WO2013023579A1 - 液晶显示装置及液晶显示装置驱动方法 - Google Patents

液晶显示装置及液晶显示装置驱动方法 Download PDF

Info

Publication number
WO2013023579A1
WO2013023579A1 PCT/CN2012/080106 CN2012080106W WO2013023579A1 WO 2013023579 A1 WO2013023579 A1 WO 2013023579A1 CN 2012080106 W CN2012080106 W CN 2012080106W WO 2013023579 A1 WO2013023579 A1 WO 2013023579A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel electrode
liquid crystal
display device
crystal display
array substrate
Prior art date
Application number
PCT/CN2012/080106
Other languages
English (en)
French (fr)
Inventor
鲁姣明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2014525296A priority Critical patent/JP6193857B2/ja
Priority to EP12778024.5A priority patent/EP2597510A4/en
Priority to KR1020127030425A priority patent/KR20130029771A/ko
Priority to US13/698,421 priority patent/US9575342B2/en
Publication of WO2013023579A1 publication Critical patent/WO2013023579A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2230/00Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms

Definitions

  • Liquid crystal display device and liquid crystal display device driving method Liquid crystal display device and liquid crystal display device driving method
  • the present disclosure relates to a liquid crystal display device and a liquid crystal display device driving method. Background technique
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • TFT-LCD technology has matured and has long plagued three major problems of LCD flat panel displays: viewing angle, color saturation, and brightness have been solved.
  • the liquid crystal display device of the TBA mode includes adjacent electrodes, which are a pixel electrode 5 and a common electrode 1, respectively.
  • the common electrode 1 is applied with a constant direct current voltage, and the potential difference between the pixel electrode 5 and the pixel electrode 5 is small, and the field intensity of the generated horizontal electric field is also weak, which is disadvantageous for the liquid crystal molecules to be inclined in the horizontal direction to lower the transmittance. Therefore, the disadvantage of the TBA mode is that the transmittance is low and cannot meet the needs of some occasions.
  • a liquid crystal display device includes a color filter substrate, an array substrate, and a liquid crystal layer packaged between the color filter substrate and the array substrate, wherein the array substrate includes At least one first pixel electrode and at least one second pixel electrode, the first pixel electrode and the second pixel electrode are spaced apart from each other, and are respectively applied with alternating voltages having the same frequency and opposite phases.
  • the alternating voltages respectively applied to the first pixel electrode and the second pixel electrode have the same amplitude.
  • the color filter substrate comprises a common electrode.
  • a side of the common electrode facing the array substrate is covered with a protective layer.
  • Positive liquid crystal molecules may be included in the liquid crystal layer.
  • the first pixel electrode and the second pixel electrode may be formed by a patterning process of the same layer of indium tin oxide.
  • the first pixel electrode and the second pixel electrode may be linear strip electrodes.
  • the first pixel electrode and the second pixel electrode may be made of an indium tin oxide semiconductor material.
  • the liquid crystal molecules in the liquid crystal layer are vertically oriented when no power source is applied.
  • a liquid crystal display device driving method for liquid crystal having a color filter substrate, an array substrate, and a liquid crystal layer packaged between the color filter substrate and the array substrate a display device, wherein the array substrate includes at least one first pixel electrode and at least one second pixel electrode, the first pixel electrode being spaced apart from the second pixel electrode, the method comprising: on the array substrate An AC voltage having the same frequency and opposite phases is applied to the first pixel electrode and the second pixel electrode, respectively.
  • the alternating voltages respectively applied to the first pixel electrode and the second pixel electrode have the same amplitude.
  • liquid crystal molecules in the liquid crystal layer at a position where the horizontal direction field is stronger than the vertical direction field strength approximates a horizontal state.
  • the array substrate includes a first pixel electrode and a second pixel electrode, and the first pixel electrode and the second pixel electrode are spaced apart from each other, and respectively An alternating voltage of the same frequency and opposite phase is applied. This enhances the field strength of the horizontal electric field, making the liquid crystal molecules more horizontal, thereby increasing the transmittance of the liquid crystal layer.
  • 1 is a detailed structural view of a liquid crystal display device in the prior art
  • 2 is a main structural diagram of a liquid crystal display device in an embodiment of the present disclosure
  • FIG. 3A is a schematic view of the liquid crystal display device in a closed state according to an embodiment of the present disclosure
  • FIG. 3B is a schematic view of the pixel in the open state of the embodiment of the present disclosure
  • FIG. 4 is a detailed structural diagram of a liquid crystal display device when the common electrode is a strip electrode in the embodiment of the present disclosure
  • FIG. 5A is a voltage timing diagram after a voltage signal is applied to a first pixel electrode in the embodiment of the present disclosure
  • FIG. 5B is a voltage timing diagram after a voltage signal is applied to the second pixel electrode in the embodiment of the present disclosure.
  • the liquid crystal display device of the embodiment of the present disclosure includes a color filter substrate, an array substrate, and a liquid crystal layer sealed between the color filter substrate and the array substrate.
  • the array substrate includes a first pixel electrode and a second pixel electrode.
  • the first pixel electrode is spaced apart from the second pixel electrode, and an alternating voltage having the same frequency and opposite phases is applied, respectively. This enhances the field strength of the horizontal electric field, making the liquid crystal molecules more inclined to the horizontal state, thereby increasing the transmittance of the liquid crystal layer.
  • the alternating voltages applied to the first pixel electrode and the second pixel electrode, respectively may have the same amplitude.
  • the liquid crystal display device of the embodiment of the present disclosure includes: a color filter substrate 201, an array substrate 202, and a liquid crystal layer 203 encapsulated between the color filter substrate 201 and the array substrate 202.
  • a PLVA (positive liquid crystal vertical alignment) mode can be used.
  • FIG. 3A a schematic diagram of the device in a closed state, that is, when the power is off, in the embodiment of the present disclosure.
  • FIG. 3B is a schematic diagram of the device in an open state, that is, when the power is turned on, in the embodiment of the present disclosure.
  • the structure is described by taking the device as a horizontal plane, wherein the color filter substrate 201 is located on the upper side of the device, and the array substrate 202 is located on the lower side of the device. It is to be understood that the descriptions of the "upper” and “lower” orientations are merely for ease of understanding and are not limiting.
  • the color filter substrate 201 includes a common electrode 2011 and a protective layer 2012 covering a side of the common electrode 2011 facing the array substrate 202.
  • the color filter substrate 201 further includes a first alignment layer 2013.
  • the alignment layer is divided into two parts, which are respectively located in the liquid crystal layer 203. The upper and lower sides.
  • the first alignment layer 2013 located on the upper side of the liquid crystal layer 203 is located in the color filter substrate 201 and covers the protective layer 2012.
  • the second alignment layer 2021 located on the lower side of the liquid crystal layer 203 is located in the array substrate 202 and covers the substrate.
  • FIG. 3C is a schematic diagram of a pixel plane in an embodiment of the present disclosure.
  • the array substrate 202 includes a second alignment layer 2021 on the lower side of the liquid crystal layer 203, a first pixel electrode 2022, a second pixel electrode 2023, and a passivation layer 2024 on the lower side of the second alignment layer 2021.
  • the common electrode 2011 is located on the color filter substrate 201 and covers the color filter.
  • the voltage signal applied to the common electrode 2011 can be a constant DC voltage signal.
  • the common electrode 2011 can be made of a transparent ITO (Indium Tin Oxide Semiconductor) material.
  • the common electrode 2011 can also use a strip electrode, which can improve the transmittance.
  • the protective layer 2012 covers the common electrode 2011, and its function is to minimize the influence of the vertical electric field generated by the potential difference between the common electrode 2011 and the first pixel electrode 2022 and the second pixel electrode 2023 on the liquid crystal torsion.
  • the first alignment layer 2013 located on the upper side of the liquid crystal layer 203 is located in the color filter substrate 201, and is disposed on the protective layer 2012.
  • the second alignment layer 2021 located on the lower side of the liquid crystal layer 203 is located in the array substrate 202, covering the first layer.
  • the first pixel electrode 2022 and the second pixel electrode 2023 are located on the passivation layer 2024.
  • the first alignment layer 2013 and the second alignment layer 2021 function to uniformly align the liquid crystal molecules.
  • the liquid crystal layer 203 is located between the first alignment layer 2013 and the second alignment layer 2021.
  • the liquid crystal in the liquid crystal layer 203 may be a negative liquid crystal or a positive liquid crystal.
  • the liquid crystal in the liquid crystal layer 203 is a positive liquid crystal. Since positive liquid crystals do not have a higher viscosity than negative liquid crystals, their response speed is faster and cheaper.
  • the first pixel electrode 2022 and the second pixel electrode 2023 are formed by the same layer of ITO in a patterning process and covered with the second alignment layer 2021, the liquid crystal molecules in the liquid crystal layer 203 are twisted under the action of applying a horizontal electric field. , tend to be horizontally arranged. This makes it possible to display the LCD.
  • liquid crystal molecules at a position where the liquid in the horizontal direction is stronger than the field strength in the vertical direction are deflected.
  • some liquid crystal molecules are located at a position where the field strength in the horizontal direction is only slightly larger than the field strength in the vertical direction, and the deflection angle may be small. The larger the field strength in the horizontal direction, the more the liquid crystal molecules are deflected in the horizontal direction. They tend to be horizontally arranged.
  • the liquid crystal molecules cannot be aligned to a standard level, and therefore only a part of the liquid crystal molecules in the liquid crystal layer 203 are approximately horizontally aligned.
  • the liquid crystal is vertically oriented when it is completely black, that is, when no power source is applied.
  • the horizontal direction refers to a direction of an electric field formed between the first pixel electrode 2022 and the second pixel electrode 2023
  • the vertical direction refers to a direction perpendicular to the horizontal direction.
  • the first pixel electrode 2022 and the second pixel electrode 2023 are covered with a second alignment layer 2021, wherein the first pixel electrode 2022 and the second pixel electrode 2023 are spaced apart.
  • an alternating voltage signal having the same frequency and opposite phase may be applied to the first pixel electrode 2022 and the second pixel electrode 2023, respectively, and the first pixel electrode 2022 and the second pixel electrode 2023 will be at the same time when energized.
  • a voltage of opposite polarity For example, at time T1, the first pixel electrode 2022 can have a positive voltage and the second pixel electrode 2023 can carry a negative voltage.
  • the alternating voltage signals may have the same amplitude. FIG.
  • FIG. 5A is a voltage timing diagram of a voltage signal applied to the first pixel electrode 2022 in the embodiment of the present disclosure, where Vpixel1 refers to the first pixel electrode 2022, and Vcom is a voltage signal applied to the common electrode, which may be a direct current. signal.
  • Vpixel1 refers to the first pixel electrode 2022
  • Vcom is a voltage signal applied to the common electrode, which may be a direct current. signal.
  • FIG. 5B A voltage timing diagram of a voltage signal applied to the second pixel electrode 2023 in the embodiment of the present disclosure is shown in FIG. 5B, wherein Vpixel2 refers to the second pixel electrode 2023. It can be seen that at the same time, the first pixel electrode 2022 and the second pixel electrode 2023 carry voltages having the same frequency, the same amplitude, and opposite phases.
  • the first pixel electrode 2022 and the second pixel electrode 2023 may be made of an ITO material.
  • the first pixel electrode 2022 and the second pixel electrode 2023 may be linear strip electrodes or curved strip electrodes.
  • the passivation layer 2024 is located on the lower side of the first pixel electrode 2022 and the second pixel electrode 2023. The method of liquid crystal display in the embodiment of the present disclosure is described below.
  • the liquid crystal molecules When no voltage is applied, the liquid crystal molecules are regularly arranged vertically in the liquid crystal layer 203, and the liquid crystal molecules are not twisted at this time. After being energized, an electric field is generated between the first pixel electrode 2022 and the second pixel electrode 2023 and between the common electrodes to form a potential difference, thereby driving the liquid crystal molecules to be twisted.
  • the direction of the electric field at which each liquid crystal molecule is located is not completely uniform.
  • the left side of the liquid crystal molecule is a positively charged first pixel electrode 2022
  • the right side is a negatively charged second pixel electrode 2023
  • the electric field direction is directed from the first pixel electrode 2022 to the second pixel electrode 2023, resulting in the liquid crystal molecules being
  • the right side of the liquid crystal is twisted to a horizontal position;
  • the left side of the other liquid crystal molecules is a negatively charged second pixel electrode 2023,
  • the right side is a positively charged first pixel electrode 2022, and the electric field direction is directed by the first pixel electrode 2022 to the second
  • the pixel electrode 2023 causes these liquid crystal molecules to be twisted from their own left side to a horizontal position.
  • the liquid crystal layer 203 exhibits different transmittances.
  • the larger the applied voltage value the closer the liquid crystal molecules in the liquid crystal layer 203 are to the horizontal alignment, and the higher the transmittance.
  • the applied voltage should not be too high to prevent the device from being burned out.
  • the liquid crystal display device of the embodiment of the present disclosure includes a color filter substrate, an array substrate, and a liquid crystal layer encapsulated between the color filter substrate and the array substrate; wherein the array substrate includes a first pixel electrode and a second pixel electrode, wherein the first pixel electrode and the second pixel electrode are spaced apart from each other, and alternating voltages of the same frequency and opposite phases are respectively applied.
  • This enhances the field strength of the horizontal electric field, making the liquid crystal molecules more horizontal (because the absolute horizontal state is not technically possible, and there may be some liquid crystal molecules still in a vertical state, so it can only be better Approximating the horizontal state), thereby increasing the transmittance of the liquid crystal layer.
  • the alternating voltages applied to the first pixel electrode and the second pixel electrode have the same amplitude. It uses positive liquid crystal molecules, has low viscosity, fast response, and is inexpensive. Since the liquid crystal is vertically oriented, a rubbing alignment process is not required, and dark state light leakage is reduced, thereby achieving high contrast. And the common electrode can use the strip electrode to increase the transmittance, reduce the power consumption, and twist the electric field generated by the electric field between the common electrode and the first pixel electrode 2022 or the second pixel electrode 2023 due to the potential difference. The impact is even smaller. The spirit and scope of the public. Thus, it is intended that the present invention cover the modifications and the modifications

Abstract

一种液晶显示装置,用于提高液晶显示装置的透过率,同时可以获得较高的对比度及保持较低的成本。所述液晶显示装置包括:彩色滤光片基板(201),阵列基板(202),及封装于所述彩色滤光片基板(201)及阵列基板(202)之间的液晶层(203);其中,所述阵列基板(202)包括第一像素电极(2022)及第二像素电极(2023),所述第一像素电极(2022)与所述第二像素电极(2023)间隔排列,且分别外加振幅相同、频率相同、相位相反的交流电压。还公开了用所述液晶显示装置来实现液晶显示的驱动方法。

Description

液晶显示装置及液晶显示装置驱动方法 技术领域
本公开涉及液晶显示装置及液晶显示装置驱动方法。 背景技术
众所周知, 现有的薄膜场效应晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display, TFT-LCD )应用于便捷式终端设备的信息显示窗、 笔 记本电脑的图像显示器、 膝上型计算机的监视器等信息显示装置中。 TFT-LCD是目前唯一在亮度、 对比度、 功耗、 寿命、 体积和重量等综合性能 上全面赶上并超过显像管显示器(CRT ) 的显示装置。 它具有性能优良, 自 动化程度高等优点。
TFT-LCD技术已经较为成熟, 长期困扰液晶平板显示器的三大难题: 视 角、 色饱和度、 亮度已经得到了解决。
现有技术中提出了一种基于 IPS 电极结构的、 液晶是垂直取向的 TBA ( Transverse Bend Alignment, 横向弯曲队列 )模式。 在 TBA模式中, 由于 液晶是垂直取向的正性液晶,所以可以获得较高的对比度并保持较低的成本。 如图 1所示, TBA模式的液晶显示装置包括相邻电极, 分别为像素电极 5和 公共电极 1。 公共电极 1被施加以恒定的直流电压, 并且其与像素电极 5之 间的电势差较小, 产生的水平电场的场强也较弱, 不利于液晶分子向水平方 向倾斜从而使透过率降低。 因此 TBA模式的缺点在于透过率较低, 无法满 足一些场合的需要。
发明内容
根据本公开实施例,提供了一种液晶显示装置,其包括彩色滤光片基板、 阵列基板、 及封装于所述彩色滤光片基板及阵列基板之间的液晶层, 其中所 述阵列基板包括至少一个第一像素电极及至少一个第二像素电极, 所述第一 像素电极与所述第二像素电极间隔排列, 且分别被施加以频率相同、 相位相 反的交流电压。 优选, 分别施加在所述第一像素电极与所述第二像素电极上的所述交流 电压具有相同的振幅。
优选, 所述彩色滤光片基板包括公共电极。
更优选, 所述公共电极的面向所述阵列基板的一侧上覆盖有保护层。 所述液晶层中可以包括正性液晶分子。
所述第一像素电极及所述第二像素电极可以由同一层铟锡氧化物层以构 图工艺制成。
在一些例子中, 所述第一像素电极及所述第二像素电极可以为直线型条 状电极。
所述第一像素电极及所述第二像素电极可以釆用铟锡氧化物半导体材 料。
优选, 所述液晶层中的液晶分子在没有施加电源时为垂直取向。
根据本公开的实施例, 还提供一种液晶显示装置驱动方法, 其应用于具 有彩色滤光片基板、 阵列基板、 及封装于所述彩色滤光片基板及阵列基板之 间的液晶层的液晶显示装置, 其中所述阵列基板包括至少一个第一像素电极 及至少一个第二像素电极,所述第一像素电极与所述第二像素电极间隔排列, 所述方法包括对所述阵列基板上的第一像素电极及第二像素电极分别施加频 率相同、 相位相反的交流电压。
优选, 分别施加在所述第一像素电极与所述第二像素电极上的所述交流 电压具有相同的振幅。
优选, 在施加正负电压作用下, 所述液晶层中位于水平方向场强大于竖 直方向场强的位置的液晶分子近似于呈水平状态。
本公开实施例中的液晶显示装置及液晶显示装置驱动方法中, 所述阵列 基板包括第一像素电极及第二像素电极, 所述第一像素电极与所述第二像素 电极间隔排列, 且分别被施加以频率相同、 相位相反的交流电压。 这增强了 水平电场的场强, 使液晶分子更加倾向于水平状态, 从而提高液晶层的透过 率。 附图说明
图 1为现有技术中液晶显示装置的具体结构图; 图 2为本公开实施例中液晶显示装置的主要结构图;
图 3A为本公开实施例中液晶显示装置处于关闭状态时的示意图; 图 3B为本公开实施例中液晶显示装置处于开启状态时的示意图; 图 3C为本公开实施例中的像素平面示意图;
图 4为本公开实施例中当公共电极为条状电极时液晶显示装置的具体结 构图;
图 5A为本公开实施例中对第一像素电极施加电压信号后的电压时序图; 图 5B为本公开实施例中对第二像素电极施加电压信号后的电压时序图。 具体实施方式
本公开实施例中的液晶显示装置包括彩色滤光片基板、 阵列基板、 及封 装于所述彩色滤光片基板及阵列基板之间的液晶层。 所述阵列基板包括第一 像素电极及第二像素电极。所述第一像素电极与所述第二像素电极间隔排列, 且分别被施加以频率相同、相位相反的交流电压。这增强了水平电场的场强, 使液晶分子更加倾向于水平状态, 从而提高液晶层的透过率。
在一些例子中, 分别施加在第一像素电极和第二像素电极上的所述交流 电压可以具有相同的振幅。
参见图 2, 本公开实施例中液晶显示装置包括: 彩色滤光片基板 201、 阵 列基板 202及封装于所述彩色滤光片基板 201及阵列基板 202之间的液晶层 203。
本公开实施例中液晶显示装置可釆用 PLVA ( positive Liquid crystal vertical alignment, 正性液晶竖直配向 )模式。
参见图 3A,为本公开实施例中所述装置处于关闭状态, 即断电时的示意 图。 图 3B为本公开实施例中所述装置处于开启状态, 即通电时的示意图。 本公开实施例中以将所述装置放置于水平面为例来说明其结构, 其中彩色滤 光片基板 201位于所述装置上侧、 阵列基板 202位于所述装置下侧。 可以理 解, 这里对于 "上"、 "下" 等方位的描述仅仅是为了便于理解, 而并非限制 性的。 所述彩色滤光片基板 201 包括公共电极 2011及覆盖于公共电极 2011 的面向阵列基板 202的一侧上的保护层 2012,所述彩色滤光片基板 201还包 括第一取向层 2013 ,在所述装置中,取向层分为两部分,分别位于液晶层 203 的上下两侧。其中位于液晶层 203上侧的第一取向层 2013位于彩色滤光片基 板 201内 ,且覆盖于保护层 2012上,位于液晶层 203下侧的第二取向层 2021 位于阵列基板 202内, 覆盖于像素电极上。 图 3C为本公开实施例中像素平 面示意图。
所述阵列基板 202包括位于液晶层 203下侧的第二取向层 2021、第一像 素电极 2022、 第二像素电极 2023及第二取向层 2021下侧的钝化层 2024。
公共电极 2011位于所述彩色滤光片基板 201上, 覆盖于彩色滤光片上, 施加于公共电极 2011 的电压信号可以为恒定的直流电压信号。 且公共电极 2011可以釆用透明的 ITO (铟锡氧化物半导体)材料制作。
或者, 如图 4所示,公共电极 2011也可以釆用条状电极, 这样可以提高 透过率。
保护层 2012覆盖于公共电极 2011上, 其作用是尽量减少公共电极 2011 与第一像素电极 2022和第二像素电极 2023之间的电势差所产生的竖直电场 对液晶扭转产生影响。
位于液晶层 203上侧的第一取向层 2013位于彩色滤光片基板 201内,覆 盖于与保护层 2012上, 位于液晶层 203下侧的第二取向层 2021位于阵列基 板 202内, 覆盖于第一像素电极 2022及第二像素电极 2023上。 其中, 第一 像素电极 2022和第二像素电极 2023位于钝化层 2024上。 第一取向层 2013 及第二取向层 2021的作用是使液晶分子均一取向。
液晶层 203位于第一取向层 2013及第二取向层 2021之间。 液晶层 203 中的液晶可以是负性液晶或正性液晶。 较佳的, 液晶层 203中的液晶为正性 液晶。正性液晶由于不像负性液晶具有较高的粘稠度, 因此其响应速度较快, 且价格便宜。 由于第一像素电极 2022和第二像素电极 2023由同一层 ITO以 构图工艺制成, 上面覆盖有第二取向层 2021 , 因此液晶层 203中的液晶分子 在受到施加水平电场的作用下会发生扭转, 倾向于呈水平排列。 如此可以实 现 LCD的显示。 但由于像素电极和公共电极 2011之间存在电场, 所以在液 位于水平方向的场强大于竖直方向的场强的位置的液晶分子会发生偏转。 但 有些液晶分子所处的位置可能水平方向场强只略微大于竖直方向场强, 偏转 角度可能较小。所处的位置水平方向场强越大则液晶分子越向水平方向偏转, 倾向于呈水平排列。 但可能还有部分液晶分子位于水平方向的场强小于或等 于竖直方向的场强的位置, 这部分液晶分子可能未发生偏转, 仍然保持其竖 直排列的状态。 且由于工艺所限, 无法使液晶分子达到标准水平排列, 因此 只能是液晶层 203中的部分液晶分子近似于水平排列。 本公开实施例中, 在 全黑时, 即没有施加电源时, 液晶为垂直取向。 本公开实施例中, 水平方向 是指第一像素电极 2022与第二像素电极 2023之间所形成的电场的方向, 垂 直方向是指垂直于该水平方向的方向。
第一像素电极 2022和第二像素电极 2023上覆盖有第二取向层 2021 ,其 中, 第一像素电极 2022和第二像素电极 2023间隔排列。 本公开实施例中, 可以对第一像素电极 2022及第二像素电极 2023分别施加频率相同、 相位相 反的交流电压信号, 则在通电时第一像素电极 2022和第二像素电极 2023在 相同时刻会带极性相反的电压。 例如, 在 T1时刻, 第一像素电极 2022可以 带正电压, 第二像素电极 2023可以带负电压。优选地, 所述交流电压信号可 以具有相同振幅。如图 5A所示为本公开实施例中对第一像素电极 2022施加 的电压信号的电压时序图, 其中 Vpixell是指第一像素电极 2022, Vcom为 对公共电极施加的电压信号, 其可以是直流信号。 如图 5B所示为本公开实 施例中对第二像素电极 2023施加的电压信号的电压时序图,其中 Vpixel2是 指第二像素电极 2023。 可见, 在相同时刻, 第一像素电极 2022和第二像素 电极 2023所带有的是频率相同、振幅相同而相位相反的电压。在施加的电压 作用下, 水平电场的场强较强, 使液晶层 203中的液晶分子在电场的作用下 能更倾向于呈水平排列,从而提高 LCD的透过率。其中,第一像素电极 2022 和第二像素电极 2023可以釆用 ITO材料制作。
本公开实施例中, 所述第一像素电极 2022和第二像素电极 2023可以为 直线型条状电极, 也可以为弯曲的条状电极。
钝化层 2024位于第一像素电极 2022和第二像素电极 2023的下侧。 以下介绍本公开实施例中液晶显示的方法。
在没有施加电压时, 液晶分子规则的垂直排列于液晶层 203中, 此时液 晶分子并不发生扭转。 通电后, 第一像素电极 2022和第二像素电极 2023之 间以及公共电极产生电场, 形成电势差, 从而驱动液晶分子发生扭转。 其中 每个液晶分子所处位置的电场方向不完全一致。例如在图 3A和 3B中, 某些 液晶分子的左侧为带正电的第一像素电极 2022,右侧为带负电的第二像素电 极 2023 , 电场方向为由第一像素电极 2022指向第二像素电极 2023 , 导致这 些液晶分子由其自身右侧扭转至水平位置; 另一些液晶分子的左侧为带负电 的第二像素电极 2023 ,右侧为带正电的第一像素电极 2022, 电场方向为由第 一像素电极 2022指向第二像素电极 2023 , 导致这些液晶分子由其自身左侧 扭转至水平位置。在不同的驱动电压下,液晶层 203会呈现出不同的透过率, 所加的电压值越大, 液晶层 203中的液晶分子越是接近水平排列, 则其透过 率越高。 但所加电压值不能过高, 以防止烧坏所述装置。
本公开实施例中的液晶显示装置包括彩色滤光片基板、 阵列基板、 及封 装于所述彩色滤光片基板及阵列基板之间的液晶层; 其中, 所述阵列基板包 括第一像素电极及第二像素电极, 所述第一像素电极与所述第二像素电极间 隔排列, 且分别施加频率相同、 相位相反的交流电压。 这增强了水平电场的 场强, 使液晶分子更倾向于水平状态(因绝对水平状态在工艺上无法实现, 且可能还有部分液晶分子依然呈竖直状态, 因此只能是更好地使其近似于水 平状态),从而提高液晶层的透过率。优选,施加在第一像素电极和第二像素 电极上的交流电压具有相同振幅。釆用正性液晶分子, 粘度低, 响应速度快, 且价格便宜。 因液晶为垂直取向, 不需要摩擦取向工艺, 减少了暗态漏光, 因此实现了高对比度。 并且公共电极可以釆用条状电极, 以提高透过率, 降 低功耗, 并且使公共电极与第一像素电极 2022或第二像素电极 2023之间因 电势差而产生的电场对液晶分子的扭转所产生的影响更小。 公开的精神和范围。 这样, 倘若本公开的这些修改和变型属于本公开权利要 求及其等同技术的范围之内, 则本公开也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种液晶显示装置, 包括:
彩色滤光片基板、 阵列基板、 及封装于所述彩色滤光片基板及阵列基板 之间的液晶层;
其中, 所述阵列基板包括至少一个第一像素电极及至少一个第二像素电 极, 所述第一像素电极与所述第二像素电极间隔排列, 且分别被施加以频率 相同、 相位相反的交流电压。
2、如权利要求 1所述的装置, 其中, 分别施加在所述第一像素电极与所 述第二像素电极上的所述交流电压具有相同的振幅。
3、如权利要求 1或 2所述的装置, 其中, 所述彩色滤光片基板包括公共 电极。
4、如前述任一权利要求所述的装置, 其中, 所述公共电极的面向所述阵 列基板的一侧上覆盖有保护层。
5、如前述任一权利要求所述的装置, 其中, 所述液晶层中包括正性液晶 分子。
6、如前述任一权利要求所述的装置, 其中, 所述第一像素电极及所述第 二像素电极由同一层铟锡氧化物层以构图工艺制成。
7、如前述任一权利要求所述的装置, 其中, 所述第一像素电极及所述第 二像素电极为直线型条状电极。
8、如前述任一权利要求所述的装置, 其中, 所述第一像素电极及所述第 二像素电极釆用铟锡氧化物半导体材料。
9、如前述任一权利要求所述的装置, 其中, 所述液晶层中的液晶分子在 没有施力。电源时为垂直取向。
10、 一种液晶显示装置驱动方法, 应用于具有彩色滤光片基板、 阵列基 板、及封装于所述彩色滤光片基板及阵列基板之间的液晶层的液晶显示装置, 其中, 所述阵列基板包括至少一个第一像素电极及至少一个第二像素电极, 所述第一像素电极与所述第二像素电极间隔排列, 所述方法包括对所述阵列 基板上的第一像素电极及第二像素电极分别施加频率相同、 相位相反的交流 电压。
11、如权利要求 10所述的方法, 其中, 分别施加在所述第一像素电极与 所述第二像素电极上的所述交流电压具有相同的振幅。
12、 如权利要求 10或 11所述的方法, 其中, 在施加正负电压作用下, 所述液晶层中位于水平方向场强大于竖直方向场强的位置的液晶分子近似于 呈水平状态。
PCT/CN2012/080106 2011-08-16 2012-08-14 液晶显示装置及液晶显示装置驱动方法 WO2013023579A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014525296A JP6193857B2 (ja) 2011-08-16 2012-08-14 液晶表示装置及び液晶表示装置駆動方法
EP12778024.5A EP2597510A4 (en) 2011-08-16 2012-08-14 LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR CONTROLLING LIQUID CRYSTAL DISPLAY DEVICE
KR1020127030425A KR20130029771A (ko) 2011-08-16 2012-08-14 액정 디스플레이 장치 및 액정 디스플레이 장치를 구동하는 방법
US13/698,421 US9575342B2 (en) 2011-08-16 2012-08-14 Liquid crystal display device comprising two different pixel electrodes connected to different TFTS in a pixel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110234465XA CN102629017A (zh) 2011-08-16 2011-08-16 一种液晶显示装置及其驱动方法
CN201110234465.X 2011-08-16

Publications (1)

Publication Number Publication Date
WO2013023579A1 true WO2013023579A1 (zh) 2013-02-21

Family

ID=46587303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080106 WO2013023579A1 (zh) 2011-08-16 2012-08-14 液晶显示装置及液晶显示装置驱动方法

Country Status (6)

Country Link
US (1) US9575342B2 (zh)
EP (1) EP2597510A4 (zh)
JP (1) JP6193857B2 (zh)
KR (1) KR20130029771A (zh)
CN (1) CN102629017A (zh)
WO (1) WO2013023579A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552785B2 (en) * 2012-12-19 2017-01-24 Sharp Kabushiki Kaisha Liquid crystal display device
CN105143971B (zh) * 2013-04-24 2018-09-25 夏普株式会社 光学装置和具有它的显示装置
CN105793773B (zh) * 2013-12-02 2019-01-01 夏普株式会社 液晶面板及其使用的有源矩阵基板
US20160203798A1 (en) * 2015-01-13 2016-07-14 Vastview Technology Inc. Liquid crystal display device having at least three electrodes in each pixel area
CN109581758B (zh) * 2017-09-28 2020-11-17 京东方科技集团股份有限公司 显示面板及显示装置
CN111308745A (zh) * 2020-03-02 2020-06-19 重庆京东方光电科技有限公司 显示面板及显示装置的显示方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186351A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
CN1797144A (zh) * 2004-12-31 2006-07-05 Lg.菲利浦Lcd株式会社 共平面开关模式液晶显示器件
CN101609235A (zh) * 2008-06-16 2009-12-23 三星电子株式会社 液晶显示器
WO2010137386A1 (ja) * 2009-05-27 2010-12-02 シャープ株式会社 液晶表示装置
WO2010137217A1 (ja) * 2009-05-29 2010-12-02 シャープ株式会社 液晶パネルおよび液晶表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4364332B2 (ja) * 1998-06-23 2009-11-18 シャープ株式会社 液晶表示装置
JP4459338B2 (ja) * 1999-02-15 2010-04-28 シャープ株式会社 液晶表示装置
JP2001255509A (ja) * 2000-03-09 2001-09-21 Sharp Corp スメクティック液晶光学装置
KR100859467B1 (ko) * 2002-04-08 2008-09-23 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
WO2005021436A1 (ja) 2003-08-29 2005-03-10 Japan Science And Technology Agency Ito薄膜およびその製造方法
JP2007101972A (ja) 2005-10-06 2007-04-19 Seiko Epson Corp 液晶装置及び電子機器
EP2031030A4 (en) 2006-06-09 2012-06-06 Jemco Inc COMPOSITION FOR FORMING A TRANSPARENT ELECTRICALLY CONDUCTIVE FILM, TRANSPARENT ELECTRICALLY CONDUCTIVE FILM AND DISPLAY
JP2009053414A (ja) 2007-08-27 2009-03-12 Mitsubishi Electric Corp 液晶表示パネルおよび液晶表示装置
US8760479B2 (en) 2008-06-16 2014-06-24 Samsung Display Co., Ltd. Liquid crystal display
KR101469029B1 (ko) * 2008-11-28 2014-12-05 삼성디스플레이 주식회사 액정 표시 장치
CN101852953B (zh) * 2009-03-30 2013-05-22 北京京东方光电科技有限公司 Tft-lcd阵列基板及其制造方法和液晶显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186351A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
CN1797144A (zh) * 2004-12-31 2006-07-05 Lg.菲利浦Lcd株式会社 共平面开关模式液晶显示器件
CN101609235A (zh) * 2008-06-16 2009-12-23 三星电子株式会社 液晶显示器
WO2010137386A1 (ja) * 2009-05-27 2010-12-02 シャープ株式会社 液晶表示装置
WO2010137217A1 (ja) * 2009-05-29 2010-12-02 シャープ株式会社 液晶パネルおよび液晶表示装置

Also Published As

Publication number Publication date
JP6193857B2 (ja) 2017-09-06
EP2597510A4 (en) 2015-01-21
JP2014529095A (ja) 2014-10-30
US9575342B2 (en) 2017-02-21
US20130148047A1 (en) 2013-06-13
CN102629017A (zh) 2012-08-08
KR20130029771A (ko) 2013-03-25
EP2597510A1 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
CN110824740B (zh) 显示面板、显示面板的视角控制方法及显示装置
CN107820581B (zh) 视角可切换的液晶显示装置及视角切换方法
US9140941B2 (en) In-plane switching mode liquid crystal display device
US9430979B2 (en) Liquid crystal display panel, method for driving the same and display device
WO2013023579A1 (zh) 液晶显示装置及液晶显示装置驱动方法
JP2002365657A (ja) 液晶装置、投射型表示装置および電子機器
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
US9348178B2 (en) Liquid crystal display panel and liquid crystal display device
KR20070001428A (ko) 액정표시소자
US9645453B2 (en) Liquid crystal panel having a plurality of first common electrodes and a plurality of first pixel electrodes alternately arranged on a lower substrate, and display device incorporating the same
US9835911B2 (en) Liquid crystal display device
WO2013120367A1 (zh) 液晶显示面板和显示装置
US20080204646A1 (en) In-plane switching mode liquid crystal display device
JP2014066874A (ja) 液晶表示装置及びその駆動方法
JP6105928B2 (ja) 液晶表示装置
CN106125441B (zh) 一种窄视角模式的低驱动电压蓝相液晶显示器
US20130044145A1 (en) Blue phase liquid crystal display apparatus and driving method thereof
US20170322470A1 (en) Liquid crystal display device
CN106125406B (zh) 一种窄视角显示的垂直取向液晶显示器
TWI420206B (zh) 電極結構、顯示面板及顯示器
JP2016031464A (ja) 液晶表示装置およびその駆動方法
US9128340B2 (en) Dual-TFT-substrate blue-phase liquid crystal display panel
US20160187744A1 (en) Method and device for enhancing response time of positive-negative mixed liquid crystals
KR100692679B1 (ko) 액정 표시 장치의 자기 제거 구동 방법
US9170460B2 (en) In-plane-switching mode liquid crystal panel, manufacturing process and display device thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012778024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13698421

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127030425

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014525296

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12778024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE