが、本発明は、蒸気タービンに限らず、ガスタービンや圧縮機の段落構造にも適用可能である。   Embodiments of the present invention will be described below with reference to the drawings. In addition, although the Example described below is an example which applied this invention to the steam turbine as an example of an axial-flow turbomachine, this invention is not limited to a steam turbine but also to the paragraph structure of a gas turbine or a compressor. Applicable.

本発明の第1の実施例について説明する。まず初めに、本発明が適用される蒸気タービンの一例について説明する。   A first embodiment of the present invention will be described. First, an example of a steam turbine to which the present invention is applied will be described.

図1は、軸流ターボ機械の一例である蒸気タービンの段落構造の例である。図1において、1はダイアフラム外輪、2はダイアフラム内輪、3は静翼、4は動翼、5はロータ、6はシュラウドカバー、7はロータ5の中心軸、20で示した矢印は作動流体である蒸気の主流方向を各々示す。なお、方向の定義として、図面左から右に向かって軸方向、下から上に向かって径方向、紙面手前から奥に向かって周方向となっている。   FIG. 1 is an example of a paragraph structure of a steam turbine that is an example of an axial-flow turbomachine. In FIG. 1, 1 is a diaphragm outer ring, 2 is a diaphragm inner ring, 3 is a stationary blade, 4 is a moving blade, 5 is a rotor, 6 is a shroud cover, 7 is a central axis of the rotor 5, and an arrow indicated by 20 is a working fluid. Each direction of the main flow of a certain steam is shown. The direction is defined as an axial direction from the left to the right in the drawing, a radial direction from the bottom to the top, and a circumferential direction from the front to the back of the page.

一般的な蒸気タービンは、円環状に組み立てられた円環状構造体であるダイアフラム外輪1とダイアフラム内輪2との間に、周方向に複数枚の静翼3を固定して環状流路を形成する静翼列と、静翼列の主流の流れ方向下流側に、回転体であるロータ5のディスク部に周方向に複数枚の動翼4を固定して形成される動翼列とを一列ずつ組み合わせた段落が、軸流方向に複数並んだ構造となっている。なお、動翼4の外周側は、一般的にシュラウドカバー6が設けられ、隣接する翼同士がシュラウドカバー6により連結されている。また、ダイアフラム外輪1は外周側をケーシング(図示せず)に固定されている。蒸気タービンのなかにはダイアフラム外輪1を有しない場合もあるが、その場合においても円環状構造体としてのケーシング等によって静翼3が支持される。   A general steam turbine forms an annular flow path by fixing a plurality of stationary blades 3 in a circumferential direction between a diaphragm outer ring 1 and a diaphragm inner ring 2 which are annular structures assembled in an annular shape. A stationary blade row and a moving blade row formed by fixing a plurality of blades 4 in the circumferential direction to the disk portion of the rotor 5 that is a rotating body, one by one on the downstream side in the mainstream flow direction of the stationary blade row. The combined paragraph has a structure in which a plurality of paragraphs are arranged in the axial direction. In addition, the outer peripheral side of the moving blade 4 is generally provided with a shroud cover 6, and adjacent blades are connected by the shroud cover 6. The outer peripheral side of the diaphragm outer ring 1 is fixed to a casing (not shown). Some steam turbines may not have the diaphragm outer ring 1. In this case, the stationary blade 3 is supported by a casing or the like as an annular structure.

静翼3は、静翼3の流れ方向上流側より流入する蒸気主流を整流し、圧力を速度に変換する役割を果たしており、静翼3を通過した主流のエネルギは、動翼4によって回転エネルギに変換され、ロータ5を回転させる。ロータ5は図示しない発電機に連結されており、発電機を回転させることによって発電する。   The stationary blade 3 rectifies the main steam flow flowing in from the upstream side of the stationary blade 3 in the flow direction, and converts pressure into velocity. The energy of the main flow that has passed through the stationary blade 3 is rotated by the rotating blade 4. And the rotor 5 is rotated. The rotor 5 is connected to a generator (not shown), and generates electricity by rotating the generator.

図2は、蒸気タービンの静翼列を径方向から見た展開図の例である。図2では、軸方向上流側より流入した主流が、前記静翼列より所定の角度で流出するように、静翼3は全周360°に渡って周方向に均一に配置されている。つまり、各静翼3の下流側に形成される速度の遅い領域である静翼後流21も、全周に渡って静翼列の配置間隔で動翼4に流入する。   FIG. 2 is an example of a development view in which the stationary blade row of the steam turbine is viewed from the radial direction. In FIG. 2, the stationary blade 3 is uniformly arranged in the circumferential direction over the entire circumference of 360 ° so that the main flow flowing in from the upstream side in the axial direction flows out from the stationary blade row at a predetermined angle. That is, the stationary blade wake 21, which is a low speed region formed on the downstream side of each stationary blade 3, also flows into the moving blade 4 at intervals of the stationary blade rows over the entire circumference.

ここで、静翼後流21の速度欠損が小さい場合には速度変動が小さくなるため、動翼に流入する主流の速度変動も小さくなる。つまり、主流の速度変動に起因する動翼に作用する励振力も小さくなる。この速度変動の周波数は、静翼後流21を通過する周波数つまり静翼通過周波数であるため、速度欠損を小さくすることで静翼通過周波数の励振力を低減できるといえる。   Here, when the speed deficit of the stationary blade wake 21 is small, the speed variation is small, and thus the main flow velocity variation flowing into the moving blade is also small. That is, the excitation force acting on the moving blade due to the mainstream speed fluctuation is also reduced. Since the frequency of this speed fluctuation is the frequency that passes through the stationary blade wake 21, that is, the stationary blade passage frequency, it can be said that the excitation force of the stationary blade passage frequency can be reduced by reducing the velocity deficit.

そこで、静翼通過周波数での励振力を低減できる、本実施例に係る蒸気タービンの段落構造について以下に説明する。   Therefore, the paragraph structure of the steam turbine according to the present embodiment that can reduce the excitation force at the stationary blade passing frequency will be described below.

図3は、本実施例の段落構造を示す例である。図3に示すように、本実施例はダイアフラム外輪1に、内周側壁面8の静翼後縁部下流から、作動流体である蒸気の一部を蒸気主流の静翼流出方向に向かって蒸気主流中に吹き出させる流路を備える。この流路は、ダイアフラム外輪1の作動流体流れ方向上流側を向いた上流側壁面9に設けた吸い込み孔11と、ダイアフラム外輪1の内周側壁面8の静翼後縁部下流に設置した吹き出し孔13と、吸い込み孔11より取り込んだ主流の一部である吸い込み流れ22を、静翼3をバイパスして吹き出し流れ23として吹き出し孔へ導くバイパス流路10とからなる。   FIG. 3 is an example showing the paragraph structure of this embodiment. As shown in FIG. 3, in this embodiment, a part of the steam, which is a working fluid, is applied to the diaphragm outer ring 1 from the downstream of the rear edge of the stationary blade on the inner peripheral side wall 8 toward the stationary blade flow direction of the main steam. A flow path is provided for blowing into the main stream. This flow path includes a suction hole 11 provided in the upstream side wall surface 9 facing the upstream side in the working fluid flow direction of the diaphragm outer ring 1, and a blowout installed downstream of the stationary blade trailing edge of the inner peripheral side wall surface 8 of the diaphragm outer ring 1. It consists of a bypass passage 10 that guides the suction flow 22, which is a part of the main flow taken in from the suction hole 11, to the blow-out hole as a blow-off flow 23 by bypassing the stationary blade 3.

ここで、ダイアフラム外輪1に吸い込み孔11を設置して流れを吸い込む構造の方が、静翼3の翼面上から流れを吸い込む構造に比べて、静翼3周りの流れ場を乱さないため、効率が低下しないといった利点がある。   Here, the structure in which the suction hole 11 is installed in the diaphragm outer ring 1 and the flow is sucked does not disturb the flow field around the stationary blade 3 compared to the structure in which the flow is sucked from the blade surface of the stationary blade 3. There is an advantage that efficiency does not decrease.

吹き出し孔13より吹き出す流れ23は、速度欠損を効率良く回復させるため、前記静翼列より下流側へ流出する主流、または前記静翼列に起因する下流側の速度欠損領域の方向と同方向に吹き出す方が望ましい。しかしながら、必ずしも同方向とせずとも、静翼3の流出角±5°以内の角度で吹き出せば良い。   The flow 23 blown out from the blowout holes 13 is in the same direction as the direction of the main flow flowing out downstream from the stationary blade row or the downstream velocity missing region caused by the stationary blade row in order to efficiently recover the velocity loss. It is better to blow out. However, it does not necessarily have to be in the same direction, but it may be blown out at an angle within ± 5 ° of the stationary blade 3.

また、図3に示すように吹き出し孔13の設置位置は、ダイアフラム外輪1の内周側の流路に接した内周側壁面8で、且つ静翼3の後縁より下流側に設置することが望ましい。これは、静翼3の後縁より上流側に設置すると、速度欠損領域でない主流に流れを吹き出すことになり、主流が乱れて効率低下の要因となる可能性があるためである。   Further, as shown in FIG. 3, the blowing hole 13 is installed on the inner peripheral side wall surface 8 in contact with the flow path on the inner peripheral side of the diaphragm outer ring 1 and on the downstream side from the rear edge of the stationary blade 3. Is desirable. This is because if installed upstream from the trailing edge of the stationary blade 3, the flow is blown out into the main flow that is not in the velocity deficit region, which may disturb the main flow and cause a reduction in efficiency.

さらに、吹き出し孔13の設置位置は、静翼3の後縁に近い位置であることが望ましい。これは、静翼3の後縁より下流側に向かうにつれ、速度欠損領域の幅が広がるため、速度欠損領域の幅が小さい静翼3の後縁に近い領域で流れを吹き出した方が、効率よく速度欠損を回復できるためである。   Furthermore, the installation position of the blowout hole 13 is desirably a position close to the rear edge of the stationary blade 3. This is because the speed deficit region increases in width toward the downstream side from the trailing edge of the stationary blade 3, so that it is more efficient to blow out the flow in a region near the rear edge of the stationary blade 3 where the width of the velocity deficient region is small. This is because the speed deficit can be recovered well.

バイパス流路10は、製造上できるだけ直線であることが望ましいため、吸い込み孔11より吹き出し部12までをダイアフラム外輪1内で貫通させ、吹き出し部12はダイアフラム外輪1とは別構造としている。   Since it is desirable that the bypass flow path 10 be as straight as possible in manufacturing, the portion from the suction hole 11 to the blowing portion 12 is penetrated in the diaphragm outer ring 1, and the blowing portion 12 has a different structure from the diaphragm outer ring 1.

図4に示すように吹き出し部12は、ダイアフラム外輪1とは別体で構成され、ダイアフラム外輪1の内周側壁面8の各静翼後縁部の下流に取り付けられる。吹き出し部12は、バイパス流路10に接続するバイパス接続孔16と、バイパス接続孔16よりも半径方向内周側に位置し、主流に面する壁面に設けられた吹き出し孔13と、バイパス接続孔16と吹き出し孔13とを結び、バイパス接続孔16を通過した蒸気を下方の吹き出し孔13に向かってに噴出させる流路を内部に有する。なお、図4に示すように、別構造である吹き出し部12とバイパス流路10の接続を容易にするため、吹き出し部12のバイパス流路接続部16は、バイパス流路10よりも大きい取り込み口となることが望ましい。   As shown in FIG. 4, the blowing portion 12 is configured separately from the diaphragm outer ring 1 and is attached downstream of each stationary blade rear edge portion of the inner peripheral side wall surface 8 of the diaphragm outer ring 1. The blowout portion 12 is connected to the bypass flow path 10, the blowout hole 13 provided on the wall surface facing the mainstream, and the bypass connection hole, located on the radially inner peripheral side of the bypass connection hole 16. 16 and the blowing hole 13 are connected to each other, and a flow path is provided inside to allow the vapor that has passed through the bypass connection hole 16 to be blown out toward the lower blowing hole 13. As shown in FIG. 4, in order to facilitate the connection between the blowing section 12 and the bypass flow path 10 which are different structures, the bypass flow path connecting section 16 of the blowing section 12 has a larger intake port than the bypass flow path 10. It is desirable that

吸い込み孔11、バイパス流路10、および吹き出し部12内の流路は、吹き出し部12をダイアフラム外輪1に取り付けた際、半径方向からみて吸い込み孔11からバイパス流路10、吹き出し孔13まで、静翼流出角に沿って傾斜した直線状流路を構成するように形成する。またバイパス流路10はタービン軸に平行に沿って形成し、吹き出し部12内の流路で下方に傾斜させる。   The suction holes 11, the bypass flow paths 10, and the flow paths in the blow-off section 12 are static when the blow-off section 12 is attached to the diaphragm outer ring 1, from the suction holes 11 to the bypass flow paths 10 and the blow-out holes 13 when viewed from the radial direction. It forms so that the linear flow path inclined along the blade outflow angle may be comprised. The bypass channel 10 is formed parallel to the turbine axis, and is inclined downward in the channel in the blowing portion 12.

このように吹き出し部12を別構造とすることで、バイパス流路10から吹き出し孔13への流路の接続を容易にしている。   Thus, by making the blowing part 12 into another structure, the connection of the flow path from the bypass flow path 10 to the blowing hole 13 is facilitated.

以上のように、本実施例では、吹き出し部12をダイアフラム外輪1とは別構造としているが、バイパス流路10と吹き出し孔13を容易に貫通できる場合には、吹き出し部12をダイアフラム外輪1と別構造にする必要はなく、一体構造で製造しても良い。   As described above, in the present embodiment, the blowing portion 12 has a different structure from the diaphragm outer ring 1, but when the bypass passage 10 and the blowing hole 13 can be easily penetrated, the blowing portion 12 is connected to the diaphragm outer ring 1. It is not necessary to have a separate structure, and it may be manufactured as an integral structure.

図5は、本実施例の作用について説明した図である。本実施例の静翼構造では、ダイアフラム外輪1に固定した静翼3の下流側に設置した吹き出し孔13より流れが吹き出す構造であるため、図5に示すように、静翼3の下流側に形成される静翼後流21の先端側で、静翼後流21と吹き出し流れ23が混合するため、静翼後流21の速度欠損が回復する。   FIG. 5 is a diagram for explaining the operation of this embodiment. In the stationary blade structure of the present embodiment, since the flow blows out from the blowing hole 13 installed on the downstream side of the stationary blade 3 fixed to the diaphragm outer ring 1, as shown in FIG. Since the stationary blade wake 21 and the blowout flow 23 are mixed on the leading end side of the formed stationary blade wake 21, the velocity defect of the stationary blade wake 21 is recovered.

つまり、本実施例では、静翼3の下流側に設置される動翼4へ流入する静翼後流21において、静翼後流21の速度欠損が小さくなるため速度変動が抑制され、速度変動に起因する励振力も小さくなる。   That is, in the present embodiment, in the stationary blade wake 21 flowing into the moving blade 4 installed on the downstream side of the stationary blade 3, the speed fluctuation of the stationary blade wake 21 is reduced, so that the speed variation is suppressed and the speed variation. The excitation force due to the is also reduced.

よって、本実施例により、静翼通過周波数で動翼4に作用する速度変動に起因する励振力が小さくなり、共振応答も低減できるといった効果がある。   Therefore, according to the present embodiment, there is an effect that the excitation force due to the speed fluctuation acting on the moving blade 4 at the stationary blade passing frequency is reduced, and the resonance response can be reduced.

また、動翼は根元で固定されているため、翼に作用する力のモーメントは、根元側と先端側に同じ大きさの励振力が作用した場合は、先端側の方が大きくなり振動応力に大きく影響する。本実施例のダイアフラム外輪1の内周側壁面8から吹き出す構造では、主に翼先端部の速度欠損を低減でき、翼先端側における速度欠損の低減効果が得られれば、振動低減効果は充分に期待できる。   In addition, since the rotor blade is fixed at the root, the moment of force acting on the blade is larger on the tip side when vibration forces of the same magnitude are applied to the root side and the tip side. A big influence. In the structure that blows out from the inner peripheral side wall surface 8 of the diaphragm outer ring 1 of this embodiment, the speed deficiency at the blade tip can be reduced mainly, and if the speed deficit reduction effect at the blade tip side can be obtained, the vibration reducing effect is sufficient. I can expect.

また従来技術のように、翼内部から吹き出す構造では、翼構造が複雑になるだけでなく、翼内部に空洞が多くなるので翼強度が低下する可能性があり、結局、頑丈な翼を採用しなければならず、励振力も大きくなるおそれがある。一方、本実施例によれば、翼内部を通す構造ではないので、従来の翼を使用することができ、簡単な構造で容易に製造することができる。   In addition, the structure that blows out from the inside of the blade as in the prior art not only complicates the blade structure but also increases the number of cavities inside the blade, which may reduce the blade strength. There is a risk that the excitation force will also increase. On the other hand, according to the present embodiment, since the structure does not pass through the inside of the blade, a conventional blade can be used, and it can be easily manufactured with a simple structure.

次に本発明の第2の実施例について説明する。図6は、吸い込み孔11と吹き出し孔13をバイパス流路10で貫通させた構造の例を示す図である。ここで、先に第1の実施例で説明した構成と同等の構成については同一の符号を付して説明を省略し、先に説明した実施例と異なる箇所について説明をする。   Next, a second embodiment of the present invention will be described. FIG. 6 is a diagram illustrating an example of a structure in which the suction hole 11 and the blowout hole 13 are penetrated by the bypass channel 10. Here, the same components as those described in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and portions different from those in the first embodiment are described.

図6では、静翼下流側の静翼ダイアフラム外輪1に設置した吹き出し孔13より吹き出し流れ23を主流部へ吹き出す構造となっているため、先に説明した実施例と同様の効果が得られる。   In FIG. 6, since the blowout flow 23 is blown out to the main flow portion from the blowout hole 13 installed in the stationary blade diaphragm outer ring 1 on the downstream side of the stationary blade, the same effect as the embodiment described above can be obtained.

しかし、実施例1と異なる点は、バイパス流路10を吸い込み孔11から吹き出し孔13に向かって、半径方向外周側から内周側に向かって貫通させた構造となっている点である。   However, the difference from the first embodiment is that the bypass flow path 10 is structured to penetrate from the suction hole 11 toward the blowout hole 13 toward the inner peripheral side from the radially outer side.

実施例1では、バイパス流路10と吹き出し部12を別構造とすることで、バイパス流路から主流部への接続を容易に製造できる構造としたが、本実施例では、吸い込み孔11から吹き出し孔13までバイパス流路10を貫通させているため、前記吹き出し部12を別構造にする必要はなく、実施例1に比較して、さらに容易に製造できるといった利点がある。   In the first embodiment, the bypass flow path 10 and the blowout portion 12 have different structures, so that the connection from the bypass flow path to the main flow portion can be easily manufactured. However, in this embodiment, the blowout flow from the suction hole 11 Since the bypass passage 10 is penetrated to the hole 13, there is no need to make the blowing portion 12 a separate structure, and there is an advantage that it can be manufactured more easily than the first embodiment.

次に本発明の第3の実施例について説明する。図7は、吸い込み部14を多孔板15とした構造の例を示す図である。ここで、先に実施例で説明した構成と同等の構成については同一の符号を付して説明を省略し、先に説明した実施例と異なる箇所について説明をする。   Next, a third embodiment of the present invention will be described. FIG. 7 is a diagram illustrating an example of a structure in which the suction portion 14 is a perforated plate 15. Here, the same components as those described in the previous embodiment are denoted by the same reference numerals, the description thereof will be omitted, and different points from the above-described embodiment will be described.

図7では、静翼下流側のダイアフラム外輪1に設置した吹き出し孔13より流れを主流部へ吹き出す構造となっているため、先に説明した実施例と同様の効果が得られる。   In FIG. 7, since the flow is blown out to the main flow portion from the blow-out hole 13 installed in the diaphragm outer ring 1 on the downstream side of the stationary blade, the same effect as the embodiment described above can be obtained.

しかし、先の実施例と異なる点は、吸い込み流れ22を取り込む位置が、ダイアフラム外輪1の上流側を向いた面ではなく、ダイアフラム外輪1の内周側の静翼3より上流の流路に接した面に設置した構造となっている点である。   However, the difference from the previous embodiment is that the position where the suction flow 22 is taken in is not on the surface facing the upstream side of the diaphragm outer ring 1 but on the flow path upstream of the stationary blade 3 on the inner peripheral side of the diaphragm outer ring 1. It is the point where it has a structure installed on the surface.

ここで、吸い込み孔11と吹き出し孔13をバイパス流路10で容易に接続できるようにするため、本実施例ではバイパス流路10と吸込み部14および吹き出し部12を別構造としている。吹き出し部12は実施例1と同様の構造を採用すれば良いが、実施例1で前述したが、バイパス流路10と吹き出し孔13を容易に貫通できる場合には、吹き出し部12を静翼ダイアフラムと別構造にする必要はなく、一体構造で製造しても良い。なお、図7に図示した例では、吹き出し構造12をダイアフラム外輪1と一体構造とした例を示している。   Here, in order to make it easy to connect the suction hole 11 and the blowout hole 13 by the bypass flow path 10, in this embodiment, the bypass flow path 10, the suction part 14 and the blowout part 12 have different structures. The blowing part 12 may have the same structure as that of the first embodiment, but as described above in the first embodiment, when the bypass channel 10 and the blowing hole 13 can be easily penetrated, the blowing part 12 is provided with a stationary blade diaphragm. It is not necessary to have a separate structure. In the example illustrated in FIG. 7, an example in which the blowing structure 12 is integrated with the diaphragm outer ring 1 is illustrated.

吸い込み部14の構造は、図8に示したように実施例1のダイアフラム外輪1の上流側を向いた面に吸い込み孔11を設置した構造と違い、ダイアフラム外輪1の内周側壁面8に凹部を形成して吸い込み部14を設けている。吸い込み部14に主流に接するように多孔板15を設置し、吸い込み部14に主流の一部が取り込まれる空洞部が形成される構造となっている。吸い込み部14の設置位置は、静翼3の前縁部の上流側近傍付近にする。   Unlike the structure in which the suction hole 11 is provided on the surface facing the upstream side of the diaphragm outer ring 1 according to the first embodiment, the structure of the suction portion 14 is recessed on the inner peripheral side wall surface 8 of the diaphragm outer ring 1. The suction part 14 is provided. A perforated plate 15 is installed in the suction part 14 so as to be in contact with the main stream, and a cavity part in which a part of the main stream is taken into the suction part 14 is formed. The installation position of the suction portion 14 is in the vicinity of the upstream side of the front edge portion of the stationary blade 3.

多孔板15には複数の吸い込み孔11を設置し、吸い込み孔11より吸い込み部14内に流れを取り込み、バイパス流路接続部17より、バイパス流路10を介して、吹き出し孔13に導き、流れを静翼3をバイパスして主流に吹き出す構造となる。   A plurality of suction holes 11 are provided in the perforated plate 15, a flow is taken into the suction part 14 from the suction hole 11, and the flow is guided from the bypass flow path connection part 17 to the blowout hole 13 via the bypass flow path 10. This is a structure that bypasses the stationary blade 3 and blows out the mainstream.

本実施例では、先の実施例に比較して、吸い込み部14に多孔板15を用いて、吸込み孔11の位置をダイアフラム外輪1の上流側から主流部側にすることで、静翼3上流側のダイアフラム外輪1の壁面で発達した境界層を吸い込むことができ、静翼3へと流入する圧力損失が低減されるため、効率が向上するといった利点がある。   In this embodiment, compared with the previous embodiment, the perforated plate 15 is used for the suction portion 14 and the suction hole 11 is positioned upstream from the diaphragm outer ring 1 to the main flow portion side, so that the upstream of the stationary blade 3 Since the boundary layer developed on the wall surface of the diaphragm outer ring 1 on the side can be sucked and the pressure loss flowing into the stationary blade 3 is reduced, the efficiency is improved.

図9は、図8に示した吸い込み部14を応用した一例を示す図である。図9では、吹き出し孔13の設置位置が、静翼下流側のダイアフラム外輪1の内周側の流路に接した面に設置した先の実施例とは異なり、静翼3の後縁に設置した構造となっている。   FIG. 9 is a diagram illustrating an example in which the suction unit 14 illustrated in FIG. 8 is applied. In FIG. 9, the blowing hole 13 is installed at the rear edge of the stationary blade 3, unlike the previous embodiment in which the blowing hole 13 is installed on the surface in contact with the flow path on the inner peripheral side of the diaphragm outer ring 1 on the downstream side of the stationary blade. It has a structure.

図10は、吸い込み部14の設置位置をダイアフラム内輪2とした静翼構造の例を示す図である。先の実施例とは異なり、吸い込み部14の設置位置をダイアフラム内輪2としているため、静翼3上流側のダイアフラム内輪2の壁面で発達した境界層を吸い込むことができ、静翼3の根元側の圧力損失を低減できるといった利点がある。   FIG. 10 is a diagram illustrating an example of a stationary blade structure in which the installation position of the suction portion 14 is the diaphragm inner ring 2. Unlike the previous embodiment, since the installation position of the suction portion 14 is the diaphragm inner ring 2, the boundary layer developed on the wall surface of the diaphragm inner ring 2 upstream of the stationary blade 3 can be sucked, and the root side of the stationary blade 3 There is an advantage that the pressure loss can be reduced.

以上、本発明の実施例を説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、実施例1の図3では、吸い込み孔11がダイアフラム外輪1の上流側を向いた面に設置されているが、必ずしもダイアフラム外輪1に設置する必要はなく、ダイアフラム内輪2の上流側を向いた面に設置しても構わない。要は静翼3の下流側に形成される静翼後流21に流れを吹き出す構造であれば効果がある。   As mentioned above, although the Example of this invention was described, this invention is not limited to an above-described Example, Various modifications are included. For example, in FIG. 3 of the first embodiment, the suction hole 11 is installed on the surface facing the upstream side of the diaphragm outer ring 1, but it is not always necessary to install the suction hole 11 on the diaphragm outer ring 1 and faces the upstream side of the diaphragm inner ring 2. You may install it on the surface. In short, any structure that blows the flow to the stationary blade wake 21 formed downstream of the stationary blade 3 is effective.

また、本発明の実施例では、ダイアフラム構造の蒸気タービンを例として説明したが、本発明はダイアフラム構造の蒸気タービンに限定されるものではなく、例えば組み立て式静翼の構造でも同様の効果が得られる。   In the embodiments of the present invention, the diaphragm-structured steam turbine has been described as an example. However, the present invention is not limited to the diaphragm-structured steam turbine. It is done.

1 ダイアフラム外輪
2 ダイアフラム内輪
3 静翼
4 動翼
5 ロータ
6 シュラウドカバー
7 ロータ中心軸
8 内周側壁面
10 バイパス流路
11 吸い込み孔
12 吹き出し部
13 吹き出し孔
14 吸い込み部
15 多孔板
16 バイパス接続部
21 静翼後流
22 吸い込み流れ
23 吹き出し流れ
DESCRIPTION OF SYMBOLS 1 Diaphragm outer ring | wheel 2 Diaphragm inner ring | wheel 3 Stator blade 4 Rotor blade 5 Rotor 6 Shroud cover 7 Rotor center axis | shaft 8 Inner peripheral side wall surface 10 Bypass flow path 11 Suction hole 12 Outlet part 13 Outlet part 14 Inlet part 15 Perforated plate 16 Bypass connection part 21 Stator wing wake 22 Suction flow 23 Blowout flow

Claims (5)

ロータと、該ロータの外周側に設けられた円環状構造体と、該円環状構造体の内周側に固定された静翼と、該静翼の作動流体流れ方向下流側でロータに固定された動翼とを備える軸流ターボ機械であって、
前記円環状構造体は、作動流体の一部を、前記静翼をバイパスして円環状構造体の内周側壁面の静翼後縁部下流から作動流体の静翼流出方向に向かって作動流体主流中に吹き出させる流路を備えることを特徴とする軸流ターボ機械。
A rotor, an annular structure provided on the outer peripheral side of the rotor, a stationary blade fixed to the inner peripheral side of the annular structure, and a stationary blade fixed to the rotor on the downstream side in the working fluid flow direction of the stationary blade. An axial flow turbomachine comprising
In the annular structure, a part of the working fluid is bypassed from the stationary blade, and the working fluid flows from the downstream of the trailing edge of the stationary blade on the inner peripheral side wall surface of the annular structure toward the stationary blade outflow direction. An axial-flow turbomachine comprising a flow path for blowing out into a main stream.
請求項1に記載の軸流ターボ機械であって、
前記流路は、前記静翼上流側に設けられ、作動流体主流の一部を吸込む吸込部と、
前記静翼の下流側に設けられ、吸込部で吸込んだ作動流体を作動流体主流に吹き出す
吹出部と、
前記吸込部で導入した作動流体を前記静翼をバイパスして前記吹出部に導くバイパス流路とを有し、
前記吸込部は、前記円環状構造体の上流側壁面に開口する吸込孔を有することを特徴とする軸流ターボ機械。
The axial-flow turbomachine according to claim 1,
The flow path is provided on the upstream side of the stationary blade, and a suction portion that sucks a part of the main working fluid,
A blow-off portion that is provided on the downstream side of the stationary blade, and blows out the working fluid sucked in the suction portion into the working fluid mainstream;
A bypass flow path for guiding the working fluid introduced in the suction section to the blowout section by bypassing the stationary blade,
The axial flow turbomachine according to claim 1, wherein the suction part has a suction hole that opens to an upstream side wall surface of the annular structure.
請求項1に記載の軸流ターボ機械であって、
前記流路は、前記静翼上流側に設けられ、作動流体主流の一部を吸込む吸込部と、
前記静翼の下流側に設けられ、吸込部で吸込んだ作動流体を作動流体主流に吹き出す
吹出部と、
前記吸込部で導入した作動流体を前記静翼をバイパスして前記吹出部に導くバイパス流路とを有し、
前記吸込部は、前記円環状構造体の内周壁面の静翼前縁部上流側に開口する複数の吸込孔を有することを特徴とする軸流ターボ機械。
The axial-flow turbomachine according to claim 1,
The flow path is provided on the upstream side of the stationary blade, and a suction portion that sucks a part of the main working fluid,
A blow-off portion that is provided on the downstream side of the stationary blade, and blows out the working fluid sucked in the suction portion into the working fluid mainstream;
A bypass flow path for guiding the working fluid introduced in the suction section to the blowout section by bypassing the stationary blade,
The axial-flow turbomachine characterized in that the suction portion has a plurality of suction holes that open to the upstream side of the stationary blade front edge portion of the inner peripheral wall surface of the annular structure.
請求項1ないし3のいずれか1項に記載の軸流ターボ機械であって、
前記吹出部は、前記円環状構造体と別体として設けられていることを特徴とする軸流ターボ機械。
An axial-flow turbomachine according to any one of claims 1 to 3,
The blowout unit is provided as a separate body from the annular structure, and is an axial-flow turbomachine.
請求項1に記載の軸流ターボ機械であって、
前記流路は、前記円環状構造体の上流側壁面に設けられ、作動流体主流の一部を吸込む吸込孔と、
前記円環状構造体の内周壁面の前記静翼後縁部下流に設けられ、吸込部で吸込んだ作動流体を作動流体主流に吹き出す吹出孔と、
前記吸込孔で導入した作動流体を前記静翼をバイパスして前記吹出孔に導くバイパス流路とを有し、
前記吸込孔、前記吹出孔、およびバイパス流路は、前記円環状構造体を貫通させた貫通孔で構成されていることを特徴とする軸流ターボ機械。
The axial-flow turbomachine according to claim 1,
The flow path is provided on the upstream side wall surface of the annular structure, and a suction hole for sucking a part of the main working fluid flow;
A blowout hole that is provided downstream of the stationary blade trailing edge of the inner peripheral wall surface of the annular structure and blows out the working fluid sucked in the suction portion into the working fluid mainstream,
A bypass flow path that bypasses the stationary blade and introduces the working fluid introduced through the suction hole to the outlet hole;
The axial-flow turbomachine characterized in that the suction hole, the blowout hole, and the bypass flow path are configured by through-holes that penetrate the annular structure.
JP2012190813A 2012-08-31 2012-08-31 Axial flow turbo machine Ceased JP2014047692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012190813A JP2014047692A (en) 2012-08-31 2012-08-31 Axial flow turbo machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012190813A JP2014047692A (en) 2012-08-31 2012-08-31 Axial flow turbo machine

Publications (1)

Publication Number Publication Date
JP2014047692A true JP2014047692A (en) 2014-03-17

Family

ID=50607632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012190813A Ceased JP2014047692A (en) 2012-08-31 2012-08-31 Axial flow turbo machine

Country Status (1)

Country Link
JP (1) JP2014047692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505555A (en) * 2017-02-02 2020-02-20 ゼネラル・エレクトリック・カンパニイ Turbine tip balance slit
WO2021020518A1 (en) * 2019-07-31 2021-02-04 三菱パワー株式会社 Axial flow turbine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104302U (en) * 1982-01-12 1983-07-15 三菱重工業株式会社 steam turbine recoil stage
JPS60114202U (en) * 1984-01-12 1985-08-02 株式会社東芝 steam turbine
JPS63205404A (en) * 1987-02-20 1988-08-24 Toshiba Corp Leakage preventing device for axial flow turbine
JPH0542700U (en) * 1991-11-12 1993-06-11 三菱自動車工業株式会社 Cooling fan device
JP2006037733A (en) * 2004-07-22 2006-02-09 Isuzu Motors Ltd Fan shroud structure
US7137245B2 (en) * 2004-06-18 2006-11-21 General Electric Company High area-ratio inter-turbine duct with inlet blowing
JP2007120499A (en) * 2005-10-25 2007-05-17 General Electric Co <Ge> Multi-slot inter-turbine duct assembly for use in turbine engine
JP2008138667A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> System to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104302U (en) * 1982-01-12 1983-07-15 三菱重工業株式会社 steam turbine recoil stage
JPS60114202U (en) * 1984-01-12 1985-08-02 株式会社東芝 steam turbine
JPS63205404A (en) * 1987-02-20 1988-08-24 Toshiba Corp Leakage preventing device for axial flow turbine
JPH0542700U (en) * 1991-11-12 1993-06-11 三菱自動車工業株式会社 Cooling fan device
US7137245B2 (en) * 2004-06-18 2006-11-21 General Electric Company High area-ratio inter-turbine duct with inlet blowing
JP2006037733A (en) * 2004-07-22 2006-02-09 Isuzu Motors Ltd Fan shroud structure
JP2007120499A (en) * 2005-10-25 2007-05-17 General Electric Co <Ge> Multi-slot inter-turbine duct assembly for use in turbine engine
JP2008138667A (en) * 2006-11-30 2008-06-19 General Electric Co <Ge> System to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505555A (en) * 2017-02-02 2020-02-20 ゼネラル・エレクトリック・カンパニイ Turbine tip balance slit
JP7187464B2 (en) 2017-02-02 2022-12-12 ゼネラル・エレクトリック・カンパニイ Turbine tip balance slit
WO2021020518A1 (en) * 2019-07-31 2021-02-04 三菱パワー株式会社 Axial flow turbine
JP2021025432A (en) * 2019-07-31 2021-02-22 三菱パワー株式会社 Axial flow turbine
CN114127389A (en) * 2019-07-31 2022-03-01 三菱动力株式会社 Axial flow turbine
JP7356285B2 (en) 2019-07-31 2023-10-04 三菱重工業株式会社 axial flow turbine
CN114127389B (en) * 2019-07-31 2023-11-03 三菱重工业株式会社 Axial turbine
US11898461B2 (en) 2019-07-31 2024-02-13 Mitsubish Heavy Industries, Ltd. Axial flow turbine

Similar Documents

Publication Publication Date Title
US8202039B2 (en) Blade shroud with aperture
US10480531B2 (en) Axial flow compressor, gas turbine including the same, and stator blade of axial flow compressor
US9726197B2 (en) Turbomachine element
US8167567B2 (en) Gas turbine engine airfoil
JP5294710B2 (en) Air reinjection compressor
US9574452B2 (en) Noise-reduced turbomachine
EP2778427B1 (en) Compressor bleed self-recirculating system
US20060153673A1 (en) Turbomachine exerting dynamic influence on the flow
JP5331715B2 (en) Gas turbine, exhaust diffuser, and gas turbine plant modification method
JP2007536459A (en) Extraction of shock wave induced boundary layer of transonic gas turbine
JP2011052689A (en) High-turning diffuser strut equipped with flow crossover slot
JP2014503736A (en) Axial flow compressor
JP2015525852A (en) Rotating turbine parts with selectively aligned holes
JP2019007478A (en) Rotor blade tip
JP2012202260A (en) Impeller and turbo machine including the same
JP2014047692A (en) Axial flow turbo machine
JP2017520716A (en) Exhaust region of exhaust-driven turbocharger turbine
JP2012082826A (en) Turbine bucket shroud tail
JP2014020372A (en) Stationary vane assembly for axial flow turbine
US20180142569A1 (en) Inlet guide wheel for a turbo engine
EP2778346B1 (en) Rotor for a gas turbine engine, corresponding gas turbine engine and method of improving gas turbine engine rotor efficiency
JP5693112B2 (en) Axial turbine and method for exhausting flow from an axial turbine
JP5781461B2 (en) Compressor
JP2013177816A (en) Axial-flow turbomachine
JP5591142B2 (en) Extraction structure of rotating machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20160830