CN110767769A - A detection unit, ultra-wideband optical detector and detection method - Google Patents
A detection unit, ultra-wideband optical detector and detection method Download PDFInfo
- Publication number
- CN110767769A CN110767769A CN201911035035.8A CN201911035035A CN110767769A CN 110767769 A CN110767769 A CN 110767769A CN 201911035035 A CN201911035035 A CN 201911035035A CN 110767769 A CN110767769 A CN 110767769A
- Authority
- CN
- China
- Prior art keywords
- ultra
- electrodes
- detection
- detection unit
- nbs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 134
- 230000003287 optical effect Effects 0.000 title claims description 11
- 239000013078 crystal Substances 0.000 claims abstract description 50
- 239000000758 substrate Substances 0.000 claims description 56
- 239000000463 material Substances 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910004140 HfO Inorganic materials 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 239000010453 quartz Substances 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- 230000008859 change Effects 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims 2
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 239000000377 silicon dioxide Substances 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 230000008901 benefit Effects 0.000 abstract description 6
- 238000013461 design Methods 0.000 description 14
- 239000010410 layer Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910021389 graphene Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000011160 research Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000012212 insulator Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000006250 one-dimensional material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/12—Active materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本文公布了一种探测单元、超宽带光探测器及探测方法,探测单元包括NbS3晶体片和两个电极,两个所述电极分别设置在所述NbS3晶体片的长度方向两端,且分别与所述NbS3晶体片形成欧姆接触。超宽带光探测器包括上述的探测单元,以及用于采集所述探测单元上电势差数据的探测电路,两个所述电极分别与所述探测电路电连接。其探测方法主要包括:固定探测器、照射探测器和采集探测电路数据。本文涉及一种探测单元、超宽带光探测器及探测方法,可克服探测带宽窄的问题,其探测的带宽能从紫外覆盖到太赫兹波段,具有超宽探测带宽,并且其还具有高速灵敏的优点。
This paper discloses a detection unit, an ultra-wideband photodetector and a detection method. The detection unit includes an NbS 3 crystal sheet and two electrodes, and the two electrodes are respectively arranged at both ends of the NbS 3 crystal sheet in the length direction, and Ohmic contacts were formed with the NbS 3 crystal sheets, respectively. The ultra-wideband photodetector includes the above-mentioned detection unit, and a detection circuit for collecting potential difference data on the detection unit, and the two electrodes are respectively electrically connected to the detection circuit. The detection method mainly includes: fixing the detector, illuminating the detector and collecting the data of the detection circuit. This paper relates to a detection unit, an ultra-wideband photodetector and a detection method, which can overcome the problem of narrow detection bandwidth. advantage.
Description
技术领域technical field
本发明涉及探测技术领域,尤其涉及一种探测单元、超宽带光探测器及探测方法。The invention relates to the technical field of detection, in particular to a detection unit, an ultra-wideband optical detector and a detection method.
背景技术Background technique
光探测器能够将光信号转换为电信号,进而检测出入射到其表面的光功率。超宽带光探测器能够同时探测不同波段,例如紫外、可见光、红外甚至是太赫兹波的电磁波辐射,在红外成像、遥感、环境监测、天文探测、光谱分析等诸多领域有着非常重要作用。但是,由于光敏材料的限制,目前的光探测器只能工作于特定的波段,现阶段的超宽光谱探测是通过将不同波段的探测方法集成在一起并保证各个部分同步工作来实现的,这种方法最大的问题就是器件结构非常复杂,难以应用到实际中。因此,使用单一器件进行太赫兹到紫外的超宽带光探测成为了目前的研究热点。The photodetector can convert the optical signal into an electrical signal, and then detect the optical power incident on its surface. Ultra-broadband photodetectors can simultaneously detect electromagnetic radiation in different wavelength bands, such as ultraviolet, visible light, infrared and even terahertz waves, and play a very important role in infrared imaging, remote sensing, environmental monitoring, astronomical detection, spectral analysis and many other fields. However, due to the limitation of photosensitive materials, the current photodetectors can only work in a specific wavelength band. The current ultra-broad spectrum detection is realized by integrating the detection methods of different wavelength bands and ensuring that all parts work synchronously. The biggest problem of this method is that the device structure is very complex and difficult to apply in practice. Therefore, ultra-broadband photodetection from terahertz to ultraviolet using a single device has become a current research hotspot.
受制于材料本身带隙的大小,基于WSe2(见Kim H S,Chauhan K R,Kim J,etal.Flexible vanadium oxide film for broadband transparent photodetector[J].Applied Physics Letters,2017,110(10):101907.),Bi单晶(见Yao J D,Shao J M,YangG W.Ultra-broadband and high-responsive photodetectors based on bismuth filmat room temperature[J].Scientific Reports,2015,5:12320.),MoS2(见Xie Y,ZhangB,Wang S,et al.Ultrabroadband MoS2 Photodetector with Spectral Response from445 to 2717nm[J].Advanced Materials,2017,29(17):1605972.)以及黑磷(见Xie Y,Zhang B,Wang S,et al.Ultrabroadband MoS2 Photodetector with Spectral Responsefrom 445 to 2717nm[J].Advanced Materials,2017,29(17):1605972.)的探测器大多只能实现紫外至红外波段的宽带探测,难以覆盖到太赫兹波段。石墨烯以及拓扑绝缘体具有狄拉克锥能带结构,被认为是实现超宽带光探测的宠儿。不幸的是,对于石墨烯而言,单层石墨烯的光吸收率仅为2.3%,这使得石墨烯探测器的响应度仅为数mV/W(CN 107104167A)。对于拓扑绝缘体而言,仅有表面具有狄拉克锥结构,同样也面临吸收较低的问题。此外,零带隙的结构使得基于石墨烯和拓扑绝缘体的光探测暗电流较大,严重影响器件的信噪比。尽管存在石墨烯异质结(见Highly Sensitive,Gate-Tunable,Room-Temperature Mid-Infrared Photodetection Based on Graphene-Bi2Se3 Heterostructure),拓扑绝缘体异质结(见Yao,J.;Shao,J.;Wang,Y.;Zhao,Z.;Yang,G.Ultra-broadband and highresponse of the Bi2Te3-Si heterojunction and its applicationas a photodetectorat room temperature in harsh working environments.Nanoscale 2015,7,12535-12541.)以及三维微管结构的石墨烯探测器(CN107394001A),然而其要么需要额外偏压,要么需要引入相对复杂的制备工艺,均制约了器件在实际中的应用。综上所述,探测带宽覆盖太赫兹至紫外的超宽谱探测器是需要进一步研究的。Subject to the size of the band gap of the material itself, based on WSe 2 (see Kim HS, Chauhan KR, Kim J, et al. Flexible vanadium oxide film for broadband transparent photodetector [J]. Applied Physics Letters, 2017, 110(10): 101907. ), Bi single crystal (see Yao JD, Shao JM, YangG W. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature [J]. Scientific Reports, 2015, 5:12320.), MoS 2 (see Xie Y, ZhangB, Wang S, et al. Ultrabroadband MoS 2 Photodetector with Spectral Response from 445 to 2717nm[J]. Advanced Materials, 2017, 29(17):1605972.) and black phosphorus (see Xie Y, Zhang B, Wang S , et al.Ultrabroadband MoS 2 Photodetector with Spectral Responsefrom 445 to 2717nm[J].Advanced Materials,2017,29(17):1605972.) Most of the detectors can only achieve broadband detection in the ultraviolet to infrared band, which is difficult to cover too far Hertz band. Graphene and topological insulators have Dirac cone band structures and are considered to be the darlings for realizing ultra-broadband photodetection. Unfortunately, for graphene, the light absorption of single-layer graphene is only 2.3%, which makes the responsivity of graphene detectors only a few mV/W (CN 107104167A). For topological insulators, only the surface has a Dirac cone structure, which also faces the problem of low absorption. In addition, the zero-bandgap structure makes the dark current of photodetectors based on graphene and topological insulators large, which seriously affects the signal-to-noise ratio of the device. Despite the presence of graphene heterojunctions (see Highly Sensitive, Gate-Tunable, Room-Temperature Mid-Infrared Photodetection Based on Graphene-Bi 2 Se 3 Heterostructure), topological insulator heterojunctions (see Yao, J.; Shao, J. ; Wang, Y.; Zhao, Z.; Yang, G. Ultra-broadband and highresponse of the Bi 2 Te 3 -Si heterojunction and its application as a photodetectorat room temperature in harsh working environments. Nanoscale 2015,7,12535-12541. ) and the graphene detector with three-dimensional microtubule structure (CN107394001A), however, it requires either additional bias voltage or relatively complicated fabrication process, which restricts the practical application of the device. In conclusion, ultra-broad spectrum detectors with detection bandwidths covering terahertz to ultraviolet need further research.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种探测单元、超宽带光探测器及探测方法,可克服探测带宽窄问题,其探测的带宽能从紫外覆盖到太赫兹波段,具有超宽探测带宽,并且其还具有高速灵敏的优点。Embodiments of the present invention provide a detection unit, an ultra-wideband optical detector, and a detection method, which can overcome the problem of narrow detection bandwidth. Sensitive advantage.
为解决上述技术问题,本文采用如下技术方案:In order to solve the above technical problems, this paper adopts the following technical solutions:
一种探测单元,用于超宽带光探测,包括NbS3晶体片和两个电极,两个所述电极分别设置在所述NbS3晶体片的长度方向两端,且分别与所述NbS3晶体片形成欧姆接触。A detection unit for ultra-broadband light detection, comprising a NbS 3 crystal sheet and two electrodes, the two electrodes are respectively arranged at both ends of the NbS 3 crystal sheet in the length direction, and are respectively connected with the NbS 3 crystal sheet. The sheets form ohmic contacts.
本文还提供了一种超宽带光探测器,包括上述的探测单元,以及用于采集所述探测单元上电势差数据的探测电路,两个所述电极分别与所述探测电路电连接。This article also provides an ultra-wideband photodetector, comprising the above-mentioned detection unit, and a detection circuit for collecting potential difference data on the detection unit, and the two electrodes are respectively electrically connected to the detection circuit.
一种可能的设计,包括用以支撑所述探测单元的基底,所述探测单元固定在所述基底上。A possible design includes a base for supporting the detection unit, and the detection unit is fixed on the base.
一种可能的设计,两个所述电极设为两个同材质的金属电极。In a possible design, the two electrodes are set as two metal electrodes of the same material.
一种可能的设计,两个所述电极设为两个不同材质的金属电极。In a possible design, the two electrodes are set as two metal electrodes of different materials.
一种可能的设计,所述探测单元还包括栅介质层、栅电极和天线,两个所述电极设为源电极和漏电极,所述栅介质层铺设在所述NbS3晶体片和两个所述电极构成的异质结的上表面,所述栅电极设置在所述栅介质层上端且位于所述NbS3晶体片中央,所述天线分别与所述源电极和所述栅电极连接。A possible design, the detection unit further includes a gate dielectric layer, a gate electrode and an antenna, the two electrodes are set as source electrodes and drain electrodes, and the gate dielectric layer is laid on the NbS 3 crystal sheet and the two electrodes. On the upper surface of the heterojunction formed by the electrodes, the gate electrode is disposed on the upper end of the gate dielectric layer and in the center of the NbS 3 crystal plate, and the antenna is connected to the source electrode and the gate electrode respectively.
一种可能的设计,所述天线包括分体的第一天线和第二天线,所述第一天线与所述源电极连接,所述第二天线与所述栅电极连接。In a possible design, the antenna includes a separate first antenna and a second antenna, the first antenna is connected to the source electrode, and the second antenna is connected to the gate electrode.
一种可能的设计,所述栅介质层的材料包括SiO2、Al2O3、HfO2或六方氮化硼。In a possible design, the material of the gate dielectric layer includes SiO 2 , Al 2 O 3 , HfO 2 or hexagonal boron nitride.
一种可能的设计,所述天线设置为螺旋天线、蝶形天线或对数周期天线。In a possible design, the antenna is configured as a helical antenna, a butterfly antenna or a log-periodic antenna.
一种可能的设计,两个电极都成薄片状且都固定在所述基底的上表面或所述NbS3晶体片的上表面。In a possible design, both electrodes are in the form of sheets and both are fixed on the upper surface of the substrate or the upper surface of the NbS 3 crystal sheet.
一种可能的设计,所述基底为薄片状,且材料包括蓝宝石,Si/SiO2,石英,玻璃或云母。In one possible design, the substrate is flake-like and the material includes sapphire, Si/SiO 2 , quartz, glass or mica.
一种可能的设计,所述探测单元有多个,多个所述探测单元呈线阵或面阵排布。In a possible design, there are multiple detection units, and the multiple detection units are arranged in a linear array or an area array.
一种可能的设计,所述探测电路为用以读取电势差的电测量设备。In one possible design, the detection circuit is an electrical measuring device for reading the potential difference.
一种可能的设计,多个所述探测单元设置在基底上且呈线阵排布,所述基底包括间隔设置的第一基底和第二基底,任一所述探测单元的两个电极分别固定在所述第一基底和第二基底上且所述NbS3晶体片的两端分别与两个所述电极形成欧姆接触。A possible design, a plurality of the detection units are arranged on a substrate and arranged in a linear array, the substrate includes a first substrate and a second substrate arranged at intervals, and the two electrodes of any one of the detection units are respectively fixed On the first substrate and the second substrate and at both ends of the NbS 3 crystal sheet, ohmic contacts are formed with two of the electrodes respectively.
一种可能的设计,所述基底有多个,多个所述基底设在同一平面上,所述基底和探测单元一一对应,每一所述探测单元的两个所述电极贯穿对应的基底,所述探测单元的NbS3晶体片设置在该基底的一侧且两端与两个所述电极形成欧姆接触。A possible design, there are multiple substrates, the substrates are arranged on the same plane, the substrates correspond to the detection units one-to-one, and the two electrodes of each detection unit penetrate the corresponding substrates , the NbS 3 crystal plate of the detection unit is arranged on one side of the substrate and the two ends form ohmic contact with the two electrodes.
一种可能的设计,所述电极截面呈矩形,且所述电极在所述基底背向所述NbS3晶体片的一侧形成引脚。In a possible design, the cross section of the electrode is rectangular, and the electrode forms pins on the side of the substrate facing away from the NbS 3 crystal sheet.
本文还提供了一种上述的超宽带光探测器的探测方法,包括:This paper also provides a detection method for the above-mentioned ultra-broadband light detector, including:
固定探测器,将探测器固定在光学平移台上;Fix the detector, and fix the detector on the optical translation stage;
照射探测器,控制光源照射探测器,使得光源产生的光斑落在所述NbS3晶体片上;Irradiate the detector, and control the light source to illuminate the detector, so that the light spot generated by the light source falls on the NbS 3 crystal sheet;
采集探测电路数据,读取和记录所述探测单元两端的电势差变化数据。Collect the detection circuit data, read and record the potential difference change data at both ends of the detection unit.
本发明实施例的有益效果:Beneficial effects of the embodiments of the present invention:
本发明实施例的探测器被光源照射时,含有NbS3晶体的探测单元会产生温度梯度,进而在探测单元两端产生正比于光强的电势差,同时,通过探测电路将这一电势差放大读出即可实现超宽带光探测。When the detector of the embodiment of the present invention is irradiated by a light source, the detection unit containing NbS 3 crystal will generate a temperature gradient, and then a potential difference proportional to the light intensity will be generated at both ends of the detection unit. At the same time, this potential difference is amplified and read out through the detection circuit Ultra-broadband light detection can be realized.
本发明实施例的探测器的探测带宽能从紫外覆盖到太赫兹波段,具有超宽探测带宽,并且其还具有高速灵敏的优点。The detection bandwidth of the detector of the embodiment of the present invention can cover from ultraviolet to terahertz band, has an ultra-wide detection bandwidth, and also has the advantages of high speed and sensitivity.
本发明实施例的探测器制备简单、成本低廉,在实际应用中具有广阔前景。The detector of the embodiment of the present invention is simple to manufacture, low in cost, and has broad prospects in practical application.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。Other features and advantages of the present invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the description, claims and drawings.
附图说明Description of drawings
下面结合附图对本发明做进一步的说明:The present invention will be further described below in conjunction with the accompanying drawings:
图1为实施例一的探测器示意图;Fig. 1 is the schematic diagram of the detector of the first embodiment;
图2为实施例一的探测器连接简图;Fig. 2 is the connection diagram of the detector of the first embodiment;
图3为实施例二的探测器示意图;3 is a schematic diagram of the detector of the second embodiment;
图4为实施例三的探测器示意图;4 is a schematic diagram of the detector of the third embodiment;
图5为实施例三的探测单元示意图;5 is a schematic diagram of a detection unit of
图6为实施例三的探测器连接简图;Fig. 6 is the connection diagram of the detector of the third embodiment;
图7为实施例四的探测器示意图;7 is a schematic diagram of the detector of the fourth embodiment;
图8为实施例五的探测器示意图。FIG. 8 is a schematic diagram of the detector of the fifth embodiment.
附图标记:1-NbS3晶体片、2-源电极、3-漏电极、4-基底、4-1-第一基底、4-2-第二基底、5-栅介质层、6-栅电极、7-第一天线、8-第二天线、9-金属线、10-光线、11-探测电路。Reference symbols: 1-NbS 3 crystal plate, 2-source electrode, 3-drain electrode, 4-substrate, 4-1-first substrate, 4-2-second substrate, 5-gate dielectric layer, 6-gate Electrode, 7-first antenna, 8-second antenna, 9-metal wire, 10-light, 11-detection circuit.
具体实施方式Detailed ways
为使本申请的发明目的、技术方案和有益效果更加清楚明了,下面结合附图对本申请的实施例进行说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以相互任意组合。In order to make the invention purpose, technical solutions and beneficial effects of the present application clearer, the embodiments of the present application will be described below with reference to the accompanying drawings. The features in can be arbitrarily combined with each other.
请参阅图1和图2的本发明实施例一的超宽带光探测器。如图1和图2所示,该探测器包括探测单元和用于收集探测单元数据的探测电路11,其中,上述探测单元又包括NbS3晶体片1和电极,两个电极分别设置在NbS3晶体片1的长度方向两端并与其形成欧姆接触,同时,两个电极分别与探测电路11电连接。由此,该探测器可将照射在其上的光线转为电信号,并由探测电路11读出,实现超宽带光探测。Please refer to FIG. 1 and FIG. 2 of the ultra-wideband photodetector according to the first embodiment of the present invention. As shown in FIG. 1 and FIG. 2 , the detector includes a detection unit and a
首先,就NbS3晶体片1而言,其由NbS3晶体构成呈长条片状。NbS3是一种典型的准一维半导体材料,其具有丰富的物理性质,例如Peierls相变和电荷密度波。近年来,具有独特物理性质的低维材料逐渐成为研究热点,这也开启了新的超宽带探测方法的研究领域。目前,基于低维材料太赫兹探测研究多集中于石墨烯,黑磷等二维材料。除了这些材料以外,尚有很多准一维材料有待探索,例如上述的NbS3。然而,目前对NbS3的研究多集中于晶体结构,能带结构和电荷密度波相变特性,少有关于光电探测方法甚至于太赫兹探测方法的研究。First, the NbS 3 crystal sheet 1 is composed of NbS 3 crystals in the shape of a long sheet. NbS3 is a typical quasi-one-dimensional semiconductor material with rich physical properties such as Peierls phase transition and charge density waves. In recent years, low-dimensional materials with unique physical properties have gradually become a research hotspot, which also opens up the research field of new ultra-broadband detection methods. At present, researches on terahertz detection based on low-dimensional materials mostly focus on two-dimensional materials such as graphene and black phosphorus. In addition to these materials, there are many quasi-one-dimensional materials to be explored, such as the aforementioned NbS 3 . However, the current research on NbS 3 mostly focuses on the crystal structure, energy band structure and charge density wave phase transition characteristics, and little research on photodetection methods or even terahertz detection methods.
又如图1和图2所示,两个电极为两个同材质的金属电极,其分别设置有源电极2和漏电极3,其中,源电极2和漏电极3都为薄片状且分别设置在NbS3晶体片1的上表面,并与NbS3晶体片1形成良好的欧姆接触。由此,上述NbS3晶体片1和两个电极固定后形成了“NbS3-金属”的异质结。同时,源电极2和漏电极3分别通过引线(图中未示出)与探测电路11电连接,形成回路,以便将NbS3晶体片1产生的电信号传送给探测电路11,以供其测量。As shown in FIG. 1 and FIG. 2, the two electrodes are two metal electrodes of the same material, which are respectively provided with a
另外,该探测器还包括用以支撑探测单元的基底4,该基底4呈薄片状,上述NbS3晶体片1固定在基底4上端面,基底4可为探测器提供稳定的机械支撑,其材质包括但不限于蓝宝石,Si/SiO2,石英,玻璃或云母,本实施例采用蓝宝石制成。In addition, the detector also includes a
由此,可知,该探测器制备简单,成本也相对低廉。而且其探测方法也简单快捷。具体地,其探测方法主要包括:固定探测器、照射探测器和采集探测电路11数据。其中,在探测时,首先需要将探测器的基底固定在稳定可靠的光学平移台上,使其能够正面面对光照。其次,开启光源,使得其光线10可通过光路聚焦在“NbS3-金属”的异质结上,即光斑落在NbS3晶体片1上,该光斑的直径数值应小于NbS3晶体片1的长度,通常实验室中光斑大小多选用1-2mm,使得光斑只能落在NbS3晶体片1的一处,不能覆盖整个NbS3晶体片1。此时,在光照下,NbS3晶体材料温度升高,产生光热电效应,从而在几个毫秒的时间内产生显著的电流,这一电流强度依赖于电磁波的功率,随着电磁波功率的增加,回路中的光电流随之线性增加;也可理解为光线照射会使探测单元两端产生温度差,这一温度差会在其两端产生正比于光强的电势差。最后,通过探测电路11可将上述电势差放大读出,即可实现超宽带光探测。由此,可知其探测反应小于10毫秒,响应快速,反应灵敏,同时,其具有超宽探测带宽,可覆盖紫外至太赫兹波段,应用广泛。Therefore, it can be seen that the detector is simple to manufacture and relatively low cost. And its detection method is also simple and quick. Specifically, the detection method mainly includes: fixing the detector, illuminating the detector, and collecting the data of the
请参阅图3的本发明实施例二的超宽带光探测器。该探测器包括探测单元和用于收集探测单元数据的探测电路,其中,上述探测单元又包括NbS3晶体片1和电极,相对于实施例一的探测器,本实施例的两个电极为两个不同材质的金属电极,即源电极2和漏电极3的材质不同,从而该探测单元构成了两个不同的“NbS3-金属”的异质结。另外,上述电极处还可采用耦合天线,以提高吸收。Please refer to FIG. 3 of the ultra-wideband photodetector according to the second embodiment of the present invention. The detector includes a detection unit and a detection circuit for collecting data of the detection unit, wherein the detection unit further includes a NbS 3 crystal plate 1 and electrodes. Compared with the detector of the first embodiment, the two electrodes in this embodiment are two The metal electrodes of different materials, namely the
由此,该探测器在探测过程中,选用的光斑的大小应远大于该NbS3晶体片1的长度,使得光线照射在整个探测单元上,由于探测单元两端的金属电极材质不同,因此,两端的费米能级存在差异,从而导致两端的塞贝克系数不同。在光照下产生光热电效应,其可在几个毫秒的时间内产生显著的电流,这一电流强度依赖于电磁波的功率,随着电磁波功率的增加,回路中的光电流随之线性增加,同样可通过探测电路读出数据,实现超宽带光探测。Therefore, during the detection process of the detector, the size of the selected light spot should be much larger than the length of the NbS 3 crystal sheet 1, so that the light irradiates the entire detection unit. Since the metal electrodes at both ends of the detection unit are of different materials, the two There is a difference in the Fermi levels at the ends, resulting in different Seebeck coefficients at the ends. The photothermoelectric effect is produced under illumination, which can generate a significant current within a few milliseconds. The current strength depends on the power of the electromagnetic wave. As the power of the electromagnetic wave increases, the photocurrent in the loop increases linearly, and the same The data can be read out through the detection circuit to realize ultra-wideband optical detection.
请参阅图4至图6的本发明实施例三的超宽带光探测器。相对于实施例一的探测器,该探测单元还包括栅介质层5、栅电极6和天线,两个电极设为源电极2和漏电极3。Please refer to FIG. 4 to FIG. 6 of the ultra-wideband photodetector according to the third embodiment of the present invention. Compared with the detector of the first embodiment, the detection unit further includes a
具体地,上述盖栅介质层5铺设在NbS3晶体片1和两个电极构成的异质结的上表面,栅介质层5包括但不限于SiO2、Al2O3、HfO2或六方氮化硼,本实施例的栅介质层5采用SiO2。就栅电极6而言,其也为薄片状,其沉积在栅介质层5上端且位于NbS3晶体片1的中央,栅电极6可通过栅介质层对探测单元进行栅控。另外,源电极2和栅电极6都设有天线,其天线又包括设置在源电极2上的第一天线7和设置在栅电极6上的第二天线8,第一天线7和第二天线8都为金属件,两者构成蝶形天线,可在通电情况下耦合。该天线不限于蝶形天线,其还可为螺旋天线或对数周期天线。同时,漏电极3通过金属线9连接至探测电路11,源电极2也连接至探测电路11,形成回路。Specifically, the above-mentioned
该探测器在探测过程中,选用的光斑的大小也远大于该NbS3晶体片1的长度,使得光线照射在整个探测单元上,在光照条件下,由于天线耦合,源电极2和栅电极6之间的沟道材料(即NbS3晶体)吸收更多的能量,温度会比栅电极6与漏电极3之间的材料温度高,从而产生光热电效应,在几个毫秒的时间内产生显著的电流,这一电流强度依赖于电磁波的功率,随着电磁波功率的增加,回路中的光电流随之线性增加,而探测电路11可读出数据,实现超宽带光探测。During the detection process of the detector, the size of the selected light spot is also much larger than the length of the NbS 3 crystal sheet 1, so that the light irradiates the entire detection unit. Under the illumination condition, due to the antenna coupling, the
请参阅图7的本发明实施例四的超宽带光探测器,相对于实施例一的探测器,其基底4上设有多个探测单元,多个探测单元呈线阵排布,其也可呈面阵排布。Please refer to the ultra-wideband light detector of the fourth embodiment of the present invention in FIG. 7 . Compared with the detector of the first embodiment, the
具体地,基底4包括间隔设置的第一基底4-1和第二基底4-2,第一基底4-1和第二基底4-2平行设置,任一探测单元的两个电极分别固定在第一基底和第二基底上,正如图7所示,漏电极3设置第二基底4-2背向第一基底4-1的一侧,而源电极2则设置第一基底4-1的面向第二基底4-2的一侧。值得注意地,NbS3晶体片1为圆柱状,其一端贯穿第二基底4-2并与漏电极3形成良好的欧姆接触,另一端固定在第一基底4-1上并与源电极2形成良好的欧姆接触。当然,源电极2和漏电极3也可对向或背向分别设置在第一基底4-1和第二基底4-2上。另外,多个探测电路11(图中未示出)一一对应探测单元,分别读取各自对应的探测单元产生的电势差。Specifically, the
由此,相同或不同的光线同时照射多个探测单元时,通过读取各个探测单元的数据,可实现多个超宽带光探测过程同时进行。Therefore, when the same or different light rays illuminate multiple detection units at the same time, by reading the data of each detection unit, multiple ultra-broadband light detection processes can be performed simultaneously.
请参阅图8的本发明实施例五的超宽带光探测器,相对于实施例一的探测器,包括多个所述探测单元和基底4,多个基底4和探测单元一一对应,形成面阵排布。Referring to FIG. 8 , the ultra-wideband photodetector of the fifth embodiment of the present invention, compared with the detector of the first embodiment, includes a plurality of the detection units and the
具体地,多个相同的基底4设在同一平面上,源电极2和漏电极3之间设有NbS3晶体片1,该NbS3晶体片1处于基底4的一侧且分别与源电极2和漏电极3形成良好的欧姆接触。另外,源电极2和漏电极3的截面都为矩形,两者都贯穿基底4并向下侧延伸,形成引脚,两个引脚可插入探测电路11(图中未示出)的接口,省去引线连接。多个探测电路11(图中未示出)一一对应探测单元,分别读取各自对应的探测单元的数据。Specifically, a plurality of
由此,相同或不同的光线同时照射多个探测单元时,通过读取各个探测单元的数据,可实现多个超宽带光探测过程同时进行。Therefore, when the same or different light rays illuminate multiple detection units at the same time, by reading the data of each detection unit, multiple ultra-broadband light detection processes can be performed simultaneously.
结合上述实施例,可知,该探测器的探测带宽能从紫外覆盖到太赫兹波段,具有超宽探测带宽,并且其还具有高速灵敏和响应快速的优点。同时,该探测器制备简单、成本低廉,在实际应用中具有广阔前景。另外,虽然在上述实施例中的探测器是通过光热电效应来实现探测,然而本领域的技术人员应当理解,在其它实施例中,也可以采用包括但不限于辐射热效应,热释电效应等其它探测原理。Combining the above embodiments, it can be seen that the detection bandwidth of the detector can cover from ultraviolet to terahertz band, has an ultra-wide detection bandwidth, and also has the advantages of high-speed sensitivity and fast response. At the same time, the detector is simple in fabrication and low in cost, and has broad prospects in practical applications. In addition, although the detector in the above-mentioned embodiment realizes the detection through the photo-pyroelectric effect, those skilled in the art should understand that in other embodiments, the detector may also adopt, but not limited to, the radiant heat effect, the pyroelectric effect, etc. Other detection principles.
在本申请的描述中,术语“安装”、“相连”、“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。In the description of this application, the terms "installed", "connected", "connected", "fixed", etc. should be understood in a broad sense, for example, "connected" may be a fixed connection, a detachable connection, or an integral Connection; either directly or indirectly through an intermediary. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific situations.
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description of the terms "one embodiment", "some embodiments", "specific embodiment", etc. means that a particular feature, structure, material or characteristic described in connection with the embodiment or example is included in this application at least one embodiment or example of . In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or instance. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。Although the embodiments disclosed in the present invention are as above, the described contents are only the embodiments adopted to facilitate the understanding of the present invention, and are not intended to limit the present invention. Any person skilled in the art to which the present invention belongs, without departing from the spirit and scope disclosed by the present invention, can make any modifications and changes in the form and details of the implementation, but the scope of the patent protection of the present invention still needs to be The scope defined by the appended claims shall prevail.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911035035.8A CN110767769A (en) | 2019-10-29 | 2019-10-29 | A detection unit, ultra-wideband optical detector and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911035035.8A CN110767769A (en) | 2019-10-29 | 2019-10-29 | A detection unit, ultra-wideband optical detector and detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110767769A true CN110767769A (en) | 2020-02-07 |
Family
ID=69334235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911035035.8A Pending CN110767769A (en) | 2019-10-29 | 2019-10-29 | A detection unit, ultra-wideband optical detector and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110767769A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111403507A (en) * | 2020-02-27 | 2020-07-10 | 苏州东薇极光信息科技有限公司 | An uncooled ultra-wide spectrum photoelectric converter and array detector |
CN113790804A (en) * | 2021-09-07 | 2021-12-14 | 哈尔滨工业大学(深圳) | Fatigue driving monitoring and reminding device and method based on intermediate infrared detector |
WO2022121599A1 (en) * | 2020-12-09 | 2022-06-16 | Huawei Technologies Co.,Ltd. | A graphene-based photodetector |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6624416B1 (en) * | 2001-07-26 | 2003-09-23 | The United States Of America As Represented By The Secretary Of The Navy | Uncooled niobium trisulfide midwavelength infrared detector |
CN104916732A (en) * | 2014-03-12 | 2015-09-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | Graphene terahertz wave detector and manufacturing method thereof |
CN107527969A (en) * | 2017-07-21 | 2017-12-29 | 中山大学 | A kind of electrolyte Gate oxide semiconductor phototransistors for ultraviolet detector |
CN109494293A (en) * | 2018-12-28 | 2019-03-19 | 同方威视技术股份有限公司 | Terahertz detector and its manufacturing method |
CN210956702U (en) * | 2019-10-29 | 2020-07-07 | 清华大学 | Detection unit and ultra-wideband photodetector |
-
2019
- 2019-10-29 CN CN201911035035.8A patent/CN110767769A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6624416B1 (en) * | 2001-07-26 | 2003-09-23 | The United States Of America As Represented By The Secretary Of The Navy | Uncooled niobium trisulfide midwavelength infrared detector |
CN104916732A (en) * | 2014-03-12 | 2015-09-16 | 中国科学院苏州纳米技术与纳米仿生研究所 | Graphene terahertz wave detector and manufacturing method thereof |
CN107527969A (en) * | 2017-07-21 | 2017-12-29 | 中山大学 | A kind of electrolyte Gate oxide semiconductor phototransistors for ultraviolet detector |
CN109494293A (en) * | 2018-12-28 | 2019-03-19 | 同方威视技术股份有限公司 | Terahertz detector and its manufacturing method |
CN210956702U (en) * | 2019-10-29 | 2020-07-07 | 清华大学 | Detection unit and ultra-wideband photodetector |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111403507A (en) * | 2020-02-27 | 2020-07-10 | 苏州东薇极光信息科技有限公司 | An uncooled ultra-wide spectrum photoelectric converter and array detector |
WO2022121599A1 (en) * | 2020-12-09 | 2022-06-16 | Huawei Technologies Co.,Ltd. | A graphene-based photodetector |
US11563190B2 (en) | 2020-12-09 | 2023-01-24 | Huawei Technologies Co., Ltd. | Graphene-based photodetector |
CN113790804A (en) * | 2021-09-07 | 2021-12-14 | 哈尔滨工业大学(深圳) | Fatigue driving monitoring and reminding device and method based on intermediate infrared detector |
CN113790804B (en) * | 2021-09-07 | 2023-10-31 | 哈尔滨工业大学(深圳) | Fatigue driving monitoring reminding device and method based on mid-infrared detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wei et al. | Mid-infrared semimetal polarization detectors with configurable polarity transition | |
Sassi et al. | Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance | |
Ueda et al. | Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer | |
Tan et al. | Balancing the transmittance and carrier‐collection ability of Ag nanowire networks for high‐performance self‐powered Ga2O3 Schottky photodiode | |
TW201133910A (en) | Single and few-layer graphene based photodetecting devices | |
CN110459548B (en) | A kind of photodetector based on van der Waals heterojunction and its preparation method | |
Zhang et al. | A broadband, self-powered, and polarization-sensitive PdSe2 photodetector based on asymmetric van der Waals contacts | |
CN105762281A (en) | Ferroelectric local field enhanced two-dimensional semiconductor photoelectric detector and preparation method | |
CN110767769A (en) | A detection unit, ultra-wideband optical detector and detection method | |
CN110718603B (en) | Highly sensitive mid-infrared photodetector based on Weyl semimetallic Berry curvature enhancement | |
CN107394001B (en) | A kind of graphene-based micro ultra-broadband photodetector and its production method | |
Ma et al. | High-performance flexible WSe2 flake photodetector with broadband detection capability | |
Xue et al. | Pyro-phototronic effect enhanced pyramid structured p-Si/n-ZnO nanowires heterojunction photodetector | |
CN109524486B (en) | Electric reading optical sensor | |
CN210956702U (en) | Detection unit and ultra-wideband photodetector | |
Bao et al. | High performance near ultraviolet ray detector by cluster-wrapped surface structure in ferroelectrics | |
CN115832108A (en) | Preparation method of grid-adjustable high-sensitivity polarization detector | |
CN113049096A (en) | Nickel telluride terahertz detector integrated with room-temperature periodic logarithmic antenna and preparation method | |
CN109119506A (en) | A kind of hyperfrequency photon detector based on light thermoelectric conversion effect | |
Zhang et al. | PtTe2-based terahertz photodetector integrated with an interdigital antenna | |
CN110864805B (en) | Ultra-wideband spectrum detection device and method | |
Chen et al. | High-performance, ultra-broadband Sb2Te3 photodetector assisted by multimechanism | |
Chen et al. | A high-performance broadband phototransistor array of a PdSe 2/SOI Schottky junction | |
Ye et al. | Flexible InGaAs photodetector with high-speed detection and long-term stability | |
CN217158202U (en) | Topology enhancement type antimony telluride photoelectric detector based on butterfly antenna structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |