WO2013020242A1 - Formulación en spray de células madre mesenquimales para el tratamiento de heridas crónicas - Google Patents

Formulación en spray de células madre mesenquimales para el tratamiento de heridas crónicas Download PDF

Info

Publication number
WO2013020242A1
WO2013020242A1 PCT/CL2012/000041 CL2012000041W WO2013020242A1 WO 2013020242 A1 WO2013020242 A1 WO 2013020242A1 CL 2012000041 W CL2012000041 W CL 2012000041W WO 2013020242 A1 WO2013020242 A1 WO 2013020242A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pharmaceutical formulation
stem cells
application system
spray application
Prior art date
Application number
PCT/CL2012/000041
Other languages
English (en)
French (fr)
Inventor
Roberto EBENSPERGER
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to EP12822834.3A priority Critical patent/EP2743343A4/en
Priority to US14/237,842 priority patent/US20140348911A1/en
Publication of WO2013020242A1 publication Critical patent/WO2013020242A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/126Immunoprotecting barriers, e.g. jackets, diffusion chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan

Definitions

  • the present invention describes therapeutic and medical applications related to cell therapy using Mesenchymal Stem Cells.
  • the therapeutic applications described in the present invention are related to a spray mist application system ("fine mist spray") of mesenchymal stem cells derived from human adipose tissue for topical application in wounds and burns in general.
  • the application can be extended to animal use, procuring stem cells of animal origin.
  • Mesenchymal stem cells can be incorporated into the spray spray application system, in the form of a suspension of intact uncoated cells as well as nanoencapsulated stem cells.
  • Cell therapy seeks to resolve physiological and pathophysiological deficiencies, through the administration and / or implantation of living cells and / or tissues to the body. These are classified according to the source of obtaining, with autologous (from the same patient), allogeneic (from other donors) and xenogenic (from other animal species) implants. Ideally, the most recommended source for these therapies are those of autologous origin, since the rejection of the implant in the organism is avoided, since it is not recognized as a foreign agent (1).
  • Allogeneic and xenogenic sources have a potential use within the pharmaceutical and clinical market, due to the greater feasibility of obtaining, cultivating and standardizing all processes, before reaching the patient.
  • xenogenic implants have a lower biosecurity profile, for this reason the use of allogeneic implants is preferred.
  • the conditions and technologies are currently being developed suitable for these treatments to reach as many patients as possible (1).
  • cell therapy shows some limitations, mainly in the decrease of cell viability due to the inflammatory environment at the implantation site and the generation of a possible immune response, which can lead to rejection of transplanted cells and tissues. and its subsequent destruction (2).
  • CM Stem cells
  • stem cells represent one of the most promising alternatives for cell therapy and tissue engineering, since they have the potential to differentiate into multiple cell types and to secrete factors that stimulate tissue growth and regeneration (4).
  • Particularly novel is the use of mesenchymal stem cells of allogeneic origin, thanks to their low immunogenicity potential and immunomodulatory capacity (5, 6).
  • stem cells There are different types of stem cells, being classified according to their proliferative abilities, differentiation, tissue extraction and embryonic germ lines.
  • Totipotential Stem Cell a cell that has the potential to give rise to all body tissues and extraembryonic tissues, as it can also replicate itself. In this case there is only one type cell with these characteristics, the Embryonic Stem Cell (ESC), which originates immediately after fertilization.
  • ESC Embryonic Stem Cell
  • Pluripotential Stem Cell they are native to the three embryonic layers, the endoderm, mesoderm and ectoderm. These cells give rise to different types of tissues corresponding to their own cell line, and maintain the ability to regenerate