WO2013024870A1 - 無線通信システム、無線基地局及び無線通信方法 - Google Patents

無線通信システム、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2013024870A1
WO2013024870A1 PCT/JP2012/070750 JP2012070750W WO2013024870A1 WO 2013024870 A1 WO2013024870 A1 WO 2013024870A1 JP 2012070750 W JP2012070750 W JP 2012070750W WO 2013024870 A1 WO2013024870 A1 WO 2013024870A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
antenna
base station
user terminal
signal
Prior art date
Application number
PCT/JP2012/070750
Other languages
English (en)
French (fr)
Inventor
井上 祐樹
哲士 阿部
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201280039732.0A priority Critical patent/CN103748819B/zh
Priority to US14/238,268 priority patent/US9485775B2/en
Priority to EP12824135.3A priority patent/EP2747326A4/en
Publication of WO2013024870A1 publication Critical patent/WO2013024870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme

Definitions

  • the present invention relates to a next generation radio communication system, a radio base station, and a radio communication method.
  • HSDPA High Speed Packet Access Access
  • HSUPA High SpeckWed SpeckWed
  • CDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • LTE-A LTE Advanced
  • LTE-A it is planned to expand 4 antennas, which is the maximum number of transmission antennas of LTE specifications, to 8 antennas.
  • a MIMO (Multi Input Multi Output) system has been proposed as a wireless communication technology that improves the data rate (frequency utilization efficiency) by transmitting and receiving data with a plurality of antennas (for example, non-patent) Reference 1).
  • a MIMO system a plurality of transmission / reception antennas are prepared in a transmitter / receiver, and different transmission information sequences are transmitted simultaneously from different transmission antennas.
  • the data rate (frequency utilization efficiency) is increased by separating and detecting simultaneously transmitted information sequences using the fact that different fading fluctuations occur between transmission / reception antennas. Is possible.
  • transmission information sequences transmitted simultaneously from different transmission antennas are transmitted from a single user MIMO (SU-MIMO (Single User MIMO)), which is for the same user, and multi-users, which are for different users.
  • User MIMO MU-MIMO (Multiple User MIMO)
  • the phase / amplitude control amount (precoding matrix (precoding weight)) to be set in the antenna of the transmitter on the receiver side is associated with this precoding matrix.
  • An optimal PMI is selected from a codebook that defines a plurality of PMIs (Precoding Matrix Indicators) to be transmitted, and this is fed back to the transmitter as channel information (CSI: Channel State Information).
  • CSI Channel State Information
  • a plurality of antennas used in MIMO transmission have the same characteristics (directivity, beam width, etc.) and are arranged apart from each other. For this reason, the characteristic of each antenna does not change according to a plurality of communication types.
  • MIMO transmission by selecting the antenna to be used according to the capability of the user terminal, even in a situation where individual user terminals perform communication corresponding to different communication types, it is easy to simultaneously Signaling can be performed to the user terminal.
  • An object of the present invention is to provide a radio communication system, a radio base station, and a radio communication method capable of performing signaling.
  • the radio communication system of the present invention is a radio communication system including a radio base station forming a cell and a user terminal wirelessly connected to the radio base station, wherein the radio base station is classified into at least two communication types. Depending on the capability and communication type of the user terminal, antennas that have different antenna configurations and can transmit signals to all areas covered by the radio base station with an antenna configuration corresponding to at least one communication type 1.
  • a resource allocation control unit that allocates radio resources to downlink signals including the signal types, a multiplexing unit that multiplexes reference signals into resource blocks, and a precoding weight that allows the antenna to form a number of beams according to the communication type.
  • a precoding weight generation unit that generates the precoding weight generation unit, A precoding multiplier for multiplying the downlink signal supplied to the antenna by the generated precoding weight, and the user terminal measures channel quality from a reference signal included in the downlink signal
  • a quality measurement unit that performs feedback information generation unit that generates feedback information about communication quality using the measured channel quality, and feedback information generated by the feedback information generation unit to the radio base station via an uplink And a transmission unit for feedback.
  • the radio base station of the present invention has different antenna configurations according to at least two communication types, and can transmit signals to all areas covered by the radio base station with an antenna configuration corresponding to at least one communication type 1
  • An antenna a resource allocation control unit that allocates radio resources to a downlink signal including a signal type according to the capability and communication type of the user terminal, a multiplexing unit that multiplexes a reference signal into a resource block, and a communication type for the antenna
  • a precoding weight generating unit that generates precoding weights for forming a number of beams according to the frequency, and a precoding weight generated by the precoding weight generating unit is multiplied by the downlink signal supplied to the antenna
  • a precoding multiplication unit And features.
  • the radio communication method of the present invention is a radio communication method for a user terminal to communicate with a radio base station by radio connection, and the radio base station has different antenna configurations according to at least two communication types. And an antenna capable of transmitting signals to all areas covered by the radio base station with an antenna configuration corresponding to at least one communication type 1, and according to the capability and communication type of the user terminal
  • a radio resource is allocated to a downlink signal including a signal type, a reference signal is multiplexed on a resource block, a precoding weight is generated that causes the antenna to form a number of beams according to a communication type, and the generated precoding is generated
  • a weight is multiplied by the downlink signal supplied to the antenna, and the user terminal Measuring channel quality from a reference signal included in a downlink signal, generating feedback information related to communication quality using the measured channel quality, and transmitting the generated feedback information to the radio base station via an uplink It is characterized by feeding back.
  • a radio base station has antenna configurations having different antenna configurations according to at least two communication types, and signals are transmitted to all areas covered by the radio base station with at least one communication type 1 among them.
  • the reference signal is multiplexed with the resource block and transmitted, while the channel quality measured based on the reference signal corresponding to each communication type is fed back from the user terminal UE. is there.
  • the present inventors have proposed the antenna device described in Japanese Patent Application No. 2010-183188 as a technique for performing MIMO transmission using antennas having different antenna configurations depending on the communication type.
  • this antenna device by changing the group of antenna element configurations for a plurality of communication types, the number of antennas to be installed can be reduced compared to the conventional one, and the same area can be covered even if the communication type changes. It becomes possible.
  • MIMO transmission using this antenna device when individual user terminals perform communication corresponding to different communication types, a plurality of antenna configurations are mixed at the same time.
  • the present inventors multiplex and transmit a plurality of reference signals at the same time between different communication types from the base station apparatus, and feed back according to each communication type from the user terminal, thereby different antenna configurations depending on the communication type
  • the present invention has been achieved by paying attention to the fact that individual user terminals can perform appropriate signaling even when performing communication corresponding to different communication types.
  • the radio communication system covers the radio base station with at least one communication type 1 among the antenna configurations having different antenna configurations depending on at least two communication types.
  • An antenna having an antenna configuration capable of transmitting signals to all areas is provided, and a plurality of reference signals used in each communication type are multiplexed and transmitted on the same resource block, while each communication type is transmitted from the user terminal UE.
  • the channel quality measured based on the reference signal according to the above is fed back.
  • the radio communication system according to the present embodiment includes a radio base station (hereinafter referred to as “base station”) that can form a transmission beam whose directivity can be set in the vertical direction.
  • the base station includes an array antenna including a plurality of antenna elements that are divided into at least one group corresponding to each of N communication types, where N is an integer of 2 or more.
  • N communication types provided by the array antenna included in the base station will be described with reference to FIG.
  • FIG. 1 is a schematic diagram for explaining N communication types provided by an array antenna provided in the base station according to the present embodiment.
  • the array antenna 10 is composed of a plurality of antenna elements 11 arranged in a line in the vertical direction (16 antenna elements 11 are illustrated in FIG. 1A).
  • array antenna 10 is configured by a polarization antenna that is a combination of vertical polarization antenna 10a and horizontal polarization antenna 10b.
  • FIG. 1B is a conceptual diagram showing the vertically polarized antenna 10a alone
  • FIG. 1C is a conceptual diagram showing the horizontally polarized antenna 10b alone.
  • each antenna element 11 is composed of a set of a vertical polarization element 11V and a horizontal polarization element 11H.
  • the first communication type is a type in which the antenna elements 11 constituting the array antenna 10 form one group A and the antennas constitute one antenna branch.
  • the second communication type is a type in which the antenna element 11 constituting the array antenna 10 is divided into two vertically and the antenna element 11 is divided into two groups B1 and B2 to constitute two antenna branches.
  • the third communication type is a type in which the antenna element 11 constituting the array antenna 10 is vertically divided into four, and the antenna element 11 is divided into four groups C1, C2, C3, and C4 to form four antenna branches. .
  • the first to third communication types are exemplified, but an arbitrary arbitrary number is appropriately selected according to the number of divisions in the vertical direction of the antenna elements 11 constituting the array antenna 10.
  • a number of communication types can be set.
  • the maximum number of branches can be appropriately selected according to the antenna element 11.
  • the first communication type has the longest antenna length (number of antenna elements) constituting one branch. As the number of antenna branches increases, the antenna length per branch decreases. In general, when beam forming is performed using an array antenna, the antenna gain increases and the beam width can be reduced as the number of antenna elements per branch increases. Therefore, in the first communication type, since the entire antenna is configured by one antenna branch, a sharp beam directed toward the cell edge can be formed. Note that the antenna configuration corresponding to the first communication type corresponds to an antenna configuration capable of transmitting signals to all areas covered by the base station.
  • the array antenna 10 receives a transmission signal weighted for each group and inputs it to the antenna element 11.
  • Arbitrary antenna branches can be configured by the array antenna 10 by controlling the weight.
  • the array antenna 10 has different antenna configurations according to the first to third communication types.
  • FIG. 2 shows a configuration in which two transmission signals S1 and S2 can be synthesized, the maximum number of synthesis is not limited to this.
  • combine four transmission signals S1, S2, S3, S4 is desirable (refer FIG. 5).
  • the array antenna 10 can simultaneously form a number of beams corresponding to the number of transmission signals ⁇ the number of constituent branches.
  • the transmission signal S1 input to the horizontally polarized antenna 10b is omitted for convenience of explanation. Since the vertical polarization antenna 10a and the horizontal polarization antenna 10b each form one beam, the array antenna 10 forms two beams. Therefore, the first communication type can provide 2-multiplex MIMO transmission. If the receiver supports 2 ⁇ 2 MIMO transmission, 2 ⁇ 2 MIMO transmission can be realized. Further, if the receiver has a single antenna configuration, spatial frequency transmission diversity by SFBC (Space-Frequency Block Coding) using two antennas can be realized. SFBC is encoded in the antenna / frequency domain.
  • SFBC Space-Frequency Block Coding
  • the transmission signals S1 and S2 input to the horizontally polarized antenna 10b are omitted for convenience of explanation.
  • the array antenna 10 can form a total of four beams in parallel. By directing four beams formed in parallel to the same area in the cell, four multiplexed MIMO transmission is provided.
  • the beams 1 to 4 can be formed by the four antenna branches corresponding to the groups C1 to C4.
  • the beams 1 to 4 can be formed by the four antenna branches corresponding to the groups C1 to C4.
  • the transmission signals S1 to S4 input to the horizontally polarized antenna 10b are omitted for convenience of explanation. Since the vertically polarized antenna 10a forms 4 beams and the horizontally polarized antenna 10b forms 4 beams at the same time, the array antenna 10 can form a total of 8 beams in parallel. By directing the 8 beams formed in parallel to the same area in the cell, 8 multiplexed MIMO transmission is provided.
  • the base station can select a mix type (fourth communication type) that simultaneously selects the first to third communication types.
  • the fourth communication type is realized by controlling the weight for the transmission signal for each resource element (RE).
  • one resource block (RB) is composed of 12 subcarriers ⁇ 14 OFDM (or SC-FDMA) symbols.
  • One resource element indicates one subcarrier ⁇ 1 OFDM (or SC-FDMA) symbol.
  • the fourth communication type corresponds to a mixed communication type in which at least two communication types including the first communication type are selected at the same time.
  • the array antenna 10 can be divided into one or a plurality of groups by controlling the weight for the transmission signal input to the antenna element 11. Thereby, it becomes possible to transmit various signals to the user terminal UE while selecting a desired communication type from among a plurality of types of communication.
  • the LTE system and the LTE-A system use CRS (Cell-Specific Reference Signal), CSI-RS (Channel State Information Signal), user-specific DM-RS (DeModulation Reference), etc. as downlink reference signals. is doing.
  • the CRS is transmitted in all downlink subframes and is arranged across the entire downlink frequency band.
  • CRS is used for channel estimation for downlink synchronous detection.
  • CSI-RS is a reference signal for channel information measurement, and is used to measure CSI (CQI, PMI, Rank number).
  • User-specific DM-RSs are transmitted in resource blocks that are allocated for downlink shared channel (DL-SCH) transmission to individual user terminals UE.
  • the user-specific DM-RS is a user-specific demodulation reference signal that can be used for channel estimation for synchronous detection of the downlink shared channel.
  • the LTE system and the LTE-A system have a synchronization signal (SS) used for a cell search for detecting a cell to which the user terminal UE is connected, system information (SIB (System Information Block) required after the cell search, It defines a physical broadcast channel (PBCH) for transmitting MIB (Master Information Block). Furthermore, the LTE and LTE-A systems specify PDCCH (Physical Downlink Control Channel) for transmission of downlink control signals, and PUCCH (Physical Uplink Control Channel) for transmission of uplink control signals. . Furthermore, the LTE and LTE-A systems define PDSCH (Physical Uplink Control Channel) for transmission of downlink data (including some control signals), and uplink data (including some control signals). ) It defines PUSCH (Physical Uplink Shared Channel) for transmission.
  • SS synchronization signal
  • SIB System Information Block
  • PBCH physical broadcast channel
  • MIB Master Information Block
  • the LTE and LTE-A systems specify PDCCH (Physical Downlink Control
  • the base station configuring the radio communication system according to the present embodiment determines the communication type according to the type of signal transmitted to the user terminal UE and the capability of the user terminal UE.
  • the user terminal UE may use Release 8 (Rel. 8), Release 9 (Rel. 9), Release 10 (Rel. 10), or Release 11 (Rel. 11) whether or not the user terminal is compatible with LTE.
  • the base station uses Rel. 8, Rel. 9, Rel. 10 or Rel.
  • a downlink signal including at least one of CRS and PDCCH for user terminals corresponding to 11 LTE and MIB / SIB / paging information is transmitted. Since the user terminal UE that desires cell connection must always receive the synchronization signal (SS) and the physical broadcast channel (PBCH), the synchronization signal (SS) and the physical broadcast channel (PBCH) cover all within the area. Is required.
  • SS synchronization signal
  • PBCH physical broadcast channel
  • the base station determines whether the Rel.
  • PDSCH for user terminals that support 2 ⁇ 2 MIMO transmission is transmitted.
  • FIG. 6A shows a CRS configuration assigned to a beam corresponding to the first communication type.
  • the base station uses Rel.
  • a downlink signal including CSI-RS for 4-antenna port for a user terminal that supports 10 LTE and supports transmission mode 9 is transmitted.
  • the base station determines whether the Rel. PDSCH and DM-RS for user terminals that support 10 LTE and support transmission mode 9 are transmitted.
  • FIG. 6B shows a configuration of a reference signal (CSI-RS) assigned to a beam corresponding to the second communication type.
  • CSI-RS reference signal
  • the base station uses, for example, Rel.
  • a downlink signal including CSI-RS for 8 antenna ports for a user terminal that supports 10 LTE and supports 8 ⁇ 8 MIMO transmission is transmitted.
  • the base station uses Rel.
  • PDSCH and DM-RS for user terminals that support 10 LTE and support transmission mode 9 are transmitted.
  • FIG. 6C shows a reference signal (CSI-RS) configuration assigned to a beam corresponding to the third communication type.
  • FIG. 6D shows the reference signal arrangement of the resource block when the fourth communication type is selected.
  • the resource block when the fourth communication type is selected includes all reference signals assigned to the beams formed by the first to third communication types. That is, by selecting the fourth communication type, it is possible to simultaneously multiplex and transmit reference signals used in a plurality of communication types supported by the base station.
  • “transmit simultaneously multiplexed” is a concept including multiplexing and transmitting to a common resource block.
  • FIG. 7 is a diagram illustrating a basic sequence between the base station and the user terminal UE that configure the radio communication system according to the present embodiment. Step shown in FIG. 7 indicates each phase in the communication procedure.
  • the first communication type is referred to as “communication type 1”. The same applies to the second, third, and fourth communication types.
  • Step 1 In the communication start phase, the base station transmits broadcast information from the antenna device (array antenna 10).
  • a synchronization signal (SS) and a physical broadcast channel signal (PBCH) are transmitted by communication type 1 in the communication start phase.
  • the communication type selected in the communication start phase can be changed as appropriate.
  • a mix type (communication type 4) that simultaneously selects communication types 1 to 3 may be selected.
  • the synchronization signal (SS) and the physical broadcast channel signal (PBCH) can be reliably transmitted to the user terminal UE that starts the radio connection with the base station, and also to the user terminal UE that has already performed data communication.
  • a desired reference signal or downlink data signal (PDSCH) can be transmitted.
  • Step 2 The user terminal UE can receive the synchronization signal (SS) and the physical broadcast channel signal (PBCH) anywhere in the area because the beam forming corresponding to the communication type 1 has a wide coverage.
  • the user terminal UE detects a cell in the network and synchronizes based on the received synchronization signal (SS).
  • the user terminal UE acquires system information by decoding the received physical broadcast channel (PBCH), and connects to a cell (base station) based on the system information. Then, authentication and location registration are performed between the core network via the base station and the user terminal UE.
  • the capability information of the user terminal UE (the corresponding LTE release number, the maximum number of MIMO transmission layers), and the like are notified to the base station. Since the capability information of the user terminal UE is notified after wirelessly connecting to the base station in this way, it is possible to reliably grasp the capability information of the user terminal UE at the base station.
  • Step 3 The base station starts data communication with the user terminal UE wirelessly connected.
  • downlink is performed via PDSCH and uplink is performed via PUSCH.
  • the base station continues to transmit simultaneously for all supported communication types for cell-specific reference signals (CRS, CSI-RS) and downlink control signals (PDCCH, PCHICH, PHICH) according to communication type 4. .
  • CRS cell-specific reference signals
  • CSI-RS downlink control signals
  • PDCH downlink control signal
  • the base station selects communication type 1 and transmits a CRS and a downlink control signal (PDCCH).
  • PDCH downlink control signal
  • the base station selects communication type 2 and transmits CSI-RS for 4 antenna ports.
  • the base station selects communication type 3 and transmits CSI-RS for 8 antenna ports.
  • the base station continues to transmit these communication type reference signals (CRS, CSI-RS) simultaneously.
  • the base station transmits a downlink data signal (PDSCH) to each user terminal UE.
  • the base station determines the communication type according to the capability information of the user terminal UE notified in Step2. For example, if the user terminal UE is Rel8 or Rel. In the case of supporting LTE of 9 and supporting 2 ⁇ 2 MIMO transmission, the base station selects communication type 1 and transmits a downlink data signal (PDSCH). In addition, if the user terminal UE is Rel. 10 or Rel. When supporting 4 ⁇ 4 MIMO transmission corresponding to 11 LTE, the base station selects communication type 2 and transmits a downlink data signal (PDSCH) for 4 antenna ports and DM-RS together.
  • PDSCH downlink data signal
  • the base station selects communication type 3 and transmits a downlink data signal (PDSCH) for 8 antenna ports and DM-RS together. Transmission of these downlink data signals is performed for each user terminal UE. For this reason, control is possible even when user terminals UE having different communication types coexist at the same time.
  • PDSCH downlink data signal
  • Step 4 The user terminal UE generates communication quality information (CSI) as needed based on the reference signal transmitted from the base station, and notifies the generated CSI to the base station.
  • CRS communication quality information
  • the user terminal UE When CRS is transmitted by communication type 1, the user terminal UE generates CSI for this CRS and notifies it by a data signal (PUSCH) or an uplink control signal (PUCCH).
  • PUSCH data signal
  • PUCCH uplink control signal
  • Step 5 The base station selects the communication type as needed based on the CSI notified from the user terminal UE and the capability information of the user terminal UE notified in Step 2, and continues data communication.
  • a data signal PDSCH
  • PUSCH data signal
  • the number of layers and weights of MIMO transmission are set, The coding rate and the like are updated as needed.
  • the communication type is selected based on the CSI notified from the user terminal UE in the base station and the capability information of the user terminal UE, communication on the radio communication path between the base station and the user terminal UE is performed. It is possible to select a desired communication type (weight) reflecting the quality.
  • the base station reflects the allocation resource for data signal transmission, the number of layers for MIMO transmission, the weight, and the coding rate for channel coding to the antenna device (array antenna 10). Further, the base station adds a reference signal (DM-RS) to the data signal (PDSCH, PUSCH) together with the information and transmits the data signal.
  • DM-RS reference signal
  • the user terminal UE demodulates the data signal (PDSCH) using a user-specific reference signal (DM-RS).
  • the user terminal UE is Rel8 or Rel.
  • the base station selects communication type 1 and performs data communication.
  • the user terminal UE is Rel. 10 (transmission mode 9) or Rel.
  • the base station selects the communication type 1 and performs data communication even when supporting 2 ⁇ 2 MIMO transmission corresponding to LTE of 11 (transmission mode 9).
  • the user terminal UE is Rel. 10 (transmission mode 9) or Rel.
  • the base station selects the communication type 2 and performs data communication.
  • the base station selects communication type 3 and performs data communication.
  • Step 6 When the data communication is completed, the base station releases resources allocated to the user terminal UE.
  • FIG. 8 is a diagram for explaining the configuration of radio communication system 1 having mobile station 100 and base station 200 according to the present embodiment.
  • the wireless communication system 1 illustrated in FIG. 8 is a system including, for example, an LTE system or SUPER 3G.
  • the mobile communication system 1 may be called IMT-Advanced or 4G.
  • the wireless communication system 1 includes a base station 200 and a plurality of mobile stations 100 (100 1 , 100 2 , 100 3 ,... 100 n , where n>n> (Integer of 0).
  • Base station 200 is connected to higher station apparatus 300, and higher station apparatus 300 is connected to core network 400.
  • User terminal 100 communicates with base station 200 in cell 500.
  • the upper station apparatus 300 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each mobile station (100 1 , 100 2 , 100 3 ,... 100 n ) has the same configuration, function, and state, the following description will be given as the mobile station 100 unless otherwise specified.
  • the mobile station 100 performs radio communication with the base station 200, but more generally user terminals including fixed terminals may be used.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • PDSCH shared by each mobile station 10 and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH) are used.
  • User data that is, a normal data signal is transmitted by this PDSCH. Transmission data is included in this user data.
  • the component carrier (CC) and scheduling information allocated to the mobile station 100 by the base station 200 are notified to the mobile station 100 through the L1 / L2 control channel.
  • PUSCH For the uplink, PUSCH that is shared and used by each mobile station 100 and PUCCH that is an uplink control channel are used. User data is transmitted by this PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator) and the like are transmitted by PUCCH.
  • CQI Channel Quality Indicator
  • FIG. 9 is a block diagram showing a configuration of base station 200 according to the present embodiment.
  • FIG. 10 is a block diagram showing a configuration of mobile station 100 according to the present embodiment. Note that the configurations of the base station 200 and the mobile station 100 shown in FIGS. 9 and 10 are simplified for explaining the present invention, and the configurations of the normal base station and the mobile station are provided, respectively. And
  • a scheduler determines the number of users to be multiplexed (the number of multiplexed users) based on channel estimation values given from channel estimation units 215 # 1 to 215 # K described later. Then, uplink / downlink resource allocation contents (scheduling information) for each user are determined, and transmission data # 1 to #K for users # 1 to #K are transmitted to corresponding channel coding sections 201 # 1 to 201 # K. .
  • Transmission data # 1 to #K are channel-encoded by channel encoders 201 # 1 to 201 # K, then output to data modulators 202 # 1 to 202 # K, and data modulated. At this time, channel coding and data modulation are performed based on channel coding rates and modulation schemes provided from MIMO switching sections 221 # 1 to 221 # K described later. Transmission data # 1 to #K data-modulated by data modulators 202 # 1 to 202 # K are subjected to inverse Fourier transform by a discrete Fourier transform unit (not shown) and converted from a time-series signal to a frequency domain signal. It is output to the subcarrier mapping unit 203.
  • the subcarrier mapping unit 203 maps the transmission data # 1 to #K to subcarriers according to resource allocation information given from the resource allocation control unit 220 described later.
  • subcarrier mapping section 203 transmits reference signals # 1 to #K input from a reference signal generation section (not shown), broadcast information and system information input from broadcast information generation section and system information generation section. Mapping (multiplexing) onto subcarriers together with data # 1 to #K. Thereby, a reference signal corresponding to the communication type is assigned to a predetermined resource element.
  • reference signals used in all communication types supported by the base station 200 are multiplexed on the same resource block.
  • Transmission data # 1 to #K mapped to subcarriers in this way are output to precoding multiplication sections 204 # 1 to 204 #K.
  • the subcarrier mapping unit 203 that multiplexes a plurality of reference signals used in each communication type into the same resource block constitutes a multiplexing unit.
  • Precoding multiplication sections 204 # 1 to 204 # K transmit transmission data # 1 to #K for each of transmission antennas TX # 1 to TX # N based on a precoding weight given from precoding weight generation section 219 described later. Phase and / or amplitude shift (weighting of transmit antenna TX # 1 to transmit antenna TX # N by precoding).
  • the transmission data # 1 to #K whose phases and / or amplitudes have been shifted by the precoding multipliers 204 # 1 to 204 # K are output to the multiplexer (MUX) 205.
  • MUX multiplexer
  • the multiplexer (MUX) 205 synthesizes transmission data # 1 to #K whose phases and / or amplitude are shifted, and generates transmission signals for the transmission antennas TX # 1 to TX # N.
  • the transmission signal generated by the multiplexer (MUX) 205 is subjected to inverse fast Fourier transform by inverse fast Fourier transform units (IFFT units) 206 # 1 to 206 # N to be converted from a frequency domain signal to a time domain signal. .
  • IFFT units inverse fast Fourier transform units
  • the transmission antennas TX # 1 to TX # are transmitted via the duplexers 209 # 1 to 209 # N.
  • N is transmitted to the mobile station 100 on the downlink from the transmission antennas TX # 1 to TX # N.
  • transmission signals transmitted from the mobile station 100 in the uplink are received by the transmission antennas TX # 1 to TX # N, and are electrically transmitted to the transmission path and the reception path by the duplexers 209 # 1 to 209 # N. Are separated, and then output to the RF receiving circuits 210 # 1 to 210 # N. Then, frequency conversion processing for converting the radio frequency signal into the baseband signal is performed in the RF receiving circuits 210 # 1 to 210 # N. The baseband signal subjected to the frequency conversion process is output to the fast Fourier transform units (FFT units) 212 # 1 to 212 # N after the CPs are removed by the CP removal units 211 # 1 to 211 # N. .
  • FFT units fast Fourier transform units
  • Reception timing estimation section 213 estimates the reception timing from the reference signal included in the reception signal, and notifies the CP removal sections 211 # 1 to 211 # N of the estimation result.
  • the FFT units 212 # 1 to 212 # N perform Fourier transform on the input received signals, and convert the time series signals into frequency domain signals.
  • the received signals converted into these frequency domain signals are output to data channel signal demultiplexing sections 214 # 1 to 214 # K.
  • the data channel signal demultiplexing units 214 # 1 to 214 # K use, for example, the minimum mean square error (MMSE) or maximum likelihood estimation of the received signals input from the FFT units 212 # 1 to 212 # K. It isolate
  • Channel estimation sections 215 # 1 to 215 # K estimate channel states from the reference signals included in the received signals separated by data channel signal separation sections 214 # 1 to 214 # K, and control channel demodulation is performed on the estimated channel states. Sections 216 # 1 to 216 # K are notified.
  • the received signals related to user # 1 to user #K separated by data channel signal separation sections 214 # 1 to 214 # K are de-mapped by a subcarrier demapping section (not shown) and returned to a time-series signal. Thereafter, the data demodulation sections 217 # 1 to 217 # K demodulate the data. Transmission signals # 1 to #K are reproduced by performing channel decoding processing in channel decoding units # 1 to #K (not shown).
  • Control channel demodulation sections 216 # 1 to 216 # K demodulate control channel signals (for example, PDCCH) included in the reception signals separated by data channel signal separation sections 214 # 1 to 214 # K. At this time, control channel demodulation sections 216 # 1 to 216 # K control channels corresponding to user # 1 to user #K, respectively, based on the channel states notified from channel estimation sections 215 # 1 to 215 # K. Demodulate the signal. The control channel signals demodulated by control channel demodulation sections 216 # 1 to 216 # K are output to CSI information update sections 218 # 1 to 218 # K.
  • control channel demodulation sections 216 # 1 to 216 # K demodulate control channel signals (for example, PDCCH) included in the reception signals separated by data channel signal separation sections 214 # 1 to 214 # K. At this time, control channel demodulation sections 216 # 1 to 216 # K control channels corresponding to user # 1 to user #K, respectively, based on the channel states notified from channel estimation sections 2
  • CSI information updating sections 218 # 1 to 218 # K extract channel state information (CSI) included in each control channel signal (for example, PUCCH) input from control channel demodulation sections 216 # 1 to 216 # K, Always update the CSI to the latest state.
  • CSI includes PMI, RI, and CQI.
  • the CSI information update units 218 # 1 to 218 # K hold capability information of the mobile station 200 that is notified by a control channel signal (for example, PUCCH) or the like.
  • the CSI information held in the CSI information update units 218 # 1 to 218 # K and the capability information of the mobile station 200 are precoding weight generation unit 219, resource allocation control unit 220, and MIMO switching units 221 # 1 to 221 # K, respectively. Is output.
  • the precoding weight generation unit 219 generates a precoding weight that causes the array antenna 10 described above to form a number of beams according to the communication type. More specifically, the precoding weight generation unit 219 performs the phase for the transmission data # 1 to #K based on the CSI input from the CSI information update units 218 # 1 to 218 # K and the capability information of the mobile station 200. And / or a precoding weight indicating an amplitude shift amount is generated. Each generated precoding weight is output to precoding multiplication sections 204 # 1 to 204 # K, and is used for precoding transmission data # 1 to transmission data #K.
  • the same weight for example, W11, W12, W13
  • W14 1, 1, 1, 1
  • W11, W12, W13, W14 1, 1
  • a weight by which transmission data is multiplied is generated for each resource element.
  • the resource allocation control unit 220 allocates radio resources to the downlink signal including the signal type corresponding to the capability information and communication type of the mobile station 200. More specifically, the resource allocation control unit 220 determines resource allocation information to be allocated to each user based on the CSI input from the CSI information update units 218 # 1 to 218 # K and the capability information of the mobile station 200. . The resource allocation information determined by the resource allocation control unit 220 is output to the subcarrier mapping unit 203 and used for mapping transmission data # 1 to transmission data #K.
  • MIMO switching sections 221 # 1-221 # K are used for transmission data # 1-transmission data #K based on the CSI input from CSI information update sections 218 # 1-218 # K and the capability information of mobile station 200. Select the MIMO transmission method. Then, channel coding rates and modulation schemes for transmission data # 1 to transmission data #K according to the selected MIMO transmission scheme are determined. The determined channel coding rates are output to channel coding sections 201 # 1 to 201 # K, respectively, and the determined modulation schemes are output to data modulation sections 202 # 1 to 202 # K, respectively.
  • a plurality of reference signals (CRS, CSI-RS) in different communication types are multiplexed at the same time (multiplexed in a common resource block). Even when 100 performs communication corresponding to different communication types, the reference signal can be appropriately transmitted.
  • the transmission signal transmitted from the base station 200 is received by the reception antennas RX # 1 to RX # N and is transmitted by the duplexers 101 # 1 to 101 # N. And the receiving path are output to the RF receiving circuits 102 # 1 to 102 # N. Then, the RF receiving circuits 102 # 1 to 102 # N perform frequency conversion processing for converting radio frequency signals into baseband signals.
  • the baseband signal subjected to the frequency conversion processing is subjected to cyclic prefix (CP) removal units 103 # 1 to 103 # N after the CP is removed, and then to a fast Fourier transform unit (FFT unit) 104 # 1 to 104. Is output to #N.
  • CP cyclic prefix
  • FFT unit fast Fourier transform unit
  • Reception timing estimation section 105 estimates the reception timing from the reference signal included in the reception signal and notifies the estimation results to CP removal sections 103 # 1 to 103 # N.
  • the FFT units 104 # 1 to 104 # N perform a Fourier transform on the input received signals, and convert the time series signals into frequency domain signals.
  • the received signal converted into the frequency domain signal is output to data channel signal separation section 106.
  • the data channel signal separation unit 106 uses the received signals input from the FFT units 104 # 1 to 104 # N, for example, minimum mean square error (MMSE: Minimum Mean Squared Error) and maximum likelihood estimation detection (MLD: Maximum Likelihood). Detection) Separation by signal separation method.
  • MMSE Minimum Mean Squared Error
  • MLD Maximum Likelihood
  • Detection Separation by signal separation method.
  • the received signal coming from the base station 200 is separated into received signals related to the users # 1 to #K, and a received signal related to the user of the mobile station 100 (here, referred to as user K) is extracted.
  • the channel estimation unit 107 estimates the channel state from the reference signal included in the received signal separated by the data channel signal separation unit 106 and notifies the control channel demodulation unit 108 of the estimated channel state. Further, channel estimation section 107 notifies channel quality measurement section 110 of the reference signal included in the received signal separated by data channel signal separation section 106.
  • the received signal related to user #K separated by data channel signal separation section 106 is demapped by a subcarrier demapping section (not shown) and returned to a time-series signal, and then demodulated by data demodulation section 109. . Then, a channel decoding process is performed by a channel decoding unit (not shown) to reproduce the transmission signal #K.
  • the control channel demodulation unit 108 demodulates a control channel signal (for example, PDCCH) included in the reception signal separated by the data channel signal separation unit 106. At this time, control channel demodulation section 108 demodulates the control channel signal corresponding to user #K based on the channel state notified from channel estimation section 107. Each control channel signal demodulated by the control channel demodulation unit 108 is output to the channel quality measurement unit 110.
  • a control channel signal for example, PDCCH
  • the channel quality measurement unit 110 measures the channel quality (CQI) based on the reference signal input from the channel estimation unit 107. Further, the channel quality measurement unit 110 selects PMI and RI based on the measured CQI. For example, when the mobile station 100 is communicating with the first communication type, the channel quality is measured based on the CRS coming from the base station 200. In addition, when the mobile station 100 performs communication using the second or third communication type, the channel quality is measured based on the CSI-RS coming from the base station 200. Then, CQI, PMI and RI are notified to CSI feedback signal generation section 111 and MIMO switching section 112. The channel quality measuring unit 110 constitutes a quality measuring unit.
  • CQI channel quality
  • CSI feedback signal generation section 111 a CSI feedback signal (for example, PUCCH) to be fed back to base station 200 is generated.
  • the CSI feedback signal includes CQI, PMI, and RI notified from the channel quality measurement unit 110.
  • the CSI feedback signal generated by the CSI feedback signal generation unit 111 is output to the multiplexer (MUX) 113.
  • the CSI feedback signal generation unit 111 constitutes a feedback information generation unit.
  • MIMO switching section 112 selects a MIMO transmission scheme to be used for transmission data #K based on CQI, PMI, and RI input from channel quality measurement section 110. Then, the channel coding rate and modulation scheme for transmission data #K corresponding to the selected MIMO transmission scheme are determined. The determined channel coding rate is output to channel encoding section 114, and the determined modulation scheme is output to data modulation section 115.
  • transmission data #K related to user #K transmitted from the upper layer is channel-encoded by channel encoder 114 and then data-modulated by data modulator 115.
  • Transmission data #K data-modulated by data modulation section 115 is converted from a time-series signal to a frequency domain signal by a serial-parallel conversion section (not shown) and output to subcarrier mapping section 116.
  • the subcarrier mapping unit 116 maps the transmission data #K to subcarriers according to the schedule information instructed from the base station 200. At this time, subcarrier mapping section 116 maps (multiplexes) reference signal #K generated by a reference signal generation section (not shown) to subcarrier together with transmission data #K. Transmission data #K mapped to subcarriers in this way is output to precoding multiplication section 117.
  • the precoding multiplier 117 shifts the phase and / or amplitude of the transmission data #K for each of the reception antennas RX # 1 to RX # N. At this time, the precoding multiplication unit 117 performs phase and / or amplitude shift according to the precoding weight corresponding to the PMI specified by the control channel signal demodulated by the control channel demodulation unit 108. The transmission data #K whose phase and / or amplitude has been shifted by the precoding multiplier 117 is output to the multiplexer (MUX) 113.
  • MUX multiplexer
  • the transmission data #K shifted in phase and / or amplitude is combined with the control signal generated by the CSI feedback signal generation unit 111, and each of the reception antennas RX # 1 to RX # N is combined.
  • a transmission signal is generated.
  • the transmission signal generated by the multiplexer (MUX) 113 is converted from a frequency domain signal to a time domain signal by inverse fast Fourier transform in inverse fast Fourier transform sections (IFFT sections) 118 # 1 to 118 # N. Thereafter, CPs are added by CP adding sections 119 # 1 to 119 # N and output to RF transmission circuits 120 # 1 to 120 # N.
  • the transmission system block including the RF transmission circuits 120 # 1 to 120 # N constitutes a transmission unit that feeds back the CSI feedback signal generated by the CSI feedback signal generation unit 111.
  • channel quality is measured based on a reference signal coming from base station 200 in accordance with the communication type with which the terminal performs communication. For this reason, it becomes possible to appropriately feed back the channel quality to the base station 200 according to the communication type with which the terminal performs communication.
  • base station 200 simultaneously multiplexes and transmits a plurality of reference signals used in different communication types, while mobile station 100 transmits individual communication types. Since the channel quality measured based on the reference signal according to the feedback is fed back, in MIMO transmission using antennas having different antenna configurations depending on the communication type, individual user terminals can communicate corresponding to different communication types. Even when it is performed, it becomes possible to perform signaling appropriately.
  • the present invention has been described in detail using the above-described embodiments. However, it is obvious for those skilled in the art that the present invention is not limited to the embodiments described in the present specification.
  • the number of users and the number of processing units in the apparatus are not limited to this, and can be appropriately changed according to the apparatus configuration.
  • the present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the scope of claims. Therefore, the description of the present specification is for illustrative purposes and does not have any limiting meaning to the present invention.
  • the array antenna 10 is configured by a polarization antenna in which the vertically polarized antenna 10a and the horizontally polarized antenna 10b are combined.
  • the configuration of the array antenna equipped in the base station is not limited to this.
  • the array antenna can be composed of a polarization antenna having a first polarization antenna and a second polarization antenna whose polarization planes are orthogonal to each other. Even in this case, the same effect as the above embodiment can be obtained.
  • the configuration of the antenna is not limited to this.
  • it has different antenna configurations according to at least two communication types, and has an antenna configuration capable of transmitting signals to all areas covered by the base station with an antenna configuration corresponding to at least one communication type 1 among them. That's fine.
  • the communication type 1 and at least one communication type in the above embodiment or adding a communication type according to the combination of antenna configurations regardless of the above embodiment, etc. Even when the communication type to be configured is changed, the same effect as that of the above embodiment can be obtained.
  • the antenna configuration capable of transmitting signals to all areas covered by the base station is not limited to the communication type 1 of the above-described embodiment, and any configuration that satisfies the same conditions may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも適切にシグナリングを行うこと。無線基地局(200)は、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナを備え、ユーザ端末の能力及び通信タイプに応じた信号種別を含む下りリンク信号に無線リソースを割り当て、それぞれの通信タイプで利用される複数の参照信号を同一リソースブロックに多重し、アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成し、生成されたプリコーディングウェイトを、アンテナへ供給する下りリンク信号に対して乗算することを特徴とする。

Description

無線通信システム、無線基地局及び無線通信方法
 本発明は、次世代の無線通信システム、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTE方式のシステムにおいては、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。例えば、LTE-Aにおいては、LTE仕様の最大システム帯域である20MHzを、100MHz程度まで拡張することが予定されている。また、LTE-Aにおいては、LTE仕様の最大送信アンテナ数である4アンテナを、8アンテナまで拡張することが予定されている。
 また、LTE方式のシステムにおいては、複数のアンテナでデータを送受信し、データレート(周波数利用効率)を向上させる無線通信技術としてMIMO(Multi Input Multi Output)システムが提案されている(例えば、非特許文献1参照)。MIMOシステムにおいては、送受信機に複数の送信/受信アンテナを用意し、異なる送信アンテナから同時に異なる送信情報系列を送信する。一方、受信機側では、送信/受信アンテナ間で異なるフェージング変動が生じることを利用して、同時に送信された情報系列を分離して検出することにより、データレート(周波数利用効率)を増大することが可能である。
 LTE方式のシステムにおいては、異なる送信アンテナから同時に送信する送信情報系列が、全て同一のユーザのものであるシングルユーザMIMO(SU-MIMO(Single User MIMO))伝送と、異なるユーザのものであるマルチユーザMIMO(MU-MIMO(Multiple User MIMO))伝送とが規定されている。これらのSU-MIMO伝送及びMU-MIMO伝送においては、受信機側で送信機のアンテナに設定すべき位相・振幅制御量(プリコーディング行列(プリコーディングウェイト))と、このプリコーディング行列に対応づけられるPMI(Precoding Matrix Indicator)とを複数定めたコードブックから最適なPMIを選択し、これをチャネル情報(CSI:Channel State Information)として送信機にフィードバックする。送信機側では、受信機からフィードバックされたPMIに基づいて各送信アンテナに対するプリコーディングを行って送信情報系列を送信する。
 一般に、MIMO伝送で用いられる複数のアンテナは、同一の特性(指向性,ビーム幅等)を有し、離れて配置されている。このため、複数の通信タイプに応じてそれぞれのアンテナの特性が変化することはない。このようなMIMO伝送においては、ユーザ端末の能力に応じて使用するアンテナを選択することにより、個々のユーザ端末が別々の通信タイプに対応した通信を行う状況であっても、容易に同時に複数のユーザ端末に対してシグナリングを行うことができる。
 一方、同一の特性を有する複数のアンテナを配列するのではなく、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いてMIMO伝送を行うことが検討されている。このようなMIMO伝送においては、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合、複数のアンテナ構成が同時に混在することになる。このため、上述した一般的なMIMO伝送のように、使用するアンテナ構成を選択することができず、同時に複数のユーザ端末に対してシグナリングを行うことが困難である。
 本発明はかかる点に鑑みてなされたものであり、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも適切にシグナリングを行うことができる無線通信システム、無線基地局及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、セルを形成する無線基地局と、前記無線基地局に無線接続するユーザ端末とを備えた無線通信システムであって、前記無線基地局は、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で前記無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナと、ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当てるリソース割当制御部と、参照信号をリソースブロックに多重する多重部と、前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成するプリコーディングウェイト生成部と、前記プリコーディングウェイト生成部によって生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算するプリコーディング乗算部と、を具備し、前記ユーザ端末は、下りリンク信号に含まれた参照信号からチャネル品質を測定する品質測定部と、測定されたチャネル品質を用いて通信品質に関するフィードバック情報を生成するフィードバック情報生成部と、前記フィードバック情報生成部によって生成されたフィードバック情報を上りリンクを介して前記無線基地局へフィードバックする送信部と、を具備したことを特徴とする。
 本発明の無線基地局は、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナと、ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当てるリソース割当制御部と、参照信号をリソースブロックに多重する多重部と、前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成するプリコーディングウェイト生成部と、前記プリコーディングウェイト生成部によって生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算するプリコーディング乗算部と、を具備したことを特徴とする。
 本発明の無線通信方法は、ユーザ端末が無線基地局に無線接続して通信するための無線通信方法であって、前記無線基地局は、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で前記無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナを備え、前記無線基地局において、ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当て、参照信号をリソースブロックに多重し、前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成し、前記生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算し、前記ユーザ端末において、下りリンク信号に含まれた参照信号からチャネル品質を測定し、測定されたチャネル品質を用いて通信品質に関するフィードバック情報を生成し、前記生成されたフィードバック情報を上りリンクを介して前記無線基地局へフィードバックすることを特徴とする。
 本発明によれば、無線基地局に、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有するアンテナ構成で、その中の少なくとも1つの通信タイプ1で無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナ構成を有するアンテナを備え、参照信号をリソースブロックに多重して送信する一方、ユーザ端末UEから個々の通信タイプに応じた参照信号に基づいて測定したチャネル品質をフィードバックするものである。これにより、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも、通信に必要となる参照信号とフィードバック信号とを無線基地局及びユーザ端末間で適切に送受信(シグナリング)することが可能となる。
 本発明によれば、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも適切にシグナリングを行うことができる。
本実施の形態に係る無線基地局が備えるアレーアンテナによって提供されるN個の通信タイプを説明するための模式図である。 アレーアンテナを構成するアンテナ素子に対するウェイト制御を説明するための模式図である。 第1の通信タイプのためのウェイト制御を説明するための模式図である。 第2の通信タイプのためのウェイト制御を説明するための模式図である。 第3の通信タイプのためのウェイト制御を説明するための模式図である。 第1、第2、第3、第4の通信タイプ、ミックスオペレーション下でのリソースブロックの参照信号配置を示す図である。 本実施の形態に係る無線通信システムを構成する無線基地局とユーザ端末との間の基本的なシーケンスを示す図である。 本実施の形態に係る移動局装置及び無線基地局を有する無線通信システムの構成を説明するための図である。 本実施の形態に係る無線基地局の構成を示すブロック図である。 本実施の形態に係る移動局装置の構成を示すブロック図である。
 通信タイプに応じて異なるアンテナ構成を持つアンテナを用いてMIMO伝送を行うための技術として、本発明者らは、特願2010-183188に記載のアンテナ装置を提案している。このアンテナ装置においては、複数の通信タイプに対してアンテナ素子構成のグループを変えることで、設置するアンテナの数を従来よりも少なくし、かつ通信タイプが変化しても同一エリアをカバーすることが可能となる。このアンテナ装置を用いたMIMO伝送においては、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合、複数のアンテナ構成が同時に混在することになる。本発明者らは、基地局装置から異なる通信タイプ間で同時に複数の参照信号を多重して送信し、ユーザ端末から個々の通信タイプに合わせてフィードバックすることで、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも適切にシグナリングを行うことができる点に着目し、本発明に至ったものである。
 すなわち、本発明に係る無線通信システムは、無線基地局に、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有するアンテナ構成で、その中の少なくとも1つの通信タイプ1で無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナ構成を有するアンテナを備え、それぞれの通信タイプで利用される複数の参照信号を同一のリソースブロックに多重して送信する一方、ユーザ端末UEから個々の通信タイプに応じた参照信号に基づいて測定したチャネル品質をフィードバックするものである。これにより、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも、通信に必要となる参照信号とフィードバック信号とを無線基地局及びユーザ端末間で適切に送受信することが可能となる。
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。
 本実施の形態に係る無線通信システムは、垂直方向に指向性を設定可能な送信ビームを形成できる無線基地局(以下、「基地局」という)を備える。この基地局は、Nを2以上の整数として、N個の通信タイプのそれぞれに対応して少なくとも1つのグループに分けられる複数のアンテナ素子から構成されるアレーアンテナを備える。以下、この基地局が備えるアレーアンテナによって提供されるN個の通信タイプについて図1を用いて説明する。図1は、本実施の形態に係る基地局が備えるアレーアンテナによって提供されるN個の通信タイプを説明するための模式図である。
 図1Aに示すように、アレーアンテナ10は、垂直方向に1列に配列された複数のアンテナ素子11から構成されている(図1Aには16個のアンテナ素子11が例示されている)。本実施の形態では、アレーアンテナ10は、垂直偏波アンテナ10aと水平偏波アンテナ10bとを組み合わせた偏波アンテナで構成される。ただし、本発明は偏波アンテナ構成に限定されない。図1Bは、垂直偏波アンテナ10aを単独で示した概念図であり、図1Cは、水平偏波アンテナ10bを単独で示した概念図である。偏波アンテナが適用される場合、個々のアンテナ素子11は、それぞれ垂直偏波素子11Vと水平偏波素子11Hのセットで構成される。
 第1の通信タイプは、アレーアンテナ10を構成するアンテナ素子11の全体で1つのグループAを形成し、アンテナ全体で1つのアンテナブランチを構成するタイプである。第2の通信タイプは、アレーアンテナ10を構成するアンテナ素子11を上下に2分割し、アンテナ素子11を2つのグループB1,B2に分けて2つのアンテナブランチを構成するタイプである。第3の通信タイプは、アレーアンテナ10を構成するアンテナ素子11を上下に4分割し、アンテナ素子11を4つのグループC1,C2,C3,C4に分けて4つのアンテナブランチを構成するタイプである。本実施の形態では、第1から第3の通信タイプ(アンテナブランチ数と呼ぶこともできる)を例示するが、アレーアンテナ10を構成するアンテナ素子11の垂直方向の分割数に応じて適宜任意の数の通信タイプを設定可能である。また、最大ブランチ数はアンテナ素子11に応じて適宜選択可能である。
 第1から第3の通信タイプの中では、第1の通信タイプが1ブランチを構成するアンテナ長(アンテナ素子数)が最も長い。アンテナブランチ数が増えるのに従って1ブランチ当たりのアンテナ長が短くなる。一般的に、アレーアンテナを用いてビーム形成する場合、1ブランチ当たりのアンテナ素子数が多くなるのに従って、アンテナ利得が増大し、かつビーム幅を小さくできる。したがって、第1の通信タイプは、アンテナ全体を1アンテナブランチで構成するので、セル端に向けたシャープなビームを形成できる。なお、この第1の通信タイプに応じたアンテナ構成は、基地局のカバーするすべてのエリアへ信号を送信可能なアンテナ構成に対応する。
 アレーアンテナ10にはグループ毎にウェイトが掛けられた送信信号がアンテナ素子11に入力される。ウェイトを制御することによってアレーアンテナ10で任意のアンテナブランチを構成できる。このようにアレーアンテナ10は、第1~第3の通信タイプに応じて異なるアンテナ構成を有する。図2に示すように、アレーアンテナ10を構成する16個のアンテナ素子11は、最小アンテナブランチ単位(アンテナ素子数=4)で、同一のウェイトが掛けられた送信信号が供給される。図2には2つの送信信号S1,S2を合成可能な構成が示されているが、最大合成数はこれに限定されない。例えば、8多重MIMOを提供する場合は、4つの送信信号S1,S2,S3,S4を合成可能な構成が望ましい(図5参照)。アレーアンテナ10は、送信信号数×構成ブランチ数に相当する数のビームを同時に形成できる。
 第1の通信タイプでは、図3に示すように、アレーアンテナ10は、1つのグループAを構成する各アンテナ素子11に入力する送信信号S1に同一のウェイトW(例えば、W11、W12、W13、W14=1,1,1,1)を掛ける。これにより、高いアンテナ利得で、かつビーム幅の小さい1つのビームを形成することができる。なお、図3においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1を省略している。垂直偏波アンテナ10aと水平偏波アンテナ10bとでそれぞれ1つのビームを形成するので、アレーアンテナ10としては2つのビームが形成される。したがって、第1の通信タイプは、2多重MIMO伝送を提供できる。受信機が2×2のMIMO伝送をサポートしていれば、2×2のMIMO伝送が実現できる。また、1アンテナ構成の受信機であれば、2アンテナによるSFBC(Space-Frequency Block Coding)による空間周波数送信ダイバーシチを実現できる。なお、SFBCは、アンテナ/周波数領域で符号化が行われる。
 第2の通信タイプでは、図4に示すように、アレーアンテナ10は、グループB1を構成するアンテナ素子11に入力する送信信号S1にウェイトW(例えば、W11、W12、W13、W14=1,1,0,0)を掛け、かつ、グループB2を構成するアンテナ素子11に入力する送信信号S2にウェイトW(例えば、W21、W22、W23、W24=0,0,1,1)を掛ける。これにより、グループB1及びB2に対応した2つのアンテナブランチによりビーム1、ビーム2を形成できる。なお、図4においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1、S2を省略している。垂直偏波アンテナ10aがビーム1、ビーム2を形成し、同時に水平偏波アンテナ10bがビーム1、ビーム2を形成するので、アレーアンテナ10は合計で4つのビームを並列に形成することができる。並列に形成される4つのビームをセル内の同一エリアに向けることにより、4多重MIMO伝送が提供される。
 第3の通信タイプでは、図5に示すように、アレーアンテナ10は、グループC1を構成するアンテナ素子11に入力する送信信号S1にウェイトW(例えば、W11、W12、W13、W14=1,0,0,0)を掛け、かつ、グループC2を構成するアンテナ素子11に入力する送信信号S2にウェイトW(例えば、W21、W22、W23、W24=0,1,0,0)を掛ける。同時に、アレーアンテナ10は、グループC3を構成するアンテナ素子11に入力する送信信号S3にウェイトW(例えば、W31、W32、W33、W34=0,0,1,0)を掛け、かつ、グループC4を構成するアンテナ素子11に入力する送信信号S4にウェイトW(例えば、W41、W42、W43、W44=0,0,0,1)を掛ける。これにより、グループC1~C4に対応した4つのアンテナブランチによりビーム1~ビーム4を形成できる。なお、図5においては、説明の便宜上、水平偏波アンテナ10bに入力される送信信号S1~S4を省略している。垂直偏波アンテナ10aが4ビームを形成し、同時に水平偏波アンテナ10bが4ビームを形成するので、アレーアンテナ10は合計で8つのビームを並列に形成することができる。並列に形成される8つのビームをセル内の同一エリアに向けることにより、8多重MIMO伝送が提供される。
 また、本実施の形態に係る基地局は、第1~第3の通信タイプを同時に選択するミックスタイプ(第4の通信タイプ)を選択することもできる。第4の通信タイプは、リソースエレメント(RE)毎に送信信号に対するウェイトを制御することで実現される。LTE及びLTE-Aは、1リソースブロック(RB)を、12サブキャリア×14OFDM(or SC-FDMA)シンボルから構成する。1リソースエレメントは、1サブキャリア×1OFDM(or SC-FDMA)シンボルのことを指す。なお、この第4の通信タイプは、第1の通信タイプを含む少なくとも2つの通信タイプが同時に選択される混合通信タイプに対応する。
 このように本実施の形態に係る無線通信システムにおいては、アンテナ素子11に入力される送信信号に対するウェイトを制御することにより、アレーアンテナ10を1又は複数のグループに分割できる。これにより、複数種類の通信タイプの中から所望の通信タイプを選択しながらユーザ端末UEに対して各種の信号を送信することが可能となる。
 次に、本実施の形態に係る無線通信システムにおけるシグナリングについて説明する。LTE方式及びLTE-A方式のシステムは、下り参照信号として、CRS(Cell-specific Reference Signal)、CSI-RS(Channel State Information Reference Signal)、ユーザ固有のDM-RS(DeModulation Reference Signal)等を規定している。CRSは、全ての下りリンクサブフレームで送信され、下りリンクの周波数帯域全体にまたがって配置される。CRSは、下りリンクの同期検波用のチャネル推定に用いられる。CSI-RSは、チャネル情報測定用の参照信号であり、CSI(CQI,PMI,Rank数)の測定に用いられる。ユーザ固有のDM-RSは、個別のユーザ端末UEへの下り共用チャネル(DL-SCH)伝送に割り当てられるリソースブロックで送信される。ユーザ固有のDM-RSは、下り共用チャネルの同期検波用チャネル推定に用いることができるユーザ固有の復調用の参照信号である。
 また、LTE方式及びLTE-A方式のシステムは、ユーザ端末UEが接続すべきセルを検出するセルサーチに使用する同期信号(SS)、セルサーチ後に必要なシステム情報(SIB(System Information Block),MIB(Master Information Block))を送信する物理報知チャネル(PBCH)を規定している。さらに、LTE方式及びLTE-A方式のシステムは、下り制御信号の送信用にPDCCH(Physical Downlink Control CHannel)を規定し、上り制御信号の送信用にPUCCH(Physical Uplink Control CHannel)を規定している。さらに、LTE方式及びLTE-A方式のシステムは、下りのデータ(一部の制御信号を含む)送信用にPDSCH(Physical Uplink Control CHannel)を規定し、上りのデータ(一部の制御信号を含む)送信用にPUSCH(Physical Uplink Shared CHannel)を規定している。
 本実施の形態に係る無線通信システムを構成する基地局は、これらのようなユーザ端末UEに対して送信する信号の種別、並びに、ユーザ端末UEの能力に応じて通信タイプを決定する。通信タイプを決定する際に判定されるユーザ端末UEの能力については、例えば、ユーザ端末UEが、Release8(Rel.8)、Release9(Rel.9)、Release10(Rel.10)又はRelease11(Rel.11)のLTE対応のユーザ端末か否かなどが該当する。
 例えば、基地局は、第1の通信タイプにより、Rel.8、Rel.9、Rel.10又はRel.11のLTEに対応するユーザ端末向けのCRS及びPDCCH、並びに、MIB/SIB/ページング情報の少なくとも1つを含む下りリンク信号を送信する。セル接続を希望するユーザ端末UEは、必ず同期信号(SS)及び物理報知チャネル(PBCH)を受信する必要が有るので、同期信号(SS)及び物理報知チャネル(PBCH)はエリア内の全てをカバレッジとすることが求められる。通信タイプ1に対応したビームによってこれらの下りリンク信号を送信することにより、エリア内の全てのユーザ端末UEにこれらの下りリンク信号を送信することが可能となる。また、基地局は、第1の通信タイプにより、Rel.8のLTEに対応し、2×2のMIMO伝送をサポートするユーザ端末向けのPDSCHを送信する。図6Aに第1の通信タイプに対応したビームに割り当てられるCRS構成を示す。
 また、基地局は、第2の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けの4アンテナポート用のCSI-RSを含む下りリンク信号を送信する。通信タイプ2に対応したビームによってこの下りリンク信号を送信することにより、ユーザ端末UEの能力を最大限活用して効率的に4アンテナポート用のCSI-RSをユーザ端末UEに送信することが可能となる。また、基地局は、第2の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けのPDSCH及びDM-RSを送信する。図6Bに第2の通信タイプに対応したビームに割り当てられる参照信号(CSI-RS)構成を示す。
 さらに、基地局は、第3の通信タイプにより、例えば、Rel.10のLTEに対応し、8×8のMIMO伝送をサポートするユーザ端末向けの8アンテナポート用のCSI-RSを含む下りリンク信号を送信する。通信タイプ3に対応したビームによってこの下りリンク信号を送信することにより、ユーザ端末UEの能力を最大限活用して効率的に8アンテナポート用のCSI-RSをユーザ端末UEに送信することが可能となる。また、基地局は、第3の通信タイプにより、Rel.10のLTEに対応し、トランスミッションモード9をサポートするユーザ端末向けのPDSCH及びDM-RSを送信する。図6Cに第3の通信タイプに対応したビームに割り当てられる参照信号(CSI-RS)構成を示す。
 図6Dは、第4の通信タイプが選択された場合のリソースブロックの参照信号配置を示している。図6Dに示すように、第4の通信タイプが選択された場合のリソースブロックには、第1~第3の通信タイプで形成されるビームに割り当てられる全ての参照信号が含まれている。すなわち、第4の通信タイプを選択することにより、基地局がサポートする複数の通信タイプで利用される参照信号を同時に多重して送信することができる。ここで、「同時に多重して送信する」とは、共通のリソースブロックに多重して送信することを含む概念である。
 次に、本実施の形態に係る無線通信システムにおける、基地局とユーザ端末UEとの間のシーケンスについて説明する。図7は、本実施の形態に係る無線通信システムを構成する基地局とユーザ端末UEとの間の基本的なシーケンスを示す図である。図7に示すStepは、通信手順における各フェーズを示す。以下においては、第1の通信タイプを「通信タイプ1」と呼ぶものとする。また、第2、第3及び第4の通信タイプについても同様である。
(Step1)
 通信開始フェーズにおいて、基地局は、アンテナ装置(アレーアンテナ10)から報知情報を送信している。基地局は、アンテナ装置を通信タイプ1に対応した1アンテナブンランチ構成の下で、同期信号(SS)、物理報知チャネル信号(PBCH)を送信する。すなわち、アレーアンテナ10内の4つのグループC1からC4に対して、同一のウェイトW(W11、W12、W13、W14=1,1,1,1)を掛けた送信信号S1を入力すると共に、同一のウェイトW(W21、W22、W23、W24=1,1,1,1)を掛けた送信信号S2を入力する。これにより、最大のアンテナ利得で、かつ最小のビーム幅の1つのビームを形成することができる。
 なお、ここでは、通信開始フェーズにおいて、通信タイプ1により同期信号(SS)、物理報知チャネル信号(PBCH)を送信する場合について説明している。しかしながら、通信開始フェーズで選択される通信タイプについては、適宜変更が可能である。例えば、通信タイプ1~3を同時に選択するミックスタイプ(通信タイプ4)を選択するようにしてもよい。この場合には、基地局と無線接続を開始するユーザ端末UEに対して確実に同期信号(SS)、物理報知チャネル信号(PBCH)を送信できると共に、既にデータ通信を行っているユーザ端末UEに対して所望の参照信号や下りデータ信号(PDSCH)を送信することができる。
(Step2)
 ユーザ端末UEは、通信タイプ1に対応したビーム形成は広いカバレッジであることから、エリア内のどこにいても同期信号(SS)、物理報知チャネル信号(PBCH)を受信できる。ユーザ端末UEは、受信した同期信号(SS)に基づいて、ネットワーク内のセルを検出して同期する。また、ユーザ端末UEは、受信した物理報知チャネル(PBCH)を復号してシステム情報を取得し、システム情報に基づいてセル(基地局)に接続する。そして、基地局を経由したコアネットワークとユーザ端末UEとの間で認証及び位置登録が行われる。なお、このStep2において、ユーザ端末UEの能力情報(対応するLTEのrelease番号や最大MIMO伝送のレイヤ数)等が基地局に通知される。このように基地局に無線接続した後にユーザ端末UEの能力情報が通知されるので、基地局で確実にユーザ端末UEの能力情報を把握することが可能となる。
(Step3)
 基地局は、無線接続されたユーザ端末UEとの間でデータ通信を開始する。無線通信システムにおけるデータ通信は、下りリンクはPDSCHを介して行われ、上りリンクはPUSCHを介して行われる。
 Step3において、基地局では、通信タイプ4により、セル固有の参照信号(CRS、CSI-RS)、下り制御信号(PDCCH、PCHICH、PHICH)に関し、サポートする全ての通信タイプで同時に送信し続けている。例えば、2×2のMIMO伝送をサポートする場合、基地局は、通信タイプ1を選択してCRS及び下り制御信号(PDCCH)を送信する。また、4×4のMIMO伝送をサポートする場合、基地局は、通信タイプ2を選択して4アンテナポート用のCSI-RSを送信する。さらに、8×8のMIMO伝送をサポートする場合、基地局は、通信タイプ3を選択して8アンテナポート用のCSI-RSを送信する。基地局は、これらの通信タイプの参照信号(CRS、CSI-RS)を同時に送信し続ける。
 データ通信を開始すると、基地局は、各ユーザ端末UEに対して下りデータ信号(PDSCH)を送信する。この際、基地局は、Step2で通知されたユーザ端末UEの能力情報に応じて通信タイプを決定する。例えば、ユーザ端末UEがRel8又はRel.9のLTEに対応し、2×2のMIMO伝送をサポートする場合、基地局は、通信タイプ1を選択して下りデータ信号(PDSCH)を送信する。また、ユーザ端末UEがRel.10又はRel.11のLTEに対応し、4×4のMIMO伝送をサポートする場合、基地局は、通信タイプ2を選択して4アンテナポート用の下りデータ信号(PDSCH)とDM-RSを合わせて送信する。さらに、ユーザ端末UEがRel.10又はRel.11のLTEに対応し、8×8のMIMO伝送をサポートする場合、基地局は、通信タイプ3を選択して8アンテナポート用の下りデータ信号(PDSCH)とDM-RSを合わせて送信する。これらの下りデータ信号の送信は、個々のユーザ端末UEに対して行われる。このため、同時に異なる通信タイプを持つユーザ端末UEが混在する場合にも制御可能となっている。
(Step4)
 ユーザ端末UEは、基地局から送信された参照信号を元に通信品質情報(CSI)を随時生成し、生成したCSIを基地局に通知する。通信タイプ1によりCRSを送信された場合、ユーザ端末UEは、このCRSに対してCSIを生成し、データ信号(PUSCH)又は上り制御信号(PUCCH)で通知する。また、通信タイプ2、或いは、通信タイプ3により複数のCSI-RSを送信された場合、ユーザ端末UEは、この全てのCSI-RSに対してCSIを生成し、データ信号(PUSCH)又は上り制御信号(PUCCH)で通知する。
(Step5)
 基地局は、ユーザ端末UEから通知されるCSIと、Step2で通知されたユーザ端末UEの能力情報とに基づいて、通信タイプを随時選択してデータ通信を継続する。この場合、ユーザ端末UEへデータ信号(PDSCH)を送信するため、或いは、ユーザ端末UEからデータ信号(PUSCH)を受信するためのリソースを割り当て、MIMO伝送のレイヤ数やウェイトが設定されると共に、符号化率等が随時更新される。このように基地局でユーザ端末UEから通知されるCSIと、ユーザ端末UEの能力情報とに基づいて、通信タイプを選択することから、基地局とユーザ端末UEとの間の無線通信路の通信品質を反映して所望の通信タイプ(ウェイト)を選択することが可能となる。そして、基地局は、アンテナ装置(アレーアンテナ10)に対して、データ信号送信用の割り当てリソース、MIMO伝送のレイヤ数、ウェイト、チャネル符号化のための符号化率を反映させる。さらに、基地局は、その情報とともにデータ信号(PDSCH、PUSCH)へ参照信号(DM-RS)を付加して送信する。ユーザ端末UEは、ユーザ固有の参照信号(DM-RS)を用いてデータ信号(PDSCH)を復調する。
 Step5において、例えば、ユーザ端末UEがRel8又はRel.9のLTEに対応し、2×2のMIMO伝送をサポートする場合、基地局は、通信タイプ1を選択してデータ通信を行う。また、ユーザ端末UEがRel.10(トランスミッションモード9)又はRel.11(トランスミッションモード9)のLTEに対応し、2×2のMIMO伝送をサポートする場合にも、基地局は、通信タイプ1を選択してデータ通信を行う。一方、ユーザ端末UEがRel.10(トランスミッションモード9)又はRel.11(トランスミッションモード9)のLTEに対応し、4×4のMIMO伝送をサポートする場合には、基地局は、通信タイプ2を選択してデータ通信を行う。また、ユーザ端末UEがRel.10(トランスミッションモード9)又はRel.11(トランスミッションモード9)のLTEに対応し、8×8のMIMO伝送をサポートする場合には、基地局は、通信タイプ3を選択してデータ通信を行う。
(Step6)
 データ通信が終了したら、基地局は、そのユーザ端末UEに割り当てていたリソースを開放する。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。ここでは、LTE-Aシステムに対応する基地局及び移動局装置を用いる場合について説明する。
 図8を参照しながら、本発明の一実施の形態に係るユーザ端末UEとしての移動局装置(以下、「移動局」という)100及び基地局200を有する無線通信システム1について説明する。図8は、本実施の形態に係る移動局100及び基地局200を有する無線通信システム1の構成を説明するための図である。なお、図8に示す無線通信システム1は、例えば、LTEシステム又はSUPER 3Gが包含されるシステムである。また、この移動通信システム1は、IMT-Advancedと呼ばれても良いし、4Gと呼ばれても良い。
 図8に示すように、無線通信システム1は、基地局200と、この基地局200と通信する複数の移動局100(100、100、100、・・・100、nはn>0の整数)とを含んで構成されている。基地局200は、上位局装置300と接続され、この上位局装置300は、コアネットワーク400と接続される。ユーザ端末100は、セル500において基地局200と通信を行っている。なお、上位局装置300には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 各移動局(100、100、100、・・・100)は、同一の構成、機能、状態を有するので、以下においては、特段の断りがない限り移動局100として説明を進める。また、説明の便宜上、基地局200と無線通信するのは移動局100であるものとして説明するが、より一般的には固定端末も含むユーザ端末でよい。
 移動通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、LTEシステムにおける通信チャネルについて説明する。下りリンクについては、各移動局10で共有されるPDSCHと、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とが用いられる。このPDSCHにより、ユーザデータ、すなわち、通常のデータ信号が伝送される。送信データは、このユーザデータに含まれる。なお、基地局200で移動局100に割り当てたコンポーネントキャリア(CC)やスケジューリング情報は、L1/L2制御チャネルにより移動局100に通知される。
 上りリンクについては、各移動局100で共有して使用されるPUSCHと、上りリンクの制御チャネルであるPUCCHとが用いられる。このPUSCHにより、ユーザデータが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)等が伝送される。
 図9は、本実施の形態に係る基地局200の構成を示すブロック図である。図10は、本実施の形態に係る移動局100の構成を示すブロック図である。なお、図9及び図10に示す基地局200及び移動局100の構成は、本発明を説明するために簡略化したものであり、それぞれ通常の基地局及び移動局が有する構成は備えているものとする。
 図9に示す基地局200において、不図示のスケジューラは、後述するチャネル推定部215#1~215#Kから与えられるチャネル推定値に基づいて多重するユーザ数(多重ユーザ数)を決定する。そして、各ユーザに対する上下リンクのリソース割り当て内容(スケジューリング情報)を決定し、ユーザ#1~#Kに対する送信データ#1~#Kを対応するチャネル符号化部201#1~201#Kに送出する。
 送信データ#1~#Kは、チャネル符号化部201#1~201#Kでチャネル符号化された後、データ変調部202#1~202#Kに出力され、データ変調される。この際、チャネル符号化及びデータ変調は、後述するMIMO切替部221#1~221#Kから与えられるチャネル符号化率及び変調方式に基づいて行われる。データ変調部202#1~202#Kでデータ変調された送信データ#1~#Kは、不図示の離散フーリエ変換部で逆フーリエ変換され、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部203に出力される。
 サブキャリアマッピング部203においては、送信データ#1~#Kを、後述するリソース割当制御部220から与えられるリソース割当情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部203は、不図示の参照信号生成部から入力される参照信号#1~#K、報知情報生成部及びシステム情報生成部から入力される報知情報及びシステム情報を、送信データ#1~#Kと共にサブキャリアにマッピング(多重)する。これにより、通信タイプに応じた参照信号が予め定められたリソースエレメントに割り当てられる。特に、第4の通信タイプが選択される場合には、基地局200がサポートする全ての通信タイプで利用される参照信号が同一のリソースブロックに多重される。このようにしてサブキャリアにマッピングされた送信データ#1~#Kがプリコーディング乗算部204#1~204#Kに出力される。なお、それぞれの通信タイプで利用される複数の参照信号を同一のリソースブロックに多重するサブキャリアマッピング部203は、多重部を構成する。
 プリコーディング乗算部204#1~204#Kは、後述するプリコーディングウェイト生成部219から与えられるプリコーディングウェイトに基づいて、送信アンテナTX#1~TX#N毎に送信データ#1~#Kを位相及び/又は振幅シフトする(プリコーディングによる送信アンテナTX#1~送信アンテナTX#Nの重み付け)。プリコーディング乗算部204#1~204#Kにより位相及び/又は振幅シフトされた送信データ#1~#Kは、マルチプレクサ(MUX)205に出力される。
 マルチプレクサ(MUX)205においては、位相及び/又は振幅シフトされた送信データ#1~#Kを合成し、送信アンテナTX#1~TX#N毎の送信信号を生成する。マルチプレクサ(MUX)205により生成された送信信号は、逆高速フーリエ変換部(IFFT部)206#1~206#Nにて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換される。そして、サイクリックプレフィクス(CP)付加部207#1~207#NにてCPが付加された後、RF送信回路208#1~208#Nへ出力される。そして、RF送信回路208#1~208#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)209#1~209#Nを介して送信アンテナTX#1~TX#Nに出力され、送信アンテナTX#1~TX#Nから下りリンクで移動局100に送出される。
 一方、移動局100から上りリンクで送出された送信信号は、送信アンテナTX#1~TX#Nにより受信され、デュプレクサ(Duplexer)209#1~209#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路210#1~210#Nに出力される。そして、RF受信回路210#1~210#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施される。周波数変換処理が施されたベースバンド信号は、CP除去部211#1~211#NにてCPが除去された後、高速フーリエ変換部(FFT部)212#1~212#Nに出力される。受信タイミング推定部213は、受信信号に含まれるリファレンス信号から受信タイミングを推定し、その推定結果をCP除去部211#1~211#Nに通知する。FFT部212#1~212#Nは、入力された受信信号にフーリエ変換を施し、時系列の信号から周波数領域の信号に変換する。これらの周波数領域の信号に変換された受信信号は、データチャネル信号分離部214#1~214#Kに出力される。
 データチャネル信号分離部214#1~214#Kは、FFT部212#1~212#Kから入力された受信信号を、例えば、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)や最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、移動局100から到来した受信信号は、ユーザ#1~ユーザ#Kに関する受信信号に分離される。チャネル推定部215#1~215#Kは、データチャネル信号分離部214#1~214#Kで分離された受信信号に含まれるリファレンス信号からチャネル状態を推定し、推定したチャネル状態を制御チャネル復調部216#1~216#Kに通知する。
 データチャネル信号分離部214#1~214#Kにより分離されたユーザ#1~ユーザ#Kに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、データ復調部217#1~217#Kでデータ復調される。そして、図示しないチャネル復号部#1~#Kにてチャネル復号処理が施されることで送信信号#1~送信信号#Kが再生される。
 制御チャネル復調部216#1~216#Kは、データチャネル信号分離部214#1~214#Kで分離された受信信号に含まれる制御チャネル信号(例えば、PDCCH)を復調する。この際、制御チャネル復調部216#1~216#Kにおいては、チャネル推定部215#1~215#Kから通知されたチャネル状態に基づいて、それぞれユーザ#1~ユーザ#Kに対応する制御チャネル信号を復調する。制御チャネル復調部216#1~216#Kにより復調された各制御チャネル信号は、CSI情報更新部218#1~218#Kに出力される。
 CSI情報更新部218#1~218#Kは、制御チャネル復調部216#1~216#Kから入力された各制御チャネル信号(例えば、PUCCH)に含まれるチャネル状態情報(CSI)を抽出し、常にCSIを最新の状態に更新する。例えば、CSIには、PMI、RI及びCQIが含まれる。また、CSI情報更新部218#1~218#Kには、制御チャネル信号(例えば、PUCCH)等で通知される移動局200の能力情報が保持される。CSI情報更新部218#1~218#Kに保持されるCSI情報及び移動局200の能力情報は、それぞれプリコーディングウェイト生成部219、リソース割当制御部220及びMIMO切替部221#1~221#Kに出力される。
 プリコーディングウェイト生成部219は、上述したアレーアンテナ10に通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成する。より具体的には、プリコーディングウェイト生成部219は、CSI情報更新部218#1~218#Kから入力されたCSI及び移動局200の能力情報に基づいて、送信データ#1~#Kに対する位相及び/又は振幅シフト量を示すプリコーディングウェイトを生成する。生成された各プリコーディングウェイトは、プリコーディング乗算部204#1~204#Kに出力され、送信データ#1~送信データ#Kのプリコーディングに利用される。
 例えば、第1の通信タイプが選択される場合には、アレーアンテナ10内のグループAを構成する各アンテナ素子11に入力する送信データに乗算される、同一のウェイト(例えば、W11、W12、W13、W14=1,1,1,1)が生成される。第2の通信タイプが選択される場合には、アレーアンテナ10内のグループB1を構成するアンテナ素子11に入力する送信データに乗算されるウェイト(例えば、W11、W12、W13、W14=1,1,0,0)が生成され、かつ、グループB2を構成するアンテナ素子11に入力する送信データに乗算されるウェイト(例えば、W21、W22、W23、W24=0,0,1,1)が生成される。第3の通信タイプが選択される場合には、アレーアンテナ10内のグループC1を構成するアンテナ素子11に入力する送信データに乗算されるウェイト(例えば、W11、W12、W13、W14=1,0,0,0)が生成され、かつ、グループC2を構成するアンテナ素子11に入力する送信信号S2に乗算されるウェイト(例えば、W21、W22、W23、W24=0,1,0,0)が生成される。同時に、グループC3を構成するアンテナ素子11に入力する送信データに乗算されるウェイト(例えば、W31、W32、W33、W34=0,0,1,0)が生成され、かつ、グループC4を構成するアンテナ素子11に入力する送信データに乗算されるウェイト(例えば、W41、W42、W43、W44=0,0,0,1)が生成される。また、第4の通信タイプが選択される場合には、リソースエレメント毎に送信データに乗算されるウェイトが生成される。
 リソース割当制御部220は、移動局200の能力情報及び通信タイプに応じた信号種別を含む下りリンク信号に無線リソースを割り当てる。より具体的には、リソース割当制御部220は、CSI情報更新部218#1~218#Kから入力されたCSI及び移動局200の能力情報に基づいて、各ユーザに割り当てるリソース割当情報を決定する。リソース割当制御部220により決定されたリソース割当情報は、サブキャリアマッピング部203に出力され、送信データ#1~送信データ#Kのマッピングに利用される。
 MIMO切替部221#1~221#Kは、CSI情報更新部218#1~218#Kから入力されたCSI及び移動局200の能力情報に基づいて、送信データ#1~送信データ#Kに用いるMIMO伝送方式を選択する。そして、選択したMIMO伝送方式に応じた送信データ#1~送信データ#Kに対するチャネル符号化率及び変調方式を決定する。決定されたチャネル符号化率は、それぞれチャネル符号化部201#1~201#Kに出力され、決定された変調方式は、それぞれデータ変調部202#1~202#Kに出力される。
 このように本実施の形態に係る基地局200においては、異なる通信タイプにおける複数の参照信号(CRS、CSI-RS)が同時に多重(共通のリソースブロックに多重)されることから、個々の移動局100が別々の通信タイプに対応した通信を行う場合でも適切に参照信号を送信することが可能となる。
 一方、図10に示す移動局100において、基地局200から送出された送信信号は、受信アンテナRX#1~RX#Nにより受信され、デュプレクサ(Duplexer)101#1~101#Nにて送信経路と受信経路とに電気的に分離された後、RF受信回路102#1~102#Nに出力される。そして、RF受信回路102#1~102#Nにて、無線周波数信号からベースバンド信号に変換する周波数変換処理が施される。周波数変換処理が施されたベースバンド信号は、サイクリックプレフィクス(CP)除去部103#1~103#NにてCPが除去された後、高速フーリエ変換部(FFT部)104#1~104#Nに出力される。受信タイミング推定部105は、受信信号に含まれるリファレンス信号から受信タイミングを推定し、その推定結果をCP除去部103#1~103#Nに通知する。FFT部104#1~104#Nは、入力された受信信号にフーリエ変換を施し、時系列の信号から周波数領域の信号に変換する。周波数領域の信号に変換された受信信号は、データチャネル信号分離部106に出力される。
 データチャネル信号分離部106は、FFT部104#1~104#Nから入力された受信信号を、例えば、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)や最尤推定検出(MLD:Maximum Likelihood Detection)信号分離法により分離する。これにより、基地局200から到来した受信信号は、ユーザ#1~ユーザ#Kに関する受信信号に分離され、移動局100のユーザ(ここでは、ユーザKとする)に関する受信信号が抽出される。チャネル推定部107は、データチャネル信号分離部106で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を制御チャネル復調部108に通知する。また、チャネル推定部107は、データチャネル信号分離部106で分離された受信信号に含まれる参照信号をチャネル品質測定部110に通知する。
 データチャネル信号分離部106により分離されたユーザ#Kに関する受信信号は、不図示のサブキャリアデマッピング部にてデマッピングされて時系列の信号に戻された後、データ復調部109で復調される。そして、図示しないチャネル復号部にてチャネル復号処理が施されることで送信信号#Kが再生される。
 制御チャネル復調部108は、データチャネル信号分離部106で分離された受信信号に含まれる制御チャネル信号(例えば、PDCCH)を復調する。この際、制御チャネル復調部108においては、チャネル推定部107から通知されたチャネル状態に基づいて、ユーザ#Kに対応する制御チャネル信号を復調する。制御チャネル復調部108により復調された各制御チャネル信号は、チャネル品質測定部110に出力される。
 チャネル品質測定部110は、チャネル推定部107から入力された参照信号に基づいてチャネル品質(CQI)を測定する。また、チャネル品質測定部110は、測定したCQIに基づいてPMI及びRIを選択する。例えば、移動局100が第1の通信タイプで通信を行っている場合には、基地局200から到来するCRSに基づいてチャネル品質を測定する。また、移動局100が第2又は第3の通信タイプで通信を行う場合には、基地局200から到来するCSI-RSに基づいてチャネル品質を測定する。そして、CQI、PMI及びRIをCSIフィードバック信号生成部111及びMIMO切替部112に通知する。なお、チャネル品質測定部110は、品質測定部を構成する。
 CSIフィードバック信号生成部111においては、基地局200にフィードバックするCSIフィードバック信号(例えば、PUCCH)が生成される。この場合、CSIフィードバック信号には、チャネル品質測定部110から通知されたCQI、PMI及びRIが含まれる。CSIフィードバック信号生成部111で生成されたCSIフィードバック信号は、マルチプレクサ(MUX)113に出力される。なお、CSIフィードバック信号生成部111は、フィードバック情報生成部を構成する。
 MIMO切替部112は、チャネル品質測定部110から入力されたCQI、PMI及びRIに基づいて、送信データ#Kに用いるMIMO伝送方式を選択する。そして、選択したMIMO伝送方式に応じた送信データ#Kに対するチャネル符号化率及び変調方式を決定する。決定されたチャネル符号化率は、それぞれチャネル符号化部114に出力され、決定された変調方式は、それぞれデータ変調部115に出力される。
 一方、上位レイヤから送出されたユーザ#Kに関する送信データ#Kは、チャネル符号化部114によりチャネル符号化された後、データ変調部115にてデータ変調される。データ変調部115にてデータ変調された送信データ#Kは、不図示の直並列変換部で、時系列の信号から周波数領域の信号に変換されてサブキャリアマッピング部116に出力される。
 サブキャリアマッピング部116においては、送信データ#Kを、基地局200から指示されたスケジュール情報に応じてサブキャリアにマッピングする。このとき、サブキャリアマッピング部116は、不図示の参照信号生成部により生成された参照信号#Kを、送信データ#Kと共にサブキャリアにマッピング(多重)する。このようにしてサブキャリアにマッピングされた送信データ#Kがプリコーディング乗算部117に出力される。
 プリコーディング乗算部117は、受信アンテナRX#1~RX#N毎に送信データ#Kを位相及び/又は振幅シフトする。このとき、プリコーディング乗算部117は、制御チャネル復調部108で復調された制御チャネル信号で指定されるPMIに対応するプリコーディングウェイトに応じて位相及び/又は振幅シフトする。プリコーディング乗算部117により位相及び/又は振幅シフトされた送信データ#Kは、マルチプレクサ(MUX)113に出力される。
 マルチプレクサ(MUX)113においては、位相及び/又は振幅シフトされた送信データ#Kと、CSIフィードバック信号生成部111により生成された制御信号とを合成し、受信アンテナRX#1~RX#N毎の送信信号を生成する。マルチプレクサ(MUX)113により生成された送信信号は、逆高速フーリエ変換部(IFFT部)118#1~118#Nにて逆高速フーリエ変換して周波数領域の信号から時間領域の信号に変換された後、CP付加部119#1~119#NでCPが付加されてRF送信回路120#1~120#Nへ出力される。そして、RF送信回路120#1~120#Nで無線周波数帯に変換する周波数変換処理が施された後、デュプレクサ(Duplexer)101#1~101#Nを介して受信アンテナRX#1~RX#Nに出力され、受信アンテナRX#1~RX#Nから上りリンクで基地局200に送出される。なお、RF送信回路120#1~120#Nを含む送信系ブロックは、CSIフィードバック信号生成部111により生成されたCSIフィードバック信号をフィードバックする送信部を構成する。
 このように本実施の形態に係る移動局100においては、自端末が通信を行う通信タイプに応じて基地局200から到来する参照信号に基づいてチャネル品質を測定する。このため、自端末が通信を行う通信タイプに応じて適切にチャネル品質を基地局200にフィードバックすることが可能となる。
 以上説明したように、本実施の形態に係る無線通信システム1においては、基地局200から異なる通信タイプで用いられる複数の参照信号を同時に多重して送信する一方、移動局100から個々の通信タイプに応じた参照信号に基づいて測定したチャネル品質をフィードバックすることから、通信タイプに応じて異なるアンテナ構成を持つアンテナを用いたMIMO伝送において、個々のユーザ端末が別々の通信タイプに対応した通信を行う場合でも適切にシグナリングを行うことが可能となる。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の実施形態において、ユーザ数や装置における処理部数については、これに限定されず、装置構成に応じて適宜変更することが可能である。また、本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 例えば、上記実施の形態においては、垂直偏波アンテナ10aと、水平偏波アンテナ10bとを組み合わせた偏波アンテナでアレーアンテナ10が構成される場合について説明している。しかしながら、基地局に装備されるアレーアンテナの構成については、これに限定されない。例えば、アレーアンテナは、偏波面が互いに直交する第1の偏波アンテナと第2の偏波アンテナとを有する偏波アンテナで構成することができる。このように変更した場合でも、上記実施の形態と同様の効果を得ることができる。
 また、上記実施の形態に係る無線通信システムを構成する基地局においては、通信タイプ1~3を提供するアレーアンテナ10を備える場合について説明しているが、アンテナの構成についてはこれに限定されない。例えば、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、その中の少なくとも1つの通信タイプ1に対応したアンテナ構成で基地局のカバーするすべてのエリアへ信号を送信可能なアンテナを持てばよい。例えば、上記実施の形態のうちの通信タイプ1と少なくとも1つの通信タイプを選択した場合や、上記実施の形態にかかわらず、アンテナ構成の組み合わせに応じて通信タイプを追加する場合などのように、構成する通信タイプを変えた場合にも、上記実施の形態と同様の効果を得ることができる。
 さらに基地局のカバーするすべてのエリアへ信号を送信可能なアンテナ構成は、上記実施の形態の通信タイプ1に限らず、同様の条件を満たすアンテナ構成であればどのような構成でもよい。
 本出願は、2011年8月15日出願の特願2011-177606に基づく。この内容は、全てここに含めておく。

Claims (13)

  1.  セルを形成する無線基地局と、前記無線基地局に無線接続するユーザ端末とを備えた無線通信システムであって、
     前記無線基地局は、
      少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で前記無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナと、
      ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当てるリソース割当制御部と、
      参照信号をリソースブロックに多重する多重部と、
      前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成するプリコーディングウェイト生成部と、
      前記プリコーディングウェイト生成部によって生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算するプリコーディング乗算部と、を具備し、
     前記ユーザ端末は、
      下りリンク信号に含まれた参照信号からチャネル品質を測定する品質測定部と、
      測定されたチャネル品質を用いて通信品質に関するフィードバック情報を生成するフィードバック情報生成部と、
      前記フィードバック情報生成部によって生成されたフィードバック情報を上りリンクを介して前記無線基地局へフィードバックする送信部と、を具備したことを特徴とする無線通信システム。
  2.  前記無線基地局は、通信開始フェーズにて、信号種別として、報知情報及びシステム情報の少なくとも1つを含んだ下りリンク信号を、前記通信タイプ1に対応したアンテナ構成で、ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  3.  前記通信タイプ1は2ビーム伝送によって実現されることを特徴とする請求項2記載の無線通信システム。
  4.  前記通信タイプ1を含む少なくとも2つの通信タイプが同時に選択されるミックスタイプを混合通信タイプとし、
     通信開始フェーズでは、前記混合通信タイプが選択されることを特徴とする請求項1記載の無線通信システム。
  5.  前記多重部は、それぞれの通信タイプで利用される複数の参照信号を同一のリソースブロックに多重することを特徴とする請求項4記載の無線通信システム。
  6.  前記無線基地局は、信号種別として、制御信号、システム情報、参照信号の少なくとも1つを含んだ下りリンク信号を、前記通信タイプ1に対応したアンテナ構成で、ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  7.  前記通信タイプ1は2ビーム伝送によって実現されることを特徴とする請求項4記載の無線通信システム。
  8.  前記無線基地局は、信号種別として、4アンテナポート用の参照信号を含んだ下りリンク信号を、前記通信タイプの中の1つの通信タイプに対応した4ビーム伝送によって、ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  9.  前記無線基地局は、信号種別として、8アンテナポート用の参照信号を含んだ下りリンク信号を、前記通信タイプの中の1つの通信タイプに対応した8ビーム伝送によって、ユーザ端末へ通知することを特徴とする請求項1記載の無線通信システム。
  10.  前記ユーザ端末は、前記無線基地局へ無線接続した後に、当該ユーザ端末の能力情報を含んだ上りリンク信号を、上りリンクを介して前記無線基地局へ通知することを特徴とする請求項1記載の無線通信システム。
  11.  前記無線基地局は、前記ユーザ端末から通知された当該ユーザ端末の能力情報と、前記ユーザ端末から通知された通信品質に関するフィードバック情報とに基づいて、通信タイプを選択することを特徴とする請求項1記載の無線通信システム。
  12.  少なくとも2つの通信タイプに応じて異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナと、
     ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当てるリソース割当制御部と、
     参照信号をリソースブロックに多重する多重部と、
     前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成するプリコーディングウェイト生成部と、
     前記プリコーディングウェイト生成部によって生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算するプリコーディング乗算部と、を具備したことを特徴とする無線基地局。
  13.  ユーザ端末が無線基地局に無線接続して通信するための無線通信方法であって、
     前記無線基地局は、少なくとも2つの通信タイプに応じてそれぞれ異なるアンテナ構成を有し、少なくとも1つの通信タイプ1に対応したアンテナ構成で前記無線基地局のカバーするすべてのエリアへ信号を送信可能なアンテナを備え、
     前記無線基地局において、
      ユーザ端末の能力及び通信タイプに応じた信号種別を含んだ下りリンク信号に無線リソースを割り当て、
      参照信号をリソースブロックに多重し、
      前記アンテナに通信タイプに応じた数のビームを形成させるプリコーディングウェイトを生成し、
      前記生成されたプリコーディングウェイトを、前記アンテナへ供給する下りリンク信号に対して乗算し、
     前記ユーザ端末において、
      下りリンク信号に含まれた参照信号からチャネル品質を測定し、
      測定されたチャネル品質を用いて通信品質に関するフィードバック情報を生成し、
      前記生成されたフィードバック情報を上りリンクを介して前記無線基地局へフィードバックすることを特徴とする無線通信方法。
PCT/JP2012/070750 2011-08-15 2012-08-15 無線通信システム、無線基地局及び無線通信方法 WO2013024870A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280039732.0A CN103748819B (zh) 2011-08-15 2012-08-15 无线通信系统、无线基站以及无线通信方法
US14/238,268 US9485775B2 (en) 2011-08-15 2012-08-15 Radio communication system, radio base station and radio communication method
EP12824135.3A EP2747326A4 (en) 2011-08-15 2012-08-15 WIRELESS COMMUNICATION SYSTEM, WIRELESS BASE STATION, AND WIRELESS COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-177606 2011-08-15
JP2011177606A JP5809482B2 (ja) 2011-08-15 2011-08-15 無線通信システム、無線基地局及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2013024870A1 true WO2013024870A1 (ja) 2013-02-21

Family

ID=47715187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070750 WO2013024870A1 (ja) 2011-08-15 2012-08-15 無線通信システム、無線基地局及び無線通信方法

Country Status (5)

Country Link
US (1) US9485775B2 (ja)
EP (1) EP2747326A4 (ja)
JP (1) JP5809482B2 (ja)
CN (1) CN103748819B (ja)
WO (1) WO2013024870A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655924B1 (ko) * 2012-03-07 2016-09-08 엘지전자 주식회사 무선 접속 시스템에서 계층적 빔 포밍 방법 및 이를 위한 장치
KR20150140276A (ko) * 2013-04-08 2015-12-15 엘지전자 주식회사 무선 통신 시스템에서 분할 빔포밍을 위한 제어 정보 제공 방법 및 이를 위한 장치
WO2014189206A1 (ko) * 2013-05-23 2014-11-27 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
EP2897305A1 (en) * 2014-01-21 2015-07-22 Alcatel Lucent Apparatuses, Methods and Computer Programs for a Base Station Transceiver and a Mobile Transceiver
US20180248601A1 (en) * 2015-03-16 2018-08-30 Ntt Docomo, Inc. User apparatus, base station, and communication method
WO2017162301A1 (en) * 2016-03-24 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) A wireless communication node adapted to radiate antenna beams of different types
WO2017200442A1 (en) * 2016-05-20 2017-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for arbitrary antenna power pattern utilizing a multiple of antenna elements
US10779277B2 (en) * 2016-07-07 2020-09-15 Qualcomm Incorporated General authorized access (GAA) primary channel assignment for multiple operators
EP3520230A1 (en) * 2016-09-28 2019-08-07 NTT DoCoMo, Inc. Wireless communication method
KR102664934B1 (ko) * 2016-10-10 2024-05-09 삼성전자주식회사 멀티 링크 환경에서 데이터 전송 방법 및 장치
CN108155479B (zh) * 2016-12-06 2021-08-24 中兴通讯股份有限公司 一种微波天线阵列通信系统及通信方法
US10492157B2 (en) 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
WO2018155977A1 (ko) * 2017-02-24 2018-08-30 삼성전자주식회사 무선 통신 시스템에서 기준 신호를 전송하기 위한 장치 및 방법
CN113162660B (zh) * 2020-01-07 2023-09-29 华为技术有限公司 信息传输方法及相关装置
KR20210091948A (ko) * 2020-01-15 2021-07-23 삼성전자주식회사 기기간 통신을 지원하는 전자 장치 및 그 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050991A (ja) * 2000-06-20 2002-02-15 Mitsubishi Electric Inf Technol Center Europ Bv 無線局用構成可変アンテナ装置、移動端末及び基地局
JP2005136492A (ja) * 2003-10-28 2005-05-26 Ntt Docomo Inc アンテナ装置及びその制御方法
WO2010055749A1 (ja) * 2008-11-14 2010-05-20 シャープ株式会社 アンテナ装置および基地局装置
JP2010521895A (ja) * 2007-03-14 2010-06-24 クゥアルコム・インコーポレイテッド 動的ブロードキャストチャネルのスケジューリング
JP2010183188A (ja) 2009-02-03 2010-08-19 Canon Inc 撮像装置及びその制御方法及びプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475398A (zh) * 2007-02-13 2013-12-25 Lm爱立信电话有限公司 组合了对无线信号的循环延迟分集和预编码的方法和系统
US20120077504A1 (en) * 2008-05-02 2012-03-29 Spx Corporation Super Economical Broadcast System
JP5189460B2 (ja) * 2008-10-30 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおける基地局装置、ユーザ装置及び方法
AU2009338660B2 (en) * 2009-02-01 2014-02-13 Huawei Technologies Co., Ltd. Method for transmitting reference signals
US8406781B2 (en) * 2009-02-02 2013-03-26 Lg Electronics Inc. Determination of user equipment antenna capability
WO2011005576A2 (en) * 2009-06-24 2011-01-13 Research In Motion Limited Methods and apparatus to perform antenna management
MX2012007390A (es) * 2010-01-20 2012-07-23 Ericsson Telefon Ab L M Metodo de mapeo de puerto de antena y dispositivo para desmodular señales de referencia.
WO2011096646A2 (en) * 2010-02-07 2011-08-11 Lg Electronics Inc. Method and apparatus for transmitting downlink reference signal in wireless communication system supporting multiple antennas
US8705392B2 (en) * 2010-04-05 2014-04-22 Nec Laboratories America, Inc. MU-MIMO-OFDMA multi-rank CQI and precoder signaling schemes
US8897382B2 (en) * 2010-08-16 2014-11-25 Telefonaktiebolaget L M Ericsson (Publ) Method for determining precoding weights
US8670330B2 (en) * 2011-01-26 2014-03-11 Qualcomm Incorporated Methods and apparatus to perform reference signal measurements in a TDD-LTE system from a TD-SCDMA system
US20120328031A1 (en) * 2011-06-24 2012-12-27 Nokia Siemens Networks Oy Codebooks for Mobile Communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050991A (ja) * 2000-06-20 2002-02-15 Mitsubishi Electric Inf Technol Center Europ Bv 無線局用構成可変アンテナ装置、移動端末及び基地局
JP2005136492A (ja) * 2003-10-28 2005-05-26 Ntt Docomo Inc アンテナ装置及びその制御方法
JP2010521895A (ja) * 2007-03-14 2010-06-24 クゥアルコム・インコーポレイテッド 動的ブロードキャストチャネルのスケジューリング
WO2010055749A1 (ja) * 2008-11-14 2010-05-20 シャープ株式会社 アンテナ装置および基地局装置
JP2010183188A (ja) 2009-02-03 2010-08-19 Canon Inc 撮像装置及びその制御方法及びプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Requirements for Evolved UTRA and Evolved UTRAN", 3GPP TR 25.913
ERIK DAHLMAN, 4G: LTE/LTE-ADVANCED FOR MOBILE BROADBAND, March 2011 (2011-03-01), pages 152 - 173,242-245,304-305, XP055044532 *
See also references of EP2747326A4

Also Published As

Publication number Publication date
US20140177466A1 (en) 2014-06-26
CN103748819B (zh) 2017-04-05
JP5809482B2 (ja) 2015-11-11
EP2747326A1 (en) 2014-06-25
US9485775B2 (en) 2016-11-01
JP2013042341A (ja) 2013-02-28
EP2747326A4 (en) 2015-03-25
CN103748819A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5809482B2 (ja) 無線通信システム、無線基地局及び無線通信方法
JP5753022B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5706528B2 (ja) 無線基地局、ユーザ端末、無線通信システム及び無線通信方法
WO2014021008A1 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
US8891478B2 (en) Mobile terminal apparatus and radio communication method
JP5291663B2 (ja) データ送信方法、基地局装置及び移動局装置
JP5291664B2 (ja) データ送信方法、基地局装置及び移動局装置
WO2014021010A1 (ja) 基地局装置、ユーザ端末、通信システム及び通信制御方法
WO2011090106A1 (ja) プリコーディングウェイト生成方法、移動局装置及び基地局装置
WO2013084693A1 (ja) 無線基地局装置、無線通信システム及び無線通信方法
WO2011125994A1 (ja) 通信制御方法、移動局装置及び基地局装置
CN108400848A (zh) 一种指示方法及装置
TW202312697A (zh) 無線通訊系統中下行鏈路多天線傳輸方法
WO2011090105A1 (ja) 移動局装置、チャネル情報フィードバック方法
EP2194740A1 (en) Method and device for data processing in a mobile communication network
JP2018078593A (ja) 基地局装置、ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12824135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238268

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE