WO2013023350A1 - Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes - Google Patents

Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes Download PDF

Info

Publication number
WO2013023350A1
WO2013023350A1 PCT/CN2011/078392 CN2011078392W WO2013023350A1 WO 2013023350 A1 WO2013023350 A1 WO 2013023350A1 CN 2011078392 W CN2011078392 W CN 2011078392W WO 2013023350 A1 WO2013023350 A1 WO 2013023350A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
input
output
collimating lens
mode
Prior art date
Application number
PCT/CN2011/078392
Other languages
English (en)
Chinese (zh)
Inventor
成学平
万助军
刘明
刘健
黄治家
Original Assignee
深圳市杰普特电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杰普特电子技术有限公司 filed Critical 深圳市杰普特电子技术有限公司
Priority to CN201180020565.0A priority Critical patent/CN102959442B/zh
Priority to PCT/CN2011/078392 priority patent/WO2013023350A1/fr
Publication of WO2013023350A1 publication Critical patent/WO2013023350A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to optical fiber transmission technology, and more particularly to a fiber mode converter and a fiber optic isolator having a mode switching function. Background technique
  • fiber lasers are a relatively new type of laser.
  • the main advantages include high beam quality, high electro-optic conversion efficiency, heat dissipation, high reliability, and compact structure.
  • fiber lasers There are two main types of fiber lasers. One uses a resonant cavity to select the lasing wavelength, and the other is a traveling wave amplification structure.
  • the lasing wavelength depends on the wavelength of the seed source.
  • a fiber laser with a traveling wave amplification structure is usually composed of multiple stages and is stepped up. In order to increase the working substance and reduce the optical power density, the fiber used in the subsequent amplification stage tends to have a larger core diameter than the previous amplification stage. Therefore, when the laser is transmitted from the previous stage to the subsequent stage, there is a problem of transformation and matching of the fiber mode.
  • the light beam can only be transmitted unidirectionally from the seed source to the front stage to the latter stage, and the reverse transmission of light destroys the seed source. Therefore, between the front and rear amplification stages, optical isolators are often required to ensure one-way transmission of the laser.
  • the fiber mode converter is used for the connection between fibers with different core diameters to reduce the optical power loss caused by the mode mismatch.
  • the fiber mode converter can be implemented by thermally expanding the fiber or by lens transformation, as shown in Figures 1 and 2. Change the core diameter by thermal expansion (TEC) fiber as shown in Figure 1.
  • Figure 2 shows the mode of input fiber to output fiber by placing a lens between the two fibers. Transform.
  • Optical isolators are one of the commonly used devices in optical communication.
  • the Faraday magneto-optical effect allows optical signals to be transmitted in one direction, isolates the reverse transmitted light to reduce system noise (used in fiber amplifiers) or avoids device damage (for In fiber lasers).
  • Optical isolators are generally classified into two types: polarization-dependent and polarization-independent.
  • Polarization-dependent optical isolators require forward-transmitted light to be linearly polarized and whose polarization direction is aligned with the transmission axis of the optical isolator. Otherwise, the forward light is also Will experience large power losses, and even be completely isolated.
  • Polarization-dependent optical isolators are generally placed between a DFB laser (a type of semiconductor laser that emits a linearly polarized laser, so a polarization-dependent optical isolator can be used) and the optical fiber to isolate the reverse light transmitted from the optical fiber to the laser. Avoid damaging the laser.
  • the polarization-independent optical isolator does not require a polarization state of the forward-transmitted light, and a positive power transmission of any polarization state experiences a small power loss.
  • Polarization-independent optical isolators are generally used in fiber amplifiers and fiber lasers.
  • the current traveling wave amplifying structure fiber laser between the front and rear amplification stages, generally needs to connect a mode converter and an optical isolator in series to realize the fiber mode conversion between the two stages and ensure the one-way optical signal. transmission. If you can integrate the functions of these two devices into one device, you can reduce losses, reduce size, and reduce costs.
  • existing fiber-mode converter configurations shown in Figures 1 and 2) are not compatible with opto-isolator processes and cannot be packaged together. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a fiber mode converter and a fiber isolator with mode switching function, in view of the defect that the existing fiber mode converter cannot be packaged together with the optical isolator.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a fiber mode converter, comprising a relatively arranged input fiber collimator and an output fiber collimator;
  • the input fiber collimator includes an input collimating lens that interfaces with the input fiber;
  • the output fiber collimator includes an output collimating lens that interfaces with the output fiber;
  • the input collimating lens and the output collimating lens are oppositely disposed, and the collimating beam diameters of the input collimating lens and the output collimating lens are equal.
  • the input fiber collimator further includes a socket An input glass capillary of the input fiber, and an input glass tube encapsulating the input glass capillary and an input collimating lens; the output fiber collimator further comprising an output glass capillary for nesting the output fiber, and a package The output glass capillary and the output glass tube of the output collimating lens.
  • the input collimating lens and the output collimating lens are both cylindrical flat-convex lenses; the input collimating lens and the output collimating lens satisfy when the refractive index is equal The following formula:
  • ⁇ and ⁇ are the convex curvature radius of the input collimating lens and the output collimating lens, respectively, and ⁇ and ⁇ 2 are the mode field radius of the input fiber and the output fiber, respectively.
  • the input collimating lens and the output collimating lens are both self-focusing lenses; the parameters of the input collimating lens and the output collimating lens satisfy the following formula:
  • ⁇ and ⁇ 2 are the central refractive indices of the input collimating lens and the output collimating lens, respectively, and the autofocusing constants of the input collimating lens and the output collimating lens, respectively, ⁇ and ⁇ 2 are the input fiber and the output fiber, respectively. Fiber mode field radius.
  • the present invention also provides a fiber optic isolator having a mode switching function, comprising an integrated fiber mode converter and an optical isolator core, the fiber mode converter comprising an oppositely disposed input fiber collimator and an output fiber collimating
  • the optical isolator core is disposed between the input fiber collimator and the output fiber collimator;
  • the input fiber collimator includes an input collimating lens that interfaces with the input fiber;
  • the output fiber collimator includes an output collimating lens that interfaces with the output fiber;
  • the input collimating lens and the output collimating lens are disposed relative to the optical isolator core, and the collimating beam diameters of the input collimating lens and the output collimating lens are equal.
  • the input fiber collimator further includes an input glass capillary for socketing the input fiber, and packaging the input glass capillary and the input collimating lens Input glass tube;
  • the output fiber collimator further includes a socket for the input An output glass capillary of the fiber, and an output glass tube enclosing the output glass capillary and the output collimating lens.
  • the input collimating lens and the output collimating lens are both cylindrical flat-convex lenses; the input collimating lens and the output collimating lens are equal in refractive index
  • ⁇ and ⁇ are the convex curvature radius of the input collimating lens and the output collimating lens, respectively, and ⁇ and ⁇ 2 are the mode field radius of the input fiber and the output fiber, respectively.
  • the input collimating lens and the output collimating lens are both self-focusing lenses; the parameters of the input collimating lens and the output collimating lens satisfy the following formula:
  • ⁇ and ⁇ 2 are the mode field radii of the input fiber and the output fiber, respectively.
  • the optical isolator core is an optical isolator core using a displacement crystal.
  • the optical isolator core is an optical isolator core using a birefringent wedge piece.
  • the fiber-optic mode converter and the fiber optic isolator with mode conversion function of the invention have the following beneficial effects:
  • the invention makes input/output with optical fiber and collimating lens with different parameters on the basis of the existing optical isolator structure.
  • the fiber collimator can isolate the reverse transmission light by forwardly transmitting light and has the fiber mode conversion function. It can be applied to the fiber laser to isolate the reverse transmission light and the fiber between the stages of the fiber laser.
  • the modes are converted and matched, and the present invention integrates them in one device to achieve the effects of reducing loss, reducing volume, and reducing cost.
  • FIG. 1 is a schematic structural view of a fiber-optic mode converter realized by using a thermal expansion beam fiber
  • FIG. 2 is a schematic structural view of a fiber mode converter realized by using a lens
  • FIG. 3 is a schematic structural view of a fiber optic isolator having a mode switching function in a preferred embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a fiber mode converter in a preferred embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a first embodiment of a collimating lens used in the present invention.
  • FIG. 6 is a schematic structural view of a second embodiment of a collimating lens used in the present invention.
  • FIG. 7 is a schematic structural view of a first embodiment of an optical isolator core used in the present invention.
  • FIG. 8 is a schematic structural view of a second embodiment of an optical isolator core used in the present invention. detailed description
  • FIG. 3 is a schematic diagram showing the structure of a fiber isolator having a mode switching function in a preferred embodiment of the present invention.
  • the optical fiber isolator with mode switching function provided by this embodiment includes a fiber mode converter and an optical isolator core 30, wherein the fiber mode converter further includes an input fiber collimator 10 and an output fiber collimator. 20.
  • the input fiber collimator 10 and the output fiber collimator 20 are disposed opposite each other and are respectively interfaced with the input fiber 12 and the output fiber 22, and the optical isolator core 30 is disposed between the input fiber collimator 10 and the output fiber collimator 20. .
  • the present invention also provides a fiber mode converter including the above-described input fiber collimator 10 and output fiber collimator 20.
  • the input fiber collimator 10 includes at least an input collimating lens 11 that interfaces with the input fiber 12, and the output fiber collimator 20 includes at least an output collimating lens 21 that interfaces with the output fiber.
  • the collimated beam diameters of the two fiber collimators should be the same, that is, the collimated beam diameters of the input collimating lens and the output collimating lens are equal.
  • the optical fiber and the collimating lens are packaged using a glass capillary tube and a glass tube to be physically connected.
  • the input fiber collimator 10 further includes an input glass capillary 13 and an input glass tube 14, wherein the input glass tube 14 is wrapped around the input glass capillary 13 and the input collimating lens 11, thereby encapsulating the two together, in use, only
  • the input fiber 12 needs to be inserted into the input glass capillary 13 to achieve docking.
  • the output fiber collimator 20 has an output glass capillary 23 and an output glass tube 24 of the same structure. It should be understood that those skilled in the art can use other methods to align the lens between the straight lens and the optical fiber for convenient use.
  • the invention proposes to fabricate a fiber collimator with optical fibers and collimating lenses with different parameters to realize mode conversion between input/output fibers.
  • the collimating lens used in the present invention can be realized by C-Lens (a cylindrical flat-convex lens) or a self-focusing lens (GRIN-Lens, a cylindrical gradient index lens).
  • FIG. 5 is a schematic structural view of a first embodiment of a collimating lens used in the present invention.
  • the fiber-optic mode converter of this embodiment adopts a cylindrical flat-convex lens, and the parameters of the C-Lens include a refractive index, a length and a convex curvature radius are set to a light wavelength, and ⁇ 0 is a fiber mode field.
  • the radius is the collimated beam radius; then the collimated beam size of C-Lens as the fiber collimating lens in Figure 5 is as shown in equation (1):
  • the input collimating lens 11 and the output collimating lens 21 are both cylindrical flat-convex lenses, and the convex surfaces of the lenses are oppositely disposed when placed.
  • the input collimating lens 11 and the output collimating lens 21 are provided.
  • the refractive index is equal, the convex curvature radius of the input collimating lens 11 is A, and the convex curvature radius of the output collimating lens is R 2 .
  • the following formula can be obtained by calculation:
  • FIG. 6 is a schematic structural view of a second embodiment of a collimating lens used in the present invention.
  • a self-focusing lens is used, and the parameters of the GRIN-Lens include a central refractive index. «. , length z and self-focusing constant.
  • is the collimated beam radius; then the collimated beam size of GRIN-Lens as the fiber collimating lens in Figure 6 is as shown in equation (3)
  • the input collimating lens 11 and the output collimating lens 21 are both self-focusing lenses; the center refractive index of the input collimating lens 11 is W1 , the self-focusing constant is, and the central refractive index of the output collimating lens 21 is n 2 , The focus constant is .
  • the parameters of the input collimating lens and the output collimating lens are calculated by the following formula:
  • ⁇ and ⁇ 2 are the mode field radii of the input fiber and the output fiber, respectively.
  • FIG. 7 and FIG. 8 are respectively schematic structural views of the first embodiment and the second embodiment of the optical isolator core used in the present invention.
  • the first embodiment of Figure 7 is implemented using an optical isolator core of a displacement crystal.
  • the upper and lower sub-pictures in Fig. 7 are the forward optical path and the reverse optical path of the optical isolator core using the displacement crystal, respectively.
  • the optical isolator core using the displacement crystal comprises two displacement crystals, namely a displacement crystal 1 and a displacement crystal 2, which are respectively connected to the input fiber side and the output fiber side, respectively, in this embodiment, respectively, with the input fiber collimator 10 and the output.
  • the fiber collimator 20 is connected.
  • an optical rotating film and a half wave plate are arranged between the displacement crystal 1 and the displacement crystal 2, and a magnetic ring is arranged in the middle.
  • One-way transmission of light can be achieved by the above structure.
  • the second embodiment of Figure 8 is implemented using an optical isolator core of birefringent wedge segments.
  • the left and right sub-pictures in Fig. 8 are the forward optical path and the reverse optical path of the optical isolator core using the birefringent wedge piece, respectively.
  • the opto-isolator core using the birefringent wedge-corner includes an inner birefringent wedge piece and an outer magnetic ring. One-way transmission of light can also be achieved by this structure.
  • optical fiber isolator with mode switching function proposed by the present invention.
  • the above-prepared input/output fiber collimator and the optical isolator core are coupled and packaged to realize a fiber optic isolator with mode conversion function.
  • the present invention is based on analyzing the working principle of the existing optical isolator and mode converter, and proposes a functional integrated optical device structure to achieve the effects of reducing loss, reducing volume, and reducing cost.
  • the optical isolator can isolate the reverse transmission light by transmitting light in the forward direction, and has the fiber mode conversion function. It can be applied to the fiber laser, and the reverse transmission light and the fiber mode are isolated between the stages of the fiber laser. Convert and match.
  • the device Based on the existing optical isolator structure, uses an optical fiber and a collimating lens with different parameters to fabricate an input/output fiber collimator. The design between the input/output fiber modes is achieved by matching the parameters between the respective parameters. match.

Abstract

La présente invention concerne un convertisseur de modes de fibres et un isolateur de fibres avec fonction de conversion. L'isolateur de fibres comprend un convertisseur de modes de fibres et un cœur d'isolateur optique qui sont intégrés ensemble. Le convertisseur de modes de fibres comprend un collimateur de fibre d'entrée et un collimateur de fibre de sortie qui sont positionnés l'un par rapport à l'autre. Le collimateur de fibre d'entrée comprend une lentille de collimation d'entrée qui est mise bout à bout avec la fibre d'entrée, et le collimateur de fibre de sortie comprend une lentille de collimation de sortie qui est mise bout à bout avec la fibre de sortie. La lentille de collimation d'entrée et la lentille de collimation de sortie sont positionnées en face du cœur d'isolateur optique, et le diamètre de faisceau de collimation de la lentille de collimation d'entrée est égal au diamètre de faisceau de collimation de la lentille de collimation de sortie. Les collimateurs de fibre d'entrée / de sortie sont constitués de fibres et de lentilles de collimation présentant des paramètres différents. Les modes de la fibre d'entrée / de sortie sont mis en correspondance par une conception mettant en correspondance les paramètres respectifs. Les fibres d'entrée / de sortie sont conditionnées conjointement avec le cœur d'isolateur optique, de façon à réduire les pertes, le volume et le coût.
PCT/CN2011/078392 2011-08-15 2011-08-15 Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes WO2013023350A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180020565.0A CN102959442B (zh) 2011-08-15 2011-08-15 光纤模式转换器及具有模式转换功能的光纤隔离器
PCT/CN2011/078392 WO2013023350A1 (fr) 2011-08-15 2011-08-15 Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078392 WO2013023350A1 (fr) 2011-08-15 2011-08-15 Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes

Publications (1)

Publication Number Publication Date
WO2013023350A1 true WO2013023350A1 (fr) 2013-02-21

Family

ID=47714687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078392 WO2013023350A1 (fr) 2011-08-15 2011-08-15 Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes

Country Status (2)

Country Link
CN (1) CN102959442B (fr)
WO (1) WO2013023350A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9973283B2 (en) 2013-04-11 2018-05-15 Hewlett Packard Enterprise Development Lp Mode conversion for optical isolation
CN105938223A (zh) * 2016-06-30 2016-09-14 苏州伽蓝致远电子科技股份有限公司 低损耗四端口混合型两波长波分复用光无源器件
US20200110219A1 (en) * 2017-02-27 2020-04-09 Rutgers, The State University Of New Jersey Ultra-Compact Planar Mode Size Converter with Integrated Aspherical Semi-Lens
CN108321668A (zh) * 2018-04-28 2018-07-24 无锡市德科立光电子技术有限公司 超小型纯光光纤放大器
US20220404558A1 (en) * 2019-08-28 2022-12-22 Kyocera Corporation Optical module and optical unit
CN111474632B (zh) * 2020-04-13 2020-12-04 中国人民解放军军事科学院国防科技创新研究院 一种光纤在线隔离器
CN112630888A (zh) * 2020-12-22 2021-04-09 光越科技(深圳)有限公司 模场转换系统
CN114137666A (zh) * 2021-11-24 2022-03-04 北京光润通科技发展有限公司 一种单向准直器组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446813A (en) * 1994-08-08 1995-08-29 Industrial Technology Research Institute Optical isolator
CN1184945A (zh) * 1997-12-26 1998-06-17 清华大学 一种全光纤的非互易传输方法与全光纤隔离器
CN1514263A (zh) * 2002-07-09 2004-07-21 北京鑫海莱光电科技有限公司 多通道光隔离器
CN101014891A (zh) * 2004-09-08 2007-08-08 阿尔卡特朗讯公司 模式转换器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446813A (en) * 1994-08-08 1995-08-29 Industrial Technology Research Institute Optical isolator
CN1184945A (zh) * 1997-12-26 1998-06-17 清华大学 一种全光纤的非互易传输方法与全光纤隔离器
CN1514263A (zh) * 2002-07-09 2004-07-21 北京鑫海莱光电科技有限公司 多通道光隔离器
CN101014891A (zh) * 2004-09-08 2007-08-08 阿尔卡特朗讯公司 模式转换器

Also Published As

Publication number Publication date
CN102959442B (zh) 2015-09-30
CN102959442A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2013023350A1 (fr) Convertisseur de modes de fibres et isolateur de fibres avec fonction de conversion de modes
US5699464A (en) Lens structure for focusing the light emitted by a multimode fiber
US6088153A (en) Multi-functional optical isolator
US7426325B2 (en) Compact, high power, fiber pigtailed faraday isolators
JP2013524262A (ja) マルチモード光カプラインターフェース
CN104901155A (zh) 一种高功率光纤激光泵浦光耦合与信号光扩束输出装置
CN102360131B (zh) 多功能高功率保偏光纤隔离器
CN206947724U (zh) 一种双程光纤放大器
CN103217815A (zh) 光隔离器
JP5368360B2 (ja) パルスファイバレーザ装置
CN103280691A (zh) 高功率激光光纤放大器
WO2024066048A1 (fr) Ensemble de couplage de trajet optique et module optique ayant un ensemble de couplage de trajet optique
WO2020073707A1 (fr) Module à fibre intégrée et dispositif à fibre à microstructure
JP2000304965A (ja) 端部レンズ付きファイバ
CN212342993U (zh) 一种紫外光纤激光器
JP2002107579A (ja) 光合分波モジュール
JP2006337519A (ja) 円偏光適合性を有する偏波保持光ファイバおよびそれを用いた磁気光学トラップ装置および原子チップ
CN203288931U (zh) 高功率光纤激光器和光纤放大器
WO2014168040A1 (fr) Structure de couplage optique
CN202075526U (zh) 一种光隔离器
US6826319B2 (en) Optical isolator
CN112636836B (zh) 一种全光纤1.56μm外腔谐振倍频装置
CN117220122B (zh) 一种面向1.3um的平面波导激光增益模块、激光放大装置
JP2008003211A (ja) インライン型ハイブリッド光デバイス
US20230120953A1 (en) Laser system for harmonic generation without intracavity astigmatism

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020565.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871047

Country of ref document: EP

Kind code of ref document: A1