WO2013021502A1 - Demand control device for facility equipment - Google Patents

Demand control device for facility equipment Download PDF

Info

Publication number
WO2013021502A1
WO2013021502A1 PCT/JP2011/068380 JP2011068380W WO2013021502A1 WO 2013021502 A1 WO2013021502 A1 WO 2013021502A1 JP 2011068380 W JP2011068380 W JP 2011068380W WO 2013021502 A1 WO2013021502 A1 WO 2013021502A1
Authority
WO
WIPO (PCT)
Prior art keywords
equipment
priority
demand control
power consumption
facility
Prior art date
Application number
PCT/JP2011/068380
Other languages
French (fr)
Japanese (ja)
Inventor
山下 善臣
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013527829A priority Critical patent/JP5578284B2/en
Priority to PCT/JP2011/068380 priority patent/WO2013021502A1/en
Priority to KR1020137029516A priority patent/KR101515743B1/en
Priority to CN201180070616.0A priority patent/CN103503263B/en
Publication of WO2013021502A1 publication Critical patent/WO2013021502A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • This invention relates to a demand control device for equipment.
  • This demand control apparatus performs demand control by appropriately selecting a cyclic command method or a level-specific command method.
  • a demand control instruction is cyclically given to each group.
  • an instruction for demand control is given according to the acceptance level with respect to the peak cut level (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a demand control device for equipment that can control equipment in consideration of the comfort of residents. It is.
  • the demand control device for facility equipment includes an operation history storage unit that stores an operation history of each of the plurality of facility devices, and gives priority to each of the plurality of facility devices based on the operation history.
  • FIG. 1 is a block diagram of an entire system controlled by a demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a group of equipment for demand control.
  • the equipment group 1 includes an air conditioning equipment group, a lighting equipment group, an electrical equipment group, a crime prevention equipment group, a disaster prevention equipment group, a satellite equipment group, a transport equipment group, and the like.
  • Reference numeral 2 denotes a power meter group.
  • the electric energy meter group 2 is provided corresponding to the facility equipment group 1.
  • the energy meter group 2 has a function of detecting the power consumption of each facility device in the facility device group 1.
  • Reference numeral 3 denotes a sensor group.
  • the sensor group 3 is provided corresponding to the equipment device group 1.
  • the sensor group 3 has a function of detecting the operating state of each facility device in the facility device group 1.
  • the device information database 4 is a device information database.
  • the device information database 4 has a function of storing attribute information of each facility device in the facility device group 1.
  • Reference numeral 5 denotes a sensor group arrangement information database.
  • the sensor group arrangement information database 5 has a function of storing information related to the equipment connected to the electric energy meter group 2 and information related to the arrangement of the sensor group 3.
  • the operation history information storage unit 6 is an operation history information storage unit.
  • the operation history information storage unit 6 has a function of storing information related to the operation history of each facility device in the facility device group 1.
  • Reference numeral 7 denotes a demand control history information storage unit.
  • the demand control history information storage unit 7 has a function of storing information related to the history of each equipment device of the equipment device group 1 that is demand-controlled.
  • Numeral 8 is a demand control target device operation analysis unit.
  • the demand control target device operation analysis unit 8 has a function of analyzing the operation status of each facility device in the facility device group 1.
  • the demand control target device operation analysis unit 8 has a function of normalizing and calculating the priority parameter of each facility device in the facility device group 1 at a predetermined time interval with respect to the predetermined parameter group based on the analysis result or the like.
  • the device-specific priority calculation parameter database 9 has a function of storing the calculation result of the demand control target device operation analysis unit 8.
  • Reference numeral 10 denotes an operating device selection unit.
  • the operating device selection unit 10 has a function of selecting facility devices to be operated at predetermined time intervals based on the contents stored in the priority calculation parameter database 9 for each device.
  • the operating device selection unit 10 has a function of outputting an operation command to the facility device based on the selection result. In other words, the operating device selection unit 10 has a function of switching facility devices that are dynamically operated at predetermined time intervals based on the selection result.
  • FIG. 2 is a diagram for explaining a device information database of the demand control device for facility equipment according to Embodiment 1 of the present invention.
  • the equipment information database 4 stores information on equipment. Specifically, the ID, type, model name, operating characteristic related to the start-up time, and operating characteristic related to power consumption are stored in association with each other. For example, an equipment device whose ID is “1” is an “air conditioning” equipment whose model name is “AC-1”. The startup time of this equipment is “10” minutes. The power consumption of this equipment group 1 is “10” kW.
  • FIGS. 3 and 4 are diagrams for explaining a sensor group arrangement information database of the demand control device for equipment according to Embodiment 1 of the present invention.
  • the sensor group arrangement information database 5 stores information regarding the equipment group 1 to which the power meter group 2 is connected as the power meter information. Specifically, the electric energy meter ID and the ID of the connected equipment are stored in association with each other. For example, FIG. 3 shows that the power meter ID “1” is connected to the equipment device ID “1”.
  • the sensor group arrangement information database 5 stores information related to the arrangement of the sensor group 3 as sensor group arrangement information. Specifically, a sensor ID, a room, an area, and a building are stored in association with each other. For example, FIG. 4 shows that the sensor ID “1” is arranged in the “1” room in the “N” area of the “B” building.
  • FIG. 5 is a diagram for explaining a machine operation history information storage unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention.
  • the operation history information storage unit 6 stores the operation history of each facility device in the facility device group 1 as an operation history database.
  • the ID of the equipment, the operation rate, the accumulated service time, the final activation time, the final stop time, the initial priority, the previous priority, the operation command, the operation state, and the power consumption are stored in association with each other.
  • both the initial priority and the previous priority are “1”.
  • the last activation time of the equipment is “10:00”.
  • the final stop time of the equipment is “09:10” on the next day.
  • the operation command at this time is “cooling: 20 ° C.”.
  • the operation state at this time is “cooling: 23 degrees”.
  • the power consumption at this time is “3” kW.
  • the cumulative service time of the equipment is 120 hours.
  • the operating rate of the equipment is 40%.
  • FIG. 6 is a diagram for explaining a demand control history information storage unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • the demand control history information storage unit 7 stores the time, state determination, and ID of the operated equipment device in association with each other.
  • the state determinations A to C indicate the degree of goodness of the state. Specifically, the smaller the power consumption, the better the state. State determination A shows the best case. State determination B shows the worst case. If the condition is good, the number of equipment to be operated increases. On the other hand, when the state is bad, the number of operating facilities decreases. For example, the state determination at time “10:00” is “A”. At this time, the IDs of the installed equipment devices are “1”, “12”, “33”, “14”, and “25”.
  • FIG. 7 is a block diagram for explaining a demand control target device operation analysis unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram for explaining a demand control target device operation analysis unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention.
  • the demand control target device operation analysis unit 8 includes a power consumption measurement unit 8a, a control target state measurement unit 8b, and a priority parameter calculation unit 8c.
  • the power consumption measuring unit 8 a has a function of detecting the power consumption of each facility device in the facility device group 1 based on the detection result of the energy meter group 2 and the information in the sensor group arrangement information database 5.
  • the control target state measurement unit 8b has a function of detecting the operation state of each facility device in the facility device group 1 based on the detection result of the sensor group 3 and the information in the sensor group arrangement information database 5.
  • the priority parameter calculation unit 8c is based on information from the device information database 4, the operation history information storage unit 6, the demand control history information storage unit 7, the power consumption measurement unit 8a, and the control target state measurement unit 8b.
  • a function for calculating a priority parameter for determining the operating priority of all the equipments of group 1 is provided.
  • the parameter group for priority calculation includes operation rate, cumulative service time, influence on electric energy, response time, priority (initial setting value), priority (previous calculation value), control It consists of the usage status of the target space, operating efficiency, error from the command value, and external environment.
  • the operating rate is the rate at which the equipment provided the service.
  • the priority of equipment with high availability is low.
  • the priority of equipment with a low operation rate is high.
  • Cumulative service time is the cumulative time that the clause device has provided services. The priority of equipment with a long cumulative service time is low.
  • the effect on the amount of power is the relationship between the amount of power that can be used at a certain point in time and the amount of power consumed by equipment.
  • the amount of remaining power is greatly reduced when the equipment is used, the priority of the equipment is lowered.
  • Response time is the response time of equipment to the start and stop control commands. If the command is invalid in relation to the demand control period, such as the facility device cannot be started within the demand period even if the activation command is sent, the priority of the facility device is lowered.
  • Priority is a static priority of equipment. This priority is a fixed value.
  • the priority previously calculated value
  • This priority is the latest priority.
  • the usage status of the control target space is the usage status of the space near the equipment.
  • the priority of the equipment is high.
  • the priority of the equipment is low.
  • “Operating efficiency” refers to a summary of power consumption during operation from the viewpoint of effectiveness. For example, in the case of air conditioning, the relationship of temperature to power consumption is arranged from the viewpoint of effect. In the case of illumination, the relationship of illuminance to power consumption is arranged from the viewpoint of effect. The priority of equipment with high effect is high. On the other hand, the priority of the said equipment with a low effect becomes low.
  • the error from the command value is the deviation from the control target.
  • the difference between the measured temperature and the set temperature and the difference between the measured humidity and the set humidity are set as the divergence status.
  • the difference between the measured illuminance and the set illuminance is regarded as a divergence situation.
  • the priority of equipment that is highly effective in reducing errors is higher.
  • the priority of equipment that is less effective in reducing errors is lower.
  • the external environment is the latest status of the external environment in the vicinity of equipment such as outside air temperature, outside air humidity, outside light, and wind.
  • the priority of nearby equipment that has become an external environment in which the equipment is not required or cannot be operated becomes low.
  • FIG. 9 is a block diagram for explaining a priority calculation parameter database for each device of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • the priority parameter of each parameter group is stored for each facility device in the priority calculation parameter database 9 for each device.
  • the priority regarding the operation rate is “1”.
  • the priority regarding the accumulated service time is “1”.
  • the priority regarding the influence on the electric energy is “2”.
  • the priority regarding the influence on the electric energy is “2”.
  • the priority regarding the response time is “5”.
  • the priority for the initial priority is “1”.
  • the priority related to the previous priority is “4”.
  • the priority regarding the use of the target space is “5”.
  • the priority for operating efficiency is “5”.
  • the priority regarding the error from the command value is “3”.
  • the priority for the external environment is “5”.
  • FIG. 10 is a block diagram for illustrating a movable device selection unit of the demand control device for facility equipment according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram for explaining a priority correspondence table generated by the movable device selection unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • FIG. 12 is a diagram for explaining a priority / power consumption correspondence table generated by the movable device selection unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • the operating device selection unit 10 includes an operation stage determination unit 10a, a priority weight calculation unit 10b, a priority calculation unit for each device 10c, a priority distribution calculation unit 10d, an expected power consumption calculation unit 10e, an operation A device operation command generation unit 10f is provided.
  • the operation stage determination unit 10a has a function of determining an operation stage of demand control.
  • the priority weight calculation unit 10b has a function of calculating priority weights for calculating the overall priority.
  • the device-specific priority calculation unit 10c is configured to comprehensively calculate each facility device of the facility device group 1 based on the information in the device-specific priority calculation parameter database 9 and the priority calculation weight calculated by the priority weight calculation unit 10b. Has a function to calculate priority.
  • the priority distribution calculation unit 10d has a function of calculating a priority distribution based on the calculation result of the device-specific priority calculation unit 10c and generating a priority correspondence table.
  • the predicted power consumption calculation unit 10e calculates the predicted power consumption in order of priority based on the calculation result of the priority distribution calculation unit 10d and the attribute information of the equipment group 1 stored in the device information database 4. -A function for generating a power consumption correspondence table is provided.
  • the operating device operation command generation unit 10f has a function of selecting each facility device in the facility device group 1 to be operated based on the calculation result of the predicted power consumption calculation unit 10e and generating an operation command.
  • the overall priority is associated with the ID of the corresponding equipment. For example, when the overall priority is “1”, the equipment device IDs are “1” and “12”.
  • the expected power consumption when the equipment is operated in the order of the overall priority is calculated. For example, when only the equipment with the overall priority “1” operates, the total predicted power consumption is calculated as 70% of the preset allowable power. Furthermore, when the equipment with the overall priority “2” is operated, the total expected power consumption is calculated as 75% of the allowable power. In FIG. 12, when the equipment with the overall priority “5” is operated, the total expected power consumption reaches 100% of the allowable power.
  • FIG. 13 is a diagram for explaining a control policy of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • the control policy of this embodiment is divided into a plurality of stages according to the elapsed time. For example, in FIG. 13, the control policy is divided into a first stage to a third stage. In the first stage, the operation of equipment is prioritized over power consumption. In the second stage, power consumption and operation of equipment are treated equally. In the third stage, power consumption is prioritized over the operation of equipment.
  • FIG. 14 is a flowchart for explaining the operation of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
  • step S1 the operation history information storage unit 6, the demand control history information storage unit 7 and the like are initialized. Then, it progresses to step S2 and the operation
  • the priority weight calculation unit 10b places a heavy weight on the error from the command value of the priority parameter, the operation rate, and the accumulated service time.
  • the priority weight calculating unit 10b handles all parameters with equal weights.
  • the priority weight calculation unit 10b places a heavy weight on the influence on the electric energy and the operation efficiency.
  • step S3 the device priority calculation unit 10c performs a weighted addition process on the initial value of the device priority calculation parameter database 9 to calculate the overall priority of each facility device.
  • the device priority calculation unit 10c gives priority to comfort and calculates the overall priority of each facility device.
  • the priority calculation unit for each device 10c calculates the overall priority of each facility device in consideration of the comfort and the total power consumption.
  • the priority calculation unit for each device 10c gives priority to the total power consumption and calculates the total priority of each facility device.
  • step S4 the priority distribution calculation unit 10d creates a priority distribution based on the output of the device-specific priority calculation unit 10c.
  • the predicted power consumption calculation unit 10 e calculates the predicted power consumption for each priority based on the priority distribution and the attribute information of the equipment in the device information database 4. Specifically, the sum of power consumption from the highest level (level 1) to the level is calculated as a ratio of the allowable power in demand control.
  • step S5 the operating equipment operation command generation unit 10f determines to what priority the equipment is to be operated based on the predicted power consumption by priority. Thereafter, the operating device operation command generation unit 10f generates an operation command for the device to be operated.
  • the operation command for air conditioning includes an operation mode and a set temperature. As the operation mode, cooling or the like is set. As the set temperature, 20 ° C. or the like is set. Thereafter, the operating device operation command generation unit 10f outputs an operation command to the device to be operated. At this time, information related to the operation command is stored in the operation history information storage unit 6.
  • step S6 the demand control target device operation analysis unit 8 analyzes the operation status of the facility device that has received the operation command.
  • the demand control target device operation analysis unit 8 collects information from the electric energy meter group 2 and the sensor group 3.
  • step S7 the power consumption measuring unit 8a obtains the power consumption of each facility device from the information on the power meter group 2 and the power meter information in the sensor group arrangement information database 5.
  • the control target state measurement unit 8b obtains the state (temperature, illuminance, etc.) in the control target from the information of the sensor group 3 and the sensor group arrangement information in the sensor group arrangement information database 5.
  • step S8 the priority parameter calculation unit 8c outputs the control target state measurement unit 8b, the output of the power consumption measurement unit 8a, the operation history information storage unit 6, and the information stored in the demand control history information storage unit 7.
  • a parameter group for priority calculation is obtained according to a predetermined priority update policy. These parameters are normalized in five stages as shown in FIG. Then, it returns to step S2 and the said operation
  • the priority of the equipment to be operated is calculated based on the operation history of the equipment. For this reason, it is possible to dynamically control the equipment in consideration of both allowable power and occupant comfort.
  • the weighting between the operation history of equipment and power consumption is changed according to time. Specifically, as the cumulative value of the power consumption of the facility device increases, the power consumption weighting in calculating the priority increases so that the priority of the device with low power consumption increases. For this reason, equipment can be controlled according to the actual situation.
  • the demand control device for equipment can be used for a system for controlling equipment in consideration of the comfort of residents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Air Conditioning Control Device (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided is a demand control system for facility equipment that is capable of controlling facility equipment while taking into consideration the comfort of a resident. In order to do this, the following are provided: an operation history storage unit that stores the operation histories of each of a plurality of facility equipment, a priority calculation unit that calculates a priority for each of the plurality of facility equipment on the basis of the operation histories of the facility equipment, and a selection unit that selects facility equipment having a high priority as the facility equipment to be run in such a manner that the total consumed power of the facility equipment being run does not exceed a predetermined value.

Description

設備機器のデマンド制御装置Equipment equipment demand control device
 この発明は、設備機器のデマンド制御装置に関するものである。 This invention relates to a demand control device for equipment.
 設備機器のデマンド制御装置として、設備機器をグループ化して管理するものが提案されている。このデマンド制御装置は、サイクリック指令方法又はレベル別指令方法を適宜選択してデマンド制御を行う。 As a demand control device for equipment, equipment that manages equipment in groups has been proposed. This demand control apparatus performs demand control by appropriately selecting a cyclic command method or a level-specific command method.
 サイクリック指令法が選択されると、各グループに対してサイクリックにデマンド制御の指示が与えられる。これに対し、レベル別指令方法が選択されると、ピークカットレベルに対する受容度レベルに応じてデマンド制御の指示が与えられる(例えば、特許文献1参照)。 When the cyclic command method is selected, a demand control instruction is cyclically given to each group. On the other hand, when the level-specific instruction method is selected, an instruction for demand control is given according to the acceptance level with respect to the peak cut level (see, for example, Patent Document 1).
日本特許第4547776号公報Japanese Patent No. 4547776
 しかしながら、特許文献1記載のデマンド制御装置においては、予め指定された条件で設備機器が制御される。このため、居住者の快適性とは無関係に設備機器が制御される。 However, in the demand control device described in Patent Document 1, the equipment is controlled under the conditions specified in advance. For this reason, equipment is controlled irrespective of the comfort of the resident.
 この発明は、上述のような課題を解決するためになされたもので、その目的は、居住者の快適性を考慮して設備機器を制御することができる設備機器のデマンド制御装置を提供することである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a demand control device for equipment that can control equipment in consideration of the comfort of residents. It is.
 この発明に係る設備機器のデマンド制御装置は、複数の設備機器の各々の動作履歴を保存する動作履歴保存部と、前記動作履歴に基づいて、前記複数の設備機器の各々に対して優先度を算定する優先度算定部と、稼動させる設備機器の消費電力の合計値が所定の値を超えないように、稼動させる設備機器として、前記優先度の高い設備機器を選定する選定部と、を備えたものである。 The demand control device for facility equipment according to the present invention includes an operation history storage unit that stores an operation history of each of the plurality of facility devices, and gives priority to each of the plurality of facility devices based on the operation history. A priority calculation unit for calculating, and a selection unit for selecting the high-priority equipment as the equipment to be operated so that the total power consumption of the equipment to be operated does not exceed a predetermined value. It is a thing.
 この発明によれば、居住者の快適性を考慮して設備機器を制御することができる。 According to this invention, it is possible to control the equipment in consideration of the comfort of residents.
この発明の実施の形態1における設備機器のデマンド制御装置に制御されるシステム全体のブロック図である。It is a block diagram of the whole system controlled by the demand control apparatus of the facility equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の機器情報データベースを説明するための図である。It is a figure for demonstrating the equipment information database of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置のセンサ群配置情報データベースを説明するための図である。It is a figure for demonstrating the sensor group arrangement | positioning information database of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置のセンサ群配置情報データベースを説明するための図である。It is a figure for demonstrating the sensor group arrangement | positioning information database of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の機動作履歴情報保存部を説明するための図である。It is a figure for demonstrating the machine operation history information storage part of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御履歴情報保存部を説明するための図である。It is a figure for demonstrating the demand control log | history information storage part of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御対象機器動作分析部を説明するためのブロック図である。It is a block diagram for demonstrating the demand control object apparatus operation | movement analysis part of the demand control apparatus of the equipment apparatus in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御対象機器動作分析部を説明するための図である。It is a figure for demonstrating the demand control object apparatus operation | movement analysis part of the demand control apparatus of the equipment apparatus in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の機器別優先度算定パラメータデータベースを説明するためのブロック図である。It is a block diagram for demonstrating the priority calculation parameter database classified by apparatus of the demand control apparatus of the equipment apparatus in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部を説明するためのブロック図である。It is a block diagram for demonstrating the movable equipment selection part of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部が生成する優先度対応表を説明するための図である。It is a figure for demonstrating the priority corresponding | compatible table which the movable equipment selection part of the demand control apparatus of the equipment in Embodiment 1 of this invention produces | generates. この発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部が生成する優先度・消費電力対応表を説明するための図である。It is a figure for demonstrating the priority and power consumption correspondence table | surface which the movable equipment selection part of the demand control apparatus of the equipment apparatus in Embodiment 1 of this invention produces | generates. この発明の実施の形態1における設備機器のデマンド制御装置の制御ポリシーを説明するための図である。It is a figure for demonstrating the control policy of the demand control apparatus of the equipment in Embodiment 1 of this invention. この発明の実施の形態1における設備機器のデマンド制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the demand control apparatus of the installation equipment in Embodiment 1 of this invention.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。 DETAILED DESCRIPTION Embodiments for carrying out the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.
実施の形態1.
 図1はこの発明の実施の形態1における設備機器のデマンド制御装置に制御されるシステム全体のブロック図である。
Embodiment 1 FIG.
FIG. 1 is a block diagram of an entire system controlled by a demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 図1において、1はデマンド制御対象の設備機器群である。設備機器群1は、空調設備群、照明設備群、電気設備群、防犯設備群、防災設備群、衛星設備群、搬送設備群等からなる。2は電力量メータ群である。電力量メータ群2は、設備機器群1に対応して設けられる。電力量メータ群2は、設備機器群1の各設備機器の消費電力を検出する機能を備える。3はセンサ群である。センサ群3は、設備機器群1に対応して設けられる。センサ群3は、設備機器群1の各設備機器の動作状態を検出する機能を備える。 In FIG. 1, reference numeral 1 denotes a group of equipment for demand control. The equipment group 1 includes an air conditioning equipment group, a lighting equipment group, an electrical equipment group, a crime prevention equipment group, a disaster prevention equipment group, a satellite equipment group, a transport equipment group, and the like. Reference numeral 2 denotes a power meter group. The electric energy meter group 2 is provided corresponding to the facility equipment group 1. The energy meter group 2 has a function of detecting the power consumption of each facility device in the facility device group 1. Reference numeral 3 denotes a sensor group. The sensor group 3 is provided corresponding to the equipment device group 1. The sensor group 3 has a function of detecting the operating state of each facility device in the facility device group 1.
 4は機器情報データベースである。機器情報データベース4は、設備機器群1の各設備機器の属性情報を保存する機能を備える。5はセンサ群配置情報データベースである。センサ群配置情報データベース5は、電力量メータ群2が接続された設備機器に関する情報とセンサ群3の配置に関する情報とを保存する機能を備える。 4 is a device information database. The device information database 4 has a function of storing attribute information of each facility device in the facility device group 1. Reference numeral 5 denotes a sensor group arrangement information database. The sensor group arrangement information database 5 has a function of storing information related to the equipment connected to the electric energy meter group 2 and information related to the arrangement of the sensor group 3.
 6は動作履歴情報保存部である。動作履歴情報保存部6は、設備機器群1の各設備機器の動作履歴に関する情報を保存する機能を備える。7はデマンド制御履歴情報保存部である。デマンド制御履歴情報保存部7は、デマンド制御された設備機器群1の各設備機器の履歴に関する情報を保存する機能を備える。 6 is an operation history information storage unit. The operation history information storage unit 6 has a function of storing information related to the operation history of each facility device in the facility device group 1. Reference numeral 7 denotes a demand control history information storage unit. The demand control history information storage unit 7 has a function of storing information related to the history of each equipment device of the equipment device group 1 that is demand-controlled.
 8はデマンド制御対象機器動作分析部である。デマンド制御対象機器動作分析部8は、設備機器群1の各設備機器の動作状況を分析する機能を備える。デマンド制御対象機器動作分析部8は、分析結果等に基づいて、所定のパラメータ群に関し、設備機器群1の各設備機器の優先度パラメータを所定の時間間隔で正規化して算定する機能を備える。 Numeral 8 is a demand control target device operation analysis unit. The demand control target device operation analysis unit 8 has a function of analyzing the operation status of each facility device in the facility device group 1. The demand control target device operation analysis unit 8 has a function of normalizing and calculating the priority parameter of each facility device in the facility device group 1 at a predetermined time interval with respect to the predetermined parameter group based on the analysis result or the like.
 9は機器別優先度算定パラメータデータベースである。機器別優先度算定パラメータデータベース9は、デマンド制御対象機器動作分析部8の算定結果を保存する機能を備える。10は稼動機器選定部である。稼動機器選定部10は、機器別優先度算定パラメータデータベース9に保存された内容に基づいて、稼動させる設備機器を所定の時間間隔で選定する機能を備える。稼動機器選定部10は、選定結果に基づいて、設備機器に動作指令を出力する機能を備える。すなわち、稼動機器選定部10は、選定結果に基づいて、所定の時間間隔で動的に稼動させる設備機器を切り換える機能を備える。 9 is a device-by-device priority calculation parameter database. The device-specific priority calculation parameter database 9 has a function of storing the calculation result of the demand control target device operation analysis unit 8. Reference numeral 10 denotes an operating device selection unit. The operating device selection unit 10 has a function of selecting facility devices to be operated at predetermined time intervals based on the contents stored in the priority calculation parameter database 9 for each device. The operating device selection unit 10 has a function of outputting an operation command to the facility device based on the selection result. In other words, the operating device selection unit 10 has a function of switching facility devices that are dynamically operated at predetermined time intervals based on the selection result.
 次に、図2を用いて、機器情報データベース4を説明する。
 図2はこの発明の実施の形態1における設備機器のデマンド制御装置の機器情報データベースを説明するための図である。
Next, the device information database 4 will be described with reference to FIG.
FIG. 2 is a diagram for explaining a device information database of the demand control device for facility equipment according to Embodiment 1 of the present invention.
 図2に示すように、機器情報データベース4には、設備機器に関する情報が記憶される。具体的には、設備機器のID、種別、機種名、起動時間に関する動作特性、消費電力に関する動作特性が対応付けて記憶される。例えば、設備機器のIDが「1」のものは、機種名が「AC-1」という「空調」設備である。この設備機器の起動時間は「10」分である。この設備機器群1の消費電力は、「10」kWである。 As shown in FIG. 2, the equipment information database 4 stores information on equipment. Specifically, the ID, type, model name, operating characteristic related to the start-up time, and operating characteristic related to power consumption are stored in association with each other. For example, an equipment device whose ID is “1” is an “air conditioning” equipment whose model name is “AC-1”. The startup time of this equipment is “10” minutes. The power consumption of this equipment group 1 is “10” kW.
 次に、図3と図4とを用いて、センサ群配置情報データベース5を説明する。
 図3と図4はこの発明の実施の形態1における設備機器のデマンド制御装置のセンサ群配置情報データベースを説明するための図である。
Next, the sensor group arrangement information database 5 will be described with reference to FIGS. 3 and 4.
3 and 4 are diagrams for explaining a sensor group arrangement information database of the demand control device for equipment according to Embodiment 1 of the present invention.
 図3に示すように、センサ群配置情報データベース5には、電力量メータ情報として、電力量メータ群2が接続された設備機器群1に関する情報が記憶される。具体的には、電力量メータIDと接続された設備機器のIDとが対応付けて記憶される。例えば、図3は、電力量メータID「1」のものは設備機器のID「1」のものに接続されていることを示している。 As shown in FIG. 3, the sensor group arrangement information database 5 stores information regarding the equipment group 1 to which the power meter group 2 is connected as the power meter information. Specifically, the electric energy meter ID and the ID of the connected equipment are stored in association with each other. For example, FIG. 3 shows that the power meter ID “1” is connected to the equipment device ID “1”.
 図4に示すように、センサ群配置情報データベース5には、センサ群配置情報として、センサ群3の配置に関する情報が記憶される。具体的には、センサID、部屋、エリア、棟が対応付けて記憶される。例えば、図4は、センサID「1」のものは「B」棟の「N」エリアの第「1」部屋に配置されていることを示している。 As shown in FIG. 4, the sensor group arrangement information database 5 stores information related to the arrangement of the sensor group 3 as sensor group arrangement information. Specifically, a sensor ID, a room, an area, and a building are stored in association with each other. For example, FIG. 4 shows that the sensor ID “1” is arranged in the “1” room in the “N” area of the “B” building.
 次に、図5を用いて、動作履歴情報保存部6を説明する。
 図5はこの発明の実施の形態1における設備機器のデマンド制御装置の機動作履歴情報保存部を説明するための図である。
Next, the operation history information storage unit 6 will be described with reference to FIG.
FIG. 5 is a diagram for explaining a machine operation history information storage unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention.
 図5に示すように、動作履歴情報保存部6には、動作履歴データベースとして、設備機器群1の各設備機器の動作履歴が記憶される。具体的には、設備機器のID、稼働率、累積サービス時間、最終起動時間、最終停止時間、初期の優先度、前回の優先度、動作指令、動作状態、消費電力が対応付けて記憶される。例えば、設備機器のID「1」のものにおいては、初期の優先度も前回の優先度も「1」である。当該設備機器の最終起動時間は、「10:00」である。当該設備機器の最終停止時間は、翌日の「09:10」である。このときの動作指令は、「冷房:20℃」である。これに対し、このときの動作状態は、「冷房:23度」である。この際の消費電力は、「3」kWである。当該設備機器の累積サービス時間は120時間である。当該設備機器の稼働率は40%である。 As shown in FIG. 5, the operation history information storage unit 6 stores the operation history of each facility device in the facility device group 1 as an operation history database. Specifically, the ID of the equipment, the operation rate, the accumulated service time, the final activation time, the final stop time, the initial priority, the previous priority, the operation command, the operation state, and the power consumption are stored in association with each other. . For example, in the equipment device ID “1”, both the initial priority and the previous priority are “1”. The last activation time of the equipment is “10:00”. The final stop time of the equipment is “09:10” on the next day. The operation command at this time is “cooling: 20 ° C.”. On the other hand, the operation state at this time is “cooling: 23 degrees”. The power consumption at this time is “3” kW. The cumulative service time of the equipment is 120 hours. The operating rate of the equipment is 40%.
 次に、図6を用いて、デマンド制御履歴情報保存部7を説明する。
 図6はこの発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御履歴情報保存部を説明するための図である。
Next, the demand control history information storage unit 7 will be described with reference to FIG.
FIG. 6 is a diagram for explaining a demand control history information storage unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 図6に示すように、デマンド制御履歴情報保存部7には、時刻、状態判定、稼動した設備機器のIDが対応付けて記憶される。状態判定A~Cは、状態の良さの程度を示す。具体的には、消費電力が少ない程、良い状態と判定される。状態判定Aは最良の場合を示す。状態判定Bは最悪の場合を示す。状態が良いと、稼動する設備が増える。これに対し、状態が悪いと、稼動する設備が減る。例えば、時刻「10:00」の状態判定は「A」である。このとき、稼動した設備機器のIDは、「1」、「12」、「33」、「14」、「25」である。 As shown in FIG. 6, the demand control history information storage unit 7 stores the time, state determination, and ID of the operated equipment device in association with each other. The state determinations A to C indicate the degree of goodness of the state. Specifically, the smaller the power consumption, the better the state. State determination A shows the best case. State determination B shows the worst case. If the condition is good, the number of equipment to be operated increases. On the other hand, when the state is bad, the number of operating facilities decreases. For example, the state determination at time “10:00” is “A”. At this time, the IDs of the installed equipment devices are “1”, “12”, “33”, “14”, and “25”.
 次に、図7と図8とを用いて、デマンド制御対象機器動作分析部8を説明する。
 図7はこの発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御対象機器動作分析部を説明するためのブロック図である。図8はこの発明の実施の形態1における設備機器のデマンド制御装置のデマンド制御対象機器動作分析部を説明するための図である。
Next, the demand control target device operation analysis unit 8 will be described with reference to FIGS. 7 and 8.
FIG. 7 is a block diagram for explaining a demand control target device operation analysis unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention. FIG. 8 is a diagram for explaining a demand control target device operation analysis unit of the equipment device demand control apparatus according to Embodiment 1 of the present invention.
 図7に示すように、デマンド制御対象機器動作分析部8は、消費電力量計測部8a、制御対象状態計測部8b、優先度パラメータ算定部8cを備える。 As shown in FIG. 7, the demand control target device operation analysis unit 8 includes a power consumption measurement unit 8a, a control target state measurement unit 8b, and a priority parameter calculation unit 8c.
 消費電力量計測部8aは、電力量メータ群2の検出結果とセンサ群配置情報データベース5の情報とに基づいて、設備機器群1の各設備機器の消費電力量を検出する機能を備える。制御対象状態計測部8bは、センサ群3の検出結果とセンサ群配置情報データベース5の情報とに基づいて、設備機器群1の各設備機器の動作状態を検出する機能を備える。優先度パラメータ算定部8cは、機器情報データベース4、動作履歴情報保存部6、デマンド制御履歴情報保存部7、消費電力量計測部8a、制御対象状態計測部8bからの情報に基づいて、設備機器群1の全ての設備機器の稼動優先度を決定するための優先度パラメータを算定する機能を備える。 The power consumption measuring unit 8 a has a function of detecting the power consumption of each facility device in the facility device group 1 based on the detection result of the energy meter group 2 and the information in the sensor group arrangement information database 5. The control target state measurement unit 8b has a function of detecting the operation state of each facility device in the facility device group 1 based on the detection result of the sensor group 3 and the information in the sensor group arrangement information database 5. The priority parameter calculation unit 8c is based on information from the device information database 4, the operation history information storage unit 6, the demand control history information storage unit 7, the power consumption measurement unit 8a, and the control target state measurement unit 8b. A function for calculating a priority parameter for determining the operating priority of all the equipments of group 1 is provided.
 図8に示すように、優先度算定のためのパラメータ群は、稼働率、累積サービス時間、電力量への影響、応答時間、優先度(初期設定値)、優先度(前回算定値)、制御対象空間の使用状況、稼動効率、指令値との誤差、外部環境からなる。 As shown in FIG. 8, the parameter group for priority calculation includes operation rate, cumulative service time, influence on electric energy, response time, priority (initial setting value), priority (previous calculation value), control It consists of the usage status of the target space, operating efficiency, error from the command value, and external environment.
 稼働率とは、設備機器がサービスを提供した割合のことである。稼動率が高い設備機器の優先度は低くなる。これに対し、稼動率が低い設備機器の優先度は高くなる。 The operating rate is the rate at which the equipment provided the service. The priority of equipment with high availability is low. On the other hand, the priority of equipment with a low operation rate is high.
 累積サービス時間とは、節義機器がサービスを提供した累積時間のことである。累積サービス時間の長い設備機器の優先度は低くなる。 累積 Cumulative service time is the cumulative time that the clause device has provided services. The priority of equipment with a long cumulative service time is low.
 電力量への影響とは、ある時点での使用可能な電力量と設備機器との消費電力量との関係のことである。設備機器を使用すると残存電力量が大きく減少する場合、当該設備機器の優先度は低くなる。 The effect on the amount of power is the relationship between the amount of power that can be used at a certain point in time and the amount of power consumed by equipment. When the amount of remaining power is greatly reduced when the equipment is used, the priority of the equipment is lowered.
 応答時間とは、起動や停止の制御指令に対する設備機器の応答時間のことである。起動指令を送っても設備機器がデマンド期間内に起動できない等、デマンド制御期間との関係で指令が無効となる場合、当該設備機器の優先度は低くなる。 Response time is the response time of equipment to the start and stop control commands. If the command is invalid in relation to the demand control period, such as the facility device cannot be started within the demand period even if the activation command is sent, the priority of the facility device is lowered.
 優先度(初期設定値)とは、設備機器の静的な優先度のことである。この優先度は固定値である。優先度(前回算定値)とは、設備機器の動的な優先度のことである。この優先度は最新の優先度である。 Priority (initial setting value) is a static priority of equipment. This priority is a fixed value. The priority (previously calculated value) is a dynamic priority of equipment. This priority is the latest priority.
 制御対象空間の使用状況とは、設備機器近傍の空間の使用状況のことである。設備機器近傍の空間が使用中の場合、当該設備機器の優先度は高くなる。これに対し、設備機器近傍の空間が使用中でない場合、当該設備機器の優先度は低くなる。 The usage status of the control target space is the usage status of the space near the equipment. When the space near the equipment is in use, the priority of the equipment is high. On the other hand, when the space near the equipment is not in use, the priority of the equipment is low.
 稼動効率とは、稼動中の消費電力を効果の観点から整理したもののことである。例えば、空調であれば、消費電力に対する温度の関係が効果の観点から整理される。照明であれば、消費電力に対する照度の関係が効果の観点から整理される。効果が高い設備機器の優先度は高くなる。これに対し、効果が低い当該設備機器の優先度は低くなる。 “Operating efficiency” refers to a summary of power consumption during operation from the viewpoint of effectiveness. For example, in the case of air conditioning, the relationship of temperature to power consumption is arranged from the viewpoint of effect. In the case of illumination, the relationship of illuminance to power consumption is arranged from the viewpoint of effect. The priority of equipment with high effect is high. On the other hand, the priority of the said equipment with a low effect becomes low.
 指令値との誤差とは、制御目標との乖離状況のことである。例えば、空調であれば、計測温度と設定温度との差異、計測湿度と設定湿度との差異が乖離状況とされる。照明であれば、計測照度と設定照度と差異が乖離状況とされる。誤差減少に効果が高い設備機器の優先度は高くなる。これに対し、誤差減少に効果が低い設備機器の優先度は低くなる。 The error from the command value is the deviation from the control target. For example, in the case of air conditioning, the difference between the measured temperature and the set temperature and the difference between the measured humidity and the set humidity are set as the divergence status. In the case of illumination, the difference between the measured illuminance and the set illuminance is regarded as a divergence situation. The priority of equipment that is highly effective in reducing errors is higher. On the other hand, the priority of equipment that is less effective in reducing errors is lower.
 外部環境とは、外気温、外気湿度、外光、風等、設備機器近傍の外部環境の最新状況のことである。設備機器が稼動不要又は稼動不可能な外部環境となった近傍の設備機器の優先度は低くなる。 The external environment is the latest status of the external environment in the vicinity of equipment such as outside air temperature, outside air humidity, outside light, and wind. The priority of nearby equipment that has become an external environment in which the equipment is not required or cannot be operated becomes low.
 次に、図9を用いて、機器別優先度算定パラメータデータベース9を説明する。
 図9はこの発明の実施の形態1における設備機器のデマンド制御装置の機器別優先度算定パラメータデータベースを説明するためのブロック図である。
Next, the device priority calculation parameter database 9 will be described with reference to FIG.
FIG. 9 is a block diagram for explaining a priority calculation parameter database for each device of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 図9に示すように、機器別優先度算定パラメータデータベース9には、各設備機器に対し、各パラメータ群の優先度パラメータが保存される。例えば、設備機器のIDが「1」のものにおいて、稼働率に関する優先度は「1」である。累積サービス時間に関する優先度は「1」である。電力量への影響に関する優先度は「2」である。電力量への影響に関する優先度は「2」である。応答時間に関する優先度は「5」である。初期の優先度に関する優先度は「1」である。前回の優先度に関する優先度は「4」である。対象空間の使用に関する優先度は「5」である。稼動効率に関する優先度は「5」である。指令値との誤差に関する優先度は「3」である。外部環境に関する優先度は「5」である。 As shown in FIG. 9, the priority parameter of each parameter group is stored for each facility device in the priority calculation parameter database 9 for each device. For example, in the case where the equipment device ID is “1”, the priority regarding the operation rate is “1”. The priority regarding the accumulated service time is “1”. The priority regarding the influence on the electric energy is “2”. The priority regarding the influence on the electric energy is “2”. The priority regarding the response time is “5”. The priority for the initial priority is “1”. The priority related to the previous priority is “4”. The priority regarding the use of the target space is “5”. The priority for operating efficiency is “5”. The priority regarding the error from the command value is “3”. The priority for the external environment is “5”.
 次に、図10~図12を用いて、稼動機器選定部10を説明する。
 図10はこの発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部を説明するためのブロック図である。図11はこの発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部が生成する優先度対応表を説明するための図である。図12はこの発明の実施の形態1における設備機器のデマンド制御装置の可動機器選定部が生成する優先度・消費電力対応表を説明するための図である。
Next, the operating device selection unit 10 will be described with reference to FIGS.
FIG. 10 is a block diagram for illustrating a movable device selection unit of the demand control device for facility equipment according to Embodiment 1 of the present invention. FIG. 11 is a diagram for explaining a priority correspondence table generated by the movable device selection unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention. FIG. 12 is a diagram for explaining a priority / power consumption correspondence table generated by the movable device selection unit of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 図10に示すように、稼動機器選定部10は、動作段階判定部10a、優先度加重算定部10b、機器別優先度算定部10c、優先度分布算定部10d、予想消費電力算定部10e、稼動機器動作指令生成部10fを備える。 As shown in FIG. 10, the operating device selection unit 10 includes an operation stage determination unit 10a, a priority weight calculation unit 10b, a priority calculation unit for each device 10c, a priority distribution calculation unit 10d, an expected power consumption calculation unit 10e, an operation A device operation command generation unit 10f is provided.
 動作段階判定部10aは、デマンド制御の動作段階を判定する機能を備える。優先度加重算定部10bは、総合的な優先度を算定するための優先度加重を算定する機能を備える。機器別優先度算定部10cは、機器別優先度算定パラメータデータベース9の情報と優先度加重算定部10bが算定した優先度算定加重とに基づいて、設備機器群1の各設備機器の総合的な優先度を算定する機能を備える。 The operation stage determination unit 10a has a function of determining an operation stage of demand control. The priority weight calculation unit 10b has a function of calculating priority weights for calculating the overall priority. The device-specific priority calculation unit 10c is configured to comprehensively calculate each facility device of the facility device group 1 based on the information in the device-specific priority calculation parameter database 9 and the priority calculation weight calculated by the priority weight calculation unit 10b. Has a function to calculate priority.
 優先度分布算定部10dは、機器別優先度算定部10cの算定結果に基づいて、優先度分布を算定し、優先度対応表を生成する機能を備える。予想消費電力算定部10eは、優先度分布算定部10dの算定結果と機器情報データベース4に保存された設備機器群1の属性情報とに基づいて、優先度順に予想消費電力を算定し、優先度・消費電力対応表を生成する機能を備える。稼動機器動作指令生成部10fは、予想消費電力算定部10eの算定結果に基づいて、稼動させる設備機器群1の各設備機器を選定し、動作指令を生成する機能を備える。 The priority distribution calculation unit 10d has a function of calculating a priority distribution based on the calculation result of the device-specific priority calculation unit 10c and generating a priority correspondence table. The predicted power consumption calculation unit 10e calculates the predicted power consumption in order of priority based on the calculation result of the priority distribution calculation unit 10d and the attribute information of the equipment group 1 stored in the device information database 4. -A function for generating a power consumption correspondence table is provided. The operating device operation command generation unit 10f has a function of selecting each facility device in the facility device group 1 to be operated based on the calculation result of the predicted power consumption calculation unit 10e and generating an operation command.
 図11に示すように、優先度対応表には、総合的な優先度と該当する設備機器のIDとが対応付けられる。例えば、総合的な優先度が「1」のものは、設備機器のIDが「1」、「12」のものである。 As shown in FIG. 11, in the priority correspondence table, the overall priority is associated with the ID of the corresponding equipment. For example, when the overall priority is “1”, the equipment device IDs are “1” and “12”.
 図12に示すように、優先度・消費電力対応表には、総合的な優先度の高い順に設備機器を稼動した場合の予想消費電力が算定される。例えば、総合的な優先度が「1」の設備機器のみが稼動した場合、予想消費電力量の合計は予め設定された許容電力の70%と算定される。さらに、総合的な優先度が「2」の設備機器まで稼動させると、予想消費電力の合計は許容電力の75%と算定される。図12においては、総合的な優先度が「5」の設備機器まで稼動させると、消費予想電力の合計が許容電力の100%に達する。 As shown in FIG. 12, in the priority / power consumption correspondence table, the expected power consumption when the equipment is operated in the order of the overall priority is calculated. For example, when only the equipment with the overall priority “1” operates, the total predicted power consumption is calculated as 70% of the preset allowable power. Furthermore, when the equipment with the overall priority “2” is operated, the total expected power consumption is calculated as 75% of the allowable power. In FIG. 12, when the equipment with the overall priority “5” is operated, the total expected power consumption reaches 100% of the allowable power.
 次に、図13を用いて、デマンド制御の各動作段階における制御ポリシーを説明する。
 図13はこの発明の実施の形態1における設備機器のデマンド制御装置の制御ポリシーを説明するための図である。
Next, a control policy in each operation stage of demand control will be described with reference to FIG.
FIG. 13 is a diagram for explaining a control policy of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 本実施の形態の制御ポリシーは、経過時間に応じて、複数の段階に分けられる。例えば、図13においては、制御ポリシーは、第一段階~第三段階に分けられる。第一段階においては、電力消費量よりも設備機器の稼動が優先される。第二段階においては、電力消費量と設備機器の稼動とが同等に扱われる。第三段階においては、設備機器の稼動よりも電力消費量が優先される。 The control policy of this embodiment is divided into a plurality of stages according to the elapsed time. For example, in FIG. 13, the control policy is divided into a first stage to a third stage. In the first stage, the operation of equipment is prioritized over power consumption. In the second stage, power consumption and operation of equipment are treated equally. In the third stage, power consumption is prioritized over the operation of equipment.
 次に、図14を用いて、デマンド制御装置の動作を説明する。
 図14はこの発明の実施の形態1における設備機器のデマンド制御装置の動作を説明するためのフローチャートである。
Next, the operation of the demand control device will be described with reference to FIG.
FIG. 14 is a flowchart for explaining the operation of the demand control apparatus for facility equipment according to Embodiment 1 of the present invention.
 まず、ステップS1では、動作履歴情報保存部6、デマンド制御履歴情報保存部7等の初期化が行われる。その後、ステップS2に進み、動作段階判定部10aがデマンド制御動作の中のどの段階にいるかを判定する。その後、優先度加重算定部10bが動作段階判定部10aの判定結果に基づいて優先度加重を算定する。 First, in step S1, the operation history information storage unit 6, the demand control history information storage unit 7 and the like are initialized. Then, it progresses to step S2 and the operation | movement stage determination part 10a determines in which stage in demand control operation | movement. Thereafter, the priority weight calculation unit 10b calculates the priority weight based on the determination result of the operation stage determination unit 10a.
 具体的には、デマンド制御動作が第一段階の場合、優先度加重算定部10bは、優先度パラメータの指令値との誤差、稼働率、累積サービス時間に重い加重を置く。デマンド制御動作が第二段階の場合、優先度加重算定部10bは、全てのパラメータを同等の重みで扱う。デマンド制御動作が第三段階の場合、優先度加重算定部10bは、電力量への影響、稼動効率に重い加重を置く。 Specifically, when the demand control operation is in the first stage, the priority weight calculation unit 10b places a heavy weight on the error from the command value of the priority parameter, the operation rate, and the accumulated service time. When the demand control operation is in the second stage, the priority weight calculating unit 10b handles all parameters with equal weights. When the demand control operation is in the third stage, the priority weight calculation unit 10b places a heavy weight on the influence on the electric energy and the operation efficiency.
 その後、ステップS3に進み、機器別優先度算定部10cは、機器別優先度算定パラメータデータベース9の初期値に対して加重加算処理を行って、各設備機器の総合的な優先度を算定する。 Thereafter, the process proceeds to step S3, and the device priority calculation unit 10c performs a weighted addition process on the initial value of the device priority calculation parameter database 9 to calculate the overall priority of each facility device.
 具体的には、デマンド制御動作が第一段階の場合、機器別優先度算定部10cは、快適性を優先し、各設備機器の総合的な優先度を算定する。デマンド制御動作が第二段階の場合、機器別優先度算定部10cは、快適性と総合消費電力量を総合的に考慮し、各設備機器の総合的な優先度を算定する。デマンド制御動作が第三段階の場合、機器別優先度算定部10cは、総合消費電力量を優先し、各設備機器の総合的な優先度を算定する。 Specifically, when the demand control operation is in the first stage, the device priority calculation unit 10c gives priority to comfort and calculates the overall priority of each facility device. When the demand control operation is in the second stage, the priority calculation unit for each device 10c calculates the overall priority of each facility device in consideration of the comfort and the total power consumption. When the demand control operation is the third stage, the priority calculation unit for each device 10c gives priority to the total power consumption and calculates the total priority of each facility device.
 その後、ステップS4に進み、優先度分布算定部10dは、機器別優先度算定部10cの出力に基づいて優先度分布を作成する。予想消費電力算定部10eは、優先度分布と機器情報データベース4内の設備機器の属性情報とに基づいて、優先度別の予想消費電力を算定する。具体的には、最上位レベル(レベル1)から当該レベルまでの消費電力の総和がデマンド制御における許容電力に占める割合として算定される。 Thereafter, the process proceeds to step S4, and the priority distribution calculation unit 10d creates a priority distribution based on the output of the device-specific priority calculation unit 10c. The predicted power consumption calculation unit 10 e calculates the predicted power consumption for each priority based on the priority distribution and the attribute information of the equipment in the device information database 4. Specifically, the sum of power consumption from the highest level (level 1) to the level is calculated as a ratio of the allowable power in demand control.
 その後、ステップS5に進み、稼動機器動作指令生成部10fは、優先度別の予想消費電力に基づいて、どの優先度までの設備機器を稼動させるかを決定する。その後、稼動機器動作指令生成部10fは、稼動させる機器に対する動作指令を生成する。例えば、空調に対する動作指令には、運転モードと設定温度等が含まれる。運転モードとしては、冷房等が設定される。設定温度としては20℃等が設定される。その後、稼動機器動作指令生成部10fは、稼動させる機器に動作指令を出力する。この際、動作指令に関する情報は、動作履歴情報保存部6に保存される。  Thereafter, the process proceeds to step S5, and the operating equipment operation command generation unit 10f determines to what priority the equipment is to be operated based on the predicted power consumption by priority. Thereafter, the operating device operation command generation unit 10f generates an operation command for the device to be operated. For example, the operation command for air conditioning includes an operation mode and a set temperature. As the operation mode, cooling or the like is set. As the set temperature, 20 ° C. or the like is set. Thereafter, the operating device operation command generation unit 10f outputs an operation command to the device to be operated. At this time, information related to the operation command is stored in the operation history information storage unit 6.
 その後、ステップS6に進み、デマンド制御対象機器動作分析部8は、動作指令を受けた設備機器の動作状況の分析を行う。デマンド制御対象機器動作分析部8は、電力量メータ群2とセンサ群3とから情報を収集する。 Thereafter, the process proceeds to step S6, where the demand control target device operation analysis unit 8 analyzes the operation status of the facility device that has received the operation command. The demand control target device operation analysis unit 8 collects information from the electric energy meter group 2 and the sensor group 3.
 その後、ステップS7に進み、消費電力量計測部8aは、電力量メータ群2の情報とセンサ群配置情報データベース5内の電力量メータ情報とから各設備機器の電力使用量を求める。制御対象状態計測部8bは、センサ群3の情報とセンサ群配置情報データベース5内のセンサ群配置情報とから制御対象内の状態(温度、照度など)を求める。 Thereafter, the process proceeds to step S7, where the power consumption measuring unit 8a obtains the power consumption of each facility device from the information on the power meter group 2 and the power meter information in the sensor group arrangement information database 5. The control target state measurement unit 8b obtains the state (temperature, illuminance, etc.) in the control target from the information of the sensor group 3 and the sensor group arrangement information in the sensor group arrangement information database 5.
 その後、ステップS8に進み、優先度パラメータ算定部8cは、制御対象状態計測部8b、消費電力量計測部8aの出力、動作履歴情報保存部6、デマンド制御履歴情報保存部7に保存された情報に基づいて、既定の優先度更新方針に従って、優先度算定のためのパラメータ群を求める。これらのパラメータは、図9に示すように、5段階で正規化される。その後、ステップS2に戻り、上記動作が繰り返される。 Thereafter, the process proceeds to step S8, where the priority parameter calculation unit 8c outputs the control target state measurement unit 8b, the output of the power consumption measurement unit 8a, the operation history information storage unit 6, and the information stored in the demand control history information storage unit 7. Based on the above, a parameter group for priority calculation is obtained according to a predetermined priority update policy. These parameters are normalized in five stages as shown in FIG. Then, it returns to step S2 and the said operation | movement is repeated.
 以上で説明した実施の形態1によれば、設備機器の動作履歴に基づいて、稼動させる設備機器の優先度が算定される。このため、許容電力と居住者の快適性の双方を考慮して設備機器を動的に制御することができる。 According to the first embodiment described above, the priority of the equipment to be operated is calculated based on the operation history of the equipment. For this reason, it is possible to dynamically control the equipment in consideration of both allowable power and occupant comfort.
 また、稼動率の低い設備機器や累積サービス時間の短い設備の優先度が高くなる。このため、全ての設備機器を満遍なく稼動させることができる。 Also, the priority of equipment with low availability and equipment with short cumulative service time will be high. For this reason, all the equipment can be operated evenly.
 また、設備機器の動作履歴と消費電力との重み付けが時間に応じて変更される。具体的には、設備機器の消費電力の累積値が増えるにつれて、消費電力の少ない機器の優先度が高くなるように、優先度を算定する際の消費電力の重み付けが上がる。このため、実態に応じて設備機器を制御することができる。 Also, the weighting between the operation history of equipment and power consumption is changed according to time. Specifically, as the cumulative value of the power consumption of the facility device increases, the power consumption weighting in calculating the priority increases so that the priority of the device with low power consumption increases. For this reason, equipment can be controlled according to the actual situation.
 なお、複数の設備機器の中で最も応答時間の短い設備機器の応答時間よりも長い時間間隔で設備機器の優先度を算出すればよい。この場合、居住者の快適性を考慮しつつ、優先度を算定する際の負荷を低減することができる。 In addition, what is necessary is just to calculate the priority of an equipment device in the time interval longer than the response time of the equipment device with the shortest response time among several equipment. In this case, it is possible to reduce the load when calculating the priority while considering the comfort of the resident.
 以上のように、この発明に係る設備機器のデマンド制御装置は、居住者の快適性を考慮して設備機器を制御するシステムに利用できる。 As described above, the demand control device for equipment according to the present invention can be used for a system for controlling equipment in consideration of the comfort of residents.
 1 設備機器群
 2 電力量メータ群
 3 センサ群
 4 機器情報データベース
 5 センサ群配置情報データベース
 6 動作履歴情報保存部
 7 デマンド制御履歴情報保存部
 8 デマンド制御対象機器動作分析部
 8a 消費電力量計測部
 8b 制御対象状態計測部
 8c 優先度パラメータ算定部
 9 機器別優先度算定パラメータデータベース
10 稼動機器選定部
10a 動作段階判定部
10b 優先度加重算定部
10c 機器別優先度算定部
10d 優先度分布算定部
10e 予想消費電力算定部
10f 稼動機器動作指令生成部
DESCRIPTION OF SYMBOLS 1 Equipment apparatus group 2 Electric energy meter group 3 Sensor group 4 Apparatus information database 5 Sensor group arrangement information database 6 Operation history information storage part 7 Demand control history information storage part 8 Demand control object apparatus operation analysis part 8a Power consumption measurement part 8b Control target state measurement unit 8c Priority parameter calculation unit 9 Device-specific priority calculation parameter database 10 Active device selection unit 10a Operation stage determination unit 10b Priority weight calculation unit 10c Device-specific priority calculation unit 10d Priority distribution calculation unit 10e Prediction Power consumption calculator 10f Operating equipment operation command generator

Claims (5)

  1.  複数の設備機器の各々の動作履歴を保存する動作履歴保存部と、
     前記動作履歴に基づいて、前記複数の設備機器の各々に対して優先度を算定する優先度算定部と、
     稼動させる設備機器の消費電力の合計値が所定の値を超えないように、稼動させる設備機器として、前記優先度の高い設備機器を選定する選定部と、
    を備えたことを特徴とする設備機器のデマンド制御装置。
    An operation history storage unit for storing the operation history of each of the plurality of facility devices;
    Based on the operation history, a priority calculating unit that calculates a priority for each of the plurality of facility devices;
    A selection unit for selecting the high-priority equipment as the equipment to be operated so that the total power consumption of the equipment to be operated does not exceed a predetermined value;
    A demand control apparatus for facility equipment, comprising:
  2.  前記優先度算定部は、稼動率の低い設備機器又は累積稼働時間の短い設備の優先度を高くすることを特徴とする請求項1記載の設備機器のデマンド制御装置。 2. The demand control device for equipment according to claim 1, wherein the priority calculator increases the priority of equipment with a low operating rate or equipment with a short cumulative operating time.
  3.  前記優先度算定部は、前記優先度を算定する際の変数として、設備機器の応答時間を用い、前記複数の設備機器の中で最も応答時間の短い設備機器の応答時間よりも長い時間間隔で前記複数の設備機器の優先度を算定することを特徴とする請求項1又は請求項2に記載の設備機器のデマンド制御装置。 The priority calculation unit uses the response time of the equipment as a variable when calculating the priority, and has a time interval longer than the response time of the equipment with the shortest response time among the plurality of equipment. The demand control device for equipment according to claim 1, wherein the priority of the equipment is calculated.
  4.  前記優先度算定部は、前記優先度を算定する際の変数として、設備機器の消費電力を用い、前記優先度を算定する際の設備機器の動作履歴と消費電力との重み付けを時間に応じて変更することを特徴とする請求項1~請求項3のいずれかに記載の設備機器のデマンド制御装置。 The priority calculation unit uses the power consumption of the equipment as a variable when calculating the priority, and weights the operation history and power consumption of the equipment when calculating the priority according to time. 4. The demand control apparatus for facility equipment according to claim 1, wherein the demand control apparatus is changed.
  5.  前記優先度算定部は、設備機器の消費電力の累積値が増えるにつれて、消費電力の少ない設備機器の優先度が高くなるように、前記優先度を算定する際の消費電力の重み付けを上げることを特徴とする請求項4記載の設備機器のデマンド制御装置。 The priority calculation unit increases the weighting of power consumption when calculating the priority so that the priority of the equipment with less power consumption increases as the cumulative value of power consumption of the equipment increases. The demand control apparatus for facility equipment according to claim 4, characterized in that:
PCT/JP2011/068380 2011-08-11 2011-08-11 Demand control device for facility equipment WO2013021502A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013527829A JP5578284B2 (en) 2011-08-11 2011-08-11 Equipment equipment demand control device
PCT/JP2011/068380 WO2013021502A1 (en) 2011-08-11 2011-08-11 Demand control device for facility equipment
KR1020137029516A KR101515743B1 (en) 2011-08-11 2011-08-11 Demand control device for facility equipment
CN201180070616.0A CN103503263B (en) 2011-08-11 2011-08-11 The demand control device of machinery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/068380 WO2013021502A1 (en) 2011-08-11 2011-08-11 Demand control device for facility equipment

Publications (1)

Publication Number Publication Date
WO2013021502A1 true WO2013021502A1 (en) 2013-02-14

Family

ID=47668047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068380 WO2013021502A1 (en) 2011-08-11 2011-08-11 Demand control device for facility equipment

Country Status (4)

Country Link
JP (1) JP5578284B2 (en)
KR (1) KR101515743B1 (en)
CN (1) CN103503263B (en)
WO (1) WO2013021502A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018045A (en) * 2012-07-11 2014-01-30 Kyocera Corp Server device
JP2014183717A (en) * 2013-03-21 2014-09-29 Denso Corp Power supply system
WO2014196199A1 (en) * 2013-06-04 2014-12-11 京セラ株式会社 Power management method and power management device
WO2015159410A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Device-controlling system, device-controlling apparatus, device, device-controlling method, and program
WO2020003684A1 (en) * 2018-06-28 2020-01-02 三菱電機株式会社 Demand control device and program
JPWO2020194010A1 (en) * 2019-03-22 2020-10-01
US11843271B2 (en) 2019-03-22 2023-12-12 Nissan Motor Co., Ltd. Power reception control method for power storage element and power reception control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115385A1 (en) * 2014-01-28 2015-08-06 川口淳一郎 Power control system and method, and information communication ability control system and method
JP6229594B2 (en) * 2014-05-29 2017-11-15 三菱電機株式会社 Demand control device
JP6718427B2 (en) * 2017-12-01 2020-07-08 株式会社Subaru Vehicle control device and vehicle control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215700A (en) * 1998-01-27 1999-08-06 Mitsubishi Electric Corp Demand control method and device thereof
JP2009144950A (en) * 2007-12-12 2009-07-02 Hitachi Appliances Inc Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051462A (en) * 1998-12-08 2002-02-15 Tetsuo Toshima Power utilization method adjusting various characteristics on power supply side and power demand side at any time for maximizing efficiency of system
JP4363244B2 (en) 2003-10-30 2009-11-11 株式会社日立製作所 Energy management equipment
KR101368456B1 (en) * 2007-11-22 2014-02-28 엘지전자 주식회사 Demand Controller of an electric system
KR100953403B1 (en) * 2008-08-06 2010-04-19 중앙대학교 산학협력단 Apparatus and method for real-time intelligent and autonomous load management
JP5255462B2 (en) * 2009-01-13 2013-08-07 株式会社日立製作所 Power supply and demand operation management server and power supply and demand operation management system
JP2011142753A (en) 2010-01-07 2011-07-21 Panasonic Corp Apparatus and system for controlling household electrical appliance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215700A (en) * 1998-01-27 1999-08-06 Mitsubishi Electric Corp Demand control method and device thereof
JP2009144950A (en) * 2007-12-12 2009-07-02 Hitachi Appliances Inc Air conditioner

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018045A (en) * 2012-07-11 2014-01-30 Kyocera Corp Server device
JP2014183717A (en) * 2013-03-21 2014-09-29 Denso Corp Power supply system
WO2014196199A1 (en) * 2013-06-04 2014-12-11 京セラ株式会社 Power management method and power management device
JP2014236631A (en) * 2013-06-04 2014-12-15 京セラ株式会社 Presentation method, electric power control device, and presentation program
WO2015159410A1 (en) * 2014-04-17 2015-10-22 三菱電機株式会社 Device-controlling system, device-controlling apparatus, device, device-controlling method, and program
JP2020005408A (en) * 2018-06-28 2020-01-09 三菱電機ビルテクノサービス株式会社 Demand controller and program
WO2020003684A1 (en) * 2018-06-28 2020-01-02 三菱電機株式会社 Demand control device and program
JP6991106B2 (en) 2018-06-28 2022-01-12 三菱電機ビルテクノサービス株式会社 Demand controller and program
JPWO2020194010A1 (en) * 2019-03-22 2020-10-01
WO2020194010A1 (en) * 2019-03-22 2020-10-01 日産自動車株式会社 Power reception control method of power reception elements, and power reception control device
US11390186B2 (en) 2019-03-22 2022-07-19 Nissan Motor Co., Ltd. Power reception control method for power reception element and power reception control device
JP7213335B2 (en) 2019-03-22 2023-01-26 日産自動車株式会社 POWER RECEIVING CONTROL METHOD OF POWER RECEIVING ELEMENT AND POWER RECEIVING CONTROL DEVICE
US11843271B2 (en) 2019-03-22 2023-12-12 Nissan Motor Co., Ltd. Power reception control method for power storage element and power reception control device

Also Published As

Publication number Publication date
JP5578284B2 (en) 2014-08-27
CN103503263B (en) 2015-12-16
JPWO2013021502A1 (en) 2015-03-05
CN103503263A (en) 2014-01-08
KR101515743B1 (en) 2015-04-28
KR20130142185A (en) 2013-12-27

Similar Documents

Publication Publication Date Title
JP5578284B2 (en) Equipment equipment demand control device
JP6067602B2 (en) Demand control apparatus and program
US11556484B2 (en) Minimizing energy consumption by peripheral machines
JP6168528B2 (en) Power control system, method, and information transmission capability control system, method
JP6605181B2 (en) Operation control device, air conditioning system, operation control method, and operation control program
JP2007195392A (en) Demand supervisory equipment
JP5190050B2 (en) Wind power generation system, wind power generation control device, and wind power generation control method
JP5656792B2 (en) Power interchange system, demand control device, demand control method and program
KR20190063198A (en) Dynamic management system of energy demand and operation method thereof
US11380920B2 (en) Cogeneration system for controlling fuel cell devices based on operation mode
JP5450184B2 (en) Demand control apparatus, demand control method, and demand control program
JP2013027285A (en) Load sharing method of power generator
JP6419495B2 (en) Demand control system and demand control method
US9244468B2 (en) Smoothing device, smoothing system, and computer program product
JP6606368B2 (en) Operation plan calculation method and operation plan calculation server for heat source power supply equipment
JP6198953B2 (en) Management device, management system, management method, and program
KR20180129399A (en) Photovoltaic system
KR101894541B1 (en) Prediction method for characteristic factor based on artificial intelligence and Prediction method for energy consumption of building using the same
JP2019520032A (en) Energy management system, guide server and energy management method
KR102498340B1 (en) Apparatus and method for determining an operation schedule of heat pumps based on building energy management system
JP2018182990A (en) Generator operation control apparatus and generator operation control method
JP2013070584A (en) Power demand controller
JP6188662B2 (en) Control device, control method and program
JP5794826B2 (en) Demand control system
JP2015006085A (en) Power restriction stringency warning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527829

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029516

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870574

Country of ref document: EP

Kind code of ref document: A1