WO2013021876A1 - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
WO2013021876A1
WO2013021876A1 PCT/JP2012/069521 JP2012069521W WO2013021876A1 WO 2013021876 A1 WO2013021876 A1 WO 2013021876A1 JP 2012069521 W JP2012069521 W JP 2012069521W WO 2013021876 A1 WO2013021876 A1 WO 2013021876A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
position detection
magnetic layer
film
layer
Prior art date
Application number
PCT/JP2012/069521
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 桐原
石田 真彦
泰信 中村
健一 内田
英治 齊藤
Original Assignee
日本電気株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立大学法人東北大学 filed Critical 日本電気株式会社
Publication of WO2013021876A1 publication Critical patent/WO2013021876A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to an apparatus for detecting a position where heat is generated.
  • Elements that can detect two-dimensional position information are used in various devices such as user interfaces such as touch panels, information about sensors and cameras, and image acquisition devices. It is considered to be an increasingly important point of contact with space.
  • many methods such as a resistive film method, a capacitance method, and an infrared method have been proposed and demonstrated.
  • a resistive film type touch panel an upper conductive film and a lower conductive film are arranged close to each other, and a standby state is applied with a bias voltage applied to one of them.
  • the upper conductive film and the lower conductive film come into contact with each other at the touched point and energize. Therefore, the coordinates are determined by measuring the potential at that point.
  • the electrode or conductive film disposed on the panel is kept in a standby state in a state where a driving voltage is appropriately applied.
  • a driving voltage is appropriately applied.
  • the touched point can be detected by reading a voltage change accompanying the change at multiple points.
  • an infrared touch panel an infrared light emitting element (LED) is arranged at one end on the panel, and an infrared light receiving element (phototransistor) is arranged at the other end in an array, and the apparatus is kept waiting in a state where infrared rays are continuously scanned. .
  • Patent Documents 1 and 2 disclose a heat / spin current conversion element and a spintronics device using the spin Seebeck effect and the like that are also used in the present invention.
  • Patent Document 3 discloses an example of a resistive film type touch panel.
  • Non-Patent Document 1 discloses spin Seebeck theory.
  • An object of the present invention is to provide a position detection device that does not require an external power supply.
  • a position detection device includes a magnetic layer having magnetization, a metal film including a material having spin-orbit interaction, and a position information input unit.
  • the position information input unit inputs position information by modulating the effective temperature in the magnetic layer and inducing a spin Seebeck effect. Specifically, a local temperature gradient is generated in the magnetic layer by locally heating (cooling) a part of the magnetic layer using the position information input unit, and the spin driven thereby By reading the current (spin Seebeck effect) from the thermoelectromotive force induced in the metal film, the two-dimensional coordinates of the place where heat generation (endotherm) occurs are specified. Thereby, position detection becomes possible.
  • Specific examples of the position information input unit include a heating (or cooling) unit, an electromagnetic wave irradiation unit, a frictional heat generation unit, a pressure application unit, a local cooling unit, and a magnetic characteristic modulation unit.
  • a position detection device that does not require an external power source can be provided by using body temperature, environmental heat, or the like.
  • body temperature, environmental heat, or the like thereby, application to a touch panel, an image sensor, etc. of low standby power by simple composition is attained.
  • FIG. 1 is a diagram for explaining the principle of the spin Seebeck effect in a thermoelectric conversion element.
  • FIG. 2 is a diagram for explaining the principle of the position detection device according to the present invention and is a diagram for explaining a standby state.
  • FIG. 3 is a diagram for explaining the operation of the spin Seebeck effect when the entire surface of the position detection device is heated (a) and when a part of the position detection device is heated (b).
  • FIG. 4 is a diagram for explaining the first embodiment of the position detection apparatus according to the present invention.
  • FIG. 5 is a diagram for explaining a two-dimensional position determination procedure in the position detection apparatus according to the present invention.
  • FIG. 7 is a diagram for explaining an operation example of the position detection apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a diagram for explaining another operation example of the position detection apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a diagram for explaining another mounting method according to the first embodiment of the present invention.
  • FIG. 10 is a diagram illustrating Example 1 which is a specific example of the position detection device according to the first embodiment of the present invention.
  • FIG. 11 is a diagram illustrating Example 1b which is a specific example of the position detection device according to the first embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a second embodiment of the position detection apparatus according to the present invention.
  • FIG. 13 is a diagram for explaining another mounting method according to the second embodiment of the present invention.
  • FIG. 14 is a diagram illustrating Example 2 which is a specific example of the position detection device according to the second embodiment of the present invention.
  • FIG. 15 is a diagram for explaining a third embodiment of the position detection apparatus according to the present invention.
  • FIG. 16 is a diagram illustrating Example 3 which is a specific example of the position detection device according to the third embodiment of the present invention.
  • FIG. 17 is a view for explaining a fourth embodiment of the position detection apparatus according to the present invention.
  • FIG. 18 is a diagram illustrating Example 4 which is a specific example of the position detection device according to the fourth embodiment of the present invention.
  • FIG. 19 is a diagram for explaining a fifth embodiment of the position detection apparatus according to the present invention.
  • FIG. 20 is a diagram illustrating Example 5 which is a specific example of the position detection device according to the fifth embodiment of the present invention.
  • FIG. 21 is a view for explaining a sixth embodiment of the position detection apparatus according to the present invention.
  • FIG. 22 is a diagram for explaining a seventh embodiment of the position detection apparatus according to the present invention.
  • FIG. 23 is a diagram illustrating Example 7 which is a specific example of the position detection device according to the seventh embodiment of the present invention.
  • FIG. 24 is a view for explaining an eighth embodiment of the position detecting apparatus according to the present invention.
  • FIG. 25 is a diagram illustrating Example 8 which is a specific example of the position detection device according to the eighth embodiment of the present invention.
  • FIG. 26 is a view for explaining a ninth embodiment of the position detecting apparatus according to the present invention.
  • FIG. 27 is a diagram illustrating Example 9 which is a specific example of the position detection
  • the position detection device of the present invention is a device that identifies a heated spot on a plane or a spot that generates heat on a plane, and uses a spin Seebeck effect that generates a thermoelectromotive force from a temperature gradient.
  • the position detection device of the present invention has a position detection element (thermoelectric conversion unit) based on the spin Seebeck effect in any of the embodiments described later.
  • the present invention provides a position detection system (thermoelectric conversion unit) and a position detection system that is provided separately from the position detection element and includes a heating unit that heats an arbitrary place on the plane of the thermoelectric conversion unit.
  • the position detection apparatus of the present invention is an apparatus for specifying a two-dimensional coordinate of a heat generation portion, and uses a spin Seebeck effect that generates a thermoelectromotive force from a temperature gradient.
  • FIG. 1 shows a basic configuration of a thermoelectric conversion element using the spin Seebeck effect shown in Patent Document 1 or the like.
  • This thermoelectric conversion element includes a magnetic layer 101 having a magnetization M, formed on a substrate 100, and a metal film (conductive film) 102 disposed thereon.
  • thermoelectric conversion element When a temperature gradient in a perpendicular direction (direction perpendicular to the substrate surface) is applied to such a thermoelectric conversion element in the z direction in the figure, a spin current is induced at the interface between the metal film 102 and the magnetic layer 101. Is done. By converting this spin current into an electric electromotive force by the reverse spin Hall effect in the metal film 102, “thermoelectric conversion that generates a thermoelectromotive force from a temperature gradient” becomes possible.
  • the magnon temperature Tm corresponds to a parameter representing the intensity of the thermal motion of the spin.
  • the spin current Js is proportional to the temperature difference ⁇ Tme as follows.
  • FIG. 1B the upper surface (metal film side) of the thermoelectric conversion element is uniformly heated and a temperature difference ⁇ T is applied between the upper surface and the bottom surface of the thermoelectric conversion element. .
  • the electron temperature Te and the magnon temperature Tm are subjected to temperature modulation by different mechanisms through non-local interaction with the temperature gradient distribution generated in the surroundings, resulting in a finite electron-magnon temperature difference at the interface near the heating part.
  • ⁇ Tme (Tm ⁇ Te) ⁇ 0 is generated. Therefore, the interface spin current Js is pumped from the magnetic layer 101 to the metal film 102 using this temperature difference ⁇ Tme as a drive source.
  • the above is the microscopic driving mechanism of the spin Seebeck effect described above.
  • This thermally driven spin current Js is converted into an electric field EISHE by the spin Hall effect in the metal film 102, thereby generating a thermoelectromotive force V between the end portions of the metal film 102.
  • E ISHE ( ⁇ SH ⁇ ) Js ⁇ M /
  • ⁇ SH is the spin Hall angle (corresponding to the conversion efficiency between current and spin current)
  • represents the sheet resistance of the metal film.
  • the thermally induced electric field E ISHE occurs in a direction perpendicular to both the spin current Js and the magnetization M. Accordingly, the thermoelectromotive force V generated on the metal film surface also has a large value in the direction (y direction) perpendicular to the direction of the spin current and temperature gradient (z direction) and the magnetization direction (x direction).
  • thermoelectromotive force in a metal film (Pt) / magnetic body (Bi: YIG thin film) structure formed on a synthetic quartz glass substrate The state of is shown.
  • An in-plane thermoelectromotive force V is observed in the metal film by applying a temperature gradient in the direction perpendicular to the surface of the thermoelectric conversion element. It has also been confirmed that the sign of the thermoelectromotive force V is reversed by reversing the magnetization M of the magnetic material with the external magnetic field H (horizontal axis of the graph).
  • FIG. 2 is a diagram for explaining the principle of the position detection apparatus according to the present invention.
  • the electron temperature Te rises locally in the vicinity of the heated metal film / magnetic material interface, whereas the magnon temperature Tm, which is a spatial average, does not change greatly, and is locally limited.
  • Electron-magnon temperature difference ⁇ Tme is generated.
  • the interface spin current Js is driven in this portion, and the electric field E ISHE is locally induced.
  • the difference between the two situations (FIGS.
  • thermoelectromotive force generated in the metal film due to the spin Seebeck effect by heating can be expressed as an equivalent circuit as a current source in parallel with the internal resistance of the metal film.
  • the end face may be considered open in terms of circuit.
  • FIG. 4A shows a basic structure of the position detection apparatus according to the first embodiment of the present invention.
  • This position detection device includes a substrate 4, a magnetic layer 2 formed on the substrate 4, and a metal film 5 formed on the magnetic layer 2.
  • a cover layer 3 may be formed on the metal film 5.
  • the material of the magnetic layer 2 includes (1) preventing heat from escaping (holding a temperature difference) and generating a highly sensitive electromotive force, and (2) suppressing high thermal diffusion and high position detection resolution. It is desirable to use a material with low thermal conductivity for the two purposes of realizing the above.
  • a magnetic insulator having a smaller thermal conductivity is used in this embodiment.
  • a polycrystalline or nanocrystalline magnetic insulator material is used, phonon thermal conduction can be suppressed by effective phonon scattering, and higher sensitivity and resolution can be obtained.
  • an oxide magnetic material such as garnet ferrite or spinel ferrite can be applied.
  • Such a magnetic layer 2 is formed on the substrate 4 by a method such as an organic metal deposition method (MOD method), a sol-gel method, or an aerosol deposition method (AD method).
  • a garnet film such as YIG has high transparency in a wide wavelength range, it is also suitable for application as a transparent position input device such as a touch panel.
  • a magnetic material having a coercive force is used as the magnetic layer 2, an element that can operate even under a zero magnetic field can be obtained by initializing the magnetization direction once with an external magnetic field or the like.
  • the metal film 5 contains a material having a spin orbit interaction in order to extract a thermoelectromotive force using the inverse spin Hall effect.
  • a metal material such as Au, Pt, Pd, or Ir having a relatively large spin orbit interaction or an alloy material containing them is used. Further, a thermoelectromotive force can be taken out even with a material obtained by doping a low-cost, low-resistance metal such as Cu with a small amount (about 1 to 10%) of the impurity having the spin orbit interaction as described above.
  • a metal film 5 is formed by a method such as sputtering or vapor deposition. Further, it can also be produced by an ink jet method or a screen printing method.
  • the thickness of the metal film 5 is preferably set to be at least equal to or greater than the spin diffusion length of the metal material. For example, it is desirable to set the thickness to 50 nm or more for Au and 10 nm or more for Pt. However, in an application in which the thermoelectromotive force is read as a voltage signal with an electrometer as in the present embodiment, it is desirable that the sheet resistance ⁇ is large. For this reason, the thinner the metal film 5, the larger the voltage output. Considering both of these, the thickness of the metal film 5 is most preferably about the spin diffusion length of the metal material. For example, the thickness is set to about 50 to 100 nm for Au, and about 10 to 30 nm for Pt.
  • the cover layer 3 is not particularly limited as long as it is a material and a structure that can protect the element (thermoelectromotive force generator).
  • the cover layer 3 can be produced by a printing and coating process.
  • the film thickness is desirably 200 ⁇ m or less.
  • the substrate 4 may be of any material or structure as long as it can support the magnetic layer 2 and the metal film 5.
  • the thermal resistance in the direction perpendicular to the surface of the substrate 4 is designed to be sufficiently larger than the thermal resistance in the direction perpendicular to the surface of the other layers (magnetic layer 2 + cover layer 3).
  • the substrate 4 an amorphous insulator such as glass or an organic resin material such as polyimide is used. It should be noted that the substrate 4 may be omitted under applications and usage environments where the magnetic layer 2 can be directly fixed and used stably.
  • one end g1 of the metal film 5 (here, the lower left in the figure) is connected to the ground (reference potential), and the metal film peripheral portion (x1 to x7, y1 to y7) with respect to this ground.
  • the potentials (Vx1 to Vx7, Vy1 to Vy7) are kept waiting so that they can be measured and recorded by the position recording devices 11 and 12, respectively.
  • a position recording device 13 for measuring and recording potentials (Vy1 ′ to Vy7 ′) is connected to peripheral portions (y1 ′ to y7 ′) on the opposite side of the metal film peripheral portions (y1 to y7).
  • FIG. 4A when a part of the magnetic layer 2 is heated (or cooled) by some heating (or cooling) unit 10 from the outside, the temperature is locally modulated in this part, A finite electron-magnon temperature difference ⁇ Tme occurs. As a result, a spin current due to the spin Seebeck effect is induced, and an electric field E ISHE associated therewith is locally generated in the metal film 5.
  • EISHE electromotive voltage
  • the spatial distribution of the peripheral portion voltage is not uniform and depends on the two-dimensional position where the local electric field EISHE is generated. Therefore, by measuring and recording this electromotive force with an external electrometer (position recording devices 11, 12, and 13), the two-dimensional coordinates of the position where heat is generated can be specified.
  • the heating (or cooling) unit 10 functions as a position information input unit (means).
  • the heated two-dimensional position can be determined more accurately by switching the place of the ground and performing the same measurement.
  • the potential at the peripheral edge of the metal film is evaluated with reference to only one location (g1) in the metal film 5, the two-dimensional position may not be specified accurately depending on the heating location, as shown in FIG. On the other hand, for example, as shown in FIG.
  • the ground is switched to the position of the lower right end g2 of the metal film 5, and the potentials (Vx1 to Vx7, Vy1 ′ to Vy7 ′) at the peripheral edge of the metal film.
  • the position recording devices 11 and 13 measure and record again. In this way, more accurate position information can be determined by measuring the potential twice or more with reference to the ground points (g1, g2) at different positions.
  • the position of the ground (g1, g2) may be any place on the two-dimensional plane.
  • FIG. 4 shows an example in which the end portions (lower left and lower right) of the square metal film 5 are grounded, the center portion of the metal film 5 may be used as ground. (Specific operation example) Next, a more specific operation example will be described.
  • An object of the present invention is to detect and specify the heating position (a, b) through measurement of the thermoelectromotive force accompanying the spin Seebeck effect. Under such heating, the aforementioned electron-magnon temperature difference ⁇ Tme produces a finite value in the heating section. Under the approximation that the magnon temperature Tm does not change significantly by local heating, the temperature difference ⁇ Tme is proportional to the temperature rise distribution ⁇ T (x, y) as follows.
  • ⁇ Tme Tm (x, y) ⁇ Te (x, y) ⁇ T (x, y) Due to this temperature difference ⁇ Tme, the spin current Js is driven, and a local electric field E ISHE is induced in the metal film 5.
  • the integral is a value represented by the following formula (2).
  • FIG. 6B shows a temperature rise distribution ⁇ T on the connection line connecting the ground g1 and the electromotive voltage measurement terminal n at this time.
  • the potential (thermoelectromotive force) Vn measured at the electromotive voltage measurement terminal n depends on the integral value of this temperature distribution.
  • FIG. 7A shows voltage values measured as Vx1 to Vx7 and Vy1 to Vy7 by the position recording devices 11 and 12 (the vertical axis is normalized by the maximum voltage value).
  • the ground position is switched and the measurement is performed again.
  • FIG. 7A shows voltage values measured as Vx1 to Vx7 and Vy1 to Vy7 by the position recording devices 11 and 12 (the vertical axis is normalized by the maximum voltage value).
  • the ground position is switched and the measurement is performed again.
  • the two-dimensional position where heating has occurred can be identified from the potential distribution measured by the position recording devices 11, 12, and 13. Anything can be used as the heating unit 10 (FIG. 4) as long as it has heat. Therefore, position information can be input with a finger having a body temperature, a pen whose tip is heated, or the like. Since it is not necessary to apply a bias such as a voltage during standby, it can be used for a user interface with extremely low standby power. Note that the operation principle of position input in this embodiment is to locally change the temperature distribution of the magnetic layer 2, and therefore a cooling unit may be used instead of the heating unit 10.
  • the temperature distribution can be locally changed by attaching the position detection device to a high-temperature heat source such as an IT device and heating it in advance, and bringing a cooling unit at room temperature from the outside.
  • FIG. 4 shows the element structure in which the metal film 5 / magnetic layer 2 / substrate 4 are stacked in this order from the top, the stacking order of the metal film 5 and the magnetic layer 2 may be reversed. That is, as shown in FIG. 9, a laminated structure of magnetic layer 2 / metal film 5 / substrate 4 may be employed in order from the top. In the laminated structure as shown in FIG. 9, since a magnetic insulator material having a small thermal conductivity can be used as the magnetic layer 2, when heated by the heating unit 10 from above, the horizontal (x, y) direction The spread of heat is suppressed to a small level and the spatial resolution is improved.
  • FIG. 10 shows Example 1 as a specific example of the first embodiment of the present invention.
  • the magnetic layer 2 is described as Yttrium iron garnet (hereinafter referred to as Bi: YIG) in which a part of the Y site is replaced with Bi.
  • the composition is BiY. 2 Fe 5 O 12 ) Use a membrane.
  • a Pt film is used for the metal film 5.
  • Bi YIG film thickness t m Is 100 nm
  • Pt film thickness t e Is 15 nm.
  • Film thickness t for substrate 4 s A quartz glass substrate of 500 ⁇ m is used, and the cover layer 3 has a film thickness t.
  • c A 100 ⁇ m synthetic sapphire plate is used.
  • the heating unit 10 a pen whose tip is heated to 40 ° C. is used.
  • the magnetic layer 2 made of Bi: YIG is formed by an organometallic decomposition method (MOD method).
  • MOD method organometallic decomposition method
  • a MOD solution manufactured by Kojundo Chemical Laboratory Co., Ltd. is used.
  • This solution is applied onto a quartz glass substrate by spin coating (rotation speed: 100 rpm, rotation for 30 s), dried on a hot plate at 150 ° C. for 5 minutes, and then sintered in an electric furnace at a high temperature of 720 ° C. for 14 hours.
  • FIG. 11 shows another embodiment 1b.
  • the same film thickness t as in example 1 s On a quartz glass substrate (substrate 4) of 500 ⁇ m, the thickness t m A 10 ⁇ m Bi: YIG film (magnetic layer 2) is formed by an aerosol deposition (AD) method.
  • an alloy material Cu1-xIrx in which Ir is mixed with Cu is used.
  • Bi: YIG fine particles having a diameter of 300 nm are used as Bi: YIG raw materials formed by the AD method.
  • the Bi: YIG fine particles are packed in an aerosol generation container, and the substrate 4 is fixed to a holder in the film forming chamber.
  • an alloy material Cu0.99Ir0.01 doped with 1% Ir is used.
  • an ink (paste) for screen printing a powder obtained by atomizing Cu0.99Ir0.01 alloy into a particle size of about 50 nm and mixed with a binder is used. Finally, an organic solution in which polymethyl methacrylate is dissolved as an acrylic material is applied on these, and dried at a high temperature of about 100 ° C. to obtain a thickness t c A cover layer 3 of 100 ⁇ m is prepared.
  • Position Detection Device Having Two Metal Films (Conductive Film) In the first embodiment, in order to increase the position specifying accuracy, potential measurement is performed twice with different positions (g1, g2) as grounds.
  • an upper metal film 21 is formed on the magnetic layer 2, and a lower metal film 22 is formed below the magnetic layer 2.
  • the upper metal film 21 has the g1 (0, 0) point grounded to the ground, and the peripheral edges (x1 to x7) and (y1 to y7) of the upper metal film 21.
  • the potentials (Vx1 to Vx7) and (Vy1 to Vy7) are measured by the position recording devices 11 and 12 connected to the terminal (1).
  • the lower metal film 22 has the g2 (8, 0) point grounded to the ground, and the peripheral edges (x1 to x7) and (y1 'to y7) of the lower metal film 22
  • the potentials (Vx1 ′ to Vx7 ′) and (Vy1 ′ to Vy7 ′) are measured by the position recording devices 14 and 13 connected to the terminal ′). In this way, by preparing two metal films and simultaneously measuring the electromotive force induced by them, the two-dimensional position where heat is generated can be accurately detected at once without switching the ground. It can be measured.
  • the metal films are stacked on the upper and lower sides of one magnetic layer 2, but as shown in FIG.
  • Example 13 the upper metal film 21, the upper magnetic layer 23, and the spacer layer 25 are sequentially arranged from the top.
  • a structure in which two magnetic layers are used and a metal film is disposed on each side may be used.
  • the cover layer 3 is formed as necessary.
  • FIGS. 13B and 13C the connection of the position recording devices 11 and 12 to the upper metal film 21 and the connection of the position recording devices 14 and 13 to the lower metal film 22 are shown in FIGS. Same as).
  • Example 2 is shown in FIG. 14 as a specific example of the second embodiment of the present invention. In FIG.
  • the magnetic layer 2 has a thickness t m 100 nm Bi: YIG is used.
  • Each of the upper metal film 21 and the lower metal film 22 has a thickness t. e 15 nm Pt is used.
  • Film thickness t for substrate 4 s A quartz glass substrate of 500 ⁇ m is used as the cover layer 3 with a film thickness t. c
  • a 100 ⁇ m synthetic sapphire plate is used. These mountings are performed in the same manner as in the first embodiment.
  • the connection of the position recording devices 11 and 12 to the upper metal film 21 and the connection of the position recording devices 14 and 13 to the lower metal film 22 may be the same as in FIGS. ⁇ Third to sixth embodiments ⁇
  • the heating unit 10 is used to input the position information.
  • FIG. 15 shows a perspective view of an electromagnetic wave sensor as an application example of the position detection device as a third embodiment of the present invention.
  • the difference from the position detection apparatus according to the first embodiment is that an electromagnetic wave absorption film 31 is newly arranged and formed on the metal film / magnetic layer via an insulating layer 32 made of an insulating material.
  • the electromagnetic wave 30 is locally irradiated from the outside by the electromagnetic wave irradiation unit 35 to the electromagnetic wave sensor having such a structure, the electromagnetic wave 30 is absorbed by the electromagnetic wave absorbing film 31 and generates heat at that position. Occurs.
  • thermoelectromotive force due to this heat generation With the position recording device (X position recording device) 11 and the position recording device (Y position recording device) 12, it is possible to specify the two-dimensional position irradiated with the electromagnetic wave. it can.
  • the connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
  • the electromagnetic wave absorbing film 31 a material that absorbs the electromagnetic wave 30 well and generates heat is used. The specific material selection depends on the wavelength.
  • a gold black film (gold ultrafine particle film) or a nickel-chromium alloy film can be used for infrared rays, and CIGS (Cu (In, Ga) Se 2 )
  • a film or a fullerene film can be used.
  • a carbon film made of carbon black, carbon nanotube, or the like is suitable for film formation by coating and printing, and can be used in a wide wavelength range from infrared to visible.
  • the insulating layer 32 serves as an insulating layer so as not to disturb the thermoelectromotive force generation operation in the metal film 5. When the electromagnetic wave absorbing film 31 itself is an insulator, the insulating layer 32 may be omitted.
  • a material that transmits the electromagnetic wave 30 as much as possible is used for the cover layer 3. If necessary, only a specific wavelength can be detected by providing a wavelength filter above the cover layer 3. In addition, by providing a partial reflecting mirror on the upper part of the cover layer 3 and optimizing the thickness of the cover layer 3, a resonator that functions for a specific wavelength can be configured, and the electromagnetic wave detection sensitivity can be improved. . In applications where sensitivity is important, the electromagnetic wave absorbing film 31, the insulating layer 32, and the cover layer 3 have a thermal conductivity in a direction perpendicular to the surface in order to effectively transmit the input heat to the magnetic layer 2.
  • each film thickness is desirably 100 ⁇ m or less.
  • materials and structures that exhibit high heat conduction in the direction perpendicular to the surface and low heat conduction in the in-plane direction (direction parallel to the substrate surface) are employed in these layers. .
  • it is anisotropic by using a material in which fillers such as carbon fiber oriented in the direction perpendicular to the surface are embedded, or by using a structure in which the material is divided (incised) for each pixel in the surface.
  • FIG. 16 shows Example 3 as a specific example of the third embodiment of the present invention.
  • the magnetic layer 2 has a thickness t. m 100 nm Bi: YIG
  • metal film 5 has a thickness t e
  • a 15 nm Pt film is used.
  • the electromagnetic wave 30 infrared rays having a wavelength of about 10 ⁇ m are used.
  • the electromagnetic wave absorbing film 31 a carbon black film that can efficiently absorb electromagnetic waves of this wavelength is used.
  • Film thickness t for substrate 4 s A quartz glass substrate of 500 ⁇ m is used as the insulating layer 32 with a film thickness t. sp A 200 nm polyimide layer is used as the cover layer 3 with a film thickness t. c Each 100 ⁇ m acrylic resin is used. These are produced as follows. First, a Pt / Bi: YIG layer is formed by the same method as in Example 1 described above. Thereafter, a polyimide layer (insulating layer 32) is formed thereon by applying a raw material solution and drying. Further thereon, a carbon black film having a film thickness of 200 nm, which is the electromagnetic wave absorbing film 31, is applied and formed on the entire surface by spin coating of raw materials.
  • FIG. 17 shows a perspective view of a contact detection sensor (or frictional heat sensor) which is an application example of the position detection device as the fourth embodiment of the present invention.
  • This sensor uses a frictional heat generating film 41 instead of the cover layer 3 in the position detection device shown in the first embodiment.
  • an insulating layer may be inserted between the frictional heat generating film 41 and the metal film 5 as necessary.
  • the connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
  • the surface of the frictional heat generation film 41 is appropriately processed so that heat is generated by contact with the frictional heat generation unit 40. Further, in order to efficiently transmit the heat generated on the surface to the magnetic layer 2, it is desirable that the frictional heat generating film 41 is made as thin as possible within a range that functions as a protective film or is made of a material having high thermal conductivity. By such a contact detection sensor, an external power source is unnecessary and a user interface with zero standby power is realized. For example, it is possible to input characters by rubbing the frictional heat generating film 31 with a pen.
  • the method for generating frictional heat is not limited to the method shown here.
  • the frictional heat generating film 41 is configured by a mechanical part that generates frictional heat by pressure or vibration from the outside. Detection device) can also be configured.
  • FIG. 18 shows Example 4 as a specific example of the fourth embodiment of the present invention.
  • the magnetic layer 2 has a thickness t. m 1 ⁇ m Bi: YIG
  • metal film 5 has a thickness t e
  • a 100 nm Cu0.99Ir0.01 film is used.
  • synthetic sapphire having a rough surface with small irregularities is used, and the film thickness t fr Is 100 nm.
  • As the frictional heat generating unit 40 a pen whose tip is coated with alumina is used.
  • FIG. 19 is a perspective view of a floating body sensor as an application example of the position detection device as the fifth embodiment of the present invention.
  • a floating body adsorption film 51 for floating body adsorption is newly formed and arranged on the metal film / magnetic layer via an insulating layer 32 which is an insulating material.
  • the floating body detection film 51 for example, a known chemical material such as a catalyst that generates a chemical reaction accompanied by heat generation when a specific floating body 50 is adsorbed can be used.
  • membrane 51 the film
  • the insulating layer 32 plays a role of an insulating layer so as not to disturb the thermoelectromotive force generation operation in the metal film 5, but is not necessarily required depending on the floating body detection film 51 used.
  • the magnetic layer 2 or the metal film 5 can be directly used as a floating body detection film.
  • a floating body 50 such as a gas comes from the outside with respect to the floating body sensor having such a structure
  • heat generated by a chemical reaction occurs at a point adsorbed on the floating body detection film 51, and a part of the magnetic layer 2 is formed. Heated.
  • the connection configuration of the position recording apparatuses 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
  • FIG. 20 shows Example 5 as a specific example of the fifth embodiment of the present invention.
  • the magnetic layer 2 has a thickness t. m 100 nm Bi: YIG, metal film 5 has a thickness t e 15 nm Pt is used. These are the film thickness t s A film is formed on a 500 ⁇ m quartz glass substrate 4 in the same manner as in the first embodiment.
  • FIG. 21 shows a position detection apparatus (Example 6) according to the sixth embodiment of the present invention.
  • the magnetic layer 2 / metal film 5 is stacked in place of the stacking order of the upper heating layer 61 formed and arranged between the substrate 4 and the metal film 5 with a plurality of dot spacers 53 therebetween.
  • the lower heating layer 62 is provided.
  • a cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary.
  • the upper heat generating layer 61 and the lower heat generating layer 62 are made of a combination of materials that generate heat when in contact with each other.
  • the dot spacer 53 serves to spatially isolate the upper heat generating layer 61 and the lower heat generating layer 62 during standby.
  • a material of the dot spacer 53 a material having a low thermal conductivity such as an organic resin is used. In such a position detection device, when pressure from the pressure application unit 60 is applied from the outside, the upper heat generating layer 61 is distorted downward, and the upper heat generating layer 61 and the lower heat generating layer 62 are partially in contact with each other.
  • the apparatus is made to stand by with an external bias voltage applied between the upper heat generating layer 61 and the lower heat generating layer 62 so that a current flows only at a place where the upper heat generating layer 61 and the lower heat generating layer 62 are in contact with each other.
  • an external bias voltage applied between the upper heat generating layer 61 and the lower heat generating layer 62 so that a current flows only at a place where the upper heat generating layer 61 and the lower heat generating layer 62 are in contact with each other.
  • ohmic heat generated by the electrical resistance of this portion can be used for position input.
  • heat can be generated by using a pressure (or strain) when the upper heat generating layer 61 is pressed against the lower heat generating layer 62 as a trigger. For example, it is possible to detect the position by measuring the reaction heat, latent heat, etc. generated by the chemical reaction or phase change caused by the pressure application by the same method.
  • FIG. 22 the perspective view of the position detection apparatus which is the 7th Embodiment of this invention is shown. Similar to the sixth embodiment, in the seventh embodiment, the stacking order of the magnetic layer 2 / metal layer 5 is changed from the upper side to the lower side instead of the stacking order of the metal layer 5 / magnetic layer 2.
  • a heat source 58 having a temperature higher (or lower) than room temperature is used instead of the substrate 4 in the first embodiment.
  • various things such as a display, the side surface of IT apparatus, the wall and window of a building where sunlight hits, can be used.
  • a cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary. Next, the operation principle will be described.
  • the magnetic layer 2 (upper side) / metal layer 5 (lower side) are disposed above the heat source 58 via a plurality of dot spacers 53.
  • the magnetic layer 2 / metal layer 5 and the heat source 58 are spatially separated by the dot spacer 53.
  • a material of the dot spacer 53 a material having a low thermal conductivity such as an organic resin is used.
  • heat transfer between the magnetic layer 2 / metal layer 5 and the heat source 58 is small during standby, and different temperature distributions can be obtained.
  • FIG. 22 when the pressure applied by the pressure application unit 70 is applied to a certain point from the outside, the heat source 58 and the magnetic layer 2 / metal layer 5 come into contact with each other at this point, Large heat transfer occurs.
  • FIG. 23 shows Example 7 as a specific example of the seventh embodiment of the present invention.
  • the heat source 58 a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used.
  • the cover layer 3 has a thickness t c A 100 ⁇ m acrylic layer (or synthetic sapphire plate) is used.
  • the magnetic layer 2 has a thickness t m 100 nm Bi: YIG, metal film 5 has a thickness t e 15 nm Pt is used. These are formed on the acrylic layer (on the lower side in the drawing) in the same manner as in Example 1 described above. Then, this is arranged on the upper part of the heat source 58 via a dot spacer 53 made of acrylic urethane resin and having a diameter of 10 ⁇ m. During standby, the Pt / Bi: YIG / acrylic layer and the heat source 58 are spatially separated by an acrylic urethane resin dot spacer 53. At this time, the heat transfer between them is small.
  • FIG. 24 is a perspective view of a position detection apparatus according to the eighth embodiment of the present invention.
  • the apparatus form is almost the same as that of the first embodiment, the magnetic layer 2 / metal layer 5 is stacked in this order from the top, and instead of the substrate 4, it has a temperature higher (or lower) than room temperature.
  • a heat source 58 is used. As a result, a steady temperature gradient in the direction perpendicular to the surface is generated in the position detection device due to the influence of the heat source 58 during standby.
  • a cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary. In this state, when the local cooling unit 80 at room temperature is pressed, heat dissipation (cooling) is promoted locally in this part, so that the temperature gradient applied to the magnetic layer / metal layer is locally large. Thus, the electric field accompanying the spin current increases.
  • Position information can be estimated by detecting a change in potential distribution associated therewith by the same method as in the first embodiment. Therefore, the connection configuration of the position recording apparatuses 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
  • FIG. 25 shows Example 8 as a specific example of the eighth embodiment of the present invention.
  • the magnetic layer 2 has a thickness t. m 1 ⁇ m Bi: YIG
  • metal film 5 has a thickness t e A 100 nm Cu0.99Ir0.01 film is used.
  • the heat source 58 a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used.
  • the cover layer 3 has a thickness t c A 100 ⁇ m acrylic layer (or synthetic sapphire plate) is used. Further, a room temperature pen (cooling pen) is used as the local cooling unit 80.
  • FIG. 26 shows such a position detection device as the ninth embodiment.
  • the basic configuration of the position detection apparatus according to the ninth embodiment is substantially the same as that of the eighth embodiment, and utilizes a steady spin current in a situation where a temperature gradient exists.
  • the magnetic layer 2 / metal layer 5 is laminated in order from the top, and a heat source 58 having a temperature higher (or lower) than room temperature is used instead of the substrate 4.
  • a cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary.
  • a magnetic characteristic modulation unit 90 is used instead of the local cooling unit 80.
  • the magnetic characteristic modulating unit 80 a local electric field / magnetic field, a local pressure, and an electromagnetic wave can be used. As a result, the effective potential felt by magnon is effectively modulated, and as a result, the magnon temperature Tm described above is modulated.
  • Example 9 shows Example 9 as a specific example of the eighth embodiment using magnon modulation by a local magnetic field.
  • Bi YIG is used for the magnetic layer 2 and Pt is used for the metal film 5. These are produced on the acrylic layer (lower side in the drawing) to be the cover layer 3 by the same method as in the first embodiment.
  • the heat source 58 a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used.
  • the cover layer 3 has a thickness t c A 100 ⁇ m acrylic layer is used.
  • the magnetic property modulation unit 90 a pen having a ferrite magnet at the tip is used. Thereby, the position input can be performed by modulating the magnon temperature Tm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)
  • Hall/Mr Elements (AREA)

Abstract

A position detection device includes: a magnetic body layer having magnetization; an electroconductive film containing a material having spin orbit interaction; and a position information input unit. With the information input unit, when the temperature in the magnetic body layer is modulated and a spin Seebeck effect is induced, an electrical field is generated locally in the electroconductive film, and the temperature modulation position is detected from the resulting change in potential.

Description

位置検出装置Position detection device
 本発明は、熱の生成した位置を検出する装置に関する。 The present invention relates to an apparatus for detecting a position where heat is generated.
 2次元的な位置情報を検出可能な素子は、タッチパネルなどのユーザーインターフェースや、センサ、カメラなどの情報、画像取得装置など、様々なデバイスで活用されており、今後もクラウド社会におけるサイバー空間と実空間との間の接点として、ますます重要なものになると考えられる。
 例えばタッチパネルに関しては、抵抗膜方式、静電容量方式、赤外線方式など、多くの方式が提案、実証されている。
 抵抗膜方式のタッチパネルでは、上部導電膜と下部導電膜を近接配置し、これらのいずれか一方にバイアス電圧を印加した状態で待機させておく。ここで、外部からタッチによる圧力が加わると、タッチしたポイントで上部導電膜と下部導電膜とが接触して、通電することから、その地点での電位を計測することで、座標を決定することができる。
 静電容量方式のタッチパネルでは、パネル上に配置された電極もしくは導電膜に、駆動電圧を適切に印加した状態で待機させておく。ここで、指などでパネルをタッチすると、これが静電容量の変化を生じさせることから、これに付随した電圧変化を多地点で読み取ることで、タッチされたポイントを検出することができる。
 赤外線方式のタッチパネルでは、パネル上の一端に赤外線発光素子(LED)、他端に赤外線受光素子(フォトトランジスタ)を、それぞれアレイ状に配置し、赤外線を連続的に走査した状態で待機させておく。ここで、外部から指などが近づくと、これによって赤外線が遮断され、該当する位置のフォトトランジスタがOFFになることから、タッチされたポイントを検出することができる。
 特許文献1、2は、後述するごとく、本発明においても利用するスピンゼーベック効果などを利用した熱/スピン流変換素子、スピントロニクスデバイスを開示している。
 特許文献3には、抵抗膜式タッチパネルの一例が開示されている。また、非特許文献1は、スピンゼーベック理論について開示している。
Elements that can detect two-dimensional position information are used in various devices such as user interfaces such as touch panels, information about sensors and cameras, and image acquisition devices. It is considered to be an increasingly important point of contact with space.
For example, with respect to the touch panel, many methods such as a resistive film method, a capacitance method, and an infrared method have been proposed and demonstrated.
In a resistive film type touch panel, an upper conductive film and a lower conductive film are arranged close to each other, and a standby state is applied with a bias voltage applied to one of them. Here, when pressure is applied by touch from the outside, the upper conductive film and the lower conductive film come into contact with each other at the touched point and energize. Therefore, the coordinates are determined by measuring the potential at that point. Can do.
In the capacitive touch panel, the electrode or conductive film disposed on the panel is kept in a standby state in a state where a driving voltage is appropriately applied. Here, when the panel is touched with a finger or the like, this causes a change in capacitance. Therefore, the touched point can be detected by reading a voltage change accompanying the change at multiple points.
In an infrared touch panel, an infrared light emitting element (LED) is arranged at one end on the panel, and an infrared light receiving element (phototransistor) is arranged at the other end in an array, and the apparatus is kept waiting in a state where infrared rays are continuously scanned. . Here, when a finger or the like approaches from the outside, the infrared rays are blocked by this, and the phototransistor at the corresponding position is turned off, so that the touched point can be detected.
As described later, Patent Documents 1 and 2 disclose a heat / spin current conversion element and a spintronics device using the spin Seebeck effect and the like that are also used in the present invention.
Patent Document 3 discloses an example of a resistive film type touch panel. Non-Patent Document 1 discloses spin Seebeck theory.
特開2009−130070号公報JP 2009-130070 A 特開2009−295824号公報JP 2009-295824 A 特開2010−055453号公報JP 2010-055453 A
 しかし、抵抗膜方式、静電容量方式、赤外線方式等のタッチパネルでは、位置を検出するためにバイアス電圧印加や光学的走査等のプローブ駆動手段に外部電源を必要とすることから、待機電力が大きくなる。このため、電力供給が難しい場面では利用が制限される。電池を用いた場合でも、その交換などの保守、管理負担が避けられない。将来的なセンサネットワークやユビキタス端末など、屋内、屋外問わず様々な場面での利用が期待される状況においては、電源が不要、もしくは実効的な発電機能が組み込まれた位置検出手段が求められる。
 本発明の課題は、外部電源が不要な位置検出装置を提供することにある。
However, in the touch panel of the resistance film type, the capacitance type, the infrared type, etc., the standby power is large because the probe driving means such as bias voltage application or optical scanning is required to detect the position. Become. For this reason, use is restricted in situations where power supply is difficult. Even when batteries are used, maintenance and management burdens such as replacement are inevitable. In situations where future use is expected in various scenes, such as sensor networks and ubiquitous terminals, whether indoors or outdoors, there is a need for position detection means that do not require a power source or incorporate an effective power generation function.
An object of the present invention is to provide a position detection device that does not require an external power supply.
 本発明の態様による位置検出装置は、磁化を有する磁性体層と、スピン軌道相互作用を有する材料を含む金属膜と、位置情報入力部と、を含む。位置情報入力部は、磁性体層中の有効温度を変調し、スピンゼーベック効果を誘起することで位置情報の入力を行う。
 具体的には、位置情報入力部を用いて磁性体層の一部を局所的に加熱(冷却)することで、磁性体層中に局所的な温度勾配を生じさせ、これによって駆動されるスピン流(スピンゼーベック効果)を、金属膜中に誘起される熱起電力から読み取ることで、発熱(吸熱)が生じた場所の2次元座標を特定する。これによって、位置検出が可能となる。
 位置情報入力部の具体例としては、加熱(または冷却)部、電磁波照射部、摩擦熱発生部、圧力印加部、局所冷却部、磁気特性変調部が挙げられる。
A position detection device according to an aspect of the present invention includes a magnetic layer having magnetization, a metal film including a material having spin-orbit interaction, and a position information input unit. The position information input unit inputs position information by modulating the effective temperature in the magnetic layer and inducing a spin Seebeck effect.
Specifically, a local temperature gradient is generated in the magnetic layer by locally heating (cooling) a part of the magnetic layer using the position information input unit, and the spin driven thereby By reading the current (spin Seebeck effect) from the thermoelectromotive force induced in the metal film, the two-dimensional coordinates of the place where heat generation (endotherm) occurs are specified. Thereby, position detection becomes possible.
Specific examples of the position information input unit include a heating (or cooling) unit, an electromagnetic wave irradiation unit, a frictional heat generation unit, a pressure application unit, a local cooling unit, and a magnetic characteristic modulation unit.
 本発明によれば、外部からの熱等によって位置入力を行うことから、体温や環境熱などを用いれば、外部電源が不要な位置検出装置を提供できる。これにより、簡便な構成による低待機電力のタッチパネルやイメージセンサなどへの応用が可能となる。また、塗布プロセスや印刷プロセスなどを利用することが可能で、低コスト基板への大面積実装にも適している。 According to the present invention, since position input is performed by external heat or the like, a position detection device that does not require an external power source can be provided by using body temperature, environmental heat, or the like. Thereby, application to a touch panel, an image sensor, etc. of low standby power by simple composition is attained. In addition, it is possible to use a coating process, a printing process, etc., and it is suitable for large area mounting on a low cost substrate.
 図1は、熱電変換素子におけるスピンゼーベック効果の原理を説明するための図である。
 図2は、本発明による位置検出装置の原理を説明するための図で、待機状態について説明するための図である。
 図3は、スピンゼーベック効果の動作を、位置検出装置の全面を加熱した場合(a)、位置検出装置の一部を加熱した場合(b)について説明するための図である。
 図4は、本発明による位置検出装置の第1の実施形態を説明するための図である。
 図5は、本発明による位置検出装置における、2次元位置決定手順を説明するための図である。
 図6は、本発明による位置検出装置における、(x,y)=(3,5)で規定される地点が加熱された場合の温度上昇分布を説明するための図である。
 図7は、本発明の第1の実施形態である位置検出装置の動作例を説明するための図である。
 図8は、本発明の第1の実施形態である位置検出装置の他の動作例を説明するための図である。
 図9は、本発明の第1の実施形態の別の実装方法について説明するための図である。
 図10は、本発明の第1の実施形態である位置検出装置の具体的な例である実施例1を示す図である。
 図11は、本発明の第1の実施形態である位置検出装置の具体的な例である実施例1bを示す図である。
 図12は、本発明による位置検出装置の第2の実施形態を説明するための図である。
 図13は、本発明の第2の実施形態の別の実装方法について説明するための図である。
 図14は、本発明の第2の実施形態による位置検出装置の具体的な例である実施例2を示す図である。
 図15は、本発明による位置検出装置の第3の実施形態を説明するための図である。
 図16は、本発明の第3の実施形態による位置検出装置の具体的な例である実施例3を示す図である。
 図17は、本発明による位置検出装置の第4の実施形態を説明するための図である。
 図18は、本発明の第4の実施形態による位置検出装置の具体的な例である実施例4を示す図である。
 図19は、本発明による位置検出装置の第5の実施形態を説明するための図である。
 図20は、本発明の第5の実施形態による位置検出装置の具体的な例である実施例5を示す図である。
 図21は、本発明による位置検出装置の第6の実施形態を説明するための図である。
 図22は、本発明による位置検出装置の第7の実施形態を説明するための図である。
 図23は、本発明の第7の実施形態による位置検出装置の具体的な例である実施例7を示す図である。
 図24は、本発明による位置検出装置の第8の実施形態を説明するための図である。
 図25は、本発明の第8の実施形態による位置検出装置の具体的な例である実施例8を示す図である。
 図26は、本発明による位置検出装置の第9の実施形態を説明するための図である。
 図27は、本発明の第9の実施形態による位置検出装置の具体的な例である実施例9を示す図である。
FIG. 1 is a diagram for explaining the principle of the spin Seebeck effect in a thermoelectric conversion element.
FIG. 2 is a diagram for explaining the principle of the position detection device according to the present invention and is a diagram for explaining a standby state.
FIG. 3 is a diagram for explaining the operation of the spin Seebeck effect when the entire surface of the position detection device is heated (a) and when a part of the position detection device is heated (b).
FIG. 4 is a diagram for explaining the first embodiment of the position detection apparatus according to the present invention.
FIG. 5 is a diagram for explaining a two-dimensional position determination procedure in the position detection apparatus according to the present invention.
FIG. 6 is a diagram for explaining a temperature rise distribution when a point defined by (x, y) = (3, 5) is heated in the position detection device according to the present invention.
FIG. 7 is a diagram for explaining an operation example of the position detection apparatus according to the first embodiment of the present invention.
FIG. 8 is a diagram for explaining another operation example of the position detection apparatus according to the first embodiment of the present invention.
FIG. 9 is a diagram for explaining another mounting method according to the first embodiment of the present invention.
FIG. 10 is a diagram illustrating Example 1 which is a specific example of the position detection device according to the first embodiment of the present invention.
FIG. 11 is a diagram illustrating Example 1b which is a specific example of the position detection device according to the first embodiment of the present invention.
FIG. 12 is a diagram for explaining a second embodiment of the position detection apparatus according to the present invention.
FIG. 13 is a diagram for explaining another mounting method according to the second embodiment of the present invention.
FIG. 14 is a diagram illustrating Example 2 which is a specific example of the position detection device according to the second embodiment of the present invention.
FIG. 15 is a diagram for explaining a third embodiment of the position detection apparatus according to the present invention.
FIG. 16 is a diagram illustrating Example 3 which is a specific example of the position detection device according to the third embodiment of the present invention.
FIG. 17 is a view for explaining a fourth embodiment of the position detection apparatus according to the present invention.
FIG. 18 is a diagram illustrating Example 4 which is a specific example of the position detection device according to the fourth embodiment of the present invention.
FIG. 19 is a diagram for explaining a fifth embodiment of the position detection apparatus according to the present invention.
FIG. 20 is a diagram illustrating Example 5 which is a specific example of the position detection device according to the fifth embodiment of the present invention.
FIG. 21 is a view for explaining a sixth embodiment of the position detection apparatus according to the present invention.
FIG. 22 is a diagram for explaining a seventh embodiment of the position detection apparatus according to the present invention.
FIG. 23 is a diagram illustrating Example 7 which is a specific example of the position detection device according to the seventh embodiment of the present invention.
FIG. 24 is a view for explaining an eighth embodiment of the position detecting apparatus according to the present invention.
FIG. 25 is a diagram illustrating Example 8 which is a specific example of the position detection device according to the eighth embodiment of the present invention.
FIG. 26 is a view for explaining a ninth embodiment of the position detecting apparatus according to the present invention.
FIG. 27 is a diagram illustrating Example 9 which is a specific example of the position detection device according to the ninth embodiment of the present invention.
 本発明の位置検出装置は、平面上の加熱された箇所または平面上の発熱した箇所を特定する装置であって、温度勾配から熱起電力を生成するスピンゼーベック効果を用いる。本発明の位置検出装置は、後述するいずれの実施形態においても、このスピンゼーベック効果による位置検出素子(熱電変換部)を有している。
 さらに、本発明は、位置検出素子(熱電変換部)と、これとは別体に設けられ、熱電変換部の平面上の任意の箇所を加熱する加熱手段を含む位置検出システム、もしくは、熱電変換部と一体に形成され、種々の形態のエネルギーを受けて平面上の任意の箇所が発熱するエネルギー態様のインターフェース手段とを有する位置検出装置を提案する。
[第1の実施形態:発熱位置検出装置]
(原理)
 本発明の位置検出装置は、発熱部分の2次元座標を特定する装置であって、温度勾配から熱起電力を生成するスピンゼーベック効果を用いる。
 まず、特許文献1などで示されているスピンゼーベック効果を利用した熱電変換素子の基本的な構成を図1に示す。この熱電変換素子は、基板100上に成膜した、磁化Mを有する磁性体層101と、その上部に配置された金属膜(導電膜)102を含む。このような熱電変換素子に対して面直方向(基板面に垂直な方向)の温度勾配を図中z方向に印加した場合、金属膜102と磁性体層101の間の界面にスピン流が誘起される。このスピン流を、金属膜102における逆スピンホール効果によって電気的な起電力に変換することで、「温度勾配から熱起電力を生成する熱電変換」が可能となる。
 非特許文献1で示されている微視的なスピンゼーベック理論によると、金属膜/磁性体界面(金属膜と磁性体との間の界面)において誘起されるスピン流Jsは、この界面における「金属膜の電子温度Te」と「マグノン温度Tm」の間の温度差ΔTme=(Tm−Te)によって駆動されることが分かっている。ここで、マグノン温度Tmはスピンの熱運動の激しさを表すパラメータに相当する。これにより、スピン流Jsは以下のように温度差ΔTmeに比例する。なお、ezは面直方向の単位ベクトルである。
 Js ∝ ΔTme ez=(Tm−Te) ez
 図1(a)のように、熱電変換素子全体が一様な温度にある熱平衡状態においては、電子温度Teとマグノン温度Tmは常に等しく(電子−マグノン温度差ΔTme=0)、スピン流は駆動されない。したがって、金属膜102において起電力は生じない。
 これに対し、図1(b)のように、熱電変換素子の上部面(金属膜側)を一様に加熱し、熱電変換素子の上面と底面の間に温度差ΔTを印加した場合を考える。このとき電子温度Teとマグノン温度Tmは、周囲に生じる温度勾配分布との非局所的な相互作用を通して、それぞれ異なるメカニズムで温度変調を受ける結果、加熱部近傍の界面で有限の電子−マグノン温度差ΔTme=(Tm−Te)≠0が生じることになる。
 従って、この温度差ΔTmeを駆動源として、磁性体層101から金属膜102へと界面スピン流Jsがポンピングされる。
 以上が、先に述べたスピンゼーベック効果の微視的な駆動メカニズムである。
 この熱駆動されたスピン流Jsが、金属膜102におけるスピンホール効果によって電場EISHEに変換されることで、金属膜102の端部間には熱起電力Vが生じる。ここで、電場EISHEとスピン流Js、磁化Mとの関係は、以下の式で与えられる。
 EISHE=(θSHρ)Js×M/|M|
 ここで、θSHはスピンホール角(電流−スピン流間の変換効率に相当)、ρは金属膜のシート抵抗を表す。この式が示すように、熱誘起された電場EISHEは、スピン流Jsと磁化Mの両方に垂直な方向に生じる。従って、金属膜面において生じる熱起電力Vも、スピン流及び温度勾配の方向(z方向)と磁化方向(x方向)にそれぞれ垂直な方向(y方向)において、大きな値を有する。
 図1(c)には、このような効果を実験的に示した一例として、合成石英ガラス基板上に成膜した金属膜(Pt)/磁性体(Bi:YIG薄膜)構造における熱起電力生成の様子を示している。この熱電変換素子の面直方向に温度勾配を印加することで、金属膜中に面内方向の熱起電力Vが観測されている。また、外部磁場H(グラフの横軸)で磁性体の磁化Mを反転することで、熱起電力Vの符号が反転する様子も確認されている。
 図1では、上部面(金属膜側)が一様に加熱された状況を仮定したが、この面の一部のみが局所的に加熱された場合でも、同様の熱起電力を観測することができる。この状況を図2に示した。図2は、本発明による位置検出装置の原理を説明するための図である。図2の場合、金属膜/磁性体界面においては、加熱された付近において電子温度Teが局所的に上昇するのに対し、空間平均であるマグノン温度Tmは大きく変わらないことから、局所的に有限な電子−マグノン温度差ΔTmeが生じる。これにより、この部分で界面スピン流Jsが駆動され、局所的に電場EISHEが誘起される。
 この2つの状況(図1と図2)の違いを、図3では1次元的な等価回路で説明している。ここで、加熱によるスピンゼーベック効果に伴って金属膜に生じる熱起電力は、金属膜の内部抵抗と並列の電流源として等価回路的に表現できる。位置検出装置に電気的負荷をつないでいない場合や、高インピーダンスの電位計に接続した場合などは、端面は回路的にオープンと考えてよい。
 図3(a)のように、位置検出装置全面で加熱(面直方向に温度勾配を付与)が生じた場合は、このような電流源が位置検出装置全体にわたって直列接続されている状況を考えればよい。この結果、全ての内部抵抗の両端で電位差が生じ、電場EISHEは位置検出装置全面にわたって観測される。
 一方、図3(b)のように、位置検出装置の一部にのみ加熱が生じた場合、等価回路的にはこの加熱部分にのみ電流源が挿入されていると考えればよい。このとき、電流源に並列の内部抵抗にのみ電位差が生じることから、この部分でのみ電場EISHEが局所的に発生することになる。
 なお、この場合も、図2の金属膜102の周縁部間には起電力信号Vが観測されるが、図1(b)との違いとして、金属膜102において電場EISHEの生成箇所が局所的であるがゆえに、電位差測定を行う地点によって熱起電力信号Vが異なる(空間的な電位分布が生じる)点が挙げられる。本発明では、この局所的に生じるスピンゼーベック効果を利用して位置検出を行う。
(構成)
 図4(a)に、本発明の第1の実施形態である位置検出装置の基本構造を示す。この位置検出装置は、基板4と、基板4上に形成された磁性体層2と、磁性体層2上に形成された金属膜5を含む。金属膜5上にはカバー層3が形成されても良い。
 磁性体層2の材料としては、(1)熱が逃げるのを防いで(温度差を保持して)高感度な熱起電力を生成する、(2)熱拡散を抑制して高い位置検出分解能を実現する、という2つの目的から、熱伝導率の小さい材料を用いることが望ましい。金属や半導体では伝導電子による熱伝導が大きくなることから、本実施形態ではより熱伝導率の小さい磁性絶縁体を用いる。特に、多結晶やナノ結晶の磁性絶縁体材料を用いれば、効果的なフォノン散乱によってフォノン熱伝導を抑制し、さらに高い感度、分解能を得ることが可能となる。
 磁性体層2の具体的な材料としては、例えばガーネットフェライト、スピネルフェライトなどの酸化物磁性材料を適用することができる。このような磁性体層2は、例えば有機金属堆積法(MOD法)、ゾルゲル法、エアロゾルデポジション法(AD法)などの方法により、基板4上に成膜する。これらの塗布・印刷ベースの成膜法を用いれば、大面積基板にも一括成膜することが可能で、生産性の高い製造が可能となる。
 また、YIGなどのガーネット膜は広い波長範囲で透過性が高いことから、タッチパネルのような透明な位置入力デバイスとしての応用にも適している。さらに、磁性体層2として保磁力を有する磁性材料を用いれば、一旦外部磁場などで磁化方向を初期化しておくことで、ゼロ磁場の下でも動作可能な素子が得られる。
 金属膜5は、逆スピンホール効果を用いて熱起電力を取り出すために、スピン軌道相互作用を有する材料を含んでいる。例えばスピン軌道相互作用の比較的大きなAuやPt、Pd、Irなどの金属材料、またはそれらを含有する合金材料を用いる。また、Cuなどの低コスト、低抵抗金属に、上記のようなスピン軌道相互作用を有する不純物を少量(1~10%程度)ドープした材料でも、熱起電力を取り出すことができる。
 このような金属膜5は、スパッタや蒸着などの方法で成膜する。また、インクジェット法やスクリーン印刷法などで作製することもできる。
 ここで、スピン流を高効率で無駄なく電気に変換するためには、金属膜5の厚さは、少なくとも金属材料のスピン拡散長以上に設定するのが好ましい。例えばAuであれば50nm以上、Ptであれば10nm以上の厚さに設定するのが望ましい。ただし、本実施形態のように熱起電力を電圧信号として電位計で読み取る用途では、シート抵抗ρは大きいほうが望ましく、このため金属膜5が薄いほどより大きな電圧出力が得られる。これら双方を考慮すると、金属膜5の厚さは、金属材料のスピン拡散長程度が最も望ましい。例えばAuであれば50~100nm程度、Ptであれば10~30nm程度の厚さに設定する。
 カバー層3としては、素子(熱起電力生成部)を保護できる材料、構造であれば、詳細は問わない。例えばアクリル系樹脂やポリイミドなどの有機樹脂材料を用いれば、印刷、塗布プロセスでカバー層3を作製することができる。ただし、感度が重要となる用途では、入力された熱を磁性体層2に効果的に伝えるために、面直方向に熱伝導率の大きな材料か、膜厚が小さくても素子の保護が可能となるような材料を用いることが望ましく、膜厚は200μm以下が望ましい。
 基板4としては、磁性体層2や金属膜5を支えることができるものであれば、材料や構造は問わない。また、必ずしも板状の形状である必要はない。ただし、周囲環境から流入する熱や温度揺らぎが大きく、これによる雑音や誤動作といった影響が大きい場合には、熱伝導率の小さな材料を用いるか、厚みの十分大きな構造を用いることが好ましい。より具体的には、基板4の面直方向の熱抵抗が、その他の層(磁性体層2+カバー層3)の面直方向の熱抵抗よりも十分大きくなるように設計する。例えば基板4として、ガラス等のアモルファス絶縁体や、ポリイミド等の有機樹脂材料などを用いる。なお、磁性体層2を直接固定して安定して利用できるような用途、利用環境の下では、基板4は無くてもよい。
(動作)
 次に、この位置検出装置の動作方法について説明する。ここでは図4(b)のように、金属膜5の一端g1(ここでは図の左下)をグラウンド(基準電位)に接続し、このグラウンドに対する金属膜周縁部(x1~x7、y1~y7)の電位(Vx1~Vx7、Vy1~Vy7)を、位置記録装置11、12によってそれぞれ測定、記録できるように待機させておく。なお、金属膜周辺部(y1~y7)の反対側の周縁部(y1’~y7’)には電位(Vy1’~Vy7’)を測定、記録する位置記録装置13が接続されている。位置記録装置11~13はそれぞれ電位計を含む。
 温度勾配が印加されない熱平衡状態下では、位置検出装置中でスピン流は駆動されないことから、熱起電力は生じない。すなわち、電位Vx1=Vx2=・・・=Vy7=0である。
 ここで、図4(a)に示すように、外部から何らかの加熱(または冷却)部10によって磁性体層2の一部を加熱(または冷却)すると、この部分で温度が局所的に変調され、有限の電子−マグノン温度差ΔTmeが生じる。この結果、スピンゼーベック効果に起因するスピン流が誘起され、金属膜5中ではこれに伴う電場EISHEが局所的に生成される。局所電場EISHEは、前述したEISHE=(θSHρ)Js×M/|M|の関係にあり、スピン流Jsと磁化Mの両方に垂直な方向に生じる。
 金属膜5の周縁部ではこれに伴う起電圧が生じるが、この周縁部電圧の空間分布は一様でなく、局所電場EISHEが生じた2次元位置に依存する。従って、この起電力を外部の電位計(位置記録装置11、12、13)で計測、記録することによって、発熱の生じた位置の2次元座標を特定することができる。
 このように、加熱(または冷却)部10は、位置情報入力部(手段)として作用する。これは、以降の実施形態や実施例で挙げられる、電磁波照射部35、摩擦熱発生部40、圧力印加部60、局所冷却部80、磁気特性変調部90も同様である。
 また、グラウンドの場所を切り替えて同様の測定を行うことで、加熱された2次元位置をより精度よく決定することができる。金属膜5中の一箇所(g1)のみを基準として金属膜周縁部の電位を評価した場合、図5に示すように、加熱場所によっては、その2次元位置を正確に特定できないおそれがある。これに対し、例えば図4(c)に示すように、金属膜5の右下の一端g2の位置にグラウンドを切り替えて、金属膜周縁部の電位(Vx1~Vx7、Vy1’~Vy7’)を、位置記録装置11、13によって再度測定、記録する。このように、位置の異なるグラウンド点(g1,g2)を基準に2回以上の電位測定を行うことで、より正確な位置情報の決定が可能となる。
 なお、グラウンド(g1,g2)の位置は、2次元平面上のどの場所であっても構わない。図4では、正方形状の金属膜5の端部(左下、右下)をグラウンドとする例を示したが、金属膜5の中心部をグラウンドとして利用してもよい。
(具体的な動作例)
 次に、より具体的な動作例について説明する。熱源による具体的な温度上昇分布ΔT(x,y)として、以下の式(1)のようなガウス関数を仮定する。
Figure JPOXMLDOC01-appb-M000001
 すなわち、(x,y)=(a,b)の地点を中心に、広がりc程度の範囲で温度上昇が生じた状況を考える。
 本発明の目的は、スピンゼーベック効果に伴う熱起電力の測定を通して、この加熱位置(a,b)を検出、特定することにある。
 このような加熱の下では、前述の電子−マグノン温度差ΔTmeが加熱部で有限な値を生じる。局所的な加熱によってマグノン温度Tmが大きく変化しないという近似の下では、温度差ΔTmeは以下のように温度上昇分布ΔT(x,y)に比例する。
 ΔTme=Tm(x,y)−Te(x,y) ∝ΔT(x,y)
 この温度差ΔTmeによって、スピン流Jsが駆動され、金属膜5中に局所電場EISHEが誘起される。この結果、位置検出装置周縁部に設けられた起電圧測定端子n(n=x1~x7,y1~y7)における起電圧Vnは、グラウンド端子g1から起電圧測定端子nまでの電場EISHEの線積分として、以下の式(2)で表されるような値となる。
Figure JPOXMLDOC01-appb-M000002
 ベクトルeg1→nは、グラウンド端子g1から起電圧測定端子nへ向かう単位ベクトルを表す。
 以上の考察から、起電圧測定端子n(n=x1~x7,y1~y7)における起電圧Vnは、グラウンドg1と起電圧測定端子nとの間の温度上昇分布ΔT(x,y)に大きく依存する。
 以下では具体例として、図6(a)に示すように、グラウンドに接地したg1地点を原点(x,y)=(0,0)とする2次元座標系(範囲は0≦x,y≦8)において、(a,b)=(3,5)を中心に発熱が生じた状況を考える。ここではT0=10,c=1と仮定している。なお、以下では説明を簡単にするため、電荷蓄積による逆電場の影響を無視して議論している。
 この時の、グラウンドg1と起電圧測定端子nとを結ぶ接続線上での温度上昇分布ΔTを図6(b)に示す。これらのグラフから明らかなように、起電圧を測定する端子の場所(n=x1~x7,y1~y7)によって、グラウンドg1との間での温度上昇分布が大きく異なることが分かる。当然ながら、加熱点(a,b)との間の距離が小さい場所ほど、大きな温度上昇が現れる。起電圧測定端子nにおいて測定される電位(熱起電力)Vnは、この温度分布の積分値に依存する。
 図7(a)には、位置記録装置11、12によってVx1~Vx7,Vy1~Vy7として測定される電圧値(縦軸は最大電圧値で規格化)を示している。このように、熱誘起される電位Vnは、測定する場所(n=x1~x7,y1~y7)に大きく空間依存する。
 より正確に2次元位置(a,b)を測定するためには、グラウンドの位置を切り替えて再度測定を行う。図7(b)では、グラウンドの位置をg1からg2(x,y)=(8,0)に切り替えて、起電圧測定端子n(n=x1~x7,y1’~y7’)における電位Vnの分布を再度測定している。これら2回の測定から、2次元位置をより正確に推定できるようになる。
 参考のため、別の例として、図8には、2次元位置(a,b)=(6,4)において加熱が生じた場合の電位Vnの空間について示している。図8のVn分布は、図7のVn分布とは大きく異なっていることが分かる。Vn分布は、加熱が生じた地点(a,b)によって決まる。
 このようにして、位置記録装置11、12、13で測定された電位分布から、加熱が生じた2次元位置を特定することができる。
 加熱部10(図4)としては、熱を持つものであれば何でも利用できることから、体温を持つ指や、先端が加熱されたペンなどで位置情報の入力が可能となる。待機時に電圧等のバイアス印加が不要であることから、待機電力の極めて小さなユーザーインターフェースなどに利用できる。
 なお、本実施形態での位置入力の動作原理は、磁性体層2の温度分布を局所的に変化させることであることから、加熱部10の代わりに冷却部を用いてもよい。例えば、位置検出装置をIT機器などの高温熱源に貼り付けてあらかじめ加熱しておき、外部から室温の冷却部を近づけることでも、局所的に温度分布を変化させることが可能となる。
 図4では、上から順に金属膜5/磁性体層2/基板4の順で積層した素子構造を示したが、金属膜5と磁性体層2の積層順を逆転しても良い。すなわち、図9に示すように、上から順に磁性体層2/金属膜5/基板4の積層構造を採用してもよい。図9に示すような積層構造では、磁性体層2として熱伝導率の小さな磁性絶縁体材料を用いることができることから、上部から加熱部10で加熱された場合に、水平(x,y)方向への熱の広がりが小さく抑えられ、空間分解能を向上させる効果を示す。
The position detection device of the present invention is a device that identifies a heated spot on a plane or a spot that generates heat on a plane, and uses a spin Seebeck effect that generates a thermoelectromotive force from a temperature gradient. The position detection device of the present invention has a position detection element (thermoelectric conversion unit) based on the spin Seebeck effect in any of the embodiments described later.
Further, the present invention provides a position detection system (thermoelectric conversion unit) and a position detection system that is provided separately from the position detection element and includes a heating unit that heats an arbitrary place on the plane of the thermoelectric conversion unit. Proposed is a position detection device having an energy mode interface unit that is formed integrally with a unit and receives various forms of energy to generate heat at an arbitrary place on a plane.
[First Embodiment: Heating Position Detection Device]
(principle)
The position detection apparatus of the present invention is an apparatus for specifying a two-dimensional coordinate of a heat generation portion, and uses a spin Seebeck effect that generates a thermoelectromotive force from a temperature gradient.
First, FIG. 1 shows a basic configuration of a thermoelectric conversion element using the spin Seebeck effect shown in Patent Document 1 or the like. This thermoelectric conversion element includes a magnetic layer 101 having a magnetization M, formed on a substrate 100, and a metal film (conductive film) 102 disposed thereon. When a temperature gradient in a perpendicular direction (direction perpendicular to the substrate surface) is applied to such a thermoelectric conversion element in the z direction in the figure, a spin current is induced at the interface between the metal film 102 and the magnetic layer 101. Is done. By converting this spin current into an electric electromotive force by the reverse spin Hall effect in the metal film 102, “thermoelectric conversion that generates a thermoelectromotive force from a temperature gradient” becomes possible.
According to the microscopic spin Seebeck theory shown in Non-Patent Document 1, the spin current Js induced at the metal film / magnetic material interface (interface between the metal film and the magnetic material) is “ It has been found that it is driven by the temperature difference ΔTme = (Tm−Te) between the electron temperature Te ”of the metal film and the“ magnon temperature Tm ”. Here, the magnon temperature Tm corresponds to a parameter representing the intensity of the thermal motion of the spin. Thereby, the spin current Js is proportional to the temperature difference ΔTme as follows. Note that ez is a unit vector in the perpendicular direction.
Js ∝ ΔTme ez = (Tm−Te) ez
As shown in FIG. 1A, in a thermal equilibrium state where the entire thermoelectric conversion element is at a uniform temperature, the electron temperature Te and the magnon temperature Tm are always equal (electron-magnon temperature difference ΔTme = 0), and the spin current is driven. Not. Therefore, no electromotive force is generated in the metal film 102.
On the other hand, as shown in FIG. 1B, the upper surface (metal film side) of the thermoelectric conversion element is uniformly heated and a temperature difference ΔT is applied between the upper surface and the bottom surface of the thermoelectric conversion element. . At this time, the electron temperature Te and the magnon temperature Tm are subjected to temperature modulation by different mechanisms through non-local interaction with the temperature gradient distribution generated in the surroundings, resulting in a finite electron-magnon temperature difference at the interface near the heating part. ΔTme = (Tm−Te) ≠ 0 is generated.
Therefore, the interface spin current Js is pumped from the magnetic layer 101 to the metal film 102 using this temperature difference ΔTme as a drive source.
The above is the microscopic driving mechanism of the spin Seebeck effect described above.
This thermally driven spin current Js is converted into an electric field EISHE by the spin Hall effect in the metal film 102, thereby generating a thermoelectromotive force V between the end portions of the metal film 102. Here, the relationship between the electric field EISHE , the spin current Js, and the magnetization M is given by the following equation.
E ISHE = (θ SH ρ) Js × M / | M |
Here, θ SH is the spin Hall angle (corresponding to the conversion efficiency between current and spin current), and ρ represents the sheet resistance of the metal film. As this equation shows, the thermally induced electric field E ISHE occurs in a direction perpendicular to both the spin current Js and the magnetization M. Accordingly, the thermoelectromotive force V generated on the metal film surface also has a large value in the direction (y direction) perpendicular to the direction of the spin current and temperature gradient (z direction) and the magnetization direction (x direction).
In FIG. 1C, as an example of experimentally showing such an effect, generation of thermoelectromotive force in a metal film (Pt) / magnetic body (Bi: YIG thin film) structure formed on a synthetic quartz glass substrate. The state of is shown. An in-plane thermoelectromotive force V is observed in the metal film by applying a temperature gradient in the direction perpendicular to the surface of the thermoelectric conversion element. It has also been confirmed that the sign of the thermoelectromotive force V is reversed by reversing the magnetization M of the magnetic material with the external magnetic field H (horizontal axis of the graph).
In FIG. 1, it is assumed that the upper surface (the metal film side) is uniformly heated, but even when only a part of this surface is locally heated, a similar thermoelectromotive force can be observed. it can. This situation is shown in FIG. FIG. 2 is a diagram for explaining the principle of the position detection apparatus according to the present invention. In the case of FIG. 2, the electron temperature Te rises locally in the vicinity of the heated metal film / magnetic material interface, whereas the magnon temperature Tm, which is a spatial average, does not change greatly, and is locally limited. Electron-magnon temperature difference ΔTme is generated. As a result, the interface spin current Js is driven in this portion, and the electric field E ISHE is locally induced.
The difference between the two situations (FIGS. 1 and 2) is illustrated in FIG. 3 using a one-dimensional equivalent circuit. Here, the thermoelectromotive force generated in the metal film due to the spin Seebeck effect by heating can be expressed as an equivalent circuit as a current source in parallel with the internal resistance of the metal film. When an electrical load is not connected to the position detection device or when the position detection device is connected to a high impedance electrometer, the end face may be considered open in terms of circuit.
When heating (applying a temperature gradient in the direction perpendicular to the surface) occurs on the entire position detection device as shown in FIG. 3A, it can be considered that such a current source is connected in series throughout the position detection device. That's fine. As a result, a potential difference is generated between both ends of all the internal resistances, and the electric field E ISHE is observed over the entire position detection device.
On the other hand, as shown in FIG. 3B, when heating occurs only in a part of the position detection device, it may be considered that a current source is inserted only in this heating part in terms of an equivalent circuit. At this time, since a potential difference is generated only in the internal resistance parallel to the current source, the electric field EISHE is locally generated only in this portion.
In this case as well, an electromotive force signal V is observed between the peripheral portions of the metal film 102 in FIG. 2, but as a difference from FIG. 1B , the location where the electric field E ISHE is generated in the metal film 102 is local. Therefore, the thermoelectromotive force signal V is different depending on the point where the potential difference is measured (a spatial potential distribution is generated). In the present invention, position detection is performed using the locally generated spin Seebeck effect.
(Constitution)
FIG. 4A shows a basic structure of the position detection apparatus according to the first embodiment of the present invention. This position detection device includes a substrate 4, a magnetic layer 2 formed on the substrate 4, and a metal film 5 formed on the magnetic layer 2. A cover layer 3 may be formed on the metal film 5.
The material of the magnetic layer 2 includes (1) preventing heat from escaping (holding a temperature difference) and generating a highly sensitive electromotive force, and (2) suppressing high thermal diffusion and high position detection resolution. It is desirable to use a material with low thermal conductivity for the two purposes of realizing the above. Since heat conduction by conduction electrons is increased in a metal or semiconductor, a magnetic insulator having a smaller thermal conductivity is used in this embodiment. In particular, if a polycrystalline or nanocrystalline magnetic insulator material is used, phonon thermal conduction can be suppressed by effective phonon scattering, and higher sensitivity and resolution can be obtained.
As a specific material of the magnetic layer 2, for example, an oxide magnetic material such as garnet ferrite or spinel ferrite can be applied. Such a magnetic layer 2 is formed on the substrate 4 by a method such as an organic metal deposition method (MOD method), a sol-gel method, or an aerosol deposition method (AD method). By using these coating / printing-based film forming methods, it is possible to form a film on a large-area substrate at a time, and manufacturing with high productivity becomes possible.
Moreover, since a garnet film such as YIG has high transparency in a wide wavelength range, it is also suitable for application as a transparent position input device such as a touch panel. Further, when a magnetic material having a coercive force is used as the magnetic layer 2, an element that can operate even under a zero magnetic field can be obtained by initializing the magnetization direction once with an external magnetic field or the like.
The metal film 5 contains a material having a spin orbit interaction in order to extract a thermoelectromotive force using the inverse spin Hall effect. For example, a metal material such as Au, Pt, Pd, or Ir having a relatively large spin orbit interaction or an alloy material containing them is used. Further, a thermoelectromotive force can be taken out even with a material obtained by doping a low-cost, low-resistance metal such as Cu with a small amount (about 1 to 10%) of the impurity having the spin orbit interaction as described above.
Such a metal film 5 is formed by a method such as sputtering or vapor deposition. Further, it can also be produced by an ink jet method or a screen printing method.
Here, in order to convert the spin current into electricity efficiently and without waste, the thickness of the metal film 5 is preferably set to be at least equal to or greater than the spin diffusion length of the metal material. For example, it is desirable to set the thickness to 50 nm or more for Au and 10 nm or more for Pt. However, in an application in which the thermoelectromotive force is read as a voltage signal with an electrometer as in the present embodiment, it is desirable that the sheet resistance ρ is large. For this reason, the thinner the metal film 5, the larger the voltage output. Considering both of these, the thickness of the metal film 5 is most preferably about the spin diffusion length of the metal material. For example, the thickness is set to about 50 to 100 nm for Au, and about 10 to 30 nm for Pt.
The cover layer 3 is not particularly limited as long as it is a material and a structure that can protect the element (thermoelectromotive force generator). For example, if an organic resin material such as an acrylic resin or polyimide is used, the cover layer 3 can be produced by a printing and coating process. However, in applications where sensitivity is important, in order to effectively transmit the input heat to the magnetic layer 2, it is possible to protect the element even if the material has a high thermal conductivity in the perpendicular direction or the film thickness is small. It is desirable to use such a material, and the film thickness is desirably 200 μm or less.
The substrate 4 may be of any material or structure as long as it can support the magnetic layer 2 and the metal film 5. Further, it is not always necessary to have a plate shape. However, when the heat and temperature fluctuations flowing from the surrounding environment are large and the influence of noise and malfunction due to this is large, it is preferable to use a material having a small thermal conductivity or a structure having a sufficiently large thickness. More specifically, the thermal resistance in the direction perpendicular to the surface of the substrate 4 is designed to be sufficiently larger than the thermal resistance in the direction perpendicular to the surface of the other layers (magnetic layer 2 + cover layer 3). For example, as the substrate 4, an amorphous insulator such as glass or an organic resin material such as polyimide is used. It should be noted that the substrate 4 may be omitted under applications and usage environments where the magnetic layer 2 can be directly fixed and used stably.
(Operation)
Next, an operation method of the position detection device will be described. Here, as shown in FIG. 4B, one end g1 of the metal film 5 (here, the lower left in the figure) is connected to the ground (reference potential), and the metal film peripheral portion (x1 to x7, y1 to y7) with respect to this ground. The potentials (Vx1 to Vx7, Vy1 to Vy7) are kept waiting so that they can be measured and recorded by the position recording devices 11 and 12, respectively. A position recording device 13 for measuring and recording potentials (Vy1 ′ to Vy7 ′) is connected to peripheral portions (y1 ′ to y7 ′) on the opposite side of the metal film peripheral portions (y1 to y7). Each of the position recording devices 11 to 13 includes an electrometer.
Under a thermal equilibrium state where no temperature gradient is applied, no spin current is driven in the position detection device, so no thermoelectromotive force is generated. That is, the potential Vx1 = Vx2 =... = Vy7 = 0.
Here, as shown in FIG. 4A, when a part of the magnetic layer 2 is heated (or cooled) by some heating (or cooling) unit 10 from the outside, the temperature is locally modulated in this part, A finite electron-magnon temperature difference ΔTme occurs. As a result, a spin current due to the spin Seebeck effect is induced, and an electric field E ISHE associated therewith is locally generated in the metal film 5. The local electric field E ISHE has the relationship of E ISHE = (θ SH ρ) Js × M / | M | described above, and is generated in a direction perpendicular to both the spin current Js and the magnetization M.
Although an electromotive voltage is generated at the peripheral portion of the metal film 5, the spatial distribution of the peripheral portion voltage is not uniform and depends on the two-dimensional position where the local electric field EISHE is generated. Therefore, by measuring and recording this electromotive force with an external electrometer (position recording devices 11, 12, and 13), the two-dimensional coordinates of the position where heat is generated can be specified.
Thus, the heating (or cooling) unit 10 functions as a position information input unit (means). The same applies to the electromagnetic wave irradiation unit 35, the frictional heat generation unit 40, the pressure application unit 60, the local cooling unit 80, and the magnetic property modulation unit 90, which will be described in the following embodiments and examples.
Moreover, the heated two-dimensional position can be determined more accurately by switching the place of the ground and performing the same measurement. When the potential at the peripheral edge of the metal film is evaluated with reference to only one location (g1) in the metal film 5, the two-dimensional position may not be specified accurately depending on the heating location, as shown in FIG. On the other hand, for example, as shown in FIG. 4C, the ground is switched to the position of the lower right end g2 of the metal film 5, and the potentials (Vx1 to Vx7, Vy1 ′ to Vy7 ′) at the peripheral edge of the metal film. The position recording devices 11 and 13 measure and record again. In this way, more accurate position information can be determined by measuring the potential twice or more with reference to the ground points (g1, g2) at different positions.
The position of the ground (g1, g2) may be any place on the two-dimensional plane. Although FIG. 4 shows an example in which the end portions (lower left and lower right) of the square metal film 5 are grounded, the center portion of the metal film 5 may be used as ground.
(Specific operation example)
Next, a more specific operation example will be described. As a specific temperature rise distribution ΔT (x, y) due to the heat source, a Gaussian function like the following formula (1) is assumed.
Figure JPOXMLDOC01-appb-M000001
That is, a situation is considered in which the temperature rises in the range of the extent c around the point (x, y) = (a, b).
An object of the present invention is to detect and specify the heating position (a, b) through measurement of the thermoelectromotive force accompanying the spin Seebeck effect.
Under such heating, the aforementioned electron-magnon temperature difference ΔTme produces a finite value in the heating section. Under the approximation that the magnon temperature Tm does not change significantly by local heating, the temperature difference ΔTme is proportional to the temperature rise distribution ΔT (x, y) as follows.
ΔTme = Tm (x, y) −Te (x, y) ∝ΔT (x, y)
Due to this temperature difference ΔTme, the spin current Js is driven, and a local electric field E ISHE is induced in the metal film 5. As a result, the electromotive voltage Vn at the electromotive voltage measurement terminal n (n = x1 to x7, y1 to y7) provided at the peripheral edge portion of the position detection device is a line of the electric field E ISHE from the ground terminal g1 to the electromotive voltage measurement terminal n. The integral is a value represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
The vector eg1 → n represents a unit vector from the ground terminal g1 to the electromotive voltage measurement terminal n.
From the above consideration, the electromotive voltage Vn at the electromotive voltage measurement terminal n (n = x1 to x7, y1 to y7) is greatly increased in the temperature rise distribution ΔT (x, y) between the ground g1 and the electromotive voltage measurement terminal n. Dependent.
Hereinafter, as a specific example, as shown in FIG. 6A, a two-dimensional coordinate system (range is 0 ≦ x, y ≦) where the point g1 grounded to the ground is the origin (x, y) = (0, 0). In 8), let us consider a situation in which heat is generated around (a, b) = (3, 5). Here, it is assumed that T0 = 10 and c = 1. In the following, in order to simplify the explanation, the influence of the reverse electric field due to charge accumulation is ignored.
FIG. 6B shows a temperature rise distribution ΔT on the connection line connecting the ground g1 and the electromotive voltage measurement terminal n at this time. As is apparent from these graphs, it can be seen that the temperature rise distribution with the ground g1 varies greatly depending on the location of the terminal for measuring the electromotive voltage (n = x1 to x7, y1 to y7). Naturally, the temperature rises more as the distance from the heating point (a, b) is smaller. The potential (thermoelectromotive force) Vn measured at the electromotive voltage measurement terminal n depends on the integral value of this temperature distribution.
FIG. 7A shows voltage values measured as Vx1 to Vx7 and Vy1 to Vy7 by the position recording devices 11 and 12 (the vertical axis is normalized by the maximum voltage value). As described above, the thermally induced potential Vn largely depends on the space to be measured (n = x1 to x7, y1 to y7).
In order to measure the two-dimensional position (a, b) more accurately, the ground position is switched and the measurement is performed again. In FIG. 7B, the ground position is switched from g1 to g2 (x, y) = (8, 0), and the potential Vn at the electromotive voltage measurement terminal n (n = x1 to x7, y1 ′ to y7 ′). The distribution of is measured again. From these two measurements, the two-dimensional position can be estimated more accurately.
For reference, as another example, FIG. 8 shows a space of the potential Vn when heating occurs at the two-dimensional position (a, b) = (6, 4). It can be seen that the Vn distribution of FIG. 8 is significantly different from the Vn distribution of FIG. The Vn distribution is determined by the point (a, b) where the heating occurs.
In this manner, the two-dimensional position where heating has occurred can be identified from the potential distribution measured by the position recording devices 11, 12, and 13.
Anything can be used as the heating unit 10 (FIG. 4) as long as it has heat. Therefore, position information can be input with a finger having a body temperature, a pen whose tip is heated, or the like. Since it is not necessary to apply a bias such as a voltage during standby, it can be used for a user interface with extremely low standby power.
Note that the operation principle of position input in this embodiment is to locally change the temperature distribution of the magnetic layer 2, and therefore a cooling unit may be used instead of the heating unit 10. For example, the temperature distribution can be locally changed by attaching the position detection device to a high-temperature heat source such as an IT device and heating it in advance, and bringing a cooling unit at room temperature from the outside.
Although FIG. 4 shows the element structure in which the metal film 5 / magnetic layer 2 / substrate 4 are stacked in this order from the top, the stacking order of the metal film 5 and the magnetic layer 2 may be reversed. That is, as shown in FIG. 9, a laminated structure of magnetic layer 2 / metal film 5 / substrate 4 may be employed in order from the top. In the laminated structure as shown in FIG. 9, since a magnetic insulator material having a small thermal conductivity can be used as the magnetic layer 2, when heated by the heating unit 10 from above, the horizontal (x, y) direction The spread of heat is suppressed to a small level and the spatial resolution is improved.
[実施例1]
 図10に、本発明の第1の実施形態の具体的な例として実施例1を示す。本実施例1では、磁性体層2としてはYサイトの一部をBiで置換したイットリウム鉄ガーネット(以降、Bi:YIGと記述する。組成はBiYFe12)膜を用いる。金属膜5にはPt膜を用いる。ここで、Bi:YIG膜の厚さtは100nm、Pt膜の厚さtは15nmとする。
 基板4としては膜厚t500μmの石英ガラス基板を用い、カバー層3としては膜厚t100μmの合成サファイア板を用いる。加熱部10としては、先端が40℃に加熱されたペンを用いる。
 Bi:YIGからなる磁性体層2は、有機金属分解法(MOD法)によって成膜する。溶液は(株)高純度化学研究所製のMOD溶液を用いる。この溶液中では、適切なモル比率(Bi:Y:Fe=1:2:5)からなる金属原材料が酢酸エステルに3%の濃度で溶解されている。この溶液をスピンコート(回転数100rpm、30s回転)で石英ガラス基板上に塗布し、150℃のホットプレートで5分間乾燥させた後、電気炉中で720℃の高温で14時間焼結させる。これにより、石英ガラス基板上に膜厚約100nmのBi:YIG(BiYFe12)膜が形成される。
 その後、Ptからなる金属膜5を、スパッタにより成膜する。最後に、これらの上に、カバー層3として、厚さ100μmの合成サファイア板をかぶせて金属膜/磁性体層を保護する。
(実施例1の別の作製方法(実施例1b))
 図11に、別の実施例1bを示す。本実施例1bでは、実施例1と同じ膜厚t500μmの石英ガラス基板(基板4)上に、厚さt10μmのBi:YIG膜(磁性体層2)を、エアロゾルデポジション(AD)法により成膜する。金属膜5には、CuにIrを混合した合金材料Cu1−xIrxを用いる。AD法で成膜するBi:YIGの原料としては、直径300nmのBi:YIG微粒子を用いる。このBi:YIG微粒子をエアロゾル発生容器に詰めておき、基板4は成膜チャンバ内のホルダーに固定する。この状態で成膜チャンバとエアロゾル発生容器との間に圧力差を生じさせることで、Bi:YIG微粒子が成膜チャンバ内へと引き込まれ、ノズルを通して基板上に吹き付けられる。このときの基板での衝突エネルギーによって微粒子が粉砕、再結合し、基板4上にBi:YIG多結晶が形成される。基板ステージを2次元的にスキャンすることで、基板4上に均一なBi:YIGによる磁性体層2を膜厚10μmで成膜する。
 その後、必要に応じて磁性体層2の表面を研磨した後、金属膜5として、銅にイリジウムを少量ドープした厚さt100nmの合金材料Cu1−xIrxを、スクリーン印刷法により成膜する。ここでは、Irを1%ドープした合金材料Cu0.99Ir0.01を用いる。スクリーン印刷用のインク(ペースト)としては、Cu0.99Ir0.01合金を粒径約50nmに微粒子化した粉末を、バインダと混合させたものを用いる。
 最後に、これらの上に、アクリル材料としてポリメタクリル酸メチルを溶かした有機溶液を塗布し、100℃程度の高温で乾燥させ、厚さt100μmのカバー層3を作成する。
[第2の実施形態:2つの金属膜(導電膜)を有する位置検出装置]
 第1の実施形態では、位置特定精度を高めるために、異なる位置(g1、g2)をグラウンドとして、2回の電位測定を行っている。しかし、この方法では、グラウンドの切り替えが必要になることから、高速な位置測定を行うことが難しい。
 第2の実施形態では、図12(a)に示すように、磁性体層2の上に上部金属膜21、磁性体層2の下に下部金属膜22をそれぞれ形成、配置する。このうち、図12(b)に示すように、上部金属膜21はg1(0,0)点がグラウンドに接地されており、上部金属膜21の周縁部(x1~x7)、(y1~y7)の端子に接続された位置記録装置11、12で電位(Vx1~Vx7)、(Vy1~Vy7)の測定を行う。一方、図12(c)に示すように、下部金属膜22はg2(8,0)点がグラウンドに接地されており、下部金属膜22の周縁部(x1~x7)、(y1′~y7′)の端子に接続された位置記録装置14、13で電位(Vx1’~Vx7’)、(Vy1’~Vy7’)の測定を行う。
 このように、2枚の金属膜を用意して、これらに熱誘起される起電力を同時に測定することによって、グラウンドの切り替えを行うことなく、発熱が生じた2次元位置を一度に高い精度で測定できる。
 なお、第2の実施形態では1つの磁性体層2の上下にそれぞれ金属膜を積層配置したが、図13に示すように、上から順に上部金属膜21、上部磁性体層23、スペーサー層25、下部金属膜22、下部磁性体層24、基板4の積層構造とすることにより、磁性体層を2層用いて、それぞれの片側に金属膜を配置した構造であってもよい。カバー層3は必要に応じて形成される。図13(b)、(c)に示すように、上部金属膜21に対する位置記録装置11、12の接続、下部金属膜22に対する位置記録装置14、13の接続は図12(b)、(c)と同じで良い。
(実施例2)
 本発明の第2の実施形態の具体的な例として実施例2を図14に示す。
 図14において、磁性体層2としては、厚さt100nmのBi:YIGを用いる。上部金属膜21、下部金属膜22には、それぞれ厚さt15nmのPtを用いる。基板4としては膜厚t500μmの石英ガラス基板を、カバー層3としては膜厚t100μmの合成サファイア板をそれぞれ用いる。これらの実装は実施例1と同様の方法で行う。上部金属膜21に対する位置記録装置11、12の接続、下部金属膜22に対する位置記録装置14、13の接続は図12(b)、(c)と同じで良い。
{第3~第6の実施形態}
 第1の実施形態では、位置情報の入力に加熱部10を利用したが、位置検出装置の中に、外部トリガーによって熱を発生させる仕組みを内蔵させれば、その他の手段でも位置情報の入力が可能となる。実際、熱は最も一般的なエネルギー形態であり、電磁波や振動などの様々なエネルギーも、最終的に熱になることが多い。さらには、物質間の化学反応や相変化などでも熱が生成される。そこで、第1の実施形態で示した検出装置を応用すれば、様々な形態のセンサを構成することができる。以下では、電磁波センサ、接触(摩擦熱)検知センサ、ガスセンサ、圧力センサなどへの応用について示す。
[第3の実施形態:電磁波検知による位置検出装置]
 図15に、本発明の第3の実施形態として、位置検出装置の応用例である電磁波センサの斜視図を示す。第1の実施形態による位置検出装置との違いは、金属膜/磁性体層の上に、絶縁材料からなる絶縁層32を介して、新たに電磁波吸収膜31を配置、形成した点にある。
 このような構造の電磁波センサに対し、図15に示すように、電磁波照射部35により局所的に外部から電磁波30が照射されると、電磁波30が電磁波吸収膜31によって吸収され、その位置で発熱が生じる。この発熱による熱起電力を、位置記録装置(X位置記録装置)11および位置記録装置(Y位置記録装置)12で測定、記録することで、電磁波が照射された2次元位置を特定することができる。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 ここで、電磁波吸収膜31としては、電磁波30をよく吸収して発熱する材料を用いる。具体的な材料の選択は波長に依存するが、例えば赤外線であれば金黒膜(金の超微粒子膜)やニッケル・クロム合金膜などが利用でき、可視光であればCIGS(Cu(In、Ga)Se)膜やフラーレン膜などが利用できる。また、カーボンブラックやカーボンナノチューブなどからなるカーボン膜などは、塗布、印刷による成膜にも適しており、赤外~可視域の広い波長範囲で利用できる。
 絶縁層32は、金属膜5での熱起電力生成動作を妨げないための絶縁層の役割を果たす。電磁波吸収膜31自体が絶縁体である場合は、絶縁層32は無くてもよい。
 カバー層3には、電磁波30をできるだけ透過する材料を用いる。必要に応じて、カバー層3の上部に波長フィルタを設けることで、特定の波長のみを検出することもできる。また、カバー層3の上部に部分反射鏡を設けて、カバー層3の厚みを最適化することで、特定の波長に対して機能する共振器を構成し、電磁波検出感度を向上することもできる。
 なお、感度が重要となる用途では、これら電磁波吸収膜31、絶縁層32、カバー層3としては、入力された熱を磁性体層2に効果的に伝えるために、面直方向に熱伝導率の大きな材料か、膜厚が小さくても検出素子の保護が可能となるような材料を用いることが望ましく、膜厚はそれぞれ100μm以下が望ましい。感度、分解能を両立するさらに望ましい形態としては、これらの層において、面直方向に高い熱伝導を呈し、面内方向(基板面に平行な方向)に低い熱伝導を呈する材料、構造を採用する。具体的には、面直方向に配向したカーボンファイバー等のフィラーを埋め込んだ材料を用いたり、面内でピクセルごとに材料を分割した(切り込みを入れた)構造を利用したりして、異方的な伝熱構造を実現する。
 以上の原理により、非常に簡単な構成により、外部電源の不要なイメージセンサなどへの応用が可能となる。
(実施例3)
 図16に、本発明の第3の実施形態の具体的な例として実施例3を示す。本実施例3では、磁性体層2としては厚さt100nmのBi:YIG、金属膜5には厚さt15nmのPt膜を用いる。電磁波30としては、波長10μm程度の赤外線を利用する。電磁波吸収膜31としては、この波長の電磁波を効率的に吸収できるカーボンブラック膜を利用する。膜厚tirは200nmとする。基板4としては膜厚t500μmの石英ガラス基板を、絶縁層32としては膜厚tsp200nmのポリイミド層を、カバー層3としては膜厚t100μmのアクリル樹脂をそれぞれ用いる。
 これらは以下のように作製する。まず、Pt/Bi:YIG層を、前述の実施例1と同様の方法で成膜する。その後、これらの上に、ポリイミド層(絶縁層32)を原料溶液の塗布、乾燥により成膜する。さらにその上に、電磁波吸収膜31である膜厚200nmのカーボンブラック膜を、原材料のスピンコートにより全体に塗布成膜する。最後に、これらの上に、アクリル材料としてポリメタクリル酸メチルを溶かした有機溶液を塗布し、100℃程度の高温で乾燥させ、厚さ100μmのカバー層3を作成する。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 このような構成の赤外線センサを活用することにより、非常に簡単な構成で、監視用の赤外線カメラやサーモグラフィなどを構成することができる。
[第4の実施形態:摩擦熱検知による位置検出装置]
 図17に、本発明の第4の実施形態として、位置検出装置の応用例である接触検知センサ(もしくは摩擦熱センサ)の斜視図を示す。このセンサは、第1の実施形態で示した位置検出装置において、カバー層3の代わりに、摩擦熱発生膜41を用いている。第3の実施形態同様、必要に応じて摩擦熱発生膜41と金属膜5との間に絶縁層を挿入しても良い。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 このような構造の接触検知センサに対し、図17のように、摩擦熱発生部40で摩擦熱発生膜41の一部を局所的に擦るなどして接触させると、この摩擦熱発生膜41の接触部において発熱が生じる。この発熱を、第1の実施形態で説明した位置検出装置と同様の構成、動作原理によって検知することで、接触が生じた2次元位置を測定、記録することができる。
 摩擦熱発生膜41の表面は、摩擦熱発生部40との接触によって発熱が生じるよう、表面を適切に加工する。また、表面で発生した熱を効率よく磁性体層2へ伝えるため、摩擦熱発生膜41は、保護膜として機能する範囲でできるだけ薄くするか、熱伝導率の高い材料で構成することが望ましい。
 このような接触検知センサにより、外部電源が不要で待機電力ゼロのユーザーインターフェースが実現される。例えばペンで摩擦熱発生膜31を擦ることによる文字入力などが可能となる。
 なお、摩擦熱の発生方法については、ここで示した方法に限られない。他の形態としては、例えば摩擦熱発生膜41として外部からの圧力や振動によって摩擦熱を発生する機械部品で構成することで、荷重や衝撃を摩擦熱発生部40として用いた接触検知センサ(位置検出装置)を構成することもできる。
(実施例4)
 図18に、本発明の第4の実施形態の具体的な例として実施例4を示す。本実施例4では、磁性体層2としては厚さt1μmのBi:YIG、金属膜5には厚さt100nmのCu0.99Ir0.01膜を用いる。摩擦熱発生膜41としては、表面に小さな凹凸を有して粗面となっている合成サファイアを用い、膜厚tfrは100nmとする。摩擦熱発生部40には先端がアルミナでコートされたペンを用いる。基板4としては膜厚t500μmの石英ガラス基板を用い、絶縁層を挿入する場合には材料としてポリイミド樹脂を用いる。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 Cu0.99Ir0.01/Bi:YIG膜は、前述の実施例1bと同様の方法により成膜する。その上に、摩擦熱発生膜41として数百μmオーダーの適度な凹凸を有する合成サファイア板をかぶせる。
[第5の実施形態:ガス検知による位置検出装置]
 図19に、本発明の第5の実施形態として、位置検出装置の応用例である浮遊体センサの斜視図を示す。第1の実施形態との違いは、金属膜/磁性体層の上に、絶縁材料である絶縁層32を介して、新たに浮遊体吸着用の浮遊体検知膜51を形成、配置した点にある。
 この浮遊体検知膜51としては、例えば特定の浮遊体50が吸着した場合に、発熱を伴う化学反応を生じる触媒など、公知の化学材料を用いることができる。その他、浮遊体検知膜51としては、触媒を含有する多孔質体を含む膜を用いることもできる。絶縁層32は、金属膜5での熱起電力生成動作を妨げないための絶縁層の役割を果たすが、用いる浮遊体検知膜51によっては必ずしも必要ない。また、ガスによっては、磁性体層2もしくは金属膜5を直接浮遊体検知膜として利用することもできる。
 このような構造の浮遊体センサに対し、外部からガスなどの浮遊体50が飛来した場合、浮遊体検知膜51に吸着した地点で化学反応に伴う発熱が生じ、磁性体層2の一部が加熱される。この熱を、第1の実施形態で説明した位置検出装置と同様の構成、動作原理によって検知することで、浮遊体が吸着した2次元位置を測定、記録することができる。それゆえ、位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 これにより、簡便な構成で、外部電源不要な大面積浮遊体センサなどが実現できる。なお、実際には、浮遊体50は気体に限らず、液体や固体(粉塵)などを想定してもよい。また、浮遊体検知の原理についても、浮遊体吸着に伴って発熱が生じるものであれば、詳細は問わない。
(実施例5)
 図20に、本発明の第5の実施形態の具体的な例として実施例5を示す。本実施例5では、磁性体層2としては厚さt100nmのBi:YIG、金属膜5には厚さt15nmのPtを用いる。これらは、膜厚t500μmの石英ガラス基板4の上に、前述の実施例1と同様の方法で成膜する。本実施例5では、浮遊体50としては水素を想定し、金属膜5として用いるPtが、水素ガス検知を行う触媒として、浮遊体検知膜51を兼ねている。
[第6の実施形態:圧力検知による位置検出装置]
 図21に、本発明の第6の実施形態である位置検出装置(実施例6)を示す。
Figure JPOXMLDOC01-appb-I000003
の積層順序に代えて磁性体層2/金属膜5の積層順序を採用し、基板4と金属膜5の間に、複数のドットスペーサ53を間にして形成、配置された上部発熱層61及び下部発熱層62を有する点にある。必要に応じて磁性体層2/金属層5の上にはカバー層3が形成される。
 ここで、上部発熱層61と下部発熱層62としては、互いに接することで発熱を生じるような材料の組み合わせを用いる。また、ドットスペーサ53は、待機時に上部発熱層61と下部発熱層62を空間的に隔離する役割を果たす。ドットスペーサ53の材料としては、有機樹脂などの熱伝導率が小さなものを用いる。
 このような位置検出装置において、外部から圧力印加部60による圧力が加わると、上部発熱層61が下方に歪み、上部発熱層61と下部発熱層62が部分的に接触する。この結果、接触した部分のみ局所的な発熱が生じることから、この熱を第1の実施形態で説明した位置検出装置と同様の構成、動作原理によって検知することで、圧力が加わった2次元位置を測定、記録することができる。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
 上部発熱層61と下部発熱層62が接触することによる発熱の原理としては、以下のように様々なものが利用できる。
 例えば、化学反応する2つの材料を、上部発熱層61および下部発熱層62に利用することができる。これにより、これらが接触した場所で化学反応が生じ、局所的な反応熱が生じる。
 また、上部発熱層61と下部発熱層62の間に外部からバイアス電圧を印加した状態で待機させ、上部発熱層61と下部発熱層62が接触した場所でのみ電流が流れるような構成にしてもよい。この場合、この部分の電気抵抗によるオーミック発熱を位置入力に利用できる。
 さらに、上部発熱層61を下部発熱層62に押し付けた際の圧力(もしくは歪み)をトリガーとして発熱を生じさせることもできる。例えば、圧力印加に起因する化学反応や相変化に伴って生じる反応熱、潜熱などを、同様の方法で測定することで位置検出が可能となる。
 この他、下記実施形態、実施例に示すように上部発熱層61と下部発熱層62が接触した際の摩擦熱を利用することもできる。
{第7~第9の実施形態}
 これまでの実施形態では、外部の熱あるいは熱勾配が存在しない平衡状態での待機の下で、外部から熱が加わる位置を、金属膜に生じる熱起電力を通して検出していた。このような検出装置を用いれば、外部電源のない状況下でも、待機電力ゼロで利用できるインターフェースが利用できる。ただし、これらの方法では、外部から装置を加熱する手段を利用する必要があることから、それが難しい状況下では利用が制限される。
 一方、身の回りには、体温やディスプレイ、IT機器など、様々な定常熱源や定常温度勾配が存在する。このような温度勾配を有効活用すれば、外部からの加熱を用いなくても、有用なインターフェースを構成することができる。
 以下の第7~第9の実施形態では、このようにあらかじめ定常熱源あるいは定常温度勾配が利用できる状況での位置検出装置について説明する。
[第7の実施形態:圧力検知による位置検出装置]
 図22に、本発明の第7の実施形態である位置検出装置の斜視図を示す。上記の第6の実施形態と同様に、第7の実施形態でも上側から下側に向って金属層5/磁性体層2の積層順序に代えて磁性体層2/金属層5の積層順序を採用し、圧力の印加によって位置検出を行う。第6の実施形態と異なる点として、第7の実施形態では、第1の実施形態における基板4の代わりに、室温より高い(もしくは低い)温度を有する熱源58を利用している。このような熱源としては、例えばディスプレイや、IT機器の側面、太陽光が当たる建築物の壁や窓など、様々なものが利用できる。必要に応じて磁性体層2/金属層5の上にはカバー層3が形成される。
 次に、動作原理について説明する。第7の実施形態では、熱源58の上部に、複数のドットスペーサ53を介して、磁性体層2(上側)/金属層5(下側)が配置されている。待機時には、磁性体層2/金属層5と熱源58とは、ドットスペーサ53によって空間的に分離している。ドットスペーサ53の材料としては、有機樹脂などの熱伝導率が小さなものを用いる。これにより、磁性体層2/金属層5と熱源58との間では、待機時には熱の移動が小さく、互いに異なる温度分布を取り得るものとする。
 この状況で、図22に示すように、外部からある一点に圧力印加部70による圧力が印加されると、この部分で熱源58と磁性体層2/金属層5とが接触し、これらの間に大きな熱移動が生じる。これによって、磁性体層2/金属層5が局所的に加熱され、これに伴う温度分布の変化を、第1の実施形態と同様の方法で、金属膜5における熱起電力変化から検出することができる。それゆえ、位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
(実施例7)
 図23に、本発明の第7の実施形態の具体的な例として実施例7を示す。図23において、熱源58としては、温度が室温以上(例えば40℃)に設定されているディスプレイの表面を利用する。カバー層3には、厚さt100μmのアクリル層(あるいは合成サファイア板)を用いる。磁性体層2としては厚さt100nmのBi:YIG、金属膜5には厚さt15nmのPtを用いる。これらは、上記のアクリル層の上(図面では下側)に、前述の実施例1と同様の方法で成膜する。その後、これを熱源58の上部に、アクリルウレタン樹脂からなる直径10μmのドットスペーサ53を介して配置する。
 待機時には、Pt/Bi:YIG/アクリル層と、熱源58とは、アクリルウレタン樹脂のドットスペーサ53によって、空間的に分離して配置されている。このとき、これらの間の熱の移動は小さい。これらは、外部から圧力印加部70である圧力印加用のペンによって押し付けられることによって互いに接触し、大きな熱移動を生じる。位置記録装置11であるX位置記録装置、位置記録装置12、13であるY位置記録装置の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
[第8の実施形態:接触検知による位置検出装置]
 図24に、本発明の第8の実施形態である位置検出装置の斜視図を示す。装置形態としては第1の実施形態とほぼ同じだが、ここでも上側から順に磁性体層2/金属層5の積層順序を採用し、基板4の代わりに、室温より高い(もしくは低い)温度を有する熱源58を利用している。この結果、待機時には、位置検出装置には熱源58の影響で、定常的な面直方向の温度勾配が生じている。必要に応じて磁性体層2/金属層5の上にはカバー層3が形成される。
 この状態で、室温の局所冷却部80が押し当てられると、この部分で局所的に放熱(冷却)が促進されることから、磁性体層/金属層に印加される温度勾配が局所的に大きくなり、スピン流に伴う電場が増大する。これに伴う電位分布の変化を、第1の実施形態と同様の方法で検出することにより、位置情報の推定が可能となる。それゆえ、位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
(実施例8)
 図25に、本発明の第8の実施形態の具体的な例として実施例8を示す。本実施例8では、磁性体層2としては厚さt1μmのBi:YIG、金属膜5には厚さt100nmのCu0.99Ir0.01膜を用いる。熱源58としては、温度が室温以上(例えば40℃)に設定されているディスプレイの表面を利用する。カバー層3には、厚さt100μmのアクリル層(あるいは合成サファイア板)を用いる。さらに、局所冷却部80として、室温のペン(冷却ペン)を用いる。
[第9の実施形態:磁場などの検知による位置検出装置]
 これまでの実施形態では、外部からの磁性体層の局所的な加熱、すなわち温度の変調を利用した位置検出手法について説明してきたが、定常温度勾配を利用できる状況では、外部からの加熱で温度を変調する代わりに、他の様々な自由度によってマグノン温度Tm(マグノンの熱運動の激しさを表す有効温度パラメータ)を変調することでも、位置検出応用が可能となる。
 図26では、そのような位置検出装置を第9の実施形態として示した。第9の実施形態による位置検出装置の基本的な構成は第8の実施形態とほぼ同じで、温度勾配が存在する状況下での定常スピン流を利用する。ここでも上側から順に磁性体層2/金属層5の積層順序を採用し,基板4の代わりに、室温より高い(もしくは低い)温度を有する熱源58を利用している。必要に応じて磁性体層2/金属層5の上にはカバー層3が形成される。第8の実施形態との構成上の唯一の違いは、局所冷却部80の代わりに磁気特性変調部90を用いる点にある。
 磁気特性変調部80としては、局所的な電場・磁場や、局所的な圧力、電磁波を利用することができる。これにより、マグノンが感じる有効ポテンシャルが実効的に変調される結果、前述したマグノン温度Tmが変調される。これにより、電子温度Teとマグノン温度Tmの差が局所的に変化することから、これに伴う熱起電力の変化を金属膜5中で観測することにより、位置情報の取得が可能となる。位置記録装置11、12、13の接続構成、グラウンドの切り替え構成は第1の実施形態と同じで良い。
(実施例9)
 図27に、局所磁場によるマグノン変調を利用した第8の実施形態の具体的な例として実施例9を示す。
 本実施例9では、磁性体層2としてはBi:YIG、金属膜5にはPtを用いる。これらは、前述の実施例1と同様の方法で、カバー層3となるアクリル層上(図面では下側)に作製する。熱源58としては、温度が室温以上(例えば40℃)に設定されているディスプレイの表面を利用する。カバー層3には、厚さt100μmのアクリル層を用いる。磁気特性変調部90としては、先端にフェライト磁石を有するペンを用いる。これによって、マグノン温度Tmを変調して、位置入力を行うことができる。
[実施例の効果]
 上記の実施形態、実施例で示した構造により、外部電源の不要な位置検出装置が可能となり、簡便な構成による低待機電力のタッチパネルやイメージセンサなどを実現することができる。また、塗布プロセスや印刷プロセスなどを利用することが可能で、低コスト基板への大面積実装にも適している。
 この出願は、2011年8月9日に出願された日本出願特願第2011−173785号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
[Example 1]
FIG. 10 shows Example 1 as a specific example of the first embodiment of the present invention. In Example 1, the magnetic layer 2 is described as Yttrium iron garnet (hereinafter referred to as Bi: YIG) in which a part of the Y site is replaced with Bi. The composition is BiY. 2 Fe 5 O 12 ) Use a membrane. A Pt film is used for the metal film 5. Here, Bi: YIG film thickness t m Is 100 nm, Pt film thickness t e Is 15 nm.
Film thickness t for substrate 4 s A quartz glass substrate of 500 μm is used, and the cover layer 3 has a film thickness t. c A 100 μm synthetic sapphire plate is used. As the heating unit 10, a pen whose tip is heated to 40 ° C. is used.
The magnetic layer 2 made of Bi: YIG is formed by an organometallic decomposition method (MOD method). As the solution, a MOD solution manufactured by Kojundo Chemical Laboratory Co., Ltd. is used. In this solution, a metal raw material having an appropriate molar ratio (Bi: Y: Fe = 1: 2: 5) is dissolved in acetate at a concentration of 3%. This solution is applied onto a quartz glass substrate by spin coating (rotation speed: 100 rpm, rotation for 30 s), dried on a hot plate at 150 ° C. for 5 minutes, and then sintered in an electric furnace at a high temperature of 720 ° C. for 14 hours. As a result, Bi: YIG (BiY) having a film thickness of about 100 nm is formed on the quartz glass substrate. 2 Fe 5 O 12 ) A film is formed.
Thereafter, a metal film 5 made of Pt is formed by sputtering. Finally, a cover layer 3 is covered with a synthetic sapphire plate having a thickness of 100 μm to protect the metal film / magnetic layer.
(Another manufacturing method of Example 1 (Example 1b))
FIG. 11 shows another embodiment 1b. In this example 1b, the same film thickness t as in example 1 s On a quartz glass substrate (substrate 4) of 500 μm, the thickness t m A 10 μm Bi: YIG film (magnetic layer 2) is formed by an aerosol deposition (AD) method. For the metal film 5, an alloy material Cu1-xIrx in which Ir is mixed with Cu is used. Bi: YIG fine particles having a diameter of 300 nm are used as Bi: YIG raw materials formed by the AD method. The Bi: YIG fine particles are packed in an aerosol generation container, and the substrate 4 is fixed to a holder in the film forming chamber. In this state, a pressure difference is generated between the film formation chamber and the aerosol generation container, whereby Bi: YIG fine particles are drawn into the film formation chamber and sprayed onto the substrate through the nozzle. The fine particles are crushed and recombined by the collision energy at the substrate at this time, and Bi: YIG polycrystal is formed on the substrate 4. By scanning the substrate stage two-dimensionally, the magnetic material layer 2 of uniform Bi: YIG is formed on the substrate 4 with a film thickness of 10 μm.
Then, after polishing the surface of the magnetic layer 2 as necessary, the metal film 5 has a thickness t obtained by doping copper with a small amount of iridium. e A 100 nm alloy material Cu1-xIrx is formed by screen printing. Here, an alloy material Cu0.99Ir0.01 doped with 1% Ir is used. As an ink (paste) for screen printing, a powder obtained by atomizing Cu0.99Ir0.01 alloy into a particle size of about 50 nm and mixed with a binder is used.
Finally, an organic solution in which polymethyl methacrylate is dissolved as an acrylic material is applied on these, and dried at a high temperature of about 100 ° C. to obtain a thickness t c A cover layer 3 of 100 μm is prepared.
[Second Embodiment: Position Detection Device Having Two Metal Films (Conductive Film)]
In the first embodiment, in order to increase the position specifying accuracy, potential measurement is performed twice with different positions (g1, g2) as grounds. However, this method requires ground switching, so it is difficult to perform high-speed position measurement.
In the second embodiment, as shown in FIG. 12A, an upper metal film 21 is formed on the magnetic layer 2, and a lower metal film 22 is formed below the magnetic layer 2. Among these, as shown in FIG. 12B, the upper metal film 21 has the g1 (0, 0) point grounded to the ground, and the peripheral edges (x1 to x7) and (y1 to y7) of the upper metal film 21. The potentials (Vx1 to Vx7) and (Vy1 to Vy7) are measured by the position recording devices 11 and 12 connected to the terminal (1). On the other hand, as shown in FIG. 12C, the lower metal film 22 has the g2 (8, 0) point grounded to the ground, and the peripheral edges (x1 to x7) and (y1 'to y7) of the lower metal film 22 The potentials (Vx1 ′ to Vx7 ′) and (Vy1 ′ to Vy7 ′) are measured by the position recording devices 14 and 13 connected to the terminal ′).
In this way, by preparing two metal films and simultaneously measuring the electromotive force induced by them, the two-dimensional position where heat is generated can be accurately detected at once without switching the ground. It can be measured.
In the second embodiment, the metal films are stacked on the upper and lower sides of one magnetic layer 2, but as shown in FIG. 13, the upper metal film 21, the upper magnetic layer 23, and the spacer layer 25 are sequentially arranged from the top. In addition, by adopting a laminated structure of the lower metal film 22, the lower magnetic layer 24, and the substrate 4, a structure in which two magnetic layers are used and a metal film is disposed on each side may be used. The cover layer 3 is formed as necessary. As shown in FIGS. 13B and 13C, the connection of the position recording devices 11 and 12 to the upper metal film 21 and the connection of the position recording devices 14 and 13 to the lower metal film 22 are shown in FIGS. Same as).
(Example 2)
Example 2 is shown in FIG. 14 as a specific example of the second embodiment of the present invention.
In FIG. 14, the magnetic layer 2 has a thickness t m 100 nm Bi: YIG is used. Each of the upper metal film 21 and the lower metal film 22 has a thickness t. e 15 nm Pt is used. Film thickness t for substrate 4 s A quartz glass substrate of 500 μm is used as the cover layer 3 with a film thickness t. c A 100 μm synthetic sapphire plate is used. These mountings are performed in the same manner as in the first embodiment. The connection of the position recording devices 11 and 12 to the upper metal film 21 and the connection of the position recording devices 14 and 13 to the lower metal film 22 may be the same as in FIGS.
{Third to sixth embodiments}
In the first embodiment, the heating unit 10 is used to input the position information. However, if a mechanism for generating heat by an external trigger is built in the position detection device, the position information can be input by other means. It becomes possible. In fact, heat is the most common form of energy, and various energies such as electromagnetic waves and vibration often end up as heat. Furthermore, heat is also generated by chemical reactions or phase changes between substances. Therefore, if the detection device shown in the first embodiment is applied, various types of sensors can be configured. Hereinafter, application to an electromagnetic wave sensor, a contact (friction heat) detection sensor, a gas sensor, a pressure sensor, and the like will be described.
[Third Embodiment: Position Detection Device by Electromagnetic Wave Detection]
FIG. 15 shows a perspective view of an electromagnetic wave sensor as an application example of the position detection device as a third embodiment of the present invention. The difference from the position detection apparatus according to the first embodiment is that an electromagnetic wave absorption film 31 is newly arranged and formed on the metal film / magnetic layer via an insulating layer 32 made of an insulating material.
As shown in FIG. 15, when the electromagnetic wave 30 is locally irradiated from the outside by the electromagnetic wave irradiation unit 35 to the electromagnetic wave sensor having such a structure, the electromagnetic wave 30 is absorbed by the electromagnetic wave absorbing film 31 and generates heat at that position. Occurs. By measuring and recording the thermoelectromotive force due to this heat generation with the position recording device (X position recording device) 11 and the position recording device (Y position recording device) 12, it is possible to specify the two-dimensional position irradiated with the electromagnetic wave. it can. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
Here, as the electromagnetic wave absorbing film 31, a material that absorbs the electromagnetic wave 30 well and generates heat is used. The specific material selection depends on the wavelength. For example, a gold black film (gold ultrafine particle film) or a nickel-chromium alloy film can be used for infrared rays, and CIGS (Cu (In, Ga) Se 2 ) A film or a fullerene film can be used. In addition, a carbon film made of carbon black, carbon nanotube, or the like is suitable for film formation by coating and printing, and can be used in a wide wavelength range from infrared to visible.
The insulating layer 32 serves as an insulating layer so as not to disturb the thermoelectromotive force generation operation in the metal film 5. When the electromagnetic wave absorbing film 31 itself is an insulator, the insulating layer 32 may be omitted.
A material that transmits the electromagnetic wave 30 as much as possible is used for the cover layer 3. If necessary, only a specific wavelength can be detected by providing a wavelength filter above the cover layer 3. In addition, by providing a partial reflecting mirror on the upper part of the cover layer 3 and optimizing the thickness of the cover layer 3, a resonator that functions for a specific wavelength can be configured, and the electromagnetic wave detection sensitivity can be improved. .
In applications where sensitivity is important, the electromagnetic wave absorbing film 31, the insulating layer 32, and the cover layer 3 have a thermal conductivity in a direction perpendicular to the surface in order to effectively transmit the input heat to the magnetic layer 2. It is desirable to use a material having a large thickness, or a material that can protect the detection element even if the film thickness is small, and each film thickness is desirably 100 μm or less. As a more desirable form that achieves both sensitivity and resolution, materials and structures that exhibit high heat conduction in the direction perpendicular to the surface and low heat conduction in the in-plane direction (direction parallel to the substrate surface) are employed in these layers. . Specifically, it is anisotropic by using a material in which fillers such as carbon fiber oriented in the direction perpendicular to the surface are embedded, or by using a structure in which the material is divided (incised) for each pixel in the surface. A realistic heat transfer structure.
Based on the above principle, application to an image sensor or the like that does not require an external power supply is possible with a very simple configuration.
(Example 3)
FIG. 16 shows Example 3 as a specific example of the third embodiment of the present invention. In Example 3, the magnetic layer 2 has a thickness t. m 100 nm Bi: YIG, metal film 5 has a thickness t e A 15 nm Pt film is used. As the electromagnetic wave 30, infrared rays having a wavelength of about 10 μm are used. As the electromagnetic wave absorbing film 31, a carbon black film that can efficiently absorb electromagnetic waves of this wavelength is used. Film thickness t ir Is 200 nm. Film thickness t for substrate 4 s A quartz glass substrate of 500 μm is used as the insulating layer 32 with a film thickness t. sp A 200 nm polyimide layer is used as the cover layer 3 with a film thickness t. c Each 100 μm acrylic resin is used.
These are produced as follows. First, a Pt / Bi: YIG layer is formed by the same method as in Example 1 described above. Thereafter, a polyimide layer (insulating layer 32) is formed thereon by applying a raw material solution and drying. Further thereon, a carbon black film having a film thickness of 200 nm, which is the electromagnetic wave absorbing film 31, is applied and formed on the entire surface by spin coating of raw materials. Finally, an organic solution in which polymethyl methacrylate is dissolved as an acrylic material is applied on these, and dried at a high temperature of about 100 ° C. to form a cover layer 3 having a thickness of 100 μm. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
By utilizing the infrared sensor having such a configuration, a monitoring infrared camera, a thermography, or the like can be configured with a very simple configuration.
[Fourth Embodiment: Position Detection Device by Friction Heat Detection]
FIG. 17 shows a perspective view of a contact detection sensor (or frictional heat sensor) which is an application example of the position detection device as the fourth embodiment of the present invention. This sensor uses a frictional heat generating film 41 instead of the cover layer 3 in the position detection device shown in the first embodiment. As in the third embodiment, an insulating layer may be inserted between the frictional heat generating film 41 and the metal film 5 as necessary. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
When the frictional heat generating unit 40 is brought into contact with the contact detection sensor having such a structure by locally rubbing a part of the frictional heat generating film 41 as shown in FIG. Heat is generated at the contact portion. By detecting this heat generation by the same configuration and operating principle as the position detection apparatus described in the first embodiment, the two-dimensional position where contact has occurred can be measured and recorded.
The surface of the frictional heat generation film 41 is appropriately processed so that heat is generated by contact with the frictional heat generation unit 40. Further, in order to efficiently transmit the heat generated on the surface to the magnetic layer 2, it is desirable that the frictional heat generating film 41 is made as thin as possible within a range that functions as a protective film or is made of a material having high thermal conductivity.
By such a contact detection sensor, an external power source is unnecessary and a user interface with zero standby power is realized. For example, it is possible to input characters by rubbing the frictional heat generating film 31 with a pen.
The method for generating frictional heat is not limited to the method shown here. As another form, for example, the frictional heat generating film 41 is configured by a mechanical part that generates frictional heat by pressure or vibration from the outside. Detection device) can also be configured.
(Example 4)
FIG. 18 shows Example 4 as a specific example of the fourth embodiment of the present invention. In Example 4, the magnetic layer 2 has a thickness t. m 1 μm Bi: YIG, metal film 5 has a thickness t e A 100 nm Cu0.99Ir0.01 film is used. As the frictional heat generating film 41, synthetic sapphire having a rough surface with small irregularities is used, and the film thickness t fr Is 100 nm. As the frictional heat generating unit 40, a pen whose tip is coated with alumina is used. Film thickness t for substrate 4 s When a 500 μm quartz glass substrate is used and an insulating layer is inserted, polyimide resin is used as a material. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
The Cu0.99Ir0.01 / Bi: YIG film is formed by the same method as in Example 1b. A synthetic sapphire plate having moderate unevenness of the order of several hundred μm is placed thereon as the frictional heat generation film 41.
[Fifth Embodiment: Position Detection Device by Gas Detection]
FIG. 19 is a perspective view of a floating body sensor as an application example of the position detection device as the fifth embodiment of the present invention. The difference from the first embodiment is that a floating body adsorption film 51 for floating body adsorption is newly formed and arranged on the metal film / magnetic layer via an insulating layer 32 which is an insulating material. is there.
As the floating body detection film 51, for example, a known chemical material such as a catalyst that generates a chemical reaction accompanied by heat generation when a specific floating body 50 is adsorbed can be used. In addition, as the floating body detection film | membrane 51, the film | membrane containing the porous body containing a catalyst can also be used. The insulating layer 32 plays a role of an insulating layer so as not to disturb the thermoelectromotive force generation operation in the metal film 5, but is not necessarily required depending on the floating body detection film 51 used. Further, depending on the gas, the magnetic layer 2 or the metal film 5 can be directly used as a floating body detection film.
When a floating body 50 such as a gas comes from the outside with respect to the floating body sensor having such a structure, heat generated by a chemical reaction occurs at a point adsorbed on the floating body detection film 51, and a part of the magnetic layer 2 is formed. Heated. By detecting this heat with the same configuration and operating principle as the position detection apparatus described in the first embodiment, the two-dimensional position where the floating body is adsorbed can be measured and recorded. Therefore, the connection configuration of the position recording apparatuses 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
Thereby, a large area floating body sensor or the like that does not require an external power source can be realized with a simple configuration. Actually, the floating body 50 is not limited to gas, but may be liquid or solid (dust). Also, the principle of floating body detection is not particularly limited as long as heat is generated by floating body adsorption.
(Example 5)
FIG. 20 shows Example 5 as a specific example of the fifth embodiment of the present invention. In Example 5, the magnetic layer 2 has a thickness t. m 100 nm Bi: YIG, metal film 5 has a thickness t e 15 nm Pt is used. These are the film thickness t s A film is formed on a 500 μm quartz glass substrate 4 in the same manner as in the first embodiment. In the fifth embodiment, hydrogen is assumed as the floating body 50, and Pt used as the metal film 5 also serves as the floating body detection film 51 as a catalyst for detecting hydrogen gas.
[Sixth Embodiment: Position Detection Device Based on Pressure Detection]
FIG. 21 shows a position detection apparatus (Example 6) according to the sixth embodiment of the present invention.
Figure JPOXMLDOC01-appb-I000003
The magnetic layer 2 / metal film 5 is stacked in place of the stacking order of the upper heating layer 61 formed and arranged between the substrate 4 and the metal film 5 with a plurality of dot spacers 53 therebetween. The lower heating layer 62 is provided. A cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary.
Here, the upper heat generating layer 61 and the lower heat generating layer 62 are made of a combination of materials that generate heat when in contact with each other. The dot spacer 53 serves to spatially isolate the upper heat generating layer 61 and the lower heat generating layer 62 during standby. As a material of the dot spacer 53, a material having a low thermal conductivity such as an organic resin is used.
In such a position detection device, when pressure from the pressure application unit 60 is applied from the outside, the upper heat generating layer 61 is distorted downward, and the upper heat generating layer 61 and the lower heat generating layer 62 are partially in contact with each other. As a result, local heat is generated only in the contacted portion, so that this heat is detected by the same configuration and operating principle as the position detection device described in the first embodiment, so that a two-dimensional position where pressure is applied. Can be measured and recorded. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
As the principle of heat generation due to the contact between the upper heat generating layer 61 and the lower heat generating layer 62, various things can be used as follows.
For example, two materials that chemically react can be used for the upper heating layer 61 and the lower heating layer 62. As a result, a chemical reaction occurs at the place where they come into contact, and local reaction heat is generated.
Further, the apparatus is made to stand by with an external bias voltage applied between the upper heat generating layer 61 and the lower heat generating layer 62 so that a current flows only at a place where the upper heat generating layer 61 and the lower heat generating layer 62 are in contact with each other. Good. In this case, ohmic heat generated by the electrical resistance of this portion can be used for position input.
Furthermore, heat can be generated by using a pressure (or strain) when the upper heat generating layer 61 is pressed against the lower heat generating layer 62 as a trigger. For example, it is possible to detect the position by measuring the reaction heat, latent heat, etc. generated by the chemical reaction or phase change caused by the pressure application by the same method.
In addition, as shown in the following embodiments and examples, frictional heat generated when the upper heat generating layer 61 and the lower heat generating layer 62 come into contact with each other can also be used.
{Seventh to ninth embodiments}
In the embodiments so far, the position to which heat is applied from the outside is detected through the thermoelectromotive force generated in the metal film while waiting in an equilibrium state where there is no external heat or thermal gradient. By using such a detection device, an interface that can be used with zero standby power can be used even in the absence of an external power source. However, in these methods, since it is necessary to use a means for heating the apparatus from the outside, the use is limited in situations where this is difficult.
On the other hand, there are various steady heat sources and steady temperature gradients around us, such as body temperature, displays, and IT equipment. By effectively utilizing such a temperature gradient, a useful interface can be configured without using external heating.
In the following seventh to ninth embodiments, the position detection device in a situation where a steady heat source or a steady temperature gradient can be used in advance will be described.
[Seventh Embodiment: Position Detection Device Based on Pressure Detection]
In FIG. 22, the perspective view of the position detection apparatus which is the 7th Embodiment of this invention is shown. Similar to the sixth embodiment, in the seventh embodiment, the stacking order of the magnetic layer 2 / metal layer 5 is changed from the upper side to the lower side instead of the stacking order of the metal layer 5 / magnetic layer 2. Adopt and position detection by applying pressure. As a difference from the sixth embodiment, in the seventh embodiment, a heat source 58 having a temperature higher (or lower) than room temperature is used instead of the substrate 4 in the first embodiment. As such a heat source, various things, such as a display, the side surface of IT apparatus, the wall and window of a building where sunlight hits, can be used. A cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary.
Next, the operation principle will be described. In the seventh embodiment, the magnetic layer 2 (upper side) / metal layer 5 (lower side) are disposed above the heat source 58 via a plurality of dot spacers 53. During standby, the magnetic layer 2 / metal layer 5 and the heat source 58 are spatially separated by the dot spacer 53. As a material of the dot spacer 53, a material having a low thermal conductivity such as an organic resin is used. Thus, heat transfer between the magnetic layer 2 / metal layer 5 and the heat source 58 is small during standby, and different temperature distributions can be obtained.
In this situation, as shown in FIG. 22, when the pressure applied by the pressure application unit 70 is applied to a certain point from the outside, the heat source 58 and the magnetic layer 2 / metal layer 5 come into contact with each other at this point, Large heat transfer occurs. As a result, the magnetic layer 2 / metal layer 5 is locally heated, and the accompanying change in temperature distribution is detected from the change in thermoelectromotive force in the metal film 5 in the same manner as in the first embodiment. Can do. Therefore, the connection configuration of the position recording apparatuses 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
(Example 7)
FIG. 23 shows Example 7 as a specific example of the seventh embodiment of the present invention. In FIG. 23, as the heat source 58, a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used. The cover layer 3 has a thickness t c A 100 μm acrylic layer (or synthetic sapphire plate) is used. The magnetic layer 2 has a thickness t m 100 nm Bi: YIG, metal film 5 has a thickness t e 15 nm Pt is used. These are formed on the acrylic layer (on the lower side in the drawing) in the same manner as in Example 1 described above. Then, this is arranged on the upper part of the heat source 58 via a dot spacer 53 made of acrylic urethane resin and having a diameter of 10 μm.
During standby, the Pt / Bi: YIG / acrylic layer and the heat source 58 are spatially separated by an acrylic urethane resin dot spacer 53. At this time, the heat transfer between them is small. These are brought into contact with each other by being pressed from the outside by a pressure application pen, which is the pressure application unit 70, and cause a large heat transfer. The connection configuration and the ground switching configuration of the X position recording device as the position recording device 11 and the Y position recording device as the position recording devices 12 and 13 may be the same as those in the first embodiment.
[Eighth Embodiment: Position Detection Device by Contact Detection]
FIG. 24 is a perspective view of a position detection apparatus according to the eighth embodiment of the present invention. Although the apparatus form is almost the same as that of the first embodiment, the magnetic layer 2 / metal layer 5 is stacked in this order from the top, and instead of the substrate 4, it has a temperature higher (or lower) than room temperature. A heat source 58 is used. As a result, a steady temperature gradient in the direction perpendicular to the surface is generated in the position detection device due to the influence of the heat source 58 during standby. A cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary.
In this state, when the local cooling unit 80 at room temperature is pressed, heat dissipation (cooling) is promoted locally in this part, so that the temperature gradient applied to the magnetic layer / metal layer is locally large. Thus, the electric field accompanying the spin current increases. Position information can be estimated by detecting a change in potential distribution associated therewith by the same method as in the first embodiment. Therefore, the connection configuration of the position recording apparatuses 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
(Example 8)
FIG. 25 shows Example 8 as a specific example of the eighth embodiment of the present invention. In Example 8, the magnetic layer 2 has a thickness t. m 1 μm Bi: YIG, metal film 5 has a thickness t e A 100 nm Cu0.99Ir0.01 film is used. As the heat source 58, a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used. The cover layer 3 has a thickness t c A 100 μm acrylic layer (or synthetic sapphire plate) is used. Further, a room temperature pen (cooling pen) is used as the local cooling unit 80.
[Ninth Embodiment: Position Detection Device by Detection of Magnetic Field]
In the embodiments described so far, the local heating of the magnetic layer from the outside, that is, the position detection method using the temperature modulation has been described. However, in the situation where the steady temperature gradient can be used, the temperature from the outside is heated. Instead of modulating, the position detection application is also possible by modulating the magnon temperature Tm (an effective temperature parameter indicating the intensity of thermal motion of magnon) with various other degrees of freedom.
FIG. 26 shows such a position detection device as the ninth embodiment. The basic configuration of the position detection apparatus according to the ninth embodiment is substantially the same as that of the eighth embodiment, and utilizes a steady spin current in a situation where a temperature gradient exists. In this case as well, the magnetic layer 2 / metal layer 5 is laminated in order from the top, and a heat source 58 having a temperature higher (or lower) than room temperature is used instead of the substrate 4. A cover layer 3 is formed on the magnetic layer 2 / metal layer 5 as necessary. The only difference in configuration from the eighth embodiment is that a magnetic characteristic modulation unit 90 is used instead of the local cooling unit 80.
As the magnetic characteristic modulating unit 80, a local electric field / magnetic field, a local pressure, and an electromagnetic wave can be used. As a result, the effective potential felt by magnon is effectively modulated, and as a result, the magnon temperature Tm described above is modulated. As a result, the difference between the electron temperature Te and the magnon temperature Tm changes locally, so that the positional information can be acquired by observing the change in the thermoelectromotive force in the metal film 5. The connection configuration of the position recording devices 11, 12, and 13 and the ground switching configuration may be the same as those in the first embodiment.
Example 9
FIG. 27 shows Example 9 as a specific example of the eighth embodiment using magnon modulation by a local magnetic field.
In Example 9, Bi: YIG is used for the magnetic layer 2 and Pt is used for the metal film 5. These are produced on the acrylic layer (lower side in the drawing) to be the cover layer 3 by the same method as in the first embodiment. As the heat source 58, a display surface whose temperature is set to room temperature or higher (for example, 40 ° C.) is used. The cover layer 3 has a thickness t c A 100 μm acrylic layer is used. As the magnetic property modulation unit 90, a pen having a ferrite magnet at the tip is used. Thereby, the position input can be performed by modulating the magnon temperature Tm.
[Effect of Example]
With the structures described in the above embodiments and examples, a position detection device that does not require an external power supply is possible, and a low standby power touch panel, an image sensor, and the like with a simple configuration can be realized. In addition, it is possible to use a coating process, a printing process, etc., and it is suitable for mounting on a large area on a low-cost substrate.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-173785 for which it applied on August 9, 2011, and takes in those the indications of all here.
 2  磁性体層
 3  カバー層
 4  基板
 5  金属膜
 10  加熱部
 11~14  位置記録装置
 21  上部金属膜
 22  下部金属膜
 23  上部磁性体層
 24  下部磁性体層
 25  スペーサー層
 30  電磁波
 31  電磁波吸収膜
 32  絶縁層
 40  摩擦熱発生部
 41  摩擦熱発生膜
 50  浮遊体
 51  浮遊体検知膜
 53  ドットスペーサ
 60  圧力印加部
 61  上部発熱層
 62  下部発熱層
 70  圧力印加部
 80  局所冷却部
 90  磁気特性変調部
DESCRIPTION OF SYMBOLS 2 Magnetic material layer 3 Cover layer 4 Substrate 5 Metal film 10 Heating part 11-14 Position recording device 21 Upper metal film 22 Lower metal film 23 Upper magnetic material layer 24 Lower magnetic material layer 25 Spacer layer 30 Electromagnetic wave 31 Electromagnetic wave absorption film 32 Insulation Layer 40 Friction heat generation part 41 Friction heat generation film 50 Floating body 51 Floating body detection film 53 Dot spacer 60 Pressure application part 61 Upper heat generation layer 62 Lower heat generation layer 70 Pressure application part 80 Local cooling part 90 Magnetic characteristic modulation part

Claims (10)

  1.  磁化を有する磁性体層と、スピン軌道相互作用を有する材料を含む導電膜と、位置情報入力手段と、を含む位置検出装置であって、
     前記位置情報入力手段は、前記磁性体層中の有効温度を変調してスピンゼーベック効果を誘起することで前記導電膜中に局所的に電場を発生させ、それに伴う電位変化から温度変調の位置を検出することを特徴とする、位置検出装置。
    A position detection device including a magnetic layer having magnetization, a conductive film including a material having spin-orbit interaction, and position information input means,
    The position information input means generates an electric field locally in the conductive film by modulating the effective temperature in the magnetic layer and inducing a spin Seebeck effect, and determines the position of the temperature modulation from the accompanying potential change. A position detection device characterized by detecting.
  2.  前記位置情報入力手段として加熱または冷却手段を備え、該加熱または冷却手段で前記磁性体層を局所的に加熱または冷却することで位置情報を入力することを特徴とする、請求項1に記載の位置検出装置。 2. The position information input unit according to claim 1, further comprising a heating or cooling unit as the position information input unit, wherein the position information is input by locally heating or cooling the magnetic layer with the heating or cooling unit. Position detection device.
  3.  前記導電膜の周縁部に、電圧を取り出すための複数の端子を有することを特徴とする、請求項1または請求項2に記載の位置検出装置。 The position detection device according to claim 1 or 2, wherein a plurality of terminals for taking out a voltage are provided at a peripheral portion of the conductive film.
  4.  前記導電膜は、グラウンドに接地した接地点を有しており、前記接地点と、前記複数の端子との間で誘起された起電圧を測定することを特徴とする、請求項3に記載の位置検出装置。 4. The conductive film according to claim 3, wherein the conductive film has a ground point grounded to a ground, and an electromotive voltage induced between the ground point and the plurality of terminals is measured. Position detection device.
  5.  前記導電膜を、少なくとも2枚互いに平行に重ねて配置し、それぞれが異なる2次元位置にグラウンド端子を有することを特徴とする、請求項4に記載の位置検出装置。 The position detecting device according to claim 4, wherein at least two conductive films are arranged in parallel with each other, and each has a ground terminal at a different two-dimensional position.
  6.  前記導電膜と前記磁性体層の積層構造に加えて、さらに電磁波吸収膜を含む請求項1から請求項5のいずれか1項に記載の位置検出装置であって、前記位置情報入力手段として電磁波を局所的に照射する電磁波照射手段を備えることを特徴とする、位置検出装置。 6. The position detection device according to claim 1, further comprising an electromagnetic wave absorbing film in addition to the laminated structure of the conductive film and the magnetic layer, wherein the position information input unit includes an electromagnetic wave. A position detection apparatus comprising electromagnetic wave irradiation means for locally irradiating a light source.
  7.  前記導電膜と前記磁性体層の積層構造に加えて、さらに摩擦熱発生膜を含む請求項1から請求項4のいずれか1項に記載の位置検出装置であって、前記位置情報入力手段として摩擦熱を局所的に発生させる摩擦熱発生手段を備えることを特徴とする、位置検出装置。 5. The position detection device according to claim 1, further comprising a frictional heat generation film in addition to the laminated structure of the conductive film and the magnetic layer, as the position information input unit. A position detection device comprising frictional heat generating means for locally generating frictional heat.
  8.  前記導電膜と前記磁性体層の積層構造に加えて、さらに浮遊体検知層を含む請求項1から請求項4のいずれか1項に記載の位置検出装置であって、前記位置情報入力手段として気体を含む浮遊体を用いることを特徴とする、位置検出装置。 5. The position detection device according to claim 1, further comprising a floating body detection layer in addition to the laminated structure of the conductive film and the magnetic layer, wherein the position information input unit includes: A position detection device using a floating body containing gas.
  9.  前記磁性体層に対して温度勾配が印加された状態で、前記位置情報入力手段によって有効温度分布を変調することを特徴とする、請求項1から請求項4のいずれか1項に記載の位置検出装置。 The position according to any one of claims 1 to 4, wherein an effective temperature distribution is modulated by the position information input means in a state where a temperature gradient is applied to the magnetic layer. Detection device.
  10.  前記位置情報入力手段は、マグノン運動を変調することで前記磁性体層中のマグノン有効温度を変え、位置情報を入力することを特徴とする、請求項1から請求項5のいずれか1項に記載の位置検出装置。 The position information input means changes the magnon effective temperature in the magnetic layer by modulating the magnon motion, and inputs the position information. The position detection device described.
PCT/JP2012/069521 2011-08-09 2012-07-25 Position detection device WO2013021876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-173785 2011-08-09
JP2011173785 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021876A1 true WO2013021876A1 (en) 2013-02-14

Family

ID=47668387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069521 WO2013021876A1 (en) 2011-08-09 2012-07-25 Position detection device

Country Status (2)

Country Link
JP (1) JPWO2013021876A1 (en)
WO (1) WO2013021876A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095855A1 (en) * 2018-11-09 2020-05-14 日本電気株式会社 Transmitting device
WO2020121733A1 (en) * 2018-12-10 2020-06-18 日本電気株式会社 Transmission device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133123A (en) * 1990-09-26 1992-05-07 Nec Niigata Ltd X-y coordinate input device
JP2008010358A (en) * 2006-06-30 2008-01-17 Tokai Rika Co Ltd Switch device
JP2009130070A (en) * 2007-11-22 2009-06-11 Keio Gijuku Spin flow thermal conversion element and thermal conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133123A (en) * 1990-09-26 1992-05-07 Nec Niigata Ltd X-y coordinate input device
JP2008010358A (en) * 2006-06-30 2008-01-17 Tokai Rika Co Ltd Switch device
JP2009130070A (en) * 2007-11-22 2009-06-11 Keio Gijuku Spin flow thermal conversion element and thermal conversion element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095855A1 (en) * 2018-11-09 2020-05-14 日本電気株式会社 Transmitting device
WO2020121733A1 (en) * 2018-12-10 2020-06-18 日本電気株式会社 Transmission device

Also Published As

Publication number Publication date
JPWO2013021876A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
US9343647B2 (en) Position detection device
JP5849344B2 (en) Position detection device
Kar-Narayan et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging
Zhao et al. Enhanced photocurrent via ferro-pyro-phototronic effect in ferroelectric BaTiO3 materials for a self-powered flexible photodetector system
JP5887947B2 (en) Transparent conductive film, heater, touch panel, solar cell, organic EL device, liquid crystal device, and electronic paper
Markiewicz et al. Micro light plates for low-power photoactivated (gas) sensors
Yigen et al. Wiedemann–Franz relation and thermal-transistor effect in suspended graphene
US9140611B2 (en) Infrared ray detector and method of detecting infrared rays by using the same
JP5987242B2 (en) Thermoelectric conversion element and thermoelectric conversion method
Gohier et al. All-printed infrared sensor based on multiwalled carbon nanotubes
JP6398573B2 (en) Spin heat flow sensor and manufacturing method thereof
WO2013021876A1 (en) Position detection device
JP5807483B2 (en) Temperature measuring apparatus and temperature measuring method
JP5854192B2 (en) Position detection device
Lin et al. The optimization of the thermal response on the ZnO flexible pyroelectric film temperature sensor
Chiba et al. Single-material-based anomalous Nernst thermopile driven by solar heating and radiative cooling
Li et al. Compensated pyroelectric infrared detector based on Mn‐doped PIMNT single crystal with enhanced signal stability
Chen et al. High-performance, ultra-broadband Sb2Te3 photodetector assisted by multimechanism
Yamane et al. Observation of Surface Potential of Micropatterned Self-assembled Electrets for MEMS Vibrational Energy Harvesters
Thouti et al. Study of seamless Au mesh flexible transparent heaters: Influence of mesh coverage
Huber et al. Photoresponse in arrays of thermoelectric nanowire junctions
JP6617876B2 (en) Photoresponsive dielectric and capacitance change detecting element including photoresponsive dielectric
Zhang et al. Sunlight-assisted ferroelectric domain switching and ionic migration in Sn-based ferroelectric
Yesilkoy IR detection and energy harvesting using antenna coupled MIM tunnel diodes
Guo et al. Touchless Thermosensation Enabled by Flexible Infrared Photothermoelectric Detector for Temperature Prewarning Function of Electronic Skin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821661

Country of ref document: EP

Kind code of ref document: A1