WO2013020784A1 - Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil - Google Patents

Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil Download PDF

Info

Publication number
WO2013020784A1
WO2013020784A1 PCT/EP2012/064151 EP2012064151W WO2013020784A1 WO 2013020784 A1 WO2013020784 A1 WO 2013020784A1 EP 2012064151 W EP2012064151 W EP 2012064151W WO 2013020784 A1 WO2013020784 A1 WO 2013020784A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective layer
component
heating cable
insulation
insulating
Prior art date
Application number
PCT/EP2012/064151
Other languages
English (en)
French (fr)
Inventor
Andreas Koch
Eberhard Lenz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CA2844397A priority Critical patent/CA2844397A1/en
Priority to US14/237,269 priority patent/US20140190958A1/en
Priority to EP12742833.2A priority patent/EP2671232A1/de
Publication of WO2013020784A1 publication Critical patent/WO2013020784A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • B05D3/144Pretreatment of polymeric substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers

Definitions

  • the present invention relates to a method for the coating of an insulation component, comprising PEEK, for the insulation of an electrically conductive heating cable. Furthermore, the present invention relates to an insulation component, comprising PEEK, for the insulation of an electrically conductive heating cable and such an insulated electrically conductive heating cable.
  • oil extraction sites can also be used to extract oil, in which the oil must be separated from the sand in a separation process.
  • the oil is usually extracted by heating the oil sands.
  • the viscosity of the bound oil is reduced so that it can be pumped off in a conventional manner.
  • heated steam, heated air or similar hot gases are used to heat the oil sands.
  • This has the disadvantage that in a very complex way, a possibility must be created to transport the gases to the desired position in the ground, namely to the storage location of the oil sands.
  • due to the fact that deposits are sometimes very deep and extensive a great deal of effort has to be made with regard to the resulting pressure loss when introducing the gases / vapors.
  • induction can be used as a physical principle.
  • induction cables ie electrically conductive heating cables
  • electrically conductive heating cables for the above-described extraction of oil from oil sands deposits, a highly aggressive environment exercise prevails.
  • the heating cable must withstand temperatures of permanently over 250 ° C, which prevail under a steam atmosphere and a H 2 S steam atmosphere at an overpressure of 15 bar.
  • a simple electrically conductive heating cable such as a
  • Copper cable would not adequately withstand such an environment.
  • the isolation of such heating cables also presents the environment with extraordinary problems.
  • Even highly resistant plastics, in particular plastic PEEK, are not sufficiently resistant to be permanently used in such atmospheres.
  • a heating cable is also to be understood as meaning an inductor for the extraction of oil sand, in which, during operation, the surrounding soil is excited by means of induction, so that an increase in temperature occurs.
  • Object of the present invention to provide a method that makes it possible to provide an insulation of electrically conductive heating cables that allows their use under the above-described aggressive environmental conditions. It is also an object of the present invention to provide a corresponding insulation component as well as an electrically conductive heating cable insulated therewith.
  • the above object is achieved by a method having the features of independent claim 1. Further features and details of the invention will become apparent from the dependent claims, the description and the drawings. In this case, features and details which are described in connection with the insulation component according to the invention and the electrically conductive heating cable according to the invention apply, of course also in connection with the method according to the invention and in each case vice versa, so that the revelation of the individual aspects of the invention is always or may be referred to alternately.
  • this insulation component has PEEK.
  • PEEK polyether ether ketone
  • the insulation component is made entirely or substantially entirely of PEEK.
  • the insulating component is used to insulate an electrically conductive heating cable.
  • the insulating component has a geometric shape so that it can be placed around the heating cable for the insulation.
  • the insulating member is designed as a hollow cylindrical shape having a length which is smaller than the length of the electrically conductive heating cable.
  • electrically conductive heating cables with lengths of several kilometers, for example two kilometers, are used.
  • Corresponding insulation components in the form of a hollow cylinder are dimensioned with a few meters, for example, about 9 meters.
  • the method according to the invention can be carried out on relatively small units, namely the insulating component, and nevertheless a very large electrically conductive heating cable can also be insulated in accordance with the invention by an insulation component coated according to the invention.
  • a method according to the invention has the following steps for coating the insulation component:
  • the problem with the PEEK material is that it also has high resistance to reactivity due to its high resistance to aggressive environments. Thus, it can be described as "inert”, which prevents the adhesion from being able to occur in a conventional manner via a bonding process with a protective layer and the material of the insulating component Be activated surface of the insulating component, so that this surface is chemically capable of overcoming the material's own inertia and to enter into a corresponding frictional connection with the protective layer, It should be noted that by the plasma flame, which, for example, with A particularly good activation takes place in this way, the material PEEK becomes surface-active and can enter into a viable connection or a reaction with other chemicals in an economically justifiable time.
  • the activation process by means of a cold plasma process is relatively inexpensive to carry out.
  • a temporary change in the chemical properties of the insulating component is carried out on its surface by the plasma flame, so that subsequently the protective layer can adhere.
  • the adhesion of the protective layer is important because during the introduction of a corresponding electrically conductive heating cable with such insulation in areas for oil sands a necessary elongation of up to 1% and more is necessary for the protective layer. Failure to provide a bond between the PEEK insulating layer and the PEEK insulation component would result in cracks in the protective layer and, thus, the aggressive environmental environment could cause premature corrosion of the PEEK material and premature failure of the heating cable would bring with it.
  • a further advantage of a method according to the invention is that, due to the plasma activation of the surface of the insulation component, this activation lasts for a relatively long time. In particular, this activation remains active for several days, so that the step of treating the surface with the plasma flame can be configured temporally and spatially separately from the step of applying at least one protective layer.
  • the protective layer it is possible for the protective layer to be carried out only after the assembly of the respective insulation component on the electrically conductive heating cable. This has the advantage that the protective layer can form a closed protective layer even at the abutting areas of individual insulation components in the longitudinal direction of the electrically conductive heating cable. In this way, even further improved shielding against the harsh environmental conditions can be achieved.
  • treating the surface of the insulating component with at least one cold plasma flame in sections means that at least the portions of the surface of the insulating component are appropriately treated and coated after the insulating component has been attached to the electrically conductive heating cable to show its isolation to the outside and would accordingly come in contact with the aggressive environmental conditions.
  • the electric conductive heating cable is in the frame
  • the present invention preferably a copper cable with about 100 to 160 mm in diameter.
  • a method according to the invention can be carried out, for example, by means of a ring in which one or more cold plasma flames point to the center of this ring.
  • continuous treatment of the surface of the insulating component can take place.
  • an alternating voltage is preferably applied to the ring and fed via gas connections oxygen, nitrogen and C 3 H 8 the ring and thus the plasma flame for their production.
  • a further advantage is the particularly environmentally friendly activation in that during the plasma process no unnecessary exhaust gases are produced, which could be perceived as environmental pollution.
  • the protective layer can be different formations.
  • At least one protective layer is applied as a sol-gel layer by a sol-gel method.
  • the sol-gel process is used by spraying the activated surface with, for example, a sol-gel solution.
  • This solution has a solvent, for example an alcohol. It vaporizes very quickly or instantly and leaves a thin film with oxidic and pre-oxidic nanoparticles through evaporation.
  • the application and evaporation of the solvent can ensure that a substantially or completely sealed film surrounds the material of the insulating component. In this way, so to speak, creates a dense, glassy oxide layer.
  • this oxide layer has the advantage that it protects the material of the insulating component, in particular the PEEK, from the aggressive environmental conditions in the desired manner.
  • the oxide layer is able to form a good adhesion with the surface of the material of the insulating component.
  • This makes it possible that a material expansion of more than 1% of the protective layer can be sustained. This is due to the fact that a material, the thinner it is, the more length deformation can endure without showing a cracking. In this way it is ensured that the desired shielding against the aggressive environmental conditions not only after carrying out the method according to the invention, but also when introducing into the desired position in the earth's interior for heating oil sands.
  • the protective layer is applied in such a way. conditions that a layer thickness of at least 2 ⁇ is achieved. Preferably, a layer thickness of between 2 and 5 ⁇ .
  • the protective layer can also consist of individual protective layer films, which can store one another achieve a correspondingly greater protective layer thickness of in particular up to 30 ⁇ .
  • Under 2 ⁇ is a minimum layer thickness to understand to avoid open spots and continuous cracks in the protective layer. Such a continuous crack is to refer to the radial orientation of the insulating component. This would lead to a leakage through which the material of the insulating component, ie in particular the PEEK, would be exposed directly to the aggressive environmental conditions.
  • the step of applying the protective layer is carried out at least twice.
  • the layer thickness of the protective layer is increased.
  • the layer thickness is increased to about 30 ⁇ m, so that even better protection against corrosion leakage can be achieved.
  • the individual steps of applying the protective layer are carried out such that between the individual application steps only partially or not at all a drying or curing of the previously applied
  • Protective layer could take place. This has the advantage that, at the time of application of the next protective layer, the underlying protective layer is still able to form a non-positive connection, for example play by material reason to enter.
  • both a same protective layer, as well as different protective layers can be used.
  • different protective layers can be stored one above the other in order to combine their quality of protection with different focal points to form a common and accordingly higher-grade protective layer.
