WO2013026361A1 - 一种步进光刻设备及光刻曝光方法 - Google Patents

一种步进光刻设备及光刻曝光方法 Download PDF

Info

Publication number
WO2013026361A1
WO2013026361A1 PCT/CN2012/080031 CN2012080031W WO2013026361A1 WO 2013026361 A1 WO2013026361 A1 WO 2013026361A1 CN 2012080031 W CN2012080031 W CN 2012080031W WO 2013026361 A1 WO2013026361 A1 WO 2013026361A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
exposure
workpiece
stage
lithography apparatus
Prior art date
Application number
PCT/CN2012/080031
Other languages
English (en)
French (fr)
Inventor
陈勇辉
吴立伟
张俊
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Publication of WO2013026361A1 publication Critical patent/WO2013026361A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Definitions

  • the present invention relates to the field of integrated circuit equipment manufacturing, and more particularly to a step lithography apparatus and a lithography exposure method. Background technique
  • a lithographic apparatus is a device that exposes a mask pattern to a silicon wafer.
  • Known lithographic apparatus include step repeat and step scan.
  • the magnification of the projection objective is reduced, i.e., the mask pattern is projected onto the substrate through the projection objective at a ratio of 1:N.
  • the workpiece table used in the step lithography machine disclosed in the prior art generally adopts the following structures: a coarse motion structure combined with a micro motion structure, or an XY (horizontal direction) motion table combined with a rotary table, even It is a single coarse motion table structure.
  • the mask table of the lithography machine is a coarse motion stage.
  • the step exposure method in the prior art is that after the substrate is leveled and aligned, after stepping on the workpiece table to a specified position, the workpiece stage needs to maintain a stable state of certain precision before exposure.
  • the step precision of the workpiece table is required to be high, and the stabilization time requirement is short. Therefore, the whole machine is difficult, and the productivity is seriously affected by the stabilization time.
  • the above patents all improve the stepper by reducing the quality of the workpiece stage, the structure of the cylindrical workpiece table, and optimizing the control mode, but still There is a drawback that the stepping stabilization takes a long time and the yield is low.
  • the device and the lithographic exposure method can effectively reduce the step stabilization time, further reduce the total time required for exposure, and improve the yield of the lithographic apparatus.
  • the present invention discloses a step lithography apparatus, comprising: an illumination unit for providing an exposure beam; and a workpiece stage for supporting a substrate to perform six-degree-of-freedom movement in a large stroke range; a mask table for supporting a mask to move synchronously with respect to the workpiece stage in a small stroke range during exposure; a projection objective for projecting a pattern on the mask to the substrate at a predetermined ratio; wherein the workpiece stage After sequentially stepping to the exposure field, the mask table is synchronously moved to a position corresponding to the workpiece stage and simultaneously exposed.
  • the projection magnification of the projection objective is 1:5.
  • the step lithography apparatus further includes a position measuring system.
  • the horizontal movement device of the workpiece stage is an H-shaped structure
  • the vertical movement device is a cam mechanism
  • the horizontal moving device of the mask table is a Lorentz motor
  • the vertical moving device is a reed mechanism
  • the position measuring system uses a laser interferometer or a coder.
  • the invention also discloses a lithographic exposure method using the above step lithography apparatus, comprising: Step 1: Performing pre-exposure preparation work; Step 2: After the workpiece stage is stepped to the first exposure field, the mask table is synchronously moved to The corresponding position of the workpiece table is exposed at the same time; Step 3: It is judged whether the exposure of all the exposure fields has been completed. If the judgment result is "No", after the workpiece table is stepped to the next exposure field, the mask table is synchronously moved to the position The position corresponding to the workpiece table is simultaneously exposed and returned to step 3; if the judgment result is "Yes", the exposure ends.
  • This step one includes an upper mask, an upper substrate, and a full field alignment of the substrate.
  • the fretting structure reduces the difficulty of the whole machine.
  • the mask stage containing the micro-motion structure immediately dynamically tracks the position of the workpiece stage, since the high-frequency tracking in a small range is similar to the scanning lithography machine. At this time, the exposure can be performed at the same time.
  • the device and the method do not need to be fixed as in the conventional stepper structure, and the step of the workpiece table must be stabilized within a specified precision to be exposed, so that With the device and the method, the step stabilization time is significantly reduced, the total exposure time is correspondingly reduced, and the yield is correspondingly high.
  • FIG. 1 is a schematic structural view of a step lithography apparatus according to the present invention.
  • FIG. 2 is a plan view of a workpiece stage of a step lithography apparatus
  • Figure 3 is a side view of the workpiece stage of the step lithography apparatus
  • Figure 4 is a plan view of a mask stage of a step lithography apparatus
  • Figure 5 is a side view of a mask stage of a step lithography apparatus
  • FIG. 6 is a schematic structural view of a position measuring system of a step lithography apparatus
  • Figure 7 is a flow chart of the lithographic exposure method. detailed description
  • X-axis or X-direction as used in the following description mainly refers to a coordinate axis or direction parallel to the horizontal direction;
  • Y-axis or Y-direction mainly refers to a direction parallel to the horizontal direction and perpendicular to the X-axis.
  • FIG. 1 is a schematic structural diagram of a step lithography apparatus according to the present invention.
  • the step lithography apparatus includes an illumination system 1, a mask table 2, and a mask 9 placed on the mask table 2, a projection objective 6, a workpiece stage 4, and a workpiece stage 4.
  • the illumination system 1 is illuminated by mercury lamps,
  • the i-line or gh line or ghi line is exposed to form a conventional illumination.
  • the projection objective lens 6 employs a reduced objective lens of 1:M (M>1), preferably a reduced objective lens of 1:5.
  • the workpiece stage 4 is of a coarse motion structure and placed between the machine frames 5.
  • the mask table 2 adopts a micro-motion structure and is placed on the whole frame.
  • the substrate 7 is sequentially stepped to each exposure field by the coarse motion stage 4, and the mask 9 dynamically tracks the vibration of the workpiece stage through the mask micro-motion stage 2 when the substrate 7 is stepped to the vicinity of the designated exposure area, while performing dynamic tracking. exposure.
  • the position information of the workpiece stage 4 and the mask stage 2 is measured by the position measuring system 3.
  • the mask stage 2 including the micro-motion structure When the step lithography apparatus according to the present invention is in operation, when the workpiece stage 4 is coarsely moved to the vicinity of the exposure area, the mask stage 2 including the micro-motion structure immediately dynamically tracks the position of the workpiece stage 4, due to the high frequency in a small range.
  • the tracking is similar to the scanning lithography machine, and can be simultaneously exposed at the same time. Therefore, the device and the method do not need to be fixed like the conventional step lithography machine structure, and the workpiece table step must be stabilized to the specified precision. Only inside can be exposed.
  • the detailed structure of the workpiece stage 4 is shown in Fig. 2 and Fig. 3, wherein Fig. 2 is a plan view of the workpiece stage of the step lithography apparatus, and Fig. 3 is a side view of the workpiece stage.
  • the workpiece table 4 is a six-degree-of-freedom motion mechanism, that is, the workpiece table can satisfy the movements of six directions of X, Y, Z, Rx, Ry, and Rz.
  • the horizontal direction adopts the H-type structure direct drive structure to control the X and Y axis long stroke motion
  • the Rz axis is designed according to the H type compatible interface
  • the horizontal three axis measurement uses the interferometer measurement for control.
  • the cam mechanism 46 is used vertically to realize the motion control of the Z, Rx, and Ry axes, and is measured by an encoder.
  • the workpiece table 4 horizontally oriented architecture uses an H-type drive scheme including the X drive direction and the Y drive direction.
  • the X drive direction includes two X-direction guides 41.
  • the two motor magnet stators 43 and the guide rail 41 assembly are mounted on the workpiece table support frame, and the X motor movers 402a and 402b are fixed to the Y-beam guide rails to provide X-direction and Rz-direction movement.
  • the Y-direction drive includes a Y-direction guide rail 45, and the Y-direction motor stator 49 is mounted on the Y-direction guide rail 45, and the mover is mounted on the exposure stage frame. In the middle of the guide rail 45, a reclining linear motor is used.
  • the H-shaped slider adopts double-rail air-floating guide
  • the left guide rail 41 is a flat guide rail
  • two vertical air-floating pads A51 vacuum pre-tightening
  • the horizontal direction is freedom.
  • the right side rail 41 is a two-dimensional rail
  • the Y-direction motion slider can adopt U-shaped high-rigidity air-floating slider, and the two air-floating pads on the left and right sides of the Y-direction guide rail 45 are pre-tightened with each other, and the vertical rigidity is 401 (vacuum pre-tightening).
  • the invention also provides a workpiece table 4
  • the second technical solution that is, the right side rail adopts a silicon steel guide rail, adopts magnetic pre-tightening, adopts two vertical air floating sliders and two Rz lateral air floating cushions A53.
  • a flexible block connection may be employed between the Rz lateral air bearing pad A53 and the Y-direction rail.
  • the bottom of the fretting frame is designed with high rigidity and air foot 401.
  • the marble table is used as a guiding plane. A total of 12 air floating cushions and one air foot can be used.
  • the vertical motion mechanism of the workpiece table 4 is driven by a conventional cam mechanism 46 in addition to the direct drive mechanism of the hammer motor.
  • Fig. 4 is a plan view of a mask stage of the step lithography apparatus
  • Fig. 5 is a side view of the mask stage.
  • the horizontal micro-motor of the mask table 2 is driven by three Lorentz motors, including the Lorentz motor SSZX for the X direction, and the Lorentz motors SSY1 and SSY2 for the Y direction.
  • the lower surface of the mask table 4 is designed to be air-floating and guided by marble 26.
  • the mask table 2 is equipped with two plane mirrors 22 and 21 in the X and Y directions, and is compatible with the 5-inch and 6-inch masks.
  • the mask table 2 has no station switching mechanism, and provides a reticle transfer interface.
  • the accuracy of the upper plate is realized by the micro-motion sound motor to achieve the three-degree-of-freedom precision index and stroke compensation of X, Y and Rz.
  • the reticle is adsorbed on the platen table 25 by a vacuum, and the platen table 25 is designed with a boss.
  • Mask Table 2 Vertical Actuator 23 uses a reed mechanism: Three vertical support springs are used to connect the marble 26 and the mask table frame with vertical high stiffness and low horizontal stiffness. There is a flexible hinge between the reed and the marble 26 to uncouple the Rx and Ry directions.
  • the position measuring system used is as shown in Fig. 6, horizontally to XYRz, etc., and the Z direction is measured by a built-in encoder.
  • an X-direction plane mirror 42 and a Y-direction plane mirror 44 are also disposed on the workpiece stage 4.
  • the plane mirror reflects the laser light emitted by the laser interferometer for horizontal XYRz measurement.
  • the main points of the workflow of the step lithography apparatus disclosed by the present invention are:
  • the workpiece stage is sequentially stepped to each exposure field by a coarse motion stage, and the mask stage passes through the mask stage when the workpiece stage steps to near the designated exposure area.
  • the micro-motion structure dynamically tracks the vibration of the workpiece table and performs exposure while dynamic tracking.
  • Figure 7 is a flow chart of the lithographic exposure method. Before the lithographic exposure is performed, the preparation work before the S1 exposure is first completed, and the preparation work before the exposure specifically includes the upper mask S11 and the upper wafer S12. A full field alignment S13 is achieved for the wafer.
  • the first step exposure S2 is entered, specifically including stepping the workpiece table to the first exposure field position S21, and then the mask table dynamically tracks the workpiece stage minute position change S22.
  • the mask stage synchronously tracks the motion of the workpiece stage, and performs exposure while dynamic tracking. It should be noted that the exposure in S22 does not achieve exposure of a complete pattern, so it is also necessary to perform the exposure step S3.
  • the exposure S3 is simultaneously completed, and the exposure of a complete pattern is completed by the steps S2 and S3.
  • step of the second step exposure S4 is exactly the same as the first step exposure S2, including stepping the workpiece stage to the next (ie second The exposure field position is S41, and then the mask table dynamically tracks the workpiece stage minute position change S42.
  • the exposure S5 is completed, it is judged whether or not all the exposure fields are exposed to S6. If the result of the determination is negative, the process proceeds to step S4. If the result of the determination is YES, the lithographic exposure ends, and the wafer or wafer S7 is replaced.
  • a preferred technical solution of this embodiment is that the mask table only tracks the XY and Rz of the workpiece stage, so as to further reduce the complexity of the system.
  • the workpiece table and the mask table defined by the invention are all synchronously movable while being exposed.
  • the main differences between the coarse motion structure and the micro motion structure include: First, the XY direction of the former is relatively large, for example, greater than 30mm, while the latter's stroke is relatively small, such as less than 30mm; Second, the positioning accuracy of the former (projected on the wafer surface or on the wafer surface) is generally lower than the latter.
  • the mask table of the conventional lithography machine does not have a micro-motion structure that is exposed while being dynamically movable, but a lock-in structure or other static structure of the cartridge.
  • the workpiece table of a conventional lithography machine generally includes a coarse motion stage and a micro-motion stage (or XY stage and a rotary stage, and only a few of them are only H-type coarse motion structures).
  • a significant difference between the method of the present invention and a conventional stepper is that the mask simultaneously tracks the movement of the workpiece stage while the exposure is being performed.
  • the mask table of the conventional stepper does not track the movement of the workpiece stage.
  • the workpiece table solution of the present invention is more compact than the coarse motion table plus micro-motion table structure (or XY table plus Rz table) used in the conventional workpiece table; meanwhile, because the objective lens is
  • the resulting system uses a coarse motion + micro-motion structure than the conventional workpiece table, and the fixed structure is more compact when the mask table is exposed. That is to say, the scheme transfers the micro-motion stage of the workpiece stage of the conventional step lithography machine to the mask table, and the difficulty of the whole machine is greatly reduced.
  • the mask table dynamically tracks the position of the workpiece table through the micro-motion structure, and the position of the workpiece table is not required to be completely stable. It is possible to expose, so that the total wafer exposure time is reduced and the yield is high.

Abstract

一种步进光刻设备和该步进光刻设备的光刻曝光方法,该步进光刻设备包括:用于提供曝光光束的照明单元(1),用于支撑基底(7)在大行程范围内进行六自由度运动的工件台(4),用于支撑掩模(9)在曝光时候在小行程范围内相对该工件台(4)同步运动的掩模台(2),以及用于将掩模(9)上图形按预订比例投射至基底(7)的投影物镜(6),其中,当该工件台(4)步进至曝光场后,该掩模台(2)同步运动至该工件台(4)对应的位置并同时曝光。

Description

一种步进光刻设备及光刻曝光方法 技术领域
本发明涉及集成电路装备制造领域, 尤其涉及一种步进光刻设备及光刻 曝光方法。 背景技术
光刻设备是一种将掩模图案曝光成像到硅片上的设备。 已知的光刻设备 包括步进重复式和步进扫描式。 现有技术中所公开的使用缩减倍率投影物镜 的步进光刻机中, 该投影物镜的倍率为缩减的, 即按 1 : N的比率将掩模图案 通过投影物镜投射于基底上。 现有技术中所公开的步进光刻机所使用的工件 台, 通常采用的结构为: 粗动结构与微动结构相结合, 或者是 XY (水平向) 运动台与旋转台相结合, 甚至是单个的粗动台结构。 而现有技术中的光刻机 的掩模台均为粗动台。
现有技术中的步进曝光方法为, 当基底完成调平和对准后, 在工件台上 步进至指定位置后, 需使该工件台保持一定精度的稳定状态后才能进行曝光。 采用传统的缩减倍率的步进投影装置和方法, 工件台的步进精度要求艮高, 并且稳定时间要求很短, 为此, 整机难度较大, 并且产能受稳定时间的严重 影响。
如专利 US2001/0021009、US6287735及 US2009/0201475中公开的技术方 案内容所示, 上述专利均采用减少工件台质量、 筒化工件台结构、 优化控制 方式等方式来改进步进光刻机, 但仍然存在步进稳定所需时间长, 产率较低 的缺陷。 发明内容 设备及光刻曝光方法, 能有效减少步进稳定时间, 进一步减少曝光所需总时 间, 使光刻设备的产率提高。 为了实现上述发明目的, 本发明公开一种步进光刻设备, 包括: 一照明 单元, 用于提供曝光光束; 一工件台, 用于支撑一基底在大行程范围内进行 六自由度运动; 一掩模台, 用于支撑一掩模在曝光时候在小行程范围内相对 所述工件台同步运动; 一投影物镜, 用于将掩模上图形按预定比例投射至基 底; 其中, 所述工件台依次步进至曝光场后, 所述掩模台同步运动至所述工 件台对应的位置并同时曝光。
更进一步地, 该投影物镜的投影倍率为 1:5。
更进一步地, 该步进光刻设备还包括一位置测量系统。
更进一步地, 该工件台的水平向运动装置为 H型结构, 垂向运动装置为 凸轮机构。
更进一步地, 该掩模台的水平向运动装置为洛仑兹电机, 垂向运动装置 为簧片机构。
更进一步地, 该位置测量系统采用激光干涉仪或编码尺。
更进一步地, 该掩模台同步运动至该工件台对应的 XY和 Rz位置。 本发明同时公开一种使用上述步进光刻设备的光刻曝光方法, 包括: 步 骤一、 进行曝光前准备工作; 步骤二、 工件台步进至第一曝光场后, 掩模台 同步运动至该工件台对应的位置并同时曝光; 步骤三、 判断是否已经完成全 部曝光场的曝光, 如果判断结果是 "否", 则工件台步进至下一曝光场后, 掩 模台同步运动至所述工件台对应的位置并同时曝光, 返回步骤三; 如果判断 结果是 "是", 则曝光结束。 该步骤一包括上掩模, 上基底, 对所述基底实现 全场对准。 微动结构, 使整机难度降低。 此外, 采用本发明装置工作时候, 工件台粗动 到曝光区域附近时, 含微动结构的掩模台立即动态跟踪工件台位置, 由于在 小范围内的高频跟踪类似于扫描光刻机, 此时可以同时曝光, 因此, 采用本 装置与方法不需要像传统步进光刻机结构那样, 掩模台不动, 而工件台步进 必须位置稳定到指定精度内才可以曝光, 所以说, 采用本装置与方法, 步进 稳定时间显著减少, 曝光总时间相应变少, 产率相应变高。 附图说明
关于本发明的优点与精神可以通过以下的发明详述及所附图式得到进一 步的了解。
图 1是本发明所涉及的步进光刻设备的结构示意图;
图 2是步进光刻设备的工件台的俯视图;
图 3是步进光刻设备的工件台的侧视图;
图 4是步进光刻设备的掩模台的俯视图;
图 5是步进光刻设备的掩模台的侧视图;
图 6是步进光刻设备的位置测量系统的结构示意图;
图 7是该光刻曝光方法的流程图。 具体实施方式
下面结合附图详细说明本发明的一种具体实施例的步进光刻设备及光刻 曝光方法。 然而, 应当将本发明理解成并不局限于以下描述的这种实施方式, 并且本发明的技术理念可以与其他公知技术或功能与那些公知技术相同的其 他技术组合实施。
在以下描述中, 为了清楚展示本发明的结构及工作方式, 将借助诸多方 向性词语进行描述,但是应当将"前"、 "后"、 "左"、 "右"、 "外"、 "内"、 "向 外"、 "向内"、 "上"、 "下" 等词语理解为方便用语, 而不应当理解为限定性 词语。 此外, 在以下描述中所使用的 "X轴或 X向" 一词主要指与水平向平 行的坐标轴或方向; "Y轴或 Y向" 一词主要指与水平向平行同时与 X轴垂 直的坐标轴或方向; "Z轴或 Z向" 一词主要指与 X轴 Y轴均垂直的坐标轴 或方向; "Rx轴" 一词主要指绕 X轴旋转的方向; "Ry轴" 一词主要指绕 Y 轴旋转的方向; "Rz轴" 一词主要指绕 Z轴旋转的方向。
请参见图 1 , 图 1是本发明所涉及的步进光刻设备的结构示意图。 如图 1 中所示, 该步进光刻设备包括照明系统 1 , 掩模台 2, 及放置于掩模台 2之上 的掩模 9, 投影物镜 6, 工件台 4及放置于工件台 4之上的基底 7, 以及整体 框架 5和位置测量系统 3。 本装置实施例中, 照明系统 1采用汞灯照明, 提供 i线或 gh线或 ghi线曝光, 形成常规照明。 投影物镜 6采用 1 : M ( M>1 ) 的 缩减式物镜, 优选地采用 1 :5的缩减式物镜。 在本发明中, 工件台 4采用粗动 结构并放置于整机框架 5之间。 掩模台 2采用微动结构并放置于整机框架之 上。 基底 7通过粗动台 4依次步进到各曝光场, 掩模 9在基底 7步进到指定 曝光区域附近时, 通过掩模微动台 2动态跟踪工件台的振动, 在动态跟踪的 同时进行曝光。 其中工件台 4和掩模台 2位置信息通过位置测量系统 3测量。
本发明所涉及的步进光刻设备在工作时, 工件台 4粗动到曝光区域附近 时, 含微动结构的掩模台 2立即动态跟踪工件台 4位置, 由于在小范围内的 高频跟踪类似于扫描光刻机, 此时可以同时曝光, 因此, 采用本装置与方法 不需要像传统步进光刻机结构那样, 掩模台不动, 而工件台步进必须位置稳 定到指定精度内才可以曝光。
工件台 4的详细结构请参见图 2和图 3 ,其中图 2是步进光刻设备的工件 台的俯视图, 图 3是工件台的侧视图。 工件台 4是一个六自由度运动机构, 即工件台可以满足 X、 Y、 Z、 Rx、 Ry、 Rz六个方向的运动。 其中, 水平向 采用 H型架构直驱结构控制 X、 Y轴长行程运动, Rz轴根据 H型的兼容型 接口来设计, 水平三轴测量采用干涉仪测量进行控制。 垂向采用凸轮机构 46 实现 Z、 Rx、 Ry轴的运动控制, 采用编码器测量。
工件台 4水平向架构采用 H型的驱动方案包括 X驱动方向和 Y驱动方向。
X驱动方向包括两个 X向导轨 41。 两个电机磁铁定子 43和导轨 41装配体安 装于工件台支撑框架上, X电机动子 402a和 402b与 Y向横梁导轨固连, 提 供 X向和 Rz向运动。 Y向驱动包括一个 Y向导轨 45 , Y向电机定子 49安装 于 Y向导轨 45横梁之上, 动子安装于曝光台框架上。 导轨 45横梁中间采用 躺式直线电机。 H型滑块采用双导轨气浮导向, 左侧导轨 41为平导轨, 与水 平 X电机动子 402a之间配置 2个垂向气浮垫 A51 (真空预紧 ), 只提供垂向 支撑和导向, 水平方向为自由。 右侧导轨 41为二维导轨, 与水平 X电机动子
402b之间配置 2个垂向气浮垫 A52 (真空预紧), 约束 Y向和 Z向。 Y向运 动滑块可采用 U型高刚性气浮滑块, Y向导轨 45左右两侧各两个气浮垫, 互 为预紧, 垂向采用高刚度气足 401 (真空预紧)。 本发明同时提供了工件台 4 的第二技术方案, 即将右侧导轨采用硅钢导轨, 采用磁预紧, 采用 2 个垂向 气浮滑块和 2个 Rz侧向气浮垫 A53。 Rz侧向气浮垫 A53与 Y向导轨之间可 采用柔性块连接。 横梁 Y导轨两侧各 2个 X 向气浮垫, 抵抗 Y向运动的沖 击力和 Rz的转矩, 压缩气体互为预紧。 微动框架底部采用高刚度气足 401设 计, 由大理石台作导向平面, 总计可用到 12个气浮垫和 1个气足。
工件台 4 的垂向运动机构除了音圏电机直驱方案, 还采用传统的凸轮机 构 46驱动。
掩模台 2的详细结构请参见图 4和图 5 ,其中图 4是步进光刻设备的掩模 台的俯视图, 图 5是掩模台的侧视图。 掩模台 2的水平微动电机采用了三个 洛伦兹电机驱动, 包括用于提供 X方向的洛伦兹电机 SSZX, 用于提供 Y方 向的洛伦兹电机 SSY1和 SSY2。 掩模台 4的下表面采用气浮导向设计, 由大 理石 26作平面导向。 掩模台 2安装 X、 Y向两块平面反射镜 22、 21 , 兼容支 持 5寸、 6寸掩模。 掩模台 2无工位切换机构, 提供掩模版交接接口, 上版精 度由微动音圏电机实现 X、 Y、 Rz三自由度的精度指标和行程补偿。 掩模版 通过真空被吸附在吸版台 25上, 吸版台 25采用凸台设计。 掩模台 2垂向执 行器 23采用簧片机构: 采用三个垂向支撑簧片连接大理石 26和掩模台框架, 具有垂向高刚度, 水平低刚度。 簧片与大理石 26之间有柔性铰链, 解开 Rx 和 Ry向的耦合。
本装置实施例中,所采用的位置测量系统如图 6, 水平向 XYRz等采用激 光干涉仪测量, 而 Z向采用内置的编码尺测量。 除了掩模台 2上设置 X向平 面反射镜 22、 Y向平面反射镜 21夕卜, 工件台 4上同样设置了 X向平面反射 镜 42、 Y向平面反射镜 44。 平面反射镜反射激光干涉仪出射的激光, 用于水 平向 XYRz测量。
使用本发明所公开的步进光刻设备的工作流程要点是: 工件台通过粗动 台依次步进到各曝光场, 掩模台在工件台步进到指定曝光区域附近时, 通过 掩模台微动结构动态跟踪工件台的振动, 在动态跟踪的同时进行曝光。如图 7 中所示, 图 7是该光刻曝光方法的流程图。 在进行光刻曝光之前, 首先完成 S1曝光前的准备工作, 曝光前的准备工作具体包括上掩模 S11 , 上晶片 S12, 对晶片实现全场对准 S13。 完成曝光前的准备工作 SI后, 进入第一次步进曝 光 S2 , 具体包括将工件台步进到第一个曝光场位置处 S21 , 然后掩模台动态 跟踪工件台微小位置变化 S22。 在第一次步进曝光 S2时, 掩模台同步跟踪工 件台的运动, 在动态跟踪的同时进行曝光。 需要说明的是, S22中的曝光并不 能实现一个完整图形的曝光,因此还需要执行曝光步骤 S3。当步骤 S2完成时, 曝光 S3同时完成, 由步骤 S2、 S3共同完成一个完整图形的曝光。 然后进行 下一次(此处为第二次)步进曝光 S4, 第二次步进曝光 S4的步骤和第一次步 进曝光 S2完全一致, 包括将工件台步进到下一个(即第二个)曝光场位置处 S41 , 然后掩模台动态跟踪工件台微小位置变化 S42。 完成曝光 S5后, 判断 是否全部曝光场被曝光 S6, 如果判断结果是否, 则重新进入步骤 S4, 如果判 断结果是是, 则光刻曝光结束, 下晶片或换晶片 S7。 本实施例的一个优选技 术方案为掩模台只跟踪工件台的 XY和 Rz, 这样是为了进一步降低系统的复 杂性。
本发明所定义的工件台和掩模台都是可在曝光的同时同步运动, 所述粗 动结构和微动结构的主要区别包括: 其一, 前者的 XY 向的行程比较大, 比 如都大于 30mm, 而后者的行程比较小, 比如小于 30mm; 其二, 前者的定位 精度(在晶片面或在晶片面投影)一般比后者低。
本发明装置和传统的步进光刻机相比所不同的是, 传统光刻机的掩模台 不存在曝光同时可动态运动的微动结构, 而是筒单的锁进结构或其它静态结 构; 此外, 传统光刻机的工件台一般包含粗动台和微动台 (或 XY 台与旋转 台, 只有极少数为只用 H型的粗动结构)。
此外, 本发明方法和传统步进机的显著不同是, 本发明在曝光的同时, 掩模台同步跟踪工件台的运动。 而传统步进光刻机的掩模台是不跟踪工件台 运动的。
因为本发明工件台只有粗动结构, 所以本发明工件台方案比传统工件台 采用的粗动台加微动台结构(或 XY台加 Rz台)更筒单; 同时, 因为物镜为
1 :5缩减式物镜, 所以掩模台水平 XY向误差比在工件台的精度要求放松了 5 倍, 而垂向 Z向的定位误差被放松到 25倍, 因此本装置中掩模台和工件台组 成的系统比传统工件台采用粗动 +微动结构而掩模台曝光时固定的结构更为 筒单。 也就是说, 本方案将传统步进光刻机的工件台的微动台转移到掩模台 上, 整机难度被大幅度降低。
采用本发明装置工作时候, 可以和传统步进光刻机不一样, 即在工件台 粗动到曝光区域的时候, 掩模台通过微动结构动态跟踪工件台位置, 不需要 工件台位置完全稳定即可曝光, 因此全晶片曝光总时间变少, 产率变高。
本说明书中所述的只是本发明的较佳具体实施例, 以上实施例仅用以说 明本发明的技术方案而非对本发明的限制。 凡本领域技术人员依本发明的构 思通过逻辑分析、 推理或者有限的实验可以得到的技术方案, 皆应在本发明 的范围之内。

Claims

权利要求
1、 一种步进光刻设备, 包括:
一照明单元, 用于提供曝光光束;
一工件台, 用于支撑一基底在大行程范围内进行 X、 Y、 Z、 Rx、 Ry、 Rz 六自由度运动;
一掩模台, 用于支撑一掩模进行 X、 Y、 Z、 Rx、 Ry、 Rz六自由度运动; 一投影物镜, 用于将掩模上图形按预定比例投射至基底;
其特征在于, 当所述工件台步进至曝光场后, 所述掩模台在小行程范围 内相对所述工件台同步运动并同时曝光。
2、 如权利要求 1所述的步进光刻设备, 其特征在于, 所述投影物镜的投 影倍率为 1:5。
3、 如权利要求 1所述的步进光刻设备, 其特征在于, 所述步进光刻设备 还包括一位置测量系统, 用于分别对所述工件台和掩模台进行位置测量和运 动控制。
4、 如权利要求 1所述的步进光刻设备, 其特征在于, 所述工件台仅包括 粗动结构, 所述掩模台包括微动结构。
5、 如权利要求 4所述的步进光刻设备, 其特征在于, 所述工件台的水平 向运动装置为 H型结构, 垂向运动装置为音圏电机或凸轮机构。
6、 如权利要求 4所述的步进光刻设备, 其特征在于, 所述掩模台的水平 向运动装置为洛仑兹电机, 垂向运动装置为簧片机构。
7、 如权利要求 3所述的步进光刻设备, 其特征在于, 所述位置测量系统 采用激光干涉仪或编码尺。
8、 如权利要求 1所述的步进光刻设备, 其特征在于, 当所述工件台步进 至曝光场后, 所述掩模台在小行程范围内相对所述工件台同步运动至所述工 件台对应的 X、 Y和 Rz位置。
9、 一种使用如权利要求 1至 8任一项所述的步进光刻设备的光刻曝光方 法, 其特征在于, 包括:
步骤一、 进行曝光前准备工作; 步骤二、 工件台步进至第一曝光场后, 掩模台同步运动至所述工件台对 应的位置并同时曝光;
步骤三、 判断是否已经完成全部曝光场的曝光, 如果判断结果是 "否", 则工件台步进至下一曝光场后, 掩模台同步运动至所述工件台对应的位置并 同时曝光, 返回步骤三; 如果判断结果是 "是", 则曝光结束。
10、 如权利要求 9所述的光刻曝光方法, 其特征在于, 所述步骤一包括 上掩模, 上基底, 对所述基底实现全场对准。
PCT/CN2012/080031 2011-08-22 2012-08-13 一种步进光刻设备及光刻曝光方法 WO2013026361A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110241791.3 2011-08-22
CN201110241791.3A CN102955368B (zh) 2011-08-22 2011-08-22 一种步进光刻设备及光刻曝光方法

Publications (1)

Publication Number Publication Date
WO2013026361A1 true WO2013026361A1 (zh) 2013-02-28

Family

ID=47745931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080031 WO2013026361A1 (zh) 2011-08-22 2012-08-13 一种步进光刻设备及光刻曝光方法

Country Status (3)

Country Link
CN (1) CN102955368B (zh)
TW (1) TW201316133A (zh)
WO (1) WO2013026361A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154760B (zh) * 2015-04-15 2019-01-29 上海微电子装备(集团)股份有限公司 一种曝光装置及曝光方法
TWI579662B (zh) * 2015-10-05 2017-04-21 A multi-channel alignment system based on spectrum processing, an alignment signal processing method and a photolithography apparatus
JP6723112B2 (ja) * 2016-08-29 2020-07-15 株式会社ブイ・テクノロジー 露光装置及び露光方法
CN109491201B (zh) * 2018-12-26 2024-01-19 仪晟科学仪器(嘉兴)有限公司 一种掩膜版用高精度二维运动机构
CN111082596B (zh) * 2019-12-23 2022-04-15 安徽机电职业技术学院 一种包括二自由度执行机构的自由度多方位微动台
CN114326320B (zh) * 2021-10-26 2023-11-07 江苏迪盛智能科技有限公司 步进光刻的控制方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285437B1 (en) * 1995-04-21 2001-09-04 Nikon Corporation Method for controlling stages, apparatus therefor, and scanning type exposure apparatus
CN1470945A (zh) * 2002-06-10 2004-01-28 ������������ʽ���� 曝光装置及载物台装置、以及器件制造方法
US6937319B2 (en) * 1999-12-16 2005-08-30 Nikon Corporation Exposure method and apparatus with vibration-preventative control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733174B2 (ja) * 1996-06-19 2006-01-11 キヤノン株式会社 走査型投影露光装置
CN2393123Y (zh) * 1999-11-01 2000-08-23 信息产业部电子第五十五研究所 大面积步进扫描式曝光机
JP2002305140A (ja) * 2001-04-06 2002-10-18 Nikon Corp 露光装置及び基板処理システム
WO2006038563A1 (ja) * 2004-10-01 2006-04-13 Nikon Corporation リニアモータ、ステージ装置、及び露光装置
CN100498540C (zh) * 2005-11-17 2009-06-10 中国科学院电工研究所 步进扫描光刻机晶片台掩模台同步控制系统
US8902402B2 (en) * 2008-12-19 2014-12-02 Nikon Corporation Movable body apparatus, exposure apparatus, exposure method, and device manufacturing method
CN102012639B (zh) * 2009-09-04 2013-09-11 上海微电子装备有限公司 一种硅片边缘保护方法与装置
CN102087482B (zh) * 2010-12-27 2012-10-03 中国科学院光电技术研究所 光刻机工件台同步运动误差校正控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285437B1 (en) * 1995-04-21 2001-09-04 Nikon Corporation Method for controlling stages, apparatus therefor, and scanning type exposure apparatus
US6937319B2 (en) * 1999-12-16 2005-08-30 Nikon Corporation Exposure method and apparatus with vibration-preventative control
CN1470945A (zh) * 2002-06-10 2004-01-28 ������������ʽ���� 曝光装置及载物台装置、以及器件制造方法

Also Published As

Publication number Publication date
TW201316133A (zh) 2013-04-16
CN102955368B (zh) 2015-09-30
TWI561937B (zh) 2016-12-11
CN102955368A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
US20180157182A1 (en) Exposure apparatus, movable body apparatus, flat-panel display manufacturing method, and device manufacturing method
US7034920B2 (en) Balanced positioning system for use in lithographic apparatus
WO2013026361A1 (zh) 一种步进光刻设备及光刻曝光方法
JP6638774B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法
WO2009009947A1 (fr) Système de commutation à deux étages pour une machine lithographique
US6366342B2 (en) Drive apparatus, exposure apparatus, and method of using the same
WO2006022200A1 (ja) ステージ装置及び露光装置
US9030648B2 (en) Dual wafer stage exchanging system for lithographic device
JP2002522914A (ja) 平面モータのための反作用力絶縁装置
WO2010111969A1 (zh) 一种光刻机双台交换系统
JP2006086442A (ja) ステージ装置及び露光装置
US6597435B2 (en) Reticle stage with reaction force cancellation
US7728462B2 (en) Monolithic stage devices providing motion in six degrees of freedom
JPWO2003063212A1 (ja) ステージ装置および露光装置
JP2004228473A (ja) 移動ステージ装置
EP1111469A2 (en) Lithographic apparatus with a balanced positioning system
JP2005285881A (ja) ステージ装置及び露光装置
CN113835308A (zh) 一种拼接曝光方法、装置及系统
CN114624964A (zh) 一种曝光方法及装置
CN103676488B (zh) 掩模交接机构及具有该掩模交接机构的掩模台
CN117250832B (zh) 一种精密定位平台及光刻机
JP2012234108A (ja) 用力伝達部材案内装置、移動体装置、露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び用力伝達部材の案内方法
JP2004273491A (ja) デバイス製造装置
JP2003068623A (ja) ステージ装置およびステージ駆動方法並びに露光装置
JP2008124379A (ja) 露光装置及び露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825202

Country of ref document: EP

Kind code of ref document: A1