WO2013021591A1 - 水処理システムおよびその曝気風量制御方法 - Google Patents

水処理システムおよびその曝気風量制御方法 Download PDF

Info

Publication number
WO2013021591A1
WO2013021591A1 PCT/JP2012/004919 JP2012004919W WO2013021591A1 WO 2013021591 A1 WO2013021591 A1 WO 2013021591A1 JP 2012004919 W JP2012004919 W JP 2012004919W WO 2013021591 A1 WO2013021591 A1 WO 2013021591A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerobic tank
tank
activated sludge
aeration
operation amount
Prior art date
Application number
PCT/JP2012/004919
Other languages
English (en)
French (fr)
Inventor
康二 福本
昭彦 猪股
優 小山
崇嗣 安部
洋士 山本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2013021591A1 publication Critical patent/WO2013021591A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/14NH3-N
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment system provided with a biological reaction tank including an aerobic tank provided in a sewage treatment facility or the like.
  • a biological reaction tank including an aerobic tank provided in a sewage treatment facility or the like.
  • it is related with control of the aeration air volume of an aerobic tank.
  • a reclaimed water production system for producing reclaimed water by treating with a membrane separation activated sludge method is known as one of sewage water treatment systems such as domestic wastewater.
  • MLR membrane separation activated sludge method
  • a reclaimed water production system uses a raw water tank for storing raw water (inflow sewage) and a pollutant in an activated sludge mixed liquid (hereinafter also simply referred to as “mixed liquid”) in which raw water and activated sludge are mixed.
  • a series of biological reaction tanks include anaerobic tanks, anoxic tanks, and aerobic tanks, and in these reaction tanks, removal of pollutants contained in raw water such as carbon-based organic substances, nitrogen-containing compounds, and phosphorus-containing compounds. Is done.
  • the aerobic tank is equipped with an aeration device for aerating the mixed solution.
  • the dissolved oxygen concentration in the mixed solution necessary for the activity of the activated sludge microorganisms can be increased, or the mixed solution can be stirred.
  • aeration air volume the amount of air supplied to the mixed solution in the aerobic tank by the aeration apparatus
  • a dissolved oxygen concentration meter is conventionally provided in the aerobic tank, and the aeration air volume in the aerobic tank is controlled so that the measured value of the dissolved oxygen concentration meter becomes the set dissolved oxygen concentration target value.
  • Patent Document 1 proposes an aeration air volume control device that controls the aeration air volume of an aerobic tank based on the ammonia nitrogen concentration in the aerobic tank. This is because the nitrification rate of nitrifying bacteria is slower than the rate of organic matter removal and phosphorus absorption, so if oxygen necessary for nitrification is supplied, the amount of aeration air required for organic matter removal, phosphorus absorption, and nitrogen removal Is based on the idea that
  • the aeration air volume control device according to Patent Document 1 includes an ammonia meter that measures the ammonia nitrogen concentration in the aerobic tank, target setting means that sets a target value of the ammonia nitrogen concentration of the effluent water in the aerobic tank, And a controller for calculating a target value of the aeration air volume so as to bring the measured ammonia nitrogen concentration close to the set target value.
  • the relationship between the ammonia nitrogen concentration of the liquid mixture in the aerobic tank and the ammonia nitrogen concentration of the treatment liquid in the filtered water tank changes due to environmental changes due to seasonal differences and regional differences. There are things to do. This is due to the fact that the target value of the ammonia nitrogen concentration in the aerobic tank is generally determined according to fluctuations in the water temperature. Specifically, the target value of the ammonia nitrogen concentration in the aerobic tank is set according to the water temperature in the aerobic tank, and the aeration apparatus adjusts the aeration air volume in the aerobic tank based on this target value. It is controlled.
  • the adjustment of the amount of aeration air in the aerobic tank is insufficient.
  • the composition of the raw water may vary depending on the seasonal and regional differences, and the activity of the activated sludge microorganisms also varies depending on such factors.
  • the ammonia nitrogen concentration in the aerobic tank is the same target value, if the ammonia nitrogen concentration in the filtered water tank is low, the aeration air volume in the aerobic tank is excessive, and only the amount of excess aeration It leads to energy loss.
  • the ammonia nitrogen concentration in the filtered water tank is high, the amount of aeration air is insufficient, which may exceed the environmental regulation value.
  • the present invention provides an ammonia state of the activated sludge mixed liquid in the aerobic tank according to the ammonia nitrogen concentration of the treated water after being treated in a series of biological reaction tanks.
  • the objective is to optimize the aeration volume of the aerobic tank by appropriately setting the nitrogen concentration target value. Eventually, by reducing the amount of wasteful aeration air to the aerobic tank, energy saving and operation cost of the water treatment system are reduced.
  • the water treatment system is: A series of biological reactions having an aerobic tank provided with an aeration apparatus and at least one anaerobic tank or an oxygen-free tank provided upstream of the aerobic tank, and performing water treatment based on the activated sludge method A tank, A first ammonia meter for measuring the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank, and the ammonia nitrogen concentration of the treated water after the activated sludge mixed liquid has been treated in the series of biological reaction tanks.
  • a second ammonia meter to be measured Corresponding to a first manipulated variable calculation element that generates a target manipulated variable signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank and its set value, and the ammonia nitrogen concentration of the treated water And an aeration air volume calculation device that generates a target operation amount of the aeration apparatus based on the target operation amount signal, and a feedback control system including a second operation amount calculation element that corrects the set value. And an aeration air volume control device that controls the aeration air volume of the aeration device based on the generated target operation amount.
  • the water treatment system having the above-described configuration, by correcting the ammonia nitrogen concentration set value of the activated sludge mixed liquid in the aerobic tank based on the ammonia nitrogen concentration of the treated water, the influence of the set value environment change and disturbance can be reduced.
  • the ammonia nitrogen concentration set value of the activated sludge mixed solution in the aerobic tank is optimized. Therefore, when the ammonia nitrogen concentration of the treated water treated in a series of biological reaction tanks is low compared to the target value such as the environmental default value, the activated sludge mixed liquid in the aerobic tank is By correcting the set value of the ammonia nitrogen concentration, the aeration air volume can be reduced.
  • the amount of aeration air it is possible to save energy and reduce operating costs of the water treatment system. Also, if the ammonia nitrogen concentration of the treated water treated in a series of biological reaction tanks is higher than the target value such as the environmental default value, the activated sludge mixed liquid in the aerobic tank By correcting the set value of the ammonia nitrogen concentration, the aeration air volume can be increased. Thereby, it is possible to prevent the ammonia nitrogen concentration of the treated water from exceeding a target value such as an environmental default value.
  • the aeration air amount calculation device includes a feedforward control system including a third operation amount calculation element that generates a target operation amount preceding signal based on the ammonia nitrogen concentration of the raw water, the target operation amount signal, and the target operation amount. It is preferable to further include an addition calculation element for adding the preceding signals to generate the target operation amount.
  • the aeration apparatus is controlled to have a more appropriate aeration air volume by changing the aeration air volume of the aerobic tank in advance based on the ammonia nitrogen concentration of the raw water.
  • the aeration apparatus is controlled to have a more appropriate aeration air volume by changing the aeration air volume of the aerobic tank in advance based on the ammonia nitrogen concentration of the raw water.
  • a dissolved oxygen concentration meter for measuring the dissolved oxygen concentration of the activated sludge mixed solution in the aerobic tank;
  • the feedforward control system of the aeration air volume calculation device further includes a fourth operation amount calculation element that corrects the target operation amount preceding signal corresponding to the dissolved oxygen concentration of the activated sludge mixed liquid in the aerobic tank. Is good.
  • the aeration air volume can be optimized by correcting the target operation amount preceding signal upward or downward according to the dissolved oxygen concentration of the activated sludge mixed liquid in the aerobic tank.
  • optimizing the amount of aeration air it is possible to save energy and reduce operating costs of the water treatment system.
  • the present invention has an aerobic tank provided with an aeration apparatus, and at least one anaerobic tank or an oxygen-free tank provided on the upstream side of the aerobic tank, and performs water treatment based on the activated sludge method.
  • the aeration air volume control method of the above water treatment system by correcting the ammonia nitrogen concentration set value of the activated sludge mixed liquid of the aerobic tank based on the ammonia nitrogen concentration of the treated water, the set value environment change and disturbance
  • the ammonia nitrogen concentration set value of the activated sludge mixed liquid in the aerobic tank is optimized in response to the influence of. Therefore, when the ammonia nitrogen concentration of the treated water treated in a series of biological reaction tanks is low compared to the target value such as the environmental default value, the activated sludge mixed liquid in the aerobic tank is By correcting the set value of the ammonia nitrogen concentration, the aeration air volume can be reduced.
  • the amount of aeration air it is possible to save energy and reduce operating costs of the water treatment system. Also, if the ammonia nitrogen concentration of the treated water treated in a series of biological reaction tanks is higher than the target value such as the environmental default value, the activated sludge mixed liquid in the aerobic tank By correcting the set value of the ammonia nitrogen concentration, the aeration air volume can be increased. Thereby, it is possible to prevent the ammonia nitrogen concentration of the treated water from exceeding a target value such as an environmental default value.
  • this invention has an aerobic tank provided with the aeration apparatus, and an at least 1 or more anaerobic tank or an anaerobic tank provided in the upstream of this aerobic tank, and is a water treatment based on an activated sludge method.
  • a method for controlling aeration air volume of a water treatment system equipped with a series of biological reaction tanks Raw water measurement step for measuring ammonia nitrogen concentration of raw water flowing into the series of biological reaction tanks, A mixed solution measuring step for measuring the ammonia nitrogen concentration of the activated sludge mixed solution in the aerobic tank; A treated water measuring step for measuring the ammonia nitrogen concentration of the treated water after the activated sludge mixed liquid has been treated in the series of biological reaction tanks; A preceding signal generating step for generating a target manipulated variable preceding signal based on the measured ammonia nitrogen concentration of the raw water; A set value correction step of correcting the set value of the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank in accordance with the ammonia nitrogen concentration of the treated water; A signal generating step for generating a target manipulated variable feedback signal based on a deviation between the ammonia nitrogen concentration of the activated sludge mixed liquid in the aerobic tank and the set value corrected; An operation amount generating step of generating
  • the aeration air volume of the aerobic tank is changed in advance based on the ammonia nitrogen concentration of the raw water.
  • the aeration apparatus is controlled to have a more appropriate aeration air volume.
  • the dissolved oxygen measurement step of measuring the dissolved oxygen concentration of the activated sludge mixed liquid in the aerobic tank, and the target manipulated variable preceding signal, the activated sludge mixed liquid in the aerobic tank It is preferable to have a preceding signal correction step of correcting in accordance with the dissolved oxygen concentration.
  • the aerating air volume can be optimized by correcting the target operation amount preceding signal upward or downward according to the dissolved oxygen concentration of the activated sludge mixed liquid in the aerobic tank.
  • the amount of aeration air it is possible to save energy and reduce operating costs of the water treatment system.
  • the present invention by optimizing the aeration air volume of the aeration apparatus provided in the aerobic tank, it is possible to save energy and reduce the operating cost of the water treatment system.
  • FIG. 1 is a diagram showing a schematic configuration of a reclaimed water production system according to an embodiment of the present invention.
  • the reclaimed water production system 1 shown in the figure is a water treatment system for purifying sewage using a membrane separation activated sludge method (MBR: Membrane Bio-Reactor).
  • MLR membrane separation activated sludge method
  • the reclaimed water production system 1 includes a raw water tank 2, an anaerobic tank 3, an anaerobic tank 4 and a series of aerobic tanks 5, a membrane separation tank 6, a filtered water tank 7, It has.
  • the raw water tank 2 functions as a buffer tank that temporarily stores the inflowing sewage.
  • the outflow side of the raw water tank 2 is connected to the inflow side of the anaerobic tank 3 located on the most upstream side of the series of biological reaction tanks 10 by a pipe 52.
  • the pipe 52 is provided with a supply pump 51 that pumps the raw water stored in the raw water tank 2 to the anaerobic tank 3.
  • ammonia nitrogen concentration hereinafter referred to as “raw water NH 4 concentration” flowing from the raw water tank 2 into a series of biological reaction tanks 10 (here, the most upstream anaerobic tank 3).
  • raw water NH 4 concentration ammonia nitrogen concentration
  • the biological reaction tank 10 is provided in the order of the anaerobic tank 3, the oxygen-free tank 4 and the aerobic tank 5 from the upstream side.
  • the raw water flowing into the biological reaction tank 10 is an activated sludge mixed liquid (hereinafter simply referred to as activated sludge). Also known as “mixed liquid”.
  • the anaerobic tank 3 and the anaerobic tank 4 are formed by dividing one reaction tank into two, and the anaerobic tank 3 and the anaerobic tank 4 communicate with each other through the partition. Therefore, the liquid mixture in the anaerobic tank 3 can move to the anoxic tank 4.
  • the outflow side of the anaerobic tank 4 is connected to the inflow side of the aerobic tank 5 by a pipe 53. Furthermore, the outflow side of the aerobic tank 5 is connected to the inflow side of the membrane separation tank 6 by a pipe 54.
  • the aerobic tank 5 is provided with an aeration device 9 for aeration of the mixed solution.
  • the aeration apparatus 9 according to the present embodiment is of an aeration type, and compressed air sent from a blower (not shown) is made into fine bubbles to be blown into the mixed liquid from the bottom of the aerobic tank 5. It is configured.
  • a blower not shown
  • the mixed solution is stirred and mixed, and when activated sludge microorganisms remove nitrogen, phosphorus and organic matter. Necessary oxygen is supplied into the liquid mixture.
  • the amount of air supplied to the mixed solution in the aerobic tank 5 by the aeration device 9 (hereinafter referred to as “aeration air amount”) is controlled by a control device 40 described later.
  • the aerobic tank 5 includes an aerobic tank ammonia meter 32 (first ammonia meter) that measures the ammonia nitrogen concentration (hereinafter referred to as “aerobic tank NH 4 concentration”) of the mixed solution in the aerobic tank 5.
  • the aerobic tank 5 is provided with a dissolved oxygen concentration meter 34 for measuring the dissolved oxygen concentration (hereinafter referred to as “aerobic tank DO concentration”) of the mixed solution in the aerobic tank 5.
  • the aerobic tank ammonia meter 32 and the dissolved oxygen concentration meter 34 are preferably provided on the outflow side of the aerobic tank 5 from the viewpoint of measuring the components of the mixed solution to be discharged from the aerobic tank 5. Since the mixed solution in the aerobic tank 5 is considered to be completely mixed, the arrangement thereof is not particularly limited.
  • the membrane separation tank 6 is provided with a separation membrane 8 for separating sludge and the like from the mixed liquid flowing from the aerobic tank 5.
  • the separation membrane 8 is provided at the inlet of a pipe 56 that connects the membrane separation tank 6 and the filtered water tank 7.
  • the piping 56 is provided with a discharge pump 55 for separating sludge and the like separated by the separation membrane 8, that is, pressure-feeding filtered treated water to the filtered water tank 7.
  • the discharge pump 55 is intermittently driven by a target value operation.
  • raw water corresponding to the amount of treated water flowing out from the membrane separation tank 6 by the discharge pump 55 is supplied to the anaerobic tank 3 by the supply pump 51, and the anaerobic tank 4 from the anaerobic tank 4 and the anaerobic tank 4 to the aerobic tank. 5 and the aerobic tank 5 to the membrane separation tank 6 are supplied with the overflow amount of the mixed liquid, respectively, so that the amount of water retained in the entire biological reaction tank 10 is maintained.
  • the membrane separation tank 6 is provided with a scrubbing device 36 for removing sludge and the like adhering to the surface of the separation membrane 8.
  • the scrubbing device 36 removes sludge attached to the surface of the separation membrane 8 or suppresses the adhesion of sludge by bringing microbubbles into contact with the surface of the separation membrane 8.
  • the scrubbing device 36 according to this embodiment is configured to blow out microbubbles of air from below the separation membrane 8 in the membrane separation tank 6.
  • the amount of air blown out from the scrubbing device 36 into the membrane separation tank 6 is maintained at a fixed amount determined according to the reclaimed water production system 1 (particularly, the surface area and shape of the separation membrane 8). Removal of nitrogen, phosphorus and organic substances from the mixed liquid in the membrane separation tank 6 also proceeds by oxygen contained in the air supplied to the membrane separation tank 6 by the scrubbing device 36.
  • a circulating water outlet 6a, a return sludge outlet 6b and an excess sludge outlet 6c are opened.
  • the circulating water outlet 6 a of the membrane separation tank 6 and the anoxic tank 4 are connected by a pipe 61 provided with a circulation pump 62. Through this pipe 61, circulating water (mixed liquid that has been nitrified) is supplied from the membrane separation tank 6 to the anoxic tank 4.
  • the return sludge outlet 6b of the membrane separation tank 6 and the bottom of the anaerobic tank 3 are connected by a pipe 63 having a sludge return pump 64.
  • a part of the sludge is returned from the membrane separation tank 6 to the anaerobic tank 3 through the pipe 63. Furthermore, a pipe 59 provided with an excess sludge pump 60 is connected to the excess sludge outlet 6 c of the membrane separation tank 6. Excess sludge is discharged from the membrane separation tank 6 through the pipe 59.
  • the filtered water tank 7 is provided with a treated water ammonia meter 33 (second ammonia meter) for measuring the ammonia nitrogen concentration (hereinafter referred to as “treated water NH 4 concentration”) of the treated water flowing into the filtered water tank 7. Yes.
  • This treated water ammonia meter 33 is provided in the filtered water tank 7 in order to measure the ammonia nitrogen concentration of the treated water in the filtered water tank 7, but from the mixed liquid in which the pollutants are biologically treated in the series of biological reaction tanks 10.
  • the arrangement is not limited as long as the ammonia nitrogen concentration in the treated water after the sludge is separated can be measured.
  • the treated water ammonia meter 33 may be provided in a pipe 56 that sends treated water from the membrane separation tank 6 to the filtered water tank 7.
  • FIG. 2 is a block diagram showing a control configuration of the reclaimed water production system.
  • the control of the aeration apparatus 9 is shown in detail, and the remainder is omitted.
  • the control device 40 mainly calculates the target operation amount of the operation control unit 42 and the aeration device 9 (that is, the target value of the aeration air amount in the aerobic tank 5) that controls the entire reclaimed water production system 1.
  • Functions of an aeration air volume calculation unit 41 (corresponding to the aeration air volume calculation device of the present invention) to be generated, an aeration air volume control unit 91 (corresponding to the aeration air volume control device of the present invention) that controls the aeration device 9 based on the target operation amount, and the like Has a part.
  • the aeration air volume control unit 91 is provided in the control device 40, but may be provided in the aeration device 9.
  • the control device 40 is composed of one or a plurality of computers.
  • Each computer is a CPU (Central Processing Unit), a main storage device that rewrites a program executed by the CPU and data used in the program, and a CPU executes the program. It is sometimes equipped with a secondary storage device that temporarily stores data, an interface for connecting the CPU and external devices, an internal path for connecting these, and the like (all not shown). Then, each function unit of the control device 40 shown in FIG. 2 is realized by the CPU executing a predetermined program.
  • CPU Central Processing Unit
  • the control unit 40 and each pump provided in the reclaimed water production system 1, that is, the supply pump 51, the discharge pump 55, the circulation pump 62, the sludge return pump 64, and the drive unit of the excess sludge pump 60 are connected by wire or wirelessly,
  • the operation of each pump 51, 55, 62, 64, 60 is controlled by the operation control unit 42 of the control device 40.
  • the control device 40 and a blower (not shown) for changing the aeration air volume in the aeration device 9 are connected by wire or wirelessly, and the operation of the aeration device 9 is controlled by the aeration air volume control unit 91 of the control device 40. Yes.
  • control device 40 and each of the ammonia meters 31, 32, 33 and the dissolved oxygen concentration meter 34 are communicably connected, and the measurement signals of these meters 31, 32, 33, 34 are transmitted to the control device 40. .
  • control apparatus 40 operates each pump 51,55,62,64,60 and the aeration apparatus 9 based on the measurement signal of each meter 31,32,33,34.
  • the control device 40 prevents the nitrogen, phosphorus and organic matter of the treated water in the filtered water tank 7 from exceeding the respective regulation values.
  • the flow rate, excess sludge extraction amount and aeration air volume are managed and controlled to appropriate values.
  • the carbon-based organic matter contained in the mixed solution is decomposed by the action of aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge, or discharged out of the system as activated sludge.
  • the organic matter in the mixed liquid comes into contact with the activated sludge and is adsorbed (condensed) on the surface of the activated sludge, and the organic matter adsorbed on the activated sludge is subjected to anaerobic conditions in the anaerobic tank 3 and the anaerobic tank 4. It is ingested and degraded by facultative anaerobic heterotrophic bacteria in activated sludge.
  • the organic matter adsorbed on the activated sludge provides energy necessary for the maintenance of the living body and cell synthesis by the aerobic and facultative anaerobic heterotrophic bacteria in the activated sludge under the aerobic condition of the aerobic tank 5. Decomposed (oxidized) to obtain. Furthermore, this heterotrophic bacterium uses the energy obtained by oxidation to synthesize (anabolic) organic matter into new cellular material. In this way, most of the organic substances contained in the mixed solution are adsorbed on the activated sludge, and then used for the oxidation and assimilation of the activated sludge microorganisms and removed from the mixed solution.
  • the organic matter that is not oxidized and assimilated is stored in the system, and is finally discharged out of the system as surplus sludge together with the cellular material that is not oxidized by the endogenous respiration of the activated sludge microorganisms.
  • phosphorus contained in the mixed solution is discharged out of the system in a state where it is accumulated in the activated sludge by the action of the phosphorus accumulating bacteria in the activated sludge.
  • the phosphorus accumulating bacteria in the activated sludge take in and hold organic substances such as acetic acid contained in the raw water flowing into the anaerobic tank 3 from the raw water tank 2 under the anaerobic condition of the anaerobic tank 3. Releases phosphoric acid (PO 4 ).
  • the phosphorus accumulating bacteria in the activated sludge excessively ingests phosphorus under the aerobic condition of the aerobic tank 5 and takes in more phosphoric phosphorus released in the anaerobic tank 3.
  • phosphorus in the mixed liquid is accumulated in the activated sludge, and the activated sludge in which phosphorus is accumulated is discharged out of the system as surplus sludge.
  • nitrogen is released out of the system from the anoxic tank 4.
  • the raw water flowing from the raw water tank 2 into the anaerobic tank 3 contains ammonia nitrogen (NH 4 + -N) and organic nitrogen.
  • the organic nitrogen contained in the mixed solution changes to ammonia nitrogen in the anaerobic tank 3, the anoxic tank 4 and the aerobic tank 5.
  • Ammonia nitrogen in the mixed solution is oxidized by the action of nitrifying bacteria in the aerobic tank 5 to become nitrite nitrogen (NO 2 -N) or nitrate nitrogen (NO 3 -N).
  • the circulated water fed from the membrane separation tank 6 to the anoxic tank 4 by the circulation pump 62 contains nitrite nitrogen and / or nitrate nitrogen.
  • Nitrite nitrogen and nitrate nitrogen in the mixed solution are nitrogen gas (N) by nitrate respiration or nitrite respiration by denitrifying bacteria using organic matter in the raw water as a nutrient source under anoxic conditions in the anaerobic tank 4. It is reduced to 2 ) and released from the anoxic tank 4 to the outside of the system.
  • the aeration air amount control unit 91 operates the rotation amount of the blower (not shown) included in the aeration device 9 and the aerobic tank 5 from the aeration device 9. At least one of the operation amounts of an adjustment actuator (not shown) provided in the supply path of the air supplied into the inside is adjusted.
  • FIG. 3 is a block diagram showing the signal flow of the aeration air volume calculation unit.
  • the aeration air amount calculation unit 41 generates a feedforward operation amount (hereinafter referred to as FF operation amount) which is a target operation amount preceding signal based on the raw water NH 4 concentration (hereinafter referred to as FF operation amount).
  • FF control system 48 and a feedback control system (hereinafter referred to as FB control system 49) that generates a feedback manipulated variable (hereinafter referred to as FB manipulated variable) as a target manipulated variable feedback signal using the aerobic tank NH 4 concentration as a controlled variable. )
  • FB control system 49 a feedback manipulated variable
  • the FF control system 48 and the FB control system 49 function in cooperation.
  • the FF operation amount generated by the FF control system 48 and the FB operation amount generated by the FB control system 49 are added by the addition element 77.
  • the target operation amount of the aeration apparatus 9 is generated.
  • the FF control system 48 includes an FF manipulated variable function F 1 (x) element 71 (third manipulated variable computation element), a dead time element 75, a feedforward gain element 76, and an FF manipulated variable correction function F 2 (u ) Element 72 (fourth manipulated variable calculation element) and integrating element 74.
  • An output signal (FF operation amount) of the FF control system 48 is input to the addition element 77.
  • the raw water NH 4 concentration x is a measurement value of the raw water ammonia meter 31 provided in the raw water tank 2, but it is only required to be the ammonia nitrogen concentration of the raw water flowing into the anaerobic tank 3, so that measurement is performed.
  • the position is not limited.
  • FIG. 4 is a chart showing the characteristics of the FF manipulated variable function F 1 (x).
  • the vertical axis y represents the FF manipulated variable (L / min), and the horizontal axis x represents the raw water NH 4 concentration (mg / L). Show.
  • the FF manipulated variable (L / min) represents the amount of aeration air in the aerobic tank 5.
  • the minimum air volume Y 1 of the FF manipulated variable y is the minimum air volume required for maintaining the entire system.
  • the minimum amount of air required to maintain the entire system is heterotrophic that agitates the mixture in the aerobic tank 5 and grows using carbon-based organic matter under aerobic conditions in the aerobic tank 5
  • the minimum air volume Y 1 is appropriately determined according to the number of activated sludge microorganisms in the aerobic tank 5 and the capacity of the aerobic tank 5.
  • the aeration air volume is the minimum air volume Y 1 , the dissolved oxygen concentration of the liquid mixture in the aerobic tank 5 is close to zero.
  • the FF manipulated variable y is constant at the minimum airflow Y 1 when the raw water NH 4 concentration x is in the range from 0 to the first concentration X 1 .
  • the FF manipulated variable y increases as the raw water NH 4 concentration x increases in a range where the raw water NH 4 concentration x is equal to or higher than the first concentration X 1 .
  • This first concentration X 1 is the maximum concentration of raw water NH 4 at which the treated water NH 4 concentration is not more than a specified value (target value) when the aeration air volume is the minimum air volume Y 1 .
  • the prescribed value of the treated water NH 4 concentration is appropriately determined based on the environmental regulation value and the like.
  • the FF manipulated variable y obtained by the FF manipulated variable function F 1 (x) is adjusted by the dead time and the feedforward gain K f .
  • the dead time (also referred to as shift time) is, in principle, a mixed liquid in which raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 flows into a series of biological reaction tanks 10 and is mixed with activated sludge. This is the time required to flow into the aerobic tank 5.
  • the discontinuous surface of the ammonia nitrogen concentration in the mixed solution is the aerobic tank 5.
  • the aeration air volume is increased before reaching the level, and when the discontinuous surface reaches the aerobic tank 5, the activated sludge microorganisms are activated so as to cope with the rapid increase in the ammonia nitrogen concentration.
  • the dead time is desirably set to a time shorter than the time required for the raw water whose ammonia nitrogen concentration is measured by the raw water ammonia meter 31 to flow into the aerobic tank 5.
  • Such dead time can be obtained experimentally or computationally as a time including a residence time from when raw water flows into the anaerobic tank 3 until it flows out of the anaerobic tank 4.
  • the time required for raw water to flow into the anaerobic tank 3 and out of the anaerobic tank 4 is about 2 hours including the residence time.
  • the feedforward gain Kf is a ratio of the change amount of the raw water NH 4 concentration x that is an input value and the change amount of the FF manipulated variable y that is an output value, and is appropriately set.
  • the aeration volume of the aerobic tank 5 can be reduced if the aerobic tank DO concentration is larger than the standard dissolved oxygen concentration, while the aerobic tank DO concentration is compared with the standard dissolved oxygen concentration. If it is small, it must increase. Accordingly, FF manipulated variable y, which is adjusted by the dead time and the feedforward gain K f as described above is corrected by aerobic DO concentration FF manipulated variable correction factor based on the u alpha. In detail, the FF manipulated variable y adjusted by the dead time and the feedforward gain K f and the FF manipulated variable correction coefficient ⁇ obtained by the FF manipulated variable correction function F 2 (u) are integrated by the integrating element 74. Is done.
  • the FF manipulated variable correction function F 2 (u) represents the FF manipulated variable correction coefficient ⁇ as a function of the aerobic tank DO concentration u.
  • FIG. 5 is a chart showing the characteristics of the FF manipulated variable correction function F 2 (u).
  • the vertical axis ⁇ represents the FF manipulated variable correction coefficient ⁇
  • the horizontal axis u represents the aerobic tank DO concentration u (mg / L). ).
  • the correction coefficient ⁇ decreases from ⁇ 2 larger than 1 to ⁇ 1 smaller than 1 with the increase in the aerobic tank DO concentration u being 1 , when the aerobic tank DO concentration u is the reference concentration U 1.
  • the FF manipulated variable correction function F 2 (u) is a linear function, but is not limited to this, and the FF manipulated variable correction coefficient ⁇ and the aerobic tank DO concentration u are negative.
  • the FF manipulated variable correction function F 2 (u) may be a higher-order function of the second or higher order.
  • the FB control system 49 is a set value correction function F 3 (v) element 73 for correcting the ammonia nitrogen concentration set value (hereinafter also referred to as “aerobic tank NH 4 concentration set value”) of the liquid mixture in the aerobic tank 5.
  • an integrating element 80 to be integrated with the set value correction coefficient ⁇ to correct the aerobic tank NH 4 concentration setting the deviation between the corrected aerobic tank NH 4 concentration setting and aerobic tank NH 4 concentration
  • a deviation calculation element 78 for calculating and an FB operation amount calculation element 79 for generating an FB operation quantity from the deviation are provided.
  • the FB manipulated variable computation element 79 (first manipulated variable computation element) is a computation element that calculates the FB manipulated variable using, for example, a PID control method, a P control method, or a PI control method.
  • An output signal (FB operation amount) of the FB control system 49 is input to the addition element 77.
  • the aerobic tank NH 4 concentration set value is a value that is appropriately determined based on the regulation value (target value) of the treated water NH 4 concentration.
  • the aerobic tank NH 4 concentration set value may be determined based on other factors such as the water temperature of the mixed liquid in addition to the regulation value of the treated water NH 4 concentration.
  • the correlation between the aerobic tank NH 4 concentration and the treatment liquid NH 4 concentration may vary depending on the water temperature of the mixed liquid, the composition of raw water, and the like.
  • the aerobic tank NH 4 concentration set value is too small.
  • An excessively small aerobic tank NH 4 concentration setpoint results in excessive aeration and consumes extra energy for aeration. Therefore, in such a case, it is desirable to reduce the aeration air volume in the aerobic tank 5 by correcting the set value of the aerobic tank NH 4 upward.
  • the aerobic tank NH 4 concentration set value is excessive.
  • the aerobic tank NH 4 concentration set value must be corrected downward to increase the amount of aeration air in the aerobic tank 5.
  • the aerobic tank NH 4 concentration set value is corrected upward or downward based on the treated water NH 4 concentration v.
  • the set value correction coefficient ⁇ is expressed by using a set value correction function F 3 (v) element 73 (second manipulated variable calculation element) representing the set value correction coefficient ⁇ as a function of the treated water NH 4 concentration v. determined
  • aerobic tank NH 4 concentration set value is corrected by multiplying the set value correction coefficient ⁇ to aerobic NH 4 concentration setting.
  • FIG. 6 is a chart showing the characteristics of the set value correction function F 3 (v).
  • the vertical axis ⁇ represents the set value correction coefficient
  • the horizontal axis v represents the treated water NH 4 concentration v (mg / L). ing.
  • the correction coefficient ⁇ increases from ⁇ 2 larger than 1 to ⁇ 1 smaller than 1 when the treated water NH 4 concentration v is the reference concentration V 1 as the treated water NH 4 concentration v increases. Decrease.
  • the set value correction function F 3 (v) is a linear function, but is not limited to this, and the correction coefficient ⁇ and the treated water NH 4 concentration v are negatively correlated.
  • the set value correction function F 3 (v) may be a quadratic or higher order function.
  • the FF manipulated variable is calculated by the FF control system 48 based on the concentration of the raw water NH 4 as the preceding signal, and the FB manipulated variable is calculated by the FB control system 49 so as to compensate for the FF manipulated variable.
  • the target operation amount of the aeration apparatus 9 is generated by adding the operation amount and the FB operation amount.
  • a target manipulated variable that reduces the amount of aeration air in the aerobic tank 5 is generated. Is done.
  • the target operation amount of the aeration apparatus 9 generated by the aeration air volume calculation unit 41 is output to the aeration air volume control unit 91.
  • the blower is driven according to the target operation amount, and as a result, the air of the aeration air amount according to the target operation amount is supplied to the mixed liquid in the aerobic tank 5.
  • FIG. 7 is a chart showing the time transition of the aeration air volume, the aerobic tank NH 4 concentration set value, the aerobic tank NH 4 concentration, and the treated water NH 4 concentration controlled by the control device 40.
  • the concentration of the treatment liquid NH 4 sufficiently exceeds the specified value.
  • the concentration of the treatment liquid NH 4 approaches the specified value.
  • the aerobic tank NH 4 concentration set value is increased or decreased so that the treatment liquid NH 4 concentration moves in the vicinity of the specified value, the excess amount of the aeration air volume in the aerobic tank 5 is reduced or insufficient. Is optimized by increasing. By reducing the excess amount of the aeration air volume in the aerobic tank 5, the operating cost and energy of the reclaimed water production system 1 required for aeration can be reduced. Moreover, it is possible to prevent the treatment liquid NH 4 concentration from exceeding the environmental regulation value by increasing the shortage of the aeration air volume in the aerobic tank 5.
  • the specific structure of the reclaimed water production system 1 is not limited to the above embodiment.
  • the reclaimed water production system 1 according to the present embodiment includes the aerobic tank 5 and the membrane separation tank 6 as independent tanks, these can also be provided as an integral tank.
  • the reclaimed water manufacturing system 1 which concerns on this Embodiment is equipped with both the anaerobic tank 3 and the anaerobic tank 4, you may provide at least one among the anaerobic tank 3 and the anaerobic tank 4.
  • the aeration apparatus 9 is configured to adjust the aeration air volume by the operation amount of the rotation speed of the blower or the operation amount of the adjustment actuator, but the operation amount of the rotation speed of the blower and the adjustment actuator
  • the aeration air volume may be adjusted by both of the manipulated variables.
  • the ammonia meters 31, 32, and 33 are concentration meters that continuously measure the ammonia nitrogen concentration of the raw water, the mixed solution, and the processing solution, respectively, but are sampled regularly or irregularly. It can also be set as the method of measuring ammonia nitrogen concentration by arbitrary methods.
  • the aeration air amount calculation unit 41 includes both the FF control system 48 and the FB control system 49. However, if the aeration air amount calculation unit 41 includes at least the FB control system 49, the aeration air amount The water treatment system can be optimized to save energy and reduce operating costs.
  • the present invention is useful for optimizing the amount of aeration air in an aerobic tank in a water treatment system including an aerobic tank in which aeration is performed.
  • Reclaimed water production system (water treatment system) 2 Raw water tank 3 Anaerobic tank 4 Anoxic tank 5 Aerobic tank 6 Membrane separation tank 7 Filtration water tank 8 Separation membrane 9 Aeration device 10 Biological reaction tank 31 Raw water ammonia meter (third ammonia meter) 32 Aerobic tank ammonia meter (first ammonia meter) 33 Ammonia meter for treated water (second ammonia meter) 34 dissolved oxygen concentration meter 36 scrubbing device 40 control device 41 aeration air volume calculation unit 48 feedforward control system 49 feedback control system 71 FF manipulated variable function element (third manipulated variable calculation element) 72 FF manipulated variable correction function element (fourth manipulated variable calculation element) 73 Set value correction function element (first manipulated variable calculation element) 79 FB manipulated variable computation element (second manipulated variable computation element) 91 Aeration air volume control unit 51 Supply pump 55 Discharge pump

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Activated Sludge Processes (AREA)

Abstract

 水処理システム(1)は、曝気装置(9)が設けられた好気槽(5)を備えて活性汚泥法に基づいて水処理を行う一連の生物反応槽(10)と、好気槽(5)の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計(32)と、一連の生物反応槽(10)において処理された後の処理水のアンモニア態窒素濃度を計測する第2のアンモニア計(33)と、曝気装置(9)の目標操作量を生成する曝気風量演算部と、目標操作量に基づいて曝気装置(9)の曝気風量を制御する曝気風量制御部とを備える。曝気風量演算部は、好気槽(5)の活性汚泥混合液のアンモニア態窒素濃度と、処理水のアンモニア態窒素濃度に対応して補正された好気槽(5)の活性汚泥混合液のアンモニア態窒素濃度設定値との偏差に基づいて目標操作量信号を生成する。

Description

水処理システムおよびその曝気風量制御方法
 本発明は、下水処理設備等に設けられる、好気槽を含む生物反応槽を備えた水処理システムに関する。特に、上記水処理システムにおいて、好気槽の曝気風量の制御に関する。
 従来、生活排水などの下水の水処理システムの一つとして、膜分離活性汚泥法(MBR:Membrane Bio-Reactor)で処理することにより再生水を製造する再生水製造システムが知られている。このような再生水製造システムは、例えば、原水(流入下水)を貯溜する原水槽と、原水と活性汚泥が混合した活性汚泥混合液(以下、単に「混合液」ともいう)中の汚濁物質を生物処理する一連の生物反応槽と、混合液から汚泥を膜分離する膜分離槽と、混合液から分離された処理水が流入する濾過水槽とを備えている。一連の生物反応槽には、嫌気槽、無酸素槽および好気槽などが含まれ、これらの反応槽で、炭素系有機物、窒素含有化合物、リン含有化合物などの原水に含まれる汚濁物質の除去が行われる。
 上記再生水製造システムにおいて、好気槽には混合液を曝気するための曝気装置が備えられている。混合液を曝気することにより、活性汚泥微生物の活動に必要となる混合液中の溶存酸素濃度を高めたり、混合液を攪拌したりすることができる。曝気装置により好気槽の混合液へ供給される空気量(以下、「曝気風量」という)が不足すれば、処理水の水質が悪化する。そこで、従来、好気槽に溶存酸素濃度計を設け、この溶存酸素濃度計の測定値が設定された溶存酸素濃度目標値となるように、好気槽の曝気風量が制御されている。しかし、溶存酸素濃度という間接的な指標に基づくため、処理水の水質を規制値内に維持するためには高い溶存酸素濃度目標値を設定せねばならず、好気槽の曝気風量は常時過剰となっている。したがって、稼動にエネルギーを要する曝気装置は、再生水製造システムの運転コストの削減と省エネルギー化の妨げとなっていた。
 そこで、特許文献1では、好気槽の曝気風量を好気槽内のアンモニア態窒素濃度に基づいて制御する曝気風量制御装置が提案されている。これは、有機物の除去およびリンの吸収速度に比べて硝化細菌の硝化速度が遅いことから、硝化に必要な酸素を供給すれば有機物の除去、リンの吸収、および窒素の除去に必要な曝気風量が確保できているという考えに基づいている。この特許文献1に係る曝気風量制御装置は、好気槽内のアンモニア態窒素濃度を計測するアンモニア計と、好気槽の放流水のアンモニア態窒素濃度の目標値を設定する目標設定手段と、計測されたアンモニア態窒素濃度を設定された目標値に近づけるような曝気風量の目標値を演算するコントローラとを備えている。
特開2005-199116号公報
 上記のような再生水製造システムにおいて、季節差や地域差等に伴う環境の変化により、好気槽内の混合液のアンモニア態窒素濃度と濾過水槽内の処理液のアンモニア態窒素濃度の関係が変化することがある。これは、好気槽内のアンモニア態窒素濃度の目標値が、一般に水温の変動に応じて定められていることに起因している。具体的には、好気槽内の水温に応じて好気槽内のアンモニア態窒素濃度の目標値が設定され、この目標値に基づいて好気槽の曝気風量を調整するように曝気装置が制御されている。しかし、好気槽内のアンモニア態窒素濃度の目標値の決定因子が好気槽内の水温のみであると、好気槽の曝気風量の調整は不十分となる。なぜなら、季節差や地域差によって原水の組成が異なることがあり、このような因子によっても活性汚泥微生物の活性度が異なるからである。つまり、好気槽内のアンモニア態窒素濃度を同じ目標値としても、濾過水槽内のアンモニア態窒素濃度が低い場合は、好気槽の曝気風量が過剰であることとなり、過剰な曝気の分だけエネルギー損失に繋がる。逆に、濾過水槽のアンモニア態窒素濃度が高い場合は、曝気風量が不足していることとなり、環境規制値を超過するおそれがある。
 また、特許文献1に記載の技術では、好気槽内のアンモニア態窒素濃度に基づいて、好気槽の曝気風量を制御しているが、この制御方法では、好気槽の下流側に配置される濾過水槽内のアンモニア態窒素濃度が十分に低い場合であっても好気槽で過剰に曝気が行われることとなる。このような過剰の曝気は、余分なエネルギーを消費することに繋がる。
 本発明は上記に鑑み、下水処理設備に設けられる水処理システムにおいて、一連の生物反応槽で処理された後の処理水のアンモニア態窒素濃度に応じて好気槽の活性汚泥混合液のアンモニア態窒素濃度目標値を適切に設定することで、好気槽の曝気風量の適正化を図ることを目的とする。ひいては、好気槽への無駄な曝気風量を低減することにより、水処理システムの省エネルギーおよび運転コストの削減を図る。
 本発明に係る水処理システムは、
曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計と、前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する第2のアンモニア計と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて目標操作量信号を生成する第1の操作量演算要素と、前記処理水のアンモニア態窒素濃度に対応して前記設定値を補正する第2の操作量演算要素とを含むフィードバック制御系を有し、前記目標操作量信号に基づいて前記曝気装置の目標操作量を生成する曝気風量演算装置と、
生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する曝気風量制御装置とを備えたものである。
 上記構成の水処理システムによれば、処理水のアンモニア態窒素濃度に基づいて好気槽の活性汚泥混合液のアンモニア態窒素濃度設定値を補正することによって、設定値環境変化や外乱の影響に対応して好気槽の活性汚泥混合液のアンモニア態窒素濃度設定値が適正化される。よって、一連の生物反応槽において処理された処理水のアンモニア態窒素濃度が環境既定値等の目標となる値と比較して低い場合には、これに応じて好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を修正することにより、曝気風量を低減することができる。このように曝気風量が適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。また、一連の生物反応槽において処理された処理水のアンモニア態窒素濃度が環境既定値等の目標となる値と比較して高い場合には、これに応じて好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を修正することにより、曝気風量を増加することができる。これにより、処理水のアンモニア態窒素濃度が環境既定値等の目標となる値を超過することを防止できる。
 前記水処理システムにおいて、
前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する第3のアンモニア計を更に備え、
前記曝気風量演算装置は、前記原水のアンモニア態窒素濃度に基づいて目標操作量先行信号を生成する第3の操作量演算要素を含むフィードフォワード制御系と、前記目標操作量信号と前記目標操作量先行信号を加算して前記目標操作量を生成する加算演算要素とを更に有することがよい。
 上記構成によれば、原水のアンモニア態窒素濃度に基づいて好気槽の曝気風量を事前に変化させることにより、曝気装置はより適正な曝気風量となるように制御される。このように曝気風量が適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。
 前記水処理システムにおいて、
前記好気槽の活性汚泥混合液の溶存酸素濃度を計測する溶存酸素濃度計を更に備え、
前記曝気風量演算装置の前記フィードフォワード制御系は、前記好気槽の活性汚泥混合液の溶存酸素濃度に対応して前記目標操作量先行信号を補正する第4の操作量演算要素を更に含むことがよい。
 上記構成によれば、好気槽の活性汚泥混合液の溶存酸素濃度に応じて目標操作量先行信号が上方修正又は下方修正されることにより、曝気風量を適正化することができる。このように曝気風量が適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。
 本発明は、曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、
前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する処理水計測工程と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を前記処理水のアンモニア態窒素濃度に対応して補正する補正工程と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度と補正された前記設定値との偏差に基づいて目標操作量信号を生成する信号生成工程と、
前記目標操作量信号に基づいて目標操作量を生成する操作量生成工程と、
生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、を有するものである。
 上記水処理システムの曝気風量制御方法によれば、処理水のアンモニア態窒素濃度に基づいて好気槽の活性汚泥混合液のアンモニア態窒素濃度設定値を補正することによって、設定値環境変化や外乱の影響に対応して好気槽の活性汚泥混合液のアンモニア態窒素濃度設定値が適正化される。よって、一連の生物反応槽において処理された処理水のアンモニア態窒素濃度が環境既定値等の目標となる値と比較して低い場合には、これに応じて好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を修正することにより、曝気風量を低減することができる。このように曝気風量が適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。また、一連の生物反応槽において処理された処理水のアンモニア態窒素濃度が環境既定値等の目標となる値と比較して高い場合には、これに応じて好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を修正することにより、曝気風量を増加することができる。これにより、処理水のアンモニア態窒素濃度が環境既定値等の目標となる値を超過することを防止できる。
 また、本発明は、曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、
前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する原水計測工程と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、
前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する処理水計測工程と、
計測された前記原水のアンモニア態窒素濃度に基づいて目標操作量先行信号を生成する先行信号生成工程と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を前記処理水のアンモニア態窒素濃度に対応して補正する設定値補正工程と、
前記好気槽の活性汚泥混合液のアンモニア態窒素濃度と補正された前記設定値との偏差に基づいて目標操作量帰還信号を生成する信号生成工程と、
前記目標操作量先行信号と前記目標操作量帰還信号を加算して目標操作量を生成する操作量生成工程と、
生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、を有するものである。
 上記水処理システムの曝気風量制御方法によれば、前述の水処理システムの曝気風量制御方法の作用および効果に加えて、原水のアンモニア態窒素濃度に基づいて好気槽の曝気風量を事前に変化させることにより、曝気装置はより適正な曝気風量となるように制御される。このように曝気風量がさらに適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。
 前記水処理システムの曝気風量制御方法において、前記好気槽の活性汚泥混合液の溶存酸素濃度を計測する溶存酸素計測工程と、前記目標操作量先行信号を、前記好気槽の活性汚泥混合液の溶存酸素濃度に対応して補正する先行信号補正工程と、を有することがよい。
 上記方法によれば、好気槽の活性汚泥混合液の溶存酸素濃度に応じて目標操作量先行信号が上方修正又は下方修正されることにより、曝気風量を適正化することができる。このように曝気風量がより適正化されることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。
 本発明によれば、好気槽が備える曝気装置の曝気風量の適正化を図ることにより、水処理システムの省エネルギー化と運転コストの削減を図ることができる。
本発明の実施の形態に係る再生水製造システムの概略構成を示す図である。 再生水製造システムの制御構成を示すブロック図である。 曝気風量演算部の信号の流れを示すブロック線図である。 FF操作量関数の特徴を示す図表である。 FF操作量補正関数の特徴を示す図表である。 設定値補正関数の特徴を示す図表である。 曝気風量と好気槽アンモニア態窒素濃度およびその設定値と処理水アンモニア態窒素濃度の時間推移を示す図表である。
 以下、本発明を実施するための形態について、図面を参照しながら、詳細に説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
 図1は本発明の実施の形態に係る再生水製造システムの概略構成を示す図である。同図に示す再生水製造システム1は、膜分離活性汚泥法(MBR:Membrane Bio-Reactor)を利用して下水を浄化するための水処理システムである。再生水製造システム1は、上流側から順番に、原水槽2と、嫌気槽3、無酸素槽4および好気槽5から成る一連の生物反応槽10と、膜分離槽6と、濾過水槽7とを備えている。
 原水槽2は、流入した下水を一時的に貯えるバッファタンクとして機能する。原水槽2の流出側は、一連の生物反応槽10の最も上流側に位置する嫌気槽3の流入側と配管52によって接続されている。配管52には、原水槽2に貯えられた原水を嫌気槽3へ圧送する供給ポンプ51が設けられている。原水槽2の流出側には、原水槽2から一連の生物反応槽10(ここでは、最も上流側の嫌気槽3)へ流入する原水のアンモニア態窒素濃度(以下、「原水NH4濃度」という)を計測するための、原水アンモニア計31(第3のアンモニア計)が設けられている。
 生物反応槽10は、上流側から嫌気槽3、無酸素槽4および好気槽5の順に設けられており、生物反応槽10へ流入した原水は活性汚泥との活性汚泥混合液(以下、単に「混合液」ともいう)として存在している。本実施の形態において、嫌気槽3と無酸素槽4は一つの反応槽を2つに仕切ることにより形成されており、仕切りを介して嫌気槽3と無酸素槽4は連通している。よって、嫌気槽3の混合液は、無酸素槽4へ移動することができる。無酸素槽4の流出側は、好気槽5の流入側と配管53により接続されている。さらに、好気槽5の流出側は、膜分離槽6の流入側と配管54により接続されている。
 好気槽5には、混合液をエアレーションするための曝気装置9が設けられている。本実施の形態に係る曝気装置9は散気式のものであって、送風機(図示略)から送られた圧縮空気を微細な気泡状にして好気槽5の底部から混合液中に吹き込むように構成されている。好気槽5の混合液中に吹き込まれた空気が気泡となって水面に上昇するときに、混合液の撹絆および混合が行われるとともに、活性汚泥微生物による窒素、リンおよび有機物除去の際に必要となる酸素が混合液中に供給される。曝気装置9によって好気槽5の混合液に供給される空気量(以下、「曝気風量」という)は、後述する制御装置40により制御される。
 また、好気槽5には、好気槽5の混合液のアンモニア態窒素濃度(以下、「好気槽NH4濃度」という)を計測する好気槽アンモニア計32(第1のアンモニア計)が設けられている。さらに、好気槽5には、好気槽5の混合液の溶存酸素濃度(以下、「好気槽DO濃度」という)を計測する溶存酸素濃度計34が設けられている。なお、好気槽アンモニア計32および溶存酸素濃度計34は、好気槽5から流出しようとする混合液の成分を測定する観点から何れも好気槽5の流出側に設けられることが望ましいが、好気槽5内の混合液は完全混合していると考えられるので、これらの配置は特に限定されない。
 膜分離槽6には、好気槽5より流入した混合液から汚泥等を分離する分離膜8が設けられている。分離膜8は、膜分離槽6と濾過水槽7とを接続している配管56の入口に設けられている。配管56には、分離膜8にて汚泥等が分離された、すなわち、濾過された処理水を濾過水槽7へ圧送する排出ポンプ55が設けられている。排出ポンプ55は、目標値操作によって間欠駆動されている。そして、排出ポンプ55によって膜分離槽6から流出した処理水量と対応する量の原水が供給ポンプ51により嫌気槽3へ供給され、嫌気槽3から無酸素槽4、無酸素槽4から好気槽5および好気槽5から膜分離槽6へはそれぞれオーバーフロー量の混合液が供給されることで、生物反応槽10全体の保有水量が維持されている。
 また、膜分離槽6には、分離膜8の表面に付着している汚泥等を除去するためのスクラビング装置36が設けられている。スクラビング装置36は、分離膜8の表面に微小気泡を当接させることにより、分離膜8の表面に付着している汚泥を除去したり汚泥の付着を抑制したりするものである。本実施の形態に係るスクラビング装置36は、膜分離槽6内において分離膜8の下方から空気の微小気泡を吹き出すように構成されている。スクラビング装置36から膜分離槽6内へ吹き出す空気の量は、再生水製造システム1(特に、分離膜8の表面積や形状等)に応じて定められた一定量に保持されている。スクラビング装置36により膜分離槽6へ供給された空気に含まれる酸素によっても、膜分離槽6の混合液の窒素、リンおよび有機物除去が進行する。
 さらに、膜分離槽6の底部には、循環水取出口6a、返送汚泥取出口6bおよび余剰汚泥取出口6cがそれぞれ開口している。膜分離槽6の循環水取出口6aと無酸素槽4とは、循環ポンプ62を備えた配管61で接続されている。この配管61を介して、膜分離槽6から無酸素槽4へ循環水(硝化の進んだ混合液)が供給される。また、膜分離槽6の返送汚泥取出口6bと嫌気槽3の底部とは、汚泥返送ポンプ64を備えた配管63で接続されている。この配管63を介して、膜分離槽6から嫌気槽3へ汚泥の一部が返送される。さらに、膜分離槽6の余剰汚泥取出口6cに、余剰汚泥ポンプ60を備えた配管59が接続されている。この配管59を通じて、膜分離槽6から余剰汚泥が排出される。
 濾過水槽7には、濾過水槽7へ流入した処理水のアンモニア態窒素濃度(以下、「処理水NH4濃度」という)を計測する処理水アンモニア計33(第2のアンモニア計)が設けられている。この処理水アンモニア計33は濾過水槽7内の処理水のアンモニア態窒素濃度を計測すべく濾過水槽7に設けられているが、一連の生物反応槽10で汚濁物質が生物処理された混合液から汚泥が分離された後の処理水のアンモニア態窒素濃度を計測できれば、その配置は限定されない。例えば、処理水アンモニア計33を膜分離槽6から濾過水槽7へ処理水を送る配管56に設けることもできる。
 次に、再生水製造システム1の制御構成を説明する。図2は再生水製造システムの制御構成を示すブロック図である。同図では、特に曝気装置9の制御に関して詳細に示し、余を省略している。
 図2に示すように、制御装置40は主に、再生水製造システム1全体の制御を司る運転制御部42、曝気装置9の目標操作量(すなわち、好気槽5の曝気風量の目標値)を生成する曝気風量演算部41(本発明の曝気風量演算装置に相当)、目標操作量に基づいて曝気装置9を制御する曝気風量制御部91(本発明の曝気風量制御装置に相当)等の機能部を有している。なお、本実施の形態において、曝気風量制御部91は制御装置40に備えているが、曝気装置9に備えられていてもかまわない。制御装置40は、1又は複数のコンピュータからなり、各コンピュータはCPU(中央処理装置)、CPUが実行するプログラムやプログラムで使用されるデータを書き替え可能に記憶する主記憶装置、CPUがプログラム実行時にデータを一時的に記憶する副記憶装置、CPUと外部機器を接続するためのインターフェース、並びこれらを接続する内部経路等を備えている(何れも不図示)。そして、CPUで所定のプログラムが実行されることにより、図2に示す制御装置40の各機能部が実現される。
 制御装置40と再生水製造システム1が備える各ポンプ、すなわち、供給ポンプ51、排出ポンプ55、循環ポンプ62、汚泥返送ポンプ64および余剰汚泥ポンプ60の駆動部とは有線又は無線で接続されており、各ポンプ51,55,62,64,60の動作は制御装置40の運転制御部42により制御されている。また、制御装置40と曝気装置9において曝気風量を変化させる送風機(図示略)とは有線又は無線で接続されており、曝気装置9の動作は制御装置40の曝気風量制御部91により制御されている。さらに、制御装置40と各アンモニア計31,32,33および溶存酸素濃度計34は通信可能に接続されており、これらの計器31,32,33,34の計測信号が制御装置40へ送信される。そして、制御装置40は、各計器31,32,33,34の計測信号に基づいて、各ポンプ51,55,62,64,60および曝気装置9を動作させる。これにより、制御装置40は、濾過水槽7の処理水の窒素、リンおよび有機物がそれぞれの規制値を超えないように、原水の流入量、処理水の放流量、循環液の流量、返送汚泥の流量、余剰汚泥の引抜量および曝気風量を適正な値に管理および制御している。
 上記構成の再生水製造システム1による再生水製造プロセスでは、以下に示すように混合液(原水)に含まれる有機物、窒素およびリン等の除去が行われる。
 再生水製造プロセスにおいて、混合液に含まれる炭素系の有機物は、活性汚泥中の好気性および通性嫌気性の従属栄養細菌の作用により分解されるか、或いは活性汚泥として系外へ排出される。具体的には、混合液中の有機物は、活性汚泥と接触して活性汚泥の表面に吸着(凝縮)され、活性汚泥に吸着された有機物は、嫌気槽3および無酸素槽4の嫌気条件下で、活性汚泥中の通性嫌気性の従属栄養細菌に摂取され、分解される。また、活性汚泥に吸着された有機物は、好気槽5の好気条件下で、活性汚泥中の好気性および通性嫌気性の従属栄養細菌によって生体の維持や細胞合成等に必要なエネルギーを得るために分解(酸化)される。さらに、この従属栄養細菌は酸化によって得たエネルギーを利用して、有機物を新しい細胞物質に合成(同化)する。このようにして、混合液に含まれる有機物の大部分は、活性汚泥に吸着されたのち、活性汚泥微生物の酸化および同化に利用され、混合液中より除去される。なお、酸化および同化されない有機物は系内に貯留され、活性汚泥微生物の内生呼吸により酸化されない細胞物質とともに最終的に余剰汚泥として系外へ排出される。
 また、再生水製造プロセスにおいて、混合液に含まれるリンは、活性汚泥中のリン蓄積細菌の作用により活性汚泥に蓄積された状態で系外へ排出される。具体的には、活性汚泥中のリン蓄積細菌は、嫌気槽3の嫌気条件下で、原水槽2から嫌気槽3へ流入した原水に含まれている酢酸などの有機物を体内に取り込み、保持していたリン酸(PO4)を放出する。そして、活性汚泥中のリン蓄積細菌は、好気槽5の好気条件下でリンを過剰摂取し、嫌気槽3で放出された以上のリン酸態のリンを取り込む。このようにして混合液中のリンが活性汚泥に蓄積され、リンが蓄積された活性汚泥は余剰汚泥として系外へ排出される。
 また、再生水製造プロセスにおいて、窒素は無酸素槽4から系外へ放出される。詳細には、原水槽2から嫌気槽3へ流入した原水には、アンモニア態窒素(NH4 +-N)と有機態窒素とが含まれている。混合液に含まれる有機態窒素は、嫌気槽3、無酸素槽4および好気槽5で、アンモニア態窒素に変化する。混合液中のアンモニア態窒素は、好気槽5で硝化細菌の作用により酸化して、亜硝酸態窒素(NO2-N)または硝酸態窒素(NO3-N)となる。したがって、循環ポンプ62により膜分離槽6から無酸素槽4に送り込まれる循環水には、亜硝酸態窒素および/または硝酸態窒素が含まれている。混合液中の亜硝酸態窒素および硝酸態窒素は、無酸素槽4の無酸素条件下で原水中の有機物を栄養源とする脱窒細菌による硝酸性呼吸あるいは亜硝酸性呼吸により窒素ガス(N2)へと還元されて、無酸素槽4から系外へ放出される。
 ここで、図3を参照しながら、制御装置40の曝気風量演算部41による曝気装置9の目標操作量、すなわち、好気槽5の曝気風量の目標値の生成方法について説明する。曝気風量演算部41で生成された目標操作量に基づいて、曝気風量制御部91は曝気装置9が具備する送風機(図示略)の回転速度の操作量、および、曝気装置9から好気槽5内へ供給される空気の供給経路に設けられた調節用アクチュエータ(図示略)の操作量のうち少なくとも一方を調整する。
 図3は曝気風量演算部の信号の流れを示すブロック線図である。同図に示すように、曝気風量演算部41は、原水NH4濃度に基づいて目標操作量先行信号であるフィードフォワード操作量(以下、FF操作量という)を生成するフィードフォワード制御系(以下、FF制御系48という)と、好気槽NH4濃度を制御量として目標操作量帰還信号であるフィードバック操作量(以下、FB操作量という)を生成するフィードバック制御系(以下、FB制御系49という)と、加算要素77とを備えている。FF制御系48とFB制御系49は協動して機能し、FF制御系48で生成されたFF操作量と、FB制御系49で生成されたFB操作量とが加算要素77で加算されて、曝気装置9の目標操作量が生成される。
 まず、FF制御系48について説明する。FF制御系48は、FF操作量関数F1(x)要素71(第3の操作量演算要素)と、無駄時間要素75と、フィードフォワードゲイン要素76と、FF操作量補正関数F2(u)要素72(第4の操作量演算要素)と、積算要素74とを備えている。FF制御系48の出力信号(FF操作量)は、加算要素77に入力される。
 FF操作量関数F1(x)は、原水NH4濃度xに基づいて処理水NH4濃度を制御するために、原水NH4濃度xと曝気風量操作量(特に、FF操作量)との静特性の関係を関数化したものである。原水NH4濃度xは、本実施の形態では、原水槽2に設けられた原水アンモニア計31の測定値であるが、嫌気槽3へ流入する原水のアンモニア態窒素濃度であればよいのでその測定位置は限定されない。
 図4はFF操作量関数F1(x)の特性を示す図表であって、縦軸yはFF操作量(L/min)を示し、横軸xは原水NH4濃度(mg/L)を示している。FF操作量(L/min)は、すなわち、好気槽5の曝気風量を表している。FF操作量yの最低風量Y1は、システム全体を維持するために最低限必要な風量である。システム全体を維持するために最低限必要な風量とは、好気槽5の混合液を攪拌し、且つ、好気槽5の好気的条件下で炭素系有機物を利用して増殖する従属栄養生物、アンモニア態窒素を硝化する硝化細菌などの活性汚泥微生物が生体を維持するために必要な酸素を提供する最低限の曝気風量である。最低風量Y1は、好気槽5の活性汚泥微生物の数や好気槽5の容量に応じて適宜定められる。なお、曝気風量が最低風量Y1であるときに、好気槽5の混合液の溶存酸素濃度は0に近い状態となっている。
 また、FF操作量yは、原水NH4濃度xが0から第1濃度X1までの範囲において、最低風量Y1で一定である。そして、FF操作量yは、原水NH4濃度xが第1濃度X1以上の範囲において、原水NH4濃度xの増加に伴って増加する。この第1濃度X1は、曝気風量が最低風量Y1であるときに処理水NH4濃度が規定値(目標値)以下となる、最大の原水NH4濃度である。なお、処理水NH4濃度の規定値は、環境規制値などに基づいて適宜定められる。
 上記FF操作量yに動特性を付加するために、FF操作量関数F1(x)で得られたFF操作量yは無駄時間とフィードフォワードゲインKfにより調整される。無駄時間(シフト時間とも呼ばれる)は、原則として、原水アンモニア計31でアンモニア態窒素濃度が計測された原水が、一連の生物反応槽10に流入して活性汚泥と混合された混合液となって、好気槽5に流入するまでに要する時間である。但し、好気槽5においてアンモニア態窒素を硝化する硝化細菌の増殖速度は、通常の活性汚泥中にいる従属栄養細菌より遅いので、混合液のアンモニア態窒素濃度の不連続面が好気槽5に到達するよりも前に曝気風量を増加させ、その不連続面が好気槽5に到達したときにはアンモニア態窒素濃度の急激な増加に対応しうるように活性汚泥微生物を活性化させておくことが望ましい。つまり、無駄時間は、原水アンモニア計31でアンモニア態窒素濃度が計測された原水が好気槽5に流入するまでに要する時間よりも短い時間に設定されることが望ましい。このような無駄時間は、原水が嫌気槽3へ流入してから無酸素槽4より流出するまでの滞留時間を含めた時間として、実験的又は計算的に求めることができる。一例として、最大処理量が55ton/dayの再生水製造システムにおいて、原水が嫌気槽3へ流入してから無酸素槽4より流出するまでに要する時間は滞留時間を含めて2時間程度である。また、フィードフォワードゲインKfは、入力値である原水NH4濃度xの変化量と出力値であるFF操作量yの変化量の比であり、適宜設定される。
 好気槽5の曝気風量は、好気槽DO濃度が基準となる溶存酸素濃度と比較して大きければ低減することができ、一方、好気槽DO濃度が基準となる溶存酸素濃度と比較して小さければ増加せねばならない。そこで、上記のように無駄時間とフィードフォワードゲインKfにより調整されたFF操作量yは、好気槽DO濃度uに基づくFF操作量補正係数αにより補正される。詳細には、無駄時間とフィードフォワードゲインKfにより調整されたFF操作量yと、FF操作量補正関数F2(u)で得られたFF操作量補正係数αとが、積算要素74で積算される。
 FF操作量補正関数F2(u)は、FF操作量補正係数αを好気槽DO濃度uの関数として表したものである。図5は、FF操作量補正関数F2(u)の特性を示す図表であって、縦軸αはFF操作量補正係数αを示し、横軸uは好気槽DO濃度u(mg/L)を示している。同図に示すように、好気槽DO濃度uが0のときに補正係数αは1よりも大きいαである(F2(0)=α,α>1)。好気槽DO濃度uが基準濃度U1のときに、補正係数αは1である(F2(U1)=1)。好気槽DO濃度uが最大濃度U2のときに、補正係数αは1よりも小さいα1である(F2(U2)=α1,α1<1)。このように、補正係数αは、好気槽DO濃度uの増加に伴い、好気槽DO濃度uが基準濃度U1のときを1として、1より大きいα2から1より小さいα1まで減少する。補正係数αの好適な一例として、α1=0.5とし、α2=1.5とすることができる。なお、本実施の形態において、FF操作量補正関数F2(u)は一次関数であるが、これに限定されるものではなく、FF操作量補正係数αと好気槽DO濃度uが負の相関であればFF操作量補正関数F2(u)は二次以上の高次関数であってもよい。
 次に、FB制御系49について説明する。FB制御系49は、好気槽5の混合液のアンモニア態窒素濃度設定値(以下、「好気槽NH4濃度設定値」ともいう)を補正する設定値補正関数F3(v)要素73と、好気槽NH4濃度設定値を補正するために設定値補正係数βと積算する積算要素80と、補正された好気槽NH4濃度設定値と好気槽NH4濃度との偏差を算出する偏差演算要素78と、この偏差からFB操作量を生成するFB操作量演算要素79とを備えている。FB操作量演算要素79(第1の操作量演算要素)は、例えば、PID制御方法、P制御方法又はPI制御方法を用いてFB操作量を算出する演算要素である。FB制御系49の出力信号(FB操作量)は、加算要素77に入力される。
 好気槽NH4濃度設定値は、処理水NH4濃度の規制値(目標値)に基づいて適宜定められる値である。但し、好気槽NH4濃度設定値は、処理水NH4濃度の規制値に加えて、混合液の水温等の他の因子に基づいて定められてもよい。
 好気槽NH4濃度と処理液NH4濃度との相関は、混合液の水温や原水の組成等により変動することがある。処理液NH4濃度が規定値よりも十分に小さいときは、好気槽NH4濃度設定値が過小である。過小な好気槽NH4濃度設定値は、過剰な曝気をもたらし、曝気のために余分なエネルギーを消費することとなる。よって、このようなときは好気槽NH4濃度設定値を上方修正して、好気槽5の曝気風量を低減することが望ましい。一方、処理液NH4濃度が規定値を越えるときは、好気槽NH4濃度設定値が過剰である。このようなときは好気槽NH4濃度設定値を下方修正して、好気槽5の曝気風量を増加せねばならない。このように好気槽5の曝気風量を過不足なく適正化した状態とするために、好気槽NH4濃度設定値は、処理水NH4濃度vに基づいて上方又は下方修正される。詳細には、設定値補正係数βを処理水NH4濃度vの関数として表した設定値補正関数F3(v)要素73(第2の操作量演算要素)を用いて設定値補正係数βを求め、好気槽NH4濃度設定値に設定値補正係数βを乗じることにより好気槽NH4濃度設定値が補正される。
 図6は、設定値補正関数F3(v)の特性を示す図表であって、縦軸βは設定値補正係数を示し、横軸vは処理水NH4濃度v(mg/L)を示している。同図に示すように、処理水NH4濃度vが0のときに補正係数βは1よりも大きいβである(F3(0)=β,β>1)。処理水NH4濃度vが基準濃度V1のときに、補正係数βは1である(F3(V1)=1)。処理水アンモニア態窒素濃度vが最大濃度V2のときに、補正係数βは1よりも小さいβ1である(F3(V2)=β1,β1<1)。このように、補正係数βは、処理水NH4濃度vの増加に伴って、処理水NH4濃度vが基準濃度V1のときを1として、1より大きいβ2から1より小さいβ1まで減少する。補正係数βの好適な一例として、β1=0.5とし、β2=1.5とすることができる。なお、本実施の形態において、設定値補正関数F3(v)は一次関数としているが、これに限定されるものではなく、補正係数βと処理水NH4濃度vが負の相関であれば設定値補正関数F3(v)は二次以上の高次関数であってもよい。
 以上の通り、FF制御系48で先行信号である原水NH4濃度に基づいてFF操作量が算出され、FB制御系49でFF操作量を補償するかたちでFB操作量が算出され、これらのFF操作量とFB操作量とを加え合わせて曝気装置9の目標操作量が生成される。ここで、処理水NH4濃度が規定値よりも低い場合や、好気槽DO濃度が基準となる値よりも高い場合は、好気槽5の曝気風量を小さくするような目標操作量が生成される。一方、処理水NH4濃度が規定値よりも高い場合や、好気槽DO濃度が基準となる値よりも低い場合は、好気槽5の曝気風量を大きくするような目標操作量が生成される。このように曝気風量演算部41で生成された曝気装置9の目標操作量は、曝気風量制御部91へ出力される。曝気風量制御部91により制御される曝気装置9では、目標操作量に応じて送風機が駆動されて、この結果、目標操作量に応じた曝気風量の空気が好気槽5の混合液へ供給される。
 図7は、制御装置40により制御された曝気風量、好気槽NH4濃度設定値、好気槽NH4濃度、および処理水NH4濃度の時間推移を示す図表である。同図に矢印(A)で示すように、曝気風量演算部41で生成された目標操作量に基づいて好気槽5の曝気風量が制御されれば、処理液NH4濃度が規定値を十分に下回るときには、好気槽NH4濃度設定値が増加して曝気風量が低減する。この結果、同図に矢印(B)で示すように、処理液NH4濃度は規定値に近づく。このようにして、処理液NH4濃度が規定値の近傍を推移するように好気槽NH4濃度設定値が増減されるので、好気槽5の曝気風量は余剰分が削減され又は不足分が増加されることにより適正化される。好気槽5の曝気風量の余剰分が削減されることにより、曝気に要する再生水製造システム1の運転コストおよびエネルギーを削減することができる。また、好気槽5の曝気風量の不足分が増加されることにより、処理液NH4濃度が環境規制値を超えることを防止できる。
 以上、本発明の好適な一実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて、様々な設計変更を行うことが可能である。
 例えば、再生水製造システム1の具体的な構造は、上記実施の形態に限定されない。本実施の形態に係る再生水製造システム1は、好気槽5と膜分離槽6を各々独立した槽として備えているが、これらを一体的な槽として備えることもできる。また、本実施の形態に係る再生水製造システム1は、嫌気槽3と無酸素槽4を共に備えているが、嫌気槽3と無酸素槽4とのうち少なくとも一方を備えていてもよい。さらに、本実施の形態に係る曝気装置9は、送風機の回転数の操作量または調節アクチュエータの操作量により曝気風量を調整するように構成されているが、送風機の回転数の操作量および調節アクチュエータの操作量の両方で曝気風量を調整するように構成されていてもよい。
 また、例えば、本実施の形態においてアンモニア計31,32,33は、それぞれ原水、混合液、処理液のアンモニア態窒素濃度を連続的に計測する濃度計であるが、定期的又は不定期にサンプリングを行って任意の方法でアンモニア態窒素濃度を測定する方法とすることもできる。
 また、上記実施の形態では、曝気風量演算部41がFF制御系48とFB制御系49の双方を備えていたが、曝気風量演算部41は少なくともFB制御系49を備えていれば、曝気風量を適正化して水処理システムの省エネルギー化と運転コストの削減を図ることができる。
 本発明は、曝気が行われる好気槽を備えた水処理システムにおいて、好気槽の曝気風量を適正化するために有用である。
 1 再生水製造システム(水処理システム)
 2 原水槽
 3 嫌気槽
 4 無酸素槽
 5 好気槽
 6 膜分離槽
 7 濾過水槽
 8 分離膜
 9 曝気装置
 10 生物反応槽
 31 原水アンモニア計(第3のアンモニア計)
 32 好気槽アンモニア計(第1のアンモニア計)
 33 処理水アンモニア計(第2のアンモニア計)
 34 溶存酸素濃度計
 36 スクラビング装置
 40 制御装置
 41 曝気風量演算部
 48 フィードフォワード制御系
 49 フィードバック制御系
 71 FF操作量関数要素(第3の操作量演算要素)
 72 FF操作量補正関数要素(第4の操作量演算要素)
 73 設定値補正関数要素(第1の操作量演算要素)
 79 FB操作量演算要素(第2の操作量演算要素)
 91 曝気風量制御部
 51 供給ポンプ
 55 排出ポンプ

Claims (6)

  1.  曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する第1のアンモニア計と、
     前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する第2のアンモニア計と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度とその設定値との偏差に基づいて目標操作量信号を生成する第1の操作量演算要素と、前記処理水のアンモニア態窒素濃度に対応して前記設定値を補正する第2の操作量演算要素とを含むフィードバック制御系を有し、前記目標操作量信号に基づいて前記曝気装置の目標操作量を生成する曝気風量演算装置と、
     生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する曝気風量制御装置とを備えた、
     水処理システム。
  2.  前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する第3のアンモニア計を更に備え、
     前記曝気風量演算装置は、前記原水のアンモニア態窒素濃度に基づいて目標操作量先行信号を生成する第3の操作量演算要素を含むフィードフォワード制御系と、前記目標操作量信号と前記目標操作量先行信号を加算して前記目標操作量を生成する加算演算要素とを更に有する、
     請求項1に記載の水処理システム。
  3.  前記好気槽の活性汚泥混合液の溶存酸素濃度を計測する溶存酸素濃度計を更に備え、
     前記曝気風量演算装置の前記フィードフォワード制御系は、前記好気槽の活性汚泥混合液の溶存酸素濃度に対応して前記目標操作量先行信号を補正する第4の操作量演算要素を更に含む、
     請求項2に記載の水処理システム。
  4.  曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、
     前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する処理水計測工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を前記処理水のアンモニア態窒素濃度に対応して補正する補正工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度と補正された前記設定値との偏差に基づいて目標操作量信号を生成する信号生成工程と、
     前記目標操作量信号に基づいて目標操作量を生成する操作量生成工程と、
     生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、を有する水処理システムの曝気風量制御方法。
  5.  曝気装置を備えた好気槽と、該好気槽の上流側に設けられた少なくとも1以上の嫌気槽又は無酸素槽とを有し、活性汚泥法に基づいて水処理を行う一連の生物反応槽を備えた水処理システムの曝気風量制御方法であって、
     前記一連の生物反応槽に流入する原水のアンモニア態窒素濃度を計測する原水計測工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度を計測する混合液計測工程と、
     前記活性汚泥混合液が前記一連の生物反応槽において処理された後の処理水のアンモニア態窒素濃度を計測する処理水計測工程と、
     計測された前記原水のアンモニア態窒素濃度に基づいて目標操作量先行信号を生成する先行信号生成工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度の設定値を前記処理水のアンモニア態窒素濃度に対応して補正する設定値補正工程と、
     前記好気槽の活性汚泥混合液のアンモニア態窒素濃度と補正された前記設定値との偏差に基づいて目標操作量帰還信号を生成する信号生成工程と、
     前記目標操作量先行信号と前記目標操作量帰還信号を加算して目標操作量を生成する操作量生成工程と、
     生成された前記目標操作量に基づいて前記曝気装置の曝気風量を制御する風量制御工程と、を有する水処理システムの曝気風量制御方法。
  6.  前記好気槽の活性汚泥混合液の溶存酸素濃度を計測する溶存酸素計測工程と、
     前記目標操作量先行信号を、前記好気槽の活性汚泥混合液の溶存酸素濃度に対応して補正する先行信号補正工程と、を有する請求項5に記載の水処理システムの曝気風量制御方法。
     
PCT/JP2012/004919 2011-08-10 2012-08-02 水処理システムおよびその曝気風量制御方法 WO2013021591A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174601A JP5685504B2 (ja) 2011-08-10 2011-08-10 水処理システムおよびその曝気風量制御方法
JP2011-174601 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021591A1 true WO2013021591A1 (ja) 2013-02-14

Family

ID=47668129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004919 WO2013021591A1 (ja) 2011-08-10 2012-08-02 水処理システムおよびその曝気風量制御方法

Country Status (2)

Country Link
JP (1) JP5685504B2 (ja)
WO (1) WO2013021591A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066231A (ja) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd 水処理システム及びその曝気風量制御方法
WO2016103707A1 (ja) * 2014-12-25 2016-06-30 川崎重工業株式会社 水処理システムおよびその曝気風量制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539256A (zh) * 2013-10-14 2014-01-29 北京工业大学 一种适用于亚硝化颗粒污泥的恢复方法
JP6250388B2 (ja) * 2013-12-27 2017-12-20 川崎重工業株式会社 運転条件演算装置及びこれを備えた水処理システム
JP2015231591A (ja) * 2014-06-09 2015-12-24 三菱レイヨン株式会社 遠隔監視制御システム
JP6219239B2 (ja) * 2014-06-25 2017-10-25 株式会社日立製作所 水処理プラント
JP6474208B2 (ja) * 2014-07-18 2019-02-27 川崎重工業株式会社 曝気風量演算装置及び水処理システム
DE102014018624A1 (de) 2014-12-13 2015-06-25 Daimler Ag Laservorrichtung zur Bearbeitung eines Werkstücks
CN105565477B (zh) * 2016-02-01 2019-02-12 武汉玻尔科技股份有限公司 生物膜增氧曝气板及曝气装置、以及藻类生物驯化方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339698A (ja) * 1986-08-01 1988-02-20 Fuji Electric Co Ltd 生物学的硝化プロセスの制御方法
JPH01189397A (ja) * 1988-01-25 1989-07-28 Toshiba Corp 曝気槽空気量制御装置
JPH09248596A (ja) * 1996-03-15 1997-09-22 Toshiba Corp 下水処理場の水質制御装置
JPH11244894A (ja) * 1998-02-27 1999-09-14 Mitsubishi Electric Corp 生物学的窒素除去装置
JP2000237788A (ja) * 1999-02-23 2000-09-05 Yokogawa Electric Corp 水処理装置
JP2001353496A (ja) * 2000-06-12 2001-12-25 Toshiba Corp 下水処理システムおよび計測システム
JP2003136086A (ja) * 2001-11-06 2003-05-13 Toshiba Corp 下水処理場水質制御装置
JP2003200190A (ja) * 2002-01-07 2003-07-15 Toshiba Corp 下水処理場水質制御装置
JP2005199116A (ja) * 2004-01-13 2005-07-28 Toshiba Corp 下水処理場の曝気風量制御装置
JP2006192382A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp 水処理システム
JP2012066231A (ja) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd 水処理システム及びその曝気風量制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143246A (en) * 1998-08-18 2000-11-07 Biochem Technology, Inc. Apparatus for measuring ammonia in biochemical processes
US5976888A (en) * 1998-12-07 1999-11-02 Biochem Technology, Inc. Method for measuring NOx in biochemical processes
US7431840B2 (en) * 2005-08-24 2008-10-07 Parkson Corporation Denitrification process
JP5032164B2 (ja) * 2007-03-12 2012-09-26 株式会社東芝 下水処理システムおよび計測システム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339698A (ja) * 1986-08-01 1988-02-20 Fuji Electric Co Ltd 生物学的硝化プロセスの制御方法
JPH01189397A (ja) * 1988-01-25 1989-07-28 Toshiba Corp 曝気槽空気量制御装置
JPH09248596A (ja) * 1996-03-15 1997-09-22 Toshiba Corp 下水処理場の水質制御装置
JPH11244894A (ja) * 1998-02-27 1999-09-14 Mitsubishi Electric Corp 生物学的窒素除去装置
JP2000237788A (ja) * 1999-02-23 2000-09-05 Yokogawa Electric Corp 水処理装置
JP2001353496A (ja) * 2000-06-12 2001-12-25 Toshiba Corp 下水処理システムおよび計測システム
JP2003136086A (ja) * 2001-11-06 2003-05-13 Toshiba Corp 下水処理場水質制御装置
JP2003200190A (ja) * 2002-01-07 2003-07-15 Toshiba Corp 下水処理場水質制御装置
JP2005199116A (ja) * 2004-01-13 2005-07-28 Toshiba Corp 下水処理場の曝気風量制御装置
JP2006192382A (ja) * 2005-01-14 2006-07-27 Mitsubishi Electric Corp 水処理システム
JP2012066231A (ja) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd 水処理システム及びその曝気風量制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066231A (ja) * 2010-09-27 2012-04-05 Kawasaki Heavy Ind Ltd 水処理システム及びその曝気風量制御方法
WO2016103707A1 (ja) * 2014-12-25 2016-06-30 川崎重工業株式会社 水処理システムおよびその曝気風量制御方法
JP2016120465A (ja) * 2014-12-25 2016-07-07 川崎重工業株式会社 水処理システムおよびその曝気風量制御方法

Also Published As

Publication number Publication date
JP2013034966A (ja) 2013-02-21
JP5685504B2 (ja) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5685504B2 (ja) 水処理システムおよびその曝気風量制御方法
JP5608027B2 (ja) 水処理システム及びその曝気風量制御方法
CN108191052B (zh) 碳源智能投加系统及其在污水处理中的应用
CN113023881B (zh) 一种基于mabr工艺的曝气量与内回流量优化控制系统及方法
EP2740713B1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
JP6431363B2 (ja) 水処理システムおよびその曝気風量制御方法
US8308947B2 (en) Methods of providing an aerobic medium in a wastewater treatment bioreactor compartment
US7655142B2 (en) Dynamic control of membrane bioreactor system
JP4931495B2 (ja) 下水からのりん及び窒素の除去方法並びに除去装置
KR20150080493A (ko) 폐수 처리에서 질소 제거를 위한 방법 및 장치
JP5733785B2 (ja) 排水処理方法及び排水処理装置
KR102041326B1 (ko) 하모니서치 알고리즘을 이용한 활성슬러지 공정의 산소공급량 제어 시스템
KR20220024245A (ko) 하수처리장용 통합제어 시스템
KR101044826B1 (ko) 막 여과 생물반응조의 고도처리 효율을 높이는 운전방법 및 그 방법을 이용한 고도처리장치
KR100913727B1 (ko) 순산소에 의하여 용존산소농도를 조절하는 폐수처리 장치 및 이를 이용한 폐수처리 방법
JP6062328B2 (ja) 排水の処理方法および排水の処理装置、並びに制御方法、制御装置、およびプログラム
Kim et al. SBR system for phosphorus removal: linear model based optimization
JP2012228645A (ja) 水処理装置、水処理方法およびそのプログラム
TW202202454A (zh) 好氧性生物處理方法及裝置
JP2015054271A (ja) 排水の処理装置および排水の処理方法
JPWO2019234909A1 (ja) 水処理システムおよび水処理方法
JP5848823B2 (ja) 水処理システム
Karches Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. Energies 2022, 15, 6113
Buzatu et al. Optimal operating strategies of a Submerged Membrane Bioreactor for wastewater treatment
JP6677502B2 (ja) 廃水処理システム、空気供給量制御装置及び空気供給量制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822552

Country of ref document: EP

Kind code of ref document: A1