  • a method according to the invention is followed by at least one drying step for the protective layer. This drying step is carried out at a temperature above room temperature, in particular between 100 ° C and 200 ° C.
  • a temperature range between 120 ° C and 180 ° C is preferred. In this way, the speed of implementation of the method can be accelerated.
  • the drying step serves to accelerate the curing of the applied protective layer. It should be noted that when using several protective layer films which are applied to one another, the drying step is to be carried out finally, ie after the last application of a protective layer film. In this way, the individual protective layers can be applied one after the other in a relatively rapid manner one after another, and finally a rapid completion of the insulating component by a method according to the invention can be ensured via the drying step.
  • the drying step may take place, for example, by heating the insulation components together in an oven prior to mounting on the heating cable.
  • a method according to the invention is carried out in a single production line, so that substantially continuously activating the
  • Isolation component, a coating of the insulating component and then, in particular, a drying of the insulating component can take place in a continuous process.
  • at least one protective layer is applied as an adhesive, in particular directly on the surface of the insulating component.
  • the advantage is achieved that the frictional connection between an adhesive and the material of the insulating component, ie in particular the PEEK, can be made particularly strong.
  • the adhesive itself may already represent the final protective layer or only a part of this protective layer, which in turn is provided with an additional protective layer attached thereto.
  • the adhesive is to be understood in particular as a primer, for example, for a sol-gel method in this embodiment.
  • a phenol novolac cyanate ester can be used.
  • a ring brush is used, which is arranged such that the insulation component is guided by this ring brush during application in such a way that after application, the applied adhesive material in still liquid on the insulation component along direction ring brush through the Gravity moves down. In this way, a substantially constant and above all closed protective layer can be formed. In addition, it is avoided that thickness jumps arise with regard to the layer thickness of the protective layer.
  • a single protective layer or protective layer film is formed as an adhesive or as a sol-gel layer, that is to say as a vitreous oxide layer.
  • a sol-gel layer that is to say as a vitreous oxide layer.
  • Several layers of adhesive or sol-gel layer are also conceivable within the scope of the present invention. bar.
  • a combination of an adhesive and a sol-gel layer is conceivable, wherein in particular the adhesive has been applied directly to the surface of the insulating component.
  • a method according to the invention can be further developed such that after the application of the protective layer in the form of the adhesive, a curing step is carried out in such a way that the adhesive becomes dimensionally stable without already completely curing. This leads to the fact that also further protective layers can be applied.
  • the further application can take place, for example, in a next process step by spraying the surface with an alcoholic sol-gel mixture.
  • the curing step preferably takes place with a greater distance when operating with flames or with heat radiators.
  • the adhesive preferably exhibits a thermal decomposition point of 400 to 420 ° Celsius after its curing. Accordingly, the adhesive itself can already have a protective effect, and be understood as a protective layer in the context of the present method.
  • this is designed for coating an insulating component with a hollow-cylindrical shape, which in particular has a length which is smaller than the length of the electric heating cable.
  • a compact unit of the insulation component having a length of, for example, less than approximately 10 m in large quantities can be treated and coated in accordance with the invention.
  • the application can be done by combining a variety of insulation components even with much longer electrical heating cables by the individual insulation components are used adjacent to each other. This reduces not only the production costs but also the expense of storing and transporting the insulation components.
  • a further advantage is achieved if, in a method according to the invention, after the surface of the insulating component has been treated with at least one cold plasma flame and before the at least one protective layer is applied to the treated surface of the insulating component, an assembly is carried out on the electrical heating cable ,
  • a particularly effective protective effect can be achieved by the coating. This is based, in particular, on the fact that in the case of a coating carried out after assembly with the protective layer, the joints between individual adjoining insulating components are treated and coated in accordance with the invention. This results in a continuous or substantially continuous protective layer over the course of the entire electrical heating cable, regardless of the number of used and adjoining insulation components.
  • the treatment of the surface of the insulating component can be carried out with at least one cold plasma flame with a ring surrounding the insulating component.
  • a ring is particularly advantageous in the production of a circumferential protective layer, as has been described in the preceding paragraph. This can be a cost-effective production, in particular in a continuous or semikontinuierli - tend manner to be performed.
  • At least two protective layers in particular particular all protective layers consist of the same or substantially the same material. Large layer thicknesses can thus be applied in layers without material differences, such as different thermal expansions or the like, that could lead to mechanical or electrical or thermal problems.
  • Another object of the present invention is an insulation component, comprising PEEK, for the isolation of an electrically conductive heating cable.
  • This insulating component is characterized in that the surface of the insulating component is at least partially provided with a protective layer.
  • an insulation component according to the invention is designed such that it can be produced by a method according to the invention. Accordingly, an insulation component according to the invention has the same advantages as have been explained in detail with reference to a method according to the invention.
  • Another object of the present invention is an electrically conductive heating cable, which has been isolated by at least one insulation component according to the invention, having the features of the present invention. Accordingly, a correspondingly electrically conductive heating cable has the same advantages as have been explained in detail with regard to an insulation component according to the invention or with regard to a method according to the invention.
  • Figure 1 is a schematic view of a way the
  • FIG. 2 shows an embodiment of an insulating component produced in accordance with the invention
  • FIG. 3 shows a further exemplary embodiment of an insulating component produced according to the invention
  • FIG. 4 shows a further exemplary embodiment of an insulation component produced according to the invention
  • FIG. 5 shows a further exemplary embodiment of an insulation component produced according to the invention
  • FIG. 6 shows a further exemplary embodiment of an insulation component produced according to the invention.
  • FIG. 7 shows another embodiment of an insulation component according to the invention.
  • a plasma flame ring is provided, which is shown schematically in FIG. 1 and can be charged with C 3 H 8 .
  • a connection for an AC voltage is provided at the bottom of the ring to produce the plasma in the desired manner.
  • the ring in particular in a rotating manner, is moved along the axis of the insulation component 10.
  • the surface of the insulation component 10 is activated. This activation overcomes the inertness of the reaction and thus enables a frictional connection with the insulating component.
  • a protective layer 20 is the application of a protective layer 20. The result of such a production step is shown in FIG. FIG.
  • FIG. 2 shows, by way of example, a schematic cross section of an embodiment of an insulation component 10. This is provided with a protective layer 20.
  • the protective layer 20 is in this embodiment, a sol-gel layer 22, with a thickness D, which is greater than or equal to 2 ⁇ .
  • the sol-gel process has preferably been carried out in such a way that the desired film having a desired layer thickness has been produced by evaporation of a solvent. Subsequently, a curing process was performed which left a glassy oxide layer of nanoparticles.
  • FIG. 3 shows the insulation situation with an insulation component 10 according to the invention according to FIG. 2.
  • the insulation component 10 can be wrapped around the electrically conductive heating cable 100 in an insulated manner.
  • the heating cable can be used in the aggressive environmental condition, for example in the extraction of oil sands used for heating the same.
  • FIGS. 4, 5, 6 and 7 show alternative embodiments of an insulation component 10 according to the invention by a method according to the invention. These differ by different Schichtdickenart and different number of layer thicknesses.
  • FIG. 4 shows an embodiment in which five protective layers result in a common protective layer 20. In this case, five films of a sol-gel solution were produced one above the other as respective sol-gel layer 22. In this way, the layer thickness D could be increased, in particular be increased to a range of 30 ⁇ .
  • FIG. 5 shows the possibility of combining different materials for the protective layer 20.
  • the lation component 10 of this embodiment has first been coated with an adhesive 24.
  • This adhesive 24 was only partially cured in a curing process, so that it remained dimensionally stable but still viscous.
  • a sol-gel layer 22 was applied to the adhesive 24 in a sol-gel process.
  • a frictional connection between the insulating member 10 and the adhesive 24 and between the adhesive 24 and the sol-gel layer 22 could be achieved.
  • the chemical composition properties and thus the protective mechanisms of the adhesive layer 24 and the sol-gel layer 22 could be combined with one another in order to even better resist the aggressive environmental conditions with regard to the protection of the insulating component 10 during its use.
  • FIG. 6 shows an alternative embodiment of the insulation component 10.
  • the protective layer 20 in this embodiment consists of an adhesive 24. This is likewise applied in a manner prescribed by a method according to the invention, that is to say after the plasma activation of the surface of the insulating component 10.
  • FIG. 7 shows that the adhesive as adhesive layer 24 can also be double or even multiple.
  • the layer thickness D is also increased, so that the shielding effect is increased against the aggressive environmental conditions.
  • a further advantage of increased layer thicknesses D is that in this way the mechanical stability of the protective layer 20 can be enhanced. During use, cracks can be further minimized in this way, so that the long-term stability of the correspondingly insulated electrically conductive heating cable 100 has been increased even further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Processing Of Terminals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren für die Beschichtung eines Isolationsbauteils (10), aufweisend PEEK, zur Isolierung eines elektrisch leitfähigen Heizkabels (100) mit den folgenden Schritten: 1.) Zumindest abschnittsweises Behandeln der Oberfläche des Isolationsbauteils (10) mit wenigstens einer kalten Plasma-Flamme, und 2.) Aufbringen von wenigstens einer Schutzschicht (20) auf die behandelte Oberfläche des Isolationsbauteils (10).

Description

Beschreibung
Verfahren für die Beschichtung eines Isolationsbauteils und Isolationsbauteil
Die vorliegende Erfindung betrifft ein Verfahren für die Beschichtung eines Isolationsbauteils, aufweisend PEEK, zur Isolierung eines elektrisch leitfähigen Heizkabels. Weiter betrifft die vorliegende Erfindung ein Isolations- bauteil, aufweisend PEEK, für die Isolierung eines elektrisch leitfähigen Heizkabels sowie ein derartig isoliertes elektrisch leitfähiges Heizkabel .
Es ist bekannt, dass zur Förderung von Öl auch Öllager- Stätten infrage kommen, in welchen das Öl in einem Trenn- prozess vom Sand abgeschieden werden muss. In Lagerstätten, in welchen der Ölsand jedoch nicht im Tagebau zugänglich ist, erfolgt üblicherweise eine Förderung des Öls durch das Erhitzen des Ölsandes. Hierdurch wird die Visko- sität des gebundenen Öls derart reduziert, dass es in konventioneller Weise abgepumpt werden kann. Bei bekannten Verfahren wird für das Erhitzen des Ölsandes erhitzter Dampf, erhitzte Luft oder ähnliche heiße Gase eingesetzt. Dies bringt den Nachteil mit sich, dass in sehr aufwendi- ger Weise eine Möglichkeit geschaffen werden muss, um die Gase in die gewünschte Position im Erdreich, nämlich zu dem Lagerort des Ölsandes, zu transportieren. Darüber hinaus ist aufgrund teilweise sehr tiefer und weit ausgedehnter Lagerstätten ein hoher Aufwand hinsichtlich des ent- stehenden Druckverlustes beim Einbringen der Gase / Dämpfe zu beachten.
Auch ist es bekannt, dass zum Erwärmen von Materialien Induktion als physikalisches Prinzip zum Einsatz kommen kann. Jedoch besteht dabei das Problem, dass bei der Verwendung von Induktionskabeln, also elektrisch leitfähigen Heizkabeln, für die voranstehend beschriebene Förderung von Öl aus Ölsandlagerstätten, eine hoch aggressive Umge- bung vorherrscht. Insbesondere müssen die Heizkabel Temperaturwerte von dauerhaft über 250°C aushalten, die unter einer Wasserdampfatmosphäre und einer H2S Dampfatmosphäre bei einem Überdruck von 15 bar herrschen. Ein einfaches elektrisch leitfähiges Heizkabel, wie zum Beispiel ein
Kupferkabel, würde einer solchen Umgebung nicht in ausreichender Weise standhalten. Auch die Isolierung solcher Heizkabel stellt die Umgebungssituation vor außerordentliche Probleme. Selbst hochresistente Kunststoffe wie insbe- sondere der Kunststoff PEEK, sind nicht ausreichend resistent, um dauerstabil in solchen Atmosphären eingesetzt zu werden .
Als Heizkabel ist auch ein Induktor für die Ölsandförde- rung zu verstehen, bei dem im Betrieb mittels Induktion der umgebende Erdboden angeregt wird, so dass es zu einer Temperaturerhöhung kommt .
Es ist Aufgabe der vorliegenden Erfindung die voranstehend beschriebenen Probleme zu beheben. Insbesondere ist es
Aufgabe der vorliegenden Erfindung, ein Verfahren zur Verfügung zu stellen, das es ermöglicht, eine Isolierung von elektrisch leitfähigen Heizkabeln zur Verfügung zu stellen, die deren Einsatz unter den voranstehend beschriebe- nen aggressiven Umgebungsbedingungen ermöglicht. Ebenfalls Aufgabe der vorliegenden Erfindung ist es, ein entsprechendes Isolationsbauteil sowie ein damit isoliertes elektrisch leitfähiges Heizkabel zur Verfügung zu stellen. Voranstehende Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1. Weitere Merkmale und Details der Erfindung ergeben sich aus den Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im Zusammenhang mit dem erfindungsgemäßen Isolationsbauteil und dem erfindungsgemäßen elektrisch leitfähigen Heizkabel beschrieben werden, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen Verfahren und jeweils umgekehrt, so dass be- züglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird beziehungsweise werden kann. Bei einem erfindungsgemäßen Verfahren für die Beschichtung eines Isolationsbauteils zur Isolierung eines elektrisch leitfähigen Heizkabels weist dieses Isolationsbauteil PEEK auf. Das bedeutet, dass PEEK (Polyetheretherketon) als Material für die Fertigung des Isolationsbauteils zum Ein- satz gekommen ist. Insbesondere ist das Isolationsbauteil vollständig oder im Wesentlichen vollständig aus PEEK hergestellt. Das Isolationsbauteil dient zur Isolierung eines elektrisch leitfähigen Heizkabels. Hierzu weist das Isolationsbauteil die eine geometrische Form auf, so dass es um das Heizkabel für die Isolierung gelegt werden kann. Insbesondere ist das Isolationsbauteil als hohlzylindrische Form ausgeführt, die eine Länge hat, die kleiner als die Länge des elektrisch leitfähigen Heizkabels ist. Häufig werden elektrisch leitfähige Heizkabel mit Längen von meh- reren Kilometern, zum Beispiel zwei Kilometern, eingesetzt. Entsprechende Isolationsbauteile in Form eines Hohlzylinders sind dabei mit einigen Metern dimensioniert, zum Beispiel ca. 9 Metern. Auf diese Weise kann das erfindungsgemäße Verfahren an relativ kleinen Einheiten, näm- lieh dem Isolationsbauteil, durchgeführt werden und trotzdem auch ein sehr groß dimensioniertes elektrisch leitfähiges Heizkabel in erfindungsgemäßer Weise durch ein erfindungsgemäß beschichtetes Isolationsbauteil isoliert werden .
Ein erfindungsgemäßes Verfahren weist für die Beschichtung des Isolationsbauteils die folgenden Schritte auf:
Zumindest abschnittsweises Behandeln der Oberfläche des Isolationsbauteils mit wenigstens einer kalten Plasmaflamme und
Aufbringen von wenigstens einer Schutzschicht auf die behandelnde Oberfläche des Isolationsbauteils. Die voranstehende Verfahrensweise kann mit anderen Worten auch als das „Aktivieren" der Oberfläche des Isolationsbauteils im chemischen Sinn und dem anschließenden Be- schichten beschrieben werden.
Problematisch bei dem Material PEEK ist es, dass dieses Material aufgrund seiner hohen Resistenz gegen aggressive Umgebungen zugleich eine hohe Widerstandsfähigkeit hin- sichtlich der Reaktionsfähigkeit mit sich bringt. Es kann also als „reaktionsträge" beschrieben werden. Dies verhindert, dass in konventioneller Weise über Klebeverfahren oder ähnliches ein Kraftschluss zwischen einer Beschich- tung mit einer Schutzschicht und dem Material des Isolati- onsbauteils erfolgen kann. Erst durch den Einsatz eines erfindungsgemäßen Verfahrens kann die Oberfläche des Isolationsbauteils aktiviert werden, so dass diese Oberfläche in chemischer Weise in der Lage ist, die dem Material eigene Reaktionsträgheit zu überwinden und einen entspre- chenden Kraftschluss mit der Schutzschicht einzugehen. Dabei ist zu bemerken, dass durch die Plasmaflamme, welche zum Beispiel mit einem Gasverhältnis von Stickstoff zu Sauerstoff von 1:1 betrieben wird, eine besonders gute Aktivierung erfolgt. Auf diese Weise wird das Material PEEK oberflächenaktiv und kann eine tragfähige Verbindung oder eine Reaktion mit anderen Chemikalien in einer wirtschaftlich vertretbaren Zeit eingehen.
Das Aktivierungsverfahren mittels einer kalten Plasmaflam- me ist darüber hinaus relativ kostengünstig durchführbar. Mit anderen Worten: wird durch die Plasmaflamme eine temporäre Veränderung der chemischen Eigenschaften des Isolationsbauteils an dessen Oberfläche durchgeführt, so dass anschließend die Schutzschicht haften bleiben kann. Das Haften der Schutzschicht ist wichtig, da während des Einbringens eines entsprechenden elektrisch leitfähigen Heizkabels mit einer solchen Isolierung in Förderbereiche für Ölsand eine notwendige Dehnungsfähigkeit von bis zu 1% und mehr für die Schutzschicht notwendig ist. Würde ein Kraft- schluss zwischen der Schutzschicht und dem Isolationsbauteil aus PEEK nicht bestehen, so würde dies dazu führen, dass Risse in der Schutzschicht entstehen könnten und auf diese Weise die aggressive Umweltumgebung ein vorzeitiges Korrodieren des PEEK-Materials und dementsprechend ein vorzeitiges Versagen des Heizkabels mit sich bringen würde.
Ein weiterer Vorteil eines erfindungsgemäßen Verfahrens ist es, dass durch die Plasmaaktivierung der Oberfläche des Isolationsbauteils diese Aktivierung zeitlich relativ lange anhält . Insbesondere verbleibt diese Aktivierung über mehrere Tage aktiv, so dass der Schritt des Behandeins der Oberfläche mit der Plasmaflamme von dem Schritt des Aufbringens von wenigstens einer Schutzschicht zeitlich und örtlich separat ausgestaltet sein kann. Insbesondere ist es möglich, dass die Schutzschicht erst nach der Montage des jeweiligen Isolationsbauteils auf dem elektrisch leitfähigen Heizkabel durchgeführt wird. Dies bringt den Vorteil mit sich, dass die Schutzschicht auch an den Stoßbereichen einzelner Isolationsbauteile in Längsrichtung des elektrisch leitfähigen Heizkabels eine geschlossene Schutzschicht bilden kann. Auf diese Weise kann eine noch weiter verbesserte Abschirmung gegen die aggressiven Umweltbedingungen erzielt werden.
Im Rahmen der vorliegenden Erfindung ist unter dem abschnittsweise Behandeln der Oberfläche des Isolationsbau- teils mit wenigstens einer kalten Plasmaflamme zu verstehen, dass zumindest die Abschnitte der Oberfläche des Isolationsbauteils entsprechend behandelt und beschichtet werden, welche nach dem Anbringen des Isolationsbauteils um das elektrisch leitfähige Heizkabel herum zu dessen Isolierung nach außen zeigen und dementsprechend in Kontakt mit den aggressiven Umweltbedingungen gelangen würden. Das elektrische leitfähige Heizkabel ist im Rahmen der vorliegenden Erfindung vorzugsweise ein Kupferkabel mit ca. 100 bis 160 mm Durchmesser.
Ein erfindungsgemäßes Verfahren kann zum Beispiel mithilfe eines Ringes durchgeführt werden, in welchem eine oder mehrere kalte Plasmaflammen auf den Mittelpunkt dieses Ringes zeigen. Auf diese Weise, insbesondere durch eine Rotation um den Mittelpunkt dieses Ringes, kann eine kontinuierliche Behandlung der Oberfläche des Isolationsbau- teils stattfinden. Hierzu wird vorzugsweise eine Wechselspannung an dem Ring angelegt und über Gasanschlüsse Sauerstoff, Stickstoff und C3H8 dem Ring und damit der Plasmaflamme zu deren Erzeugung zugeführt. Wie hier zu erkennen ist, ist ein weiterer Vorteil die besonders umwelt- freundliche Aktivierung dadurch, dass beim Plasmaverfahren keine unnötigen Abgase entstehen, welche als Umweltbelastung wahrgenommen werden könnten.
Bei der Schutzschicht kann es sich um unterschiedliche Ausbildungen handeln. Insbesondere ist darauf hinzuweisen, dass nicht nur eine Schutzschicht, sondern auch mehrere Schutzschichten übereinander mit gleicher oder unterschiedlicher chemischer und/oder physikalischer Ausgestaltung zum Einsatz kommen können. Entscheidend ist jedoch, dass nicht nur zwischen der Schutzschicht und dem Material des Isolationsbauteils, sondern auch zwischen den einzelnen Schutzschichten eine entsprechende kraftschlüssige beziehungsweise materialschlüssige Verbindung besteht, um die wie weiter oben beschriebenen Anforderungen an die Dehnungsgrenze in erfindungsgemäßer Weise zu erzielen.
Es kann von Vorteil sein, wenn bei einem erfindungsgemäßen Verfahren wenigstens eine Schutzschicht als Sol-Gel- Schicht durch ein Sol -Gel -Verfahren aufgebracht wird. Da- bei ist die Hauptkomponente einer dafür verwendeten Sol- Gel-Lösung nach Schichtaufbringung und Aushärtung bzw.
Trocknung der Sol -Gel -Lösung insbesondere Si02 oder Ti02. Beim Aufbringen der Sol-Gel-Schicht weist diese einen 99%- tigen bzw. annähernd 99%-tigen Alkohol -Antei 1 auf. Dieser Alkohol -Anteil verdampft, so dass nach dem Aushärtung bzw. der Trocknung der Sol -Gel -Lösung Si02 oder Ti02 übrig bleibt. Mit anderen Worten kann eine Glas- oder Keramik- Sol-Gel-Lösung verwendet werden, wobei Keramiklösungen eine noch höhere Abschottung gegen die aggressiven Umweltbedingungen mit sich bringen.
Das Sol -Gel -Verfahren wird eingesetzt, indem die aktivier- te Oberfläche zum Beispiel mit einer Sol-Gel-Lösung eingesprüht wird. Diese Lösung weist ein Lösungsmittel, zum Beispiel einen Alkohol auf. Dieser verdampft sehr schnell beziehungsweise sofort und hinterlässt durch das Verdampfen einen dünnen Film mit oxidischen und voroxidischen Na- nopartikeln. Durch das Aufbringen und Verdampfen des Lösungsmittels kann darüber hinaus sichergestellt werden, dass ein im Wesentlichen oder vollständig abgeschlossener Film das Material des Isolationsbauteils umgibt. Auf diese Weise entsteht sozusagen eine dichte, glasartige Oxid- Schicht. Diese Oxidschicht bringt einerseits den Vorteil mit sich, dass sie das Material des Isolationsbauteils, insbesondere das PEEK, in gewünschter Weise vor den aggressiven Umweltbedingungen schützt. Darüber hinaus ist die Oxidschicht beim Aushärten in der Lage, eine gute Haf- tung mit der Oberfläche des Materials des Isolationsbauteils einzugehen. Damit wird ermöglicht, dass eine Materialdehnung von über 1% der Schutzschicht ausgehalten werden kann. Dies rührt daher, dass ein Werkstoff, je dünner er wird, umso mehr Längenverformung ertragen kann, ohne eine Anrissbildung zu zeigen. Auf diese Weise wird sichergestellt, dass die gewünschte Abschirmung gegen die aggressiven Umweltbedingungen nicht nur nach dem Durchführen des erfindungsgemäßen Verfahrens besteht, sondern auch noch beim Einbringen in die gewünschte Position im Erdinneren zur Erwärmung von Ölsand.
Ebenfalls von Vorteil kann es sein, wenn bei einem erfindungsgemäßen Verfahren die Schutzschicht derart aufgetra- gen wird, dass eine Schichtdicke von mindestens 2 μπι erzielt wird. Bevorzugt ist eine Schichtdicke von zwischen 2 und 5 μπι . Dabei ist darauf hinzuweisen, dass die Schutzschicht auch aus einzelnen Schutzschichtfilmen bestehen kann, die übereinander gelagert eine entsprechend größere Schutzschichtdicke von insbesondere bis zu 30 μπι erzielen können. Unter 2 μπι ist dabei eine Mindestschichtdicke zu verstehen, um offene Stellen und durchgängige Risse in der Schutzschicht vermeiden. Ein solcher durchgängiger Riss ist dabei auf die radiale Ausrichtung des Isolationsbauteils zu beziehen. Dieser würde dazu führen, dass eine Leckage besteht, durch welche das Material des Isolationsbauteils, also insbesondere das PEEK, direkt den aggressiven Umweltbedingungen ausgesetzt wäre. An dieser Stelle würde demnach eine Korrosionsleckage bestehen, die zu einem Versagen der Isolierung und dementsprechend zu einem Kurzschluss des elektrisch leitfähigen Heizkabels während dessen Einsatz führen könnte. Durch das Durchführen eines erfindungsgemäßen Verfahrens mit der Mindestschichtdicke von 2 μπι wird somit die Funktionssicherheit durch ein erfindungsgemäßes Verfahren für den Einsatz eines isolierten elektrisch leitfähigen Heizkabels deutlich erhöht.
Ebenfalls vorteilhaft kann es sein, wenn bei einem erfin- dungsgemäßen Verfahren der Schritt des Aufbringens der Schutzschicht zumindest zweimal durchgeführt wird. Auf diese Weise wird die Schichtdicke der Schutzschicht vergrößert. Insbesondere erfolgt ein Vergrößern der Schichtdicke auf ca. 30 μπι, so dass ein noch besserer Schutz ge- gen Korrosionsleckage erzielt werden kann. Dabei werden die einzelnen Schritte des Aufbringens der Schutzschicht derart durchgeführt, dass zwischen den einzelnen Aufbringschritten nur zum Teil oder überhaupt nicht eine Trocknung beziehungsweise Aushärtung der vorher aufgebrachten
Schutzschicht stattfinden konnte. Dies bringt den Vorteil mit sich, dass zum Zeitpunkt des Aufbringens der nächsten Schutzschicht die darunter liegende Schutzschicht noch in der Lage ist, eine kraftschlüssige Verbindung, zum Bei- spiel durch Material schluss , einzugehen. Beim Aufbringen mehrerer Schutzschichten übereinander kann sowohl jeweils eine gleiche Schutzschicht, als auch unterschiedliche Schutzschichten eingesetzt werden. Insbesondere können verschiedene Schutzschichten übereinander gelagert werden, um deren Schutzqualität mit unterschiedlichen Schwerpunkten zu einer gemeinsamen und dementsprechend höherwertigen Schutzschicht zu kombinieren. Auch vorteilhaft kann es sein, wenn einem erfindungsgemäßen Verfahren nach dem Aufbringen der Schutzschicht zumindest ein Trocknungsschritt für die Schutzschicht folgt. Dieser Trocknungsschritt wird bei einer Temperatur oberhalb der Raumtemperatur, insbesondere zwischen 100 °C und 200 °C durchgeführt. Bevorzugt ist ein Temperaturbereich zwischen 120 °C und 180 °C. Auf diese Weise kann die Geschwindigkeit der Durchführung des Verfahrens beschleunigt werden. Der Trocknungsschritt dient dazu, das Aushärten der aufgebrachten Schutzschicht zu beschleunigen. Dabei ist darauf hinzuweisen, dass beim Einsatz von mehreren Schutzschichtfilmen, die aufeinander aufgebracht werden, der Trocknungsschritt abschließend, also nach dem letzten Aufbringen eines Schutzschichtfilms, durchgeführt werden soll . Auf diese Weise können die einzelnen Schutzschichten relativ zügig hintereinander übereinander aufgebracht werden und abschließend über den Trocknungsschritt eine zügige Fertigstellung des Isolationsbauteils durch ein erfindungsgemäßes Verfahren gewährleistet bleiben. Der Trocknungsschritt kann zum Beispiel durch das Aufheizen der Isolationsbauteile gemeinsam in einem Ofen vor der Montage an dem Heizkabel stattfinden. Selbstverständlich ist es auch möglich, dass ein erfindungsgemäßes Verfahren in einer einzigen Produktionslinie durchgeführt wird, so dass im Wesentlichen kontinuierlich ein Aktivieren des
Isolationsbauteils, ein Beschichten des Isolationsbauteils und anschließend insbesondere ein Trocknen des Isolationsbauteils im kontinuierlichen Verfahren stattfinden kann. Ein weiterer Vorteil kann es sein, wenn bei einem erfindungsgemäßen Verfahren zumindest eine Schutzschicht als Kleber, insbesondere direkt auf der Oberfläche des Isolationsbauteils, aufgebracht wird. Bei der Ausführungsform gemäß diesem Unteranspruch wird der Vorteil erzielt, dass der Kraftschluss zwischen einem Kleber und dem Material des Isolationsbauteils, also insbesondere dem PEEK, besonders stark ausgebildet werden kann. Dabei kann der Kleber bereits selbst die abschließende Schutzschicht darstellen oder aber nur einen Teil dieser Schutzschicht, der wiederum mit einer zusätzlichen darauf angebrachten Schutzschicht versehen wird. Der Kleber ist dabei insbesondere als Haftvermittler zum Beispiel für ein Sol -Gel -Verfahren bei dieser Ausführungsform zu verstehen. Als Kleber kann zum Beispiel ein Phenol-Novolac-Cyanat-Ester eingesetzt werden .
Um den Kleber anzubringen, ist vorzugsweise ein Ringpinsel zu verwenden, der derart angeordnet ist, dass durch diesen Ringpinsel beim Auftragen das Isolationsbauteil in einer Weise geführt wird, dass nach dem Aufbringen das aufgebrachte Klebermaterial in noch flüssiger Weise am Isolationsbauteil entlang wieder Richtung Ringpinsel durch die Schwerkraft bewegt nach unten läuft. Auf diese Weise kann eine im Wesentlichen konstante und vor allem abgeschlossene Schutzschicht ausgebildet werden. Darüber hinaus wird vermieden, dass Dickensprünge hinsichtlich der Schichtdicke der Schutzschicht entstehen.
Es wird darauf hingewiesen, dass im Rahmen der vorliegenden Erfindung nicht nur eine einzelne Schutzschicht, sondern auch eine Vielzahl von Schutzschichten übereinander angebracht werden kann. Insbesondere ist eine Einzel - Schutzschicht bzw. Schutzschichtfilm als Kleber oder als Sol-Gel-Schicht , also als glasartige Oxidschicht ausgebildet. Auch mehrere Schichten aus Kleber oder Sol-Gel- Schicht sind im Rahmen der vorliegenden Erfindung denk- bar. Insbesondere ist auch eine Kombination eines Klebers und einer Sol -Gel -Schicht denkbar, wobei insbesondere der Kleber direkt auf der Oberfläche des Isolationsbauteils aufgebracht worden ist.
Ein erfindungsgemäßes Verfahren kann dahingehend weitergebildet werden, dass nach dem Aufbringen der Schutzschicht in Form des Klebers ein Aushärtungsschritt derart durchgeführt wird, dass der Kleber formstabil wird ohne bereits vollständig auszuhärten. Dies führt dazu, dass auch weitere Schutzschichten aufgebracht werden können. Das weitere Aufbringen kann zum Beispiel in einem nächsten Prozessschritt durch das Einsprühen der Oberfläche mit einem alkoholischen Sol-Gel-Gemisch erfolgen. Aus Feuerschutzgrün- den erfolgt der Aushärtungsschritt vorzugsweise mit einem größeren Abstand im Betrieb mit Flammen oder mit Wärmestrahlern. Der Kleber zeigt vorzugsweise nach seiner Aushärtung einen thermischen Zersetzungspunkt von 400 bis 420 °Celsius. Dementsprechend kann auch der Kleber selbst be- reits eine Schutzwirkung entfalten, und als Schutzschicht im Rahmen des vorliegenden Verfahrens verstanden werden. Das bedeutet, dass auch der Kleber selbst eine Abschirmung gegen die aggressiven Umweltbedingungen mit sich bringt. Ebenfalls vorteilhaft ist es, wenn bei einem erfindungsgemäß Verfahren dieses für die Beschichtung eines Isolationsbauteils mit einer hohlzylindrischen Form ausgebildet ist, die insbesondere eine Länge aufweist, die kleiner als die Länge des elektrischen Heizkabels ist. Damit kann eine kom- pakte Einheit des Isolationsbauteils mit einer Länge von zum Beispiel weniger als circa 10m in hoher Stückzahl erfindungsgemäß behandelt und beschichtet werden. Die Anwendung kann durch Kombination einer Vielzahl von Isolationsbauteilen auch bei deutlich längeren elektrischen Heizkabeln erfolgen, indem die einzelnen Isolationsbauteile aneinander angrenzend verwendet werden. Dies reduziert neben den Fertigungskosten auch den Aufwand für die Lagerung und den Transport der Isolationsbauteile . Ein weiterer Vorteil wird dann erzielt, wenn bei einem erfindungsgemäßen Verfahren nach dem Behandeln der Oberfläche des Isolationsbauteils mit wenigstens einer kalten Plasma- Flame und vor dem Aufbringen der wenigstens einen Schutz - schicht auf die behandelte Oberfläche des Isolationsbauteils eine Montage auf dem elektrischen Heizkabel durchgeführt wird. Damit kann eine besonders effektive Schutzwirkung durch die Beschichtung erzielt werden. Dies beruht insbesondere auf der Tatsache, dass bei einer nach der Montage durchgeführten Beschichtung mit der Schutzschicht auch die Stöße zwischen einzelnen aneinandergrenzenden Isolationsbauteilen in erfindungsgemäßer Weise behandelt und beschichtet werden. Damit entsteht unabhängig von der Anzahl der verwendeten und aneinandergrenzenden Isolationsbauteile eine durchgehende oder im Wesentlichen durchgehende Schutzschicht über den Verlauf des gesamten elektrischen Heizkabels.
Vorteilhaft ist es auch, wenn bei einem erfindungsgemäßen Verfahren um das Isolationsbauteil herum das Behandeln der Oberfläche und das Aufbringen der wenigstens einen Schutzschicht durchgeführt wird. Insbesondere bei rotationssymmetrischen elektrischen Heizkabeln, zum Beispiel mit einem runden Querschnitt, erfolgt auf diese Weise eine vollständig umgebende Schutzschicht, so dass von allen Seiten der Schutz gegen Korrosion gegeben ist.
Auch ist es im Rahmen der vorliegenden Erfindung möglich, dass die Behandlung der Oberfläche des Isolationsbauteils mit wenigstens einer kalten Plasma-Flamme mit einem das Iso- lationsbauteil umgebenden Ring durchgeführt wird. Ein solcher Ring ist insbesondere bei der Erzeugung einer umlaufenden Schutzschicht vorteilhaft, wie sie im voranstehenden Absatz beschrieben worden ist. Damit kann eine kostengünstige Fertigung, insbesondere in kontinuierlicher oder semikontinuierli - eher Weise, durchgeführt werden.
Darüber hinaus ist es von Vorteil, wenn bei einem erfindungsgemäßen Verfahren wenigstens zwei Schutzschichten, ins- besondere alle Schutzschichten aus demselben oder im Wesentlichen demselben Material bestehen. Große Schichtdicken können damit schichtweise aufgetragen werden, ohne dass Materialunterschiede, wie unterschiedliche Wärmeausdehnungen oder ähnliches, zu mechanischen oder elektrischen oder thermischen Problemen führen könnten.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Isolationsbauteil, aufweisend PEEK, für die Isolierung ei- nes elektrisch leitfähigen Heizkabels. Dieses Isolationsbauteil zeichnet sich dadurch aus, dass die Oberfläche des Isolationsbauteils zumindest abschnittsweise mit einer Schutzschicht versehen ist. Vorzugsweise ist ein erfindungsgemäßes Isolationsbauteil derart ausgebildet, dass es durch ein erfindungsgemäßes Verfahren erzeugt werden kann. Dementsprechend weist ein erfindungsgemäßes Isolationsbauteil die gleichen Vorteile auf, wie sie ausführlich mit Bezug auf ein erfindungsgemäßes Verfahren erläutert worden sind .
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein elektrisch leitfähiges Heizkabel, welches durch zumindest ein erfindungsgemäßes Isolationsbauteil isoliert worden ist, das die Merkmale der vorliegenden Erfindung aufweist. Ein entsprechend elektrisch leitfähiges Heizkabel weist dementsprechend die gleichen Vorteile auf, wie sie hinsichtlich eines erfindungsgemäßen Isolationsbauteils beziehungsweise hinsichtlich eines erfindungsgemäßen Verfahrens ausführlich erläutert worden sind.
Die vorliegende Erfindung wird näher erläutert anhand der beigefügten Zeichnungsfiguren. Die dabei verwendeten Begrifflichkeiten „links", „rechts", „oben" und „unten" beziehen sich auf eine Ausrichtung der Zeichnungsfiguren mit normal lesbaren Bezugszeichen. Es zeigen:
Figur 1 in schematischer Ansicht eine Möglichkeit der
Durchführung des erfindungsgemäßen Verfahrens, Figur 2 eine in erfindungsgemäßer Weise hergestellte Ausführungsform eines Isolationsbauteils, Figur 3 ein weiteres Ausführungsbeispiel eines erfindungsgemäß hergestellten Isolationsbauteils,
Figur 4 ein weiteres Ausführungsbeispiel eines erfindungsgemäß hergestellten Isolationsbauteils,
Figur 5 ein weiteres Ausführungsbeispiel eines erfindungsgemäß hergestellten Isolationsbauteils,
Figur 6 ein weiteres Ausführungsbeispiel eines erfin- dungsgemäß hergestellten Isolationsbauteils, und
Figur 7 ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Isolationsbauteils.
Anhand von Figur 1 soll die Durchführung eines erfindungsgemäßen Verfahrens erläutert werden. Für das Durchführen des Verfahrens ist ein Plasmaflammenring vorgesehen, der schematisch in Figur 1 dargestellt ist und mit C3H8 beschickt werden kann. Darüber hinaus ist am unteren Bereich des Ringes ein Anschluss für eine Wechselspannung vorgesehen um das Plasma in gewünschter Weise zu erzeugen. Zur Behandlung der Oberfläche des Isolationsbauteils 10 wird der Ring, insbesondere in rotierender Weise, entlang der Achse des Isolationsbauteils 10 bewegt. Dabei wird die Oberfläche des Isolationsbauteils 10 aktiviert. Diese Aktivierung überwindet die Reaktionsträgheit und ermöglicht auf diese Weise eine kraftschlüssige Verbindung mit dem Isolationsbauteil, Ein solcher nächster Produktionsschritt ist das Aufbringen einer Schutzschicht 20. Das Ergebnis eines solchen Produktionsschrittes ist in Figur 2 dargestellt . Figur 2 zeigt beispielhaft in schematischem Querschnitt eine Ausführungsform eines Isolationsbauteils 10. Dieses ist mit einer Schutzschicht 20 versehen. Die Schutzschicht 20 ist dabei bei dieser Ausführungsform eine Sol-Gel- Schicht 22, mit einer Dicke D, die größer oder gleich 2 μπι ist .
Das Sol -Gel -Verfahren ist dabei vorzugsweise in einer Wei- se durchgeführt worden, dass über eine Verdampfung eines Lösungsmittels der gewünschte Film mit einer gewünschten Schichtdicke erzeugt worden ist. Anschließend wurde ein Aushärtungsprozess durchgeführt, der eine glasartige Oxidschicht aus Nanopartikeln hinterlassen hat.
Figur 3 zeigt die Isolationssituation mit einem erfindungsgemäßen Isolationsbauteil 10 gemäß Figur 2. Dort befindet sich das Isolationsbauteil 10 in isolierter Weise ummantelnd um das elektrisch leitfähige Heizkabel 100. In dieser Anordnung kann das Heizkabel in der aggressiven Um- weltbedingung zum Beispiel bei der Förderung von Ölsand zur Beheizung desselben eingesetzt werden.
In den Figuren 4, 5,6 und 7 sind alternative Ausführungsformen eines erfindungsgemäßen Isolationsbauteils 10 durch ein erfindungsgemäßes Verfahren dargestellt. Diese unterscheiden sich durch unterschiedliche Schichtdickenarten und unterschiedlicher Anzahl von Schichtdicken. In Figur 4 ist eine Ausführungsform gezeigt, bei welcher fünf Schutzschichten eine gemeinsame Schutzschicht 20 ergeben. Dabei wurden fünf Filme einer Sol -Gel -Lösung übereinander als jeweilige Sol -Gel -Schicht 22 erzeugt. Auf diese Weise konnte die Schichtdicke D vergrößert, insbe- sondere auf einen Bereich von 30 μπι erhöht werden.
Figur 5 zeigt die Möglichkeit der Kombination von verschiedenen Materialien für die Schutzschicht 20. Das Iso- lationsbauteil 10 dieser Ausführungsform ist zuerst mit einem Kleber 24 beschichtet worden. Dieser Kleber 24 wurde in einem Aushärteprozess nur zum Teil zum Aushärten gebracht, so dass er formstabil aber noch viskos verblieb. Anschließend wurde in einem Sol -Gel -Verfahren eine Sol- Gel-Schicht 22 auf den Kleber 24 aufgebracht. Auf diese Weise konnte eine kraftschlüssige Verbindung zwischen dem Isolationsbauteil 10 und dem Kleber 24 sowie zwischen dem Kleber 24 und der Sol -Gel -Schicht 22 erzielt werden. Somit konnten die chemischen Bestandseigenschaften und damit die Schutzmechanismen der Kleberschicht 24 und der Sol-Gel- Schicht 22 miteinander kombiniert werden, um den aggressiven Umweltbedingungen hinsichtlich des Schutzes des Isolationsbauteils 10 bei dessen Einsatz noch besser zu trot- zen.
In Figur 6 ist eine alternative Ausführungsform des Isolationsbauteils 10 dargestellt. Die Schutzschicht 20 bei dieser Ausführungsform besteht aus einem Kleber 24. Dieser ist ebenfalls in einer Weise aufgebracht, wie dies ein erfindungsgemäßes Verfahren vorschreibt, also nach dem Plasmaaktivieren der Oberfläche des Isolationsbauteils 10.
In Figur 7 ist dargestellt, dass auch der Kleber als Kle- berschicht 24 doppelt oder sogar mehrfach ausgeführt sein kann. Auf diese Weise wird ebenfalls die Schichtdicke D vergrößert, so dass die Abschirmungswirkung gegen die aggressiven Umweltbedingungen vergrößert wird. Ein weiterer Vorteil vergrößerter Schichtdicken D ist es, dass auf die- se Weise die mechanische Stabilität der Schutzschicht 20 verstärkt werden kann. Während des Einsatzes können auf diese Weise Risse noch weiter minimiert werden, so dass die Dauerstabilität des entsprechend isolierten elektrisch leitenden Heizkabels 100 noch weiter erhöht worden ist.
Die voranstehenden Ausführungsformen beschreiben die vorliegende Erfindung nur im Rahmen von Beispielen. Dementsprechend können einzelne Merkmale zu diesen Ausführungs- beispielen, sofern ^hnisch sinnvoll, frei miteinander kombiniert werden, ae den Rahmen der vorliegenden Erfin- dung zu verlassen.

Claims

Patentansprüche
1. Verfahren für die Beschichtung eines Isolationsbauteils (10) , aufweisend PEEK, zur Isolierung eines elektrisch leitfähigen Heizkabels (100) mit den folgenden Schritten:
Zumindest abschnittsweises Behandeln der Oberfläche des Isolationsbauteils (10) mit wenigstens einer kalten Plasma-Flamme und
Aufbringen von wenigstens einer Schutzschicht (20) auf die behandelte Oberfläche des Isolationsbauteils (10) .
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eine Schutzschicht (10) als Sol -Gel -Schicht (22) durch ein Sol -Gel -Verfahren aufgebracht wird, wobei die
Hauptkomponente der Sol -Gel -Lösung nach Ihrer Trocknung insbesondere Si02 oder Ti02 ist.
3. Verfahren nach mindestens einem der vorhergehenden
Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die
Schutzschicht (20) derart aufgetragen wird, dass eine
Schichtdicke (D) von mindestens 2 μπι erzielt wird.
4. Verfahren nach mindestens einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass der Schritt des Aufbringens der Schutzschicht (20) zumindest zweimal, insbesondere mit dem gleichen Material, durchgeführt wird, so dass sich die Schichtdicke (D) der Schutzschicht (20) vergrößert .
5. Verfahren nach mindestens einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass nach dem Aufbringen der Schutzschicht (20) zumindest ein Trockungsschritt für die Schutzschicht (20) folgt, der bei einer Temperatur oberhalb der Raumtemperatur, insbesondere zwischen 100°C und 200°C, durchgeführt wird.
6. Verfahren nach mindestens einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass zumindest eine Schutzschicht (20) als Kleber (24) , insbesondere direkt auf der Oberfläche des Isolationsbauteils (10) , aufgebracht wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass nach dem Aufbringen der Schutzschicht (20) in Form des
Klebers (24) ein Aushärtungsschritt derart durchgeführt wird, dass der Kleber (24) formstabil wird ohne bereits vollständig auszuhärten .
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass dieses für die Beschichtung eines Isolationsbauteils (10) mit einer hohlzylindrischen Form ausgebildet ist, die insbesondere eine Länge aufweist, die kleiner als die Länge des elektrischen Heizkabels ist.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass nach dem Behandeln der
Oberfläche des Isolationsbauteils (10) mit wenigstens einer kalten Plasma-Flame und vor dem Aufbringen der wenigstens einen Schutzschicht (20) auf die behandelte Oberfläche des Isolationsbauteils (10) eine Montage auf dem elektrischen Heizkabel (100) durchgeführt wird.
10. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass um das Isolationsbauteil (10) herum das Behandeln der Oberfläche und das Aufbringen der wenigstens einen Schutzschicht (20) durchgeführt wird.
11. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Behandlung der Oberfläche des Isolationsbauteils (10) mit wenigstens einer kalten
Plasma-Flamme mit einem das Isolationsbauteil (10) umgebenden Ring durchgeführt wird.
12. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass wenigstens zwei Schutzschichten (20) , insbesondere alle Schutzschichten (20) aus demselben oder im Wesentlichen demselben Material bestehen.
13. Isolationsbauteil (10), aufweisend PEEK, für die
Isolierung eines elektrisch leitfähigen Heizkabels (100) dadurch gekennzeichnet, dass die Oberfläche des
Isolationsbauteils (10) zumindest abschnittsweise mit einer Schutzschicht (20) versehen ist.
14. Isolationsbauteil (10) nach Anspruch 8, dadurch
gekennzeichnet, dass die Schutzschicht (20) durch ein
Verfahren mit den Merkmalen eines der Ansprüche 1 bis 12 erzeugt werden kann.
15. Elektrisch leitfähiges Heizkabel (100), isoliert mit zumindest einem Isolationsbauteil (10) mit den Merkmalen eines der Ansprüche 13 oder 14.
PCT/EP2012/064151 2011-08-08 2012-07-19 Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil WO2013020784A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2844397A CA2844397A1 (en) 2011-08-08 2012-07-19 Method for coating an insulation component and insulation component
US14/237,269 US20140190958A1 (en) 2011-08-08 2012-07-19 Method for coating an insulation component and insulation component
EP12742833.2A EP2671232A1 (de) 2011-08-08 2012-07-19 Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080620.2 2011-08-08
DE102011080620.2A DE102011080620B4 (de) 2011-08-08 2011-08-08 Verfahren für die Beschichtung eines Isolationsbauteils und Isolationsbauteil sowie elektrisch leitfähiges Heizkabel

Publications (1)

Publication Number Publication Date
WO2013020784A1 true WO2013020784A1 (de) 2013-02-14

Family

ID=46603905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/064151 WO2013020784A1 (de) 2011-08-08 2012-07-19 Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil

Country Status (5)

Country Link
US (1) US20140190958A1 (de)
EP (1) EP2671232A1 (de)
CA (1) CA2844397A1 (de)
DE (1) DE102011080620B4 (de)
WO (1) WO2013020784A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD765931S1 (en) * 2014-10-20 2016-09-06 Rubbermaid Commercial Products, Llc String mop headband
CN111261347A (zh) * 2020-01-21 2020-06-09 天津大学 高压直流盆式绝缘子表面粗糙度功能梯度电场均化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460686A (en) * 2008-06-05 2009-12-09 Tyco Electronics Polymer coated wire or cable
US20110127065A1 (en) * 2009-11-30 2011-06-02 Chan-Yong Park Electric cable for nuclear power plants with improved durability and fabrication method thereof
WO2011156659A2 (en) * 2010-06-09 2011-12-15 Schlumberger Canada Limited Cable or cable portion with a stop layer

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246114A (en) * 1959-12-14 1966-04-12 Matvay Leo Process for plasma flame formation
DE2111183B2 (de) * 1970-09-21 1978-03-23 Vereinigte Edelstahlwerke Ag (Vew), Wien Niederlassung Vereinigte Edelstahlwerke Ag (Vew) Verkaufsniederlassung Buederich, 4005 Meerbusch Verfahren und Anordnung zur zweistufigen Oberflächenhärtung von Werkstücken aus härtbaren Eisen- und Stahllegierungen
AT318768B (de) * 1972-09-08 1974-11-11 Boehler & Co Ag Geb Verfahren und Vorrichtung zum Zünden eines Hochfrequenzplasmabrenners
JPS5562349A (en) * 1978-11-02 1980-05-10 Nissan Motor Co Ltd Measuring method for air fuel ratio
JPS55155859A (en) * 1979-05-25 1980-12-04 Towa Kogyo Kk Method of waterproofing
US4770924A (en) * 1986-07-02 1988-09-13 Tdk Corporation Magnetic recording medium
US4900622A (en) * 1986-09-18 1990-02-13 Tdk Corporation Magnetic recording medium
US5439768A (en) * 1988-05-17 1995-08-08 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5731116A (en) * 1989-05-17 1998-03-24 Dai Nippon Printing Co., Ltd. Electrostatic information recording medium and electrostatic information recording and reproducing method
US5277973A (en) * 1988-08-12 1994-01-11 Ube Industries, Ltd. Carbon fibers having high strength and high modulus of elasticity and polymer composition for their production
CA2085738C (en) * 1991-04-26 1996-12-31 Hideharu Nishino Electric feed cable for oil well pump
US7576296B2 (en) * 1995-03-14 2009-08-18 Battelle Energy Alliance, Llc Thermal synthesis apparatus
DE19629154C2 (de) * 1996-07-19 2000-07-06 Dornier Gmbh Bipolare Elektroden-Elektrolyt-Einheit
US6051858A (en) * 1996-07-26 2000-04-18 Symetrix Corporation Ferroelectric/high dielectric constant integrated circuit and method of fabricating same
KR20020042728A (ko) * 1999-10-19 2002-06-05 월커 존 허버트 작용성 중합체 표면의 제조
JP3918379B2 (ja) * 1999-10-20 2007-05-23 トヨタ自動車株式会社 溶射方法、溶射装置及び粉末通路装置
AUPQ544900A0 (en) * 2000-02-04 2000-02-24 Commonwealth Scientific And Industrial Research Organisation Treatment of cellulosic material
US7220937B2 (en) * 2000-03-17 2007-05-22 Applied Materials, Inc. Plasma reactor with overhead RF source power electrode with low loss, low arcing tendency and low contamination
US7196283B2 (en) * 2000-03-17 2007-03-27 Applied Materials, Inc. Plasma reactor overhead source power electrode with low arcing tendency, cylindrical gas outlets and shaped surface
WO2002004552A1 (en) * 2000-07-06 2002-01-17 Commonwealth Scientific And Industrial Research Organisation A process for modifying the surface of a substrate containing a polymeric material by means of vaporising the surface modifying agent
AUPQ859000A0 (en) * 2000-07-06 2000-07-27 Commonwealth Scientific And Industrial Research Organisation Apparatus for surface engineering
TW574753B (en) * 2001-04-13 2004-02-01 Sony Corp Manufacturing method of thin film apparatus and semiconductor device
DE50304472D1 (de) * 2002-03-22 2006-09-14 Pyroplasma Kg Brennstoffverbrennungsvorrichtung
EP1437683B1 (de) * 2002-12-27 2017-03-08 Semiconductor Energy Laboratory Co., Ltd. Chipkarte und Buchhaltungssystem unter Verwendung der Chipkarte
JP4830254B2 (ja) * 2003-01-23 2011-12-07 セイコーエプソン株式会社 有機el装置の製造方法及び電子機器
JP2004281941A (ja) * 2003-03-18 2004-10-07 Fuji Photo Film Co Ltd 電磁波シールド材を有する画像表示装置及びその製造方法
US7566001B2 (en) * 2003-08-29 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. IC card
US20050074636A1 (en) * 2003-10-03 2005-04-07 Fuji Photo Film Co., Ltd. Magnetic recording medium and method for producing the same
US7216814B2 (en) * 2003-10-09 2007-05-15 Xiom Corp. Apparatus for thermal spray coating
US7955907B2 (en) * 2004-01-26 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, television set, and method for manufacturing the same
US8329501B1 (en) * 2004-02-19 2012-12-11 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from inter-metallic microflake particles
US7604843B1 (en) * 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
US8623448B2 (en) * 2004-02-19 2014-01-07 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US8049669B2 (en) * 2004-03-26 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising circuit between first and second conducting wires
JP4213616B2 (ja) * 2004-03-31 2009-01-21 大日本印刷株式会社 液晶パネル用ベースフィルム、液晶パネル用機能フィルム、機能フィルムの製造方法、および機能フィルムの製造装置
KR101155943B1 (ko) * 2004-04-28 2012-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Mos 캐패시터 및 반도체 장치
TWI383527B (zh) * 2004-06-11 2013-01-21 Organic semiconductor components
US7388100B2 (en) * 2004-07-16 2008-06-17 Tetsuya Nishio Tertiary amine compounds
JP3826145B2 (ja) * 2004-07-16 2006-09-27 株式会社クラレ 集光フィルム、液晶パネルおよびバックライト並びに集光フィルムの製造方法
JP4200983B2 (ja) * 2005-05-24 2008-12-24 セイコーエプソン株式会社 膜パターンの形成方法、アクティブマトリクス基板、電気光学装置、及び電子機器
WO2006129886A1 (en) * 2005-06-03 2006-12-07 Fujifilm Corporation Plating method, electrically conductive film and light-transmitting electromagnetic wave shielding film
EP1970194B1 (de) * 2006-01-06 2012-10-31 Konica Minolta Holdings, Inc. Feuchtigkeitsbeständiger zelluloseesterfilm, polarisatorschutzfilm und polarisator
US8222116B2 (en) * 2006-03-03 2012-07-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5195420B2 (ja) * 2006-03-24 2013-05-08 コニカミノルタホールディングス株式会社 有機半導体薄膜、有機薄膜トランジスタ及びその製造方法
JP2007329446A (ja) * 2006-05-12 2007-12-20 Seiko Epson Corp 金属配線形成方法、アクティブマトリクス基板の製造方法、デバイス及び電気光学装置並びに電子機器
US20100003212A1 (en) * 2006-06-26 2010-01-07 Kis Georg L Polymers with antimicrobial activity containing quaternary ammonium groups
FR2902962B1 (fr) * 2006-06-27 2008-08-22 Draka Comteq France Sa Torche plasma pour recharge de fibre optique.
WO2008047928A1 (en) * 2006-10-19 2008-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8164031B2 (en) * 2006-11-01 2012-04-24 Parker-Hannifin Corporation Electric trace tube bundle with internal branch circuit
TW200929601A (en) * 2007-12-26 2009-07-01 Epistar Corp Semiconductor device
US8329510B2 (en) * 2008-03-25 2012-12-11 Bridge Semiconductor Corporation Method of making a semiconductor chip assembly with a post/base heat spreader with an ESD protection layer
US8310043B2 (en) * 2008-03-25 2012-11-13 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader with ESD protection layer
WO2009142310A1 (en) * 2008-05-23 2009-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2009142309A1 (en) * 2008-05-23 2009-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2009148001A1 (en) * 2008-06-06 2009-12-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN102224158B (zh) * 2008-11-21 2015-09-16 日本化药株式会社 新的杂环化合物及其用途
JP2012517525A (ja) * 2009-02-11 2012-08-02 グリーン, ツイード オブ デラウェア, インコーポレイテッド 溶射被覆されたポリマー基材
DE102009013129A1 (de) * 2009-03-13 2010-09-16 Mtu Aero Engines Gmbh Kunststoffbauteil mit Erosionsschutzschicht für Anwendungen mit erosiver Beanspruchung
US8236599B2 (en) * 2009-04-09 2012-08-07 State of Oregon acting by and through the State Board of Higher Education Solution-based process for making inorganic materials
SG10201405419XA (en) * 2009-09-16 2014-10-30 Hitachi Chemical Co Ltd Copper metal film, method for producing same, copper metal pattern, conductive wiring line using the copper metal pattern, copper metal bump, heat conduction path, bonding material, and liquid composition
DE102009052432A1 (de) * 2009-11-10 2011-06-09 Siemens Aktiengesellschaft Beschichtete Isolationsfolien für elektrische Maschinen und Herstellungsverfahren dazu
US9105796B2 (en) * 2009-11-25 2015-08-11 E I Du Pont De Nemours And Company CZTS/Se precursor inks and methods for preparing CZTS/Se thin films and CZTS/Se-based photovoltaic cells
US8890019B2 (en) * 2011-02-05 2014-11-18 Roger Webster Faulkner Commutating circuit breaker
US9824838B2 (en) * 2011-02-05 2017-11-21 Alevo International, S.A. Commutating circuit breaker
JP5227466B2 (ja) * 2011-02-25 2013-07-03 日本特殊陶業株式会社 プラズマジェット点火プラグ
EP2811585A1 (de) * 2013-06-04 2014-12-10 Siemens Aktiengesellschaft Anschlussstück und Anschlussanordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2460686A (en) * 2008-06-05 2009-12-09 Tyco Electronics Polymer coated wire or cable
US20110127065A1 (en) * 2009-11-30 2011-06-02 Chan-Yong Park Electric cable for nuclear power plants with improved durability and fabrication method thereof
WO2011156659A2 (en) * 2010-06-09 2011-12-15 Schlumberger Canada Limited Cable or cable portion with a stop layer

Also Published As

Publication number Publication date
DE102011080620B4 (de) 2014-06-05
EP2671232A1 (de) 2013-12-11
CA2844397A1 (en) 2013-02-14
DE102011080620A1 (de) 2013-02-14
US20140190958A1 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
EP2340929B2 (de) Verfahren zur herstellung eines kunststoffmantelrohres
CH640974A5 (de) Verfahren zur herstellung von freiluft-verbundisolatoren und freiluft-verbundisolator.
WO2013020784A1 (de) Verfahren für die beschichtung eines isolationsbauteils und isolationsbauteil
WO2014063894A2 (de) Diffusionssperrschicht für spaltrohre
WO2009146570A9 (de) Durchführung mit einem basis-aktivteil und einer isoliereinrichtung
WO2009074287A1 (de) Erdwärmesonde aus vernetztem polymermaterial
DE102012007031A1 (de) Rohrsystem zum Leiten von leicht entzündlichen Flüssigkeiten
WO2020043452A1 (de) Elektrisches betriebsmittel und herstellungsverfahren für ein elektrisches betriebsmittel
EP2431983A1 (de) Hochspannungsdurchführung und Verfahren zur Herstellung einer Hochspannungsdurchführung
DE102008060189B4 (de) Blitzschutzummantelung für metallische Bauteile von Baukonstruktionen, sowie Stützen oder Trägern
DE102010036354B4 (de) Verfahren zur Herstellung eines elektrischen Drahtes mit einem Mantel auf PTFE-Basis und entsprechende Schmiermittelverdampfungs- und Sinteranlage
DE102010014835B4 (de) Offshore- Isolationselement für Öl- oder Gaspipelines und Verfahren zu dessen Herstellung
EP0022766B1 (de) Hochspannungsverbundisolator
EP3385957A1 (de) Elektroisolationsband, elektrische hochspannungsmaschine sowie verfahren zum herstellen eines elektroisolationsbands und einer elektrischen hochspannungsspannungsmaschine
CH695968A5 (de) Kopfelektrode einer Ausleitung für Leistungstransformatoren sowie Verfahren zu deren Herstellung.
EP2942334A1 (de) Schichtsystem für ein Bauteil
EP2898754B1 (de) Induktionsvorrichtung für die erwärmung eines ölreservoirs, insbesondere eines schwerölreservoirs
DE1764704C3 (de) Verfahren zur Herstellung eines selbstheilenden, imprägnierten elektrischen Kondensators
DE102022205495A1 (de) Heizeinrichtung und Verfahren zur Herstellung einer solchen Heizeinrichtung
EP3282162B1 (de) Fahrzeugleitungsschutzschlauch und herstellungsverfahren
DE102017217163B4 (de) Elektrisches Betriebsmittel und Herstellungsverfahren für ein elektrisches Betriebsmittel
DE102008010343A1 (de) Heizeinrichtung zur Erhitzung von Wasser
DE102008024575A1 (de) Flächige, vorzugsweise flexible Brandschutzeinheit sowie Vorrichtung zum Abschotten eines Raumes gegen ein in den Raum oder aus dem Raum strömendes Fluid, insbesondere eine brennbare Flüssigkeit
EP2250653B1 (de) Leiteranschluss an transformatoren
DE2122826A1 (de) Verfahren und Vorrichtung zum Umhüllen langgestreckter Körper mittels einer extrudierten, rohrförmigen Hülle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742833

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012742833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237269

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2844397

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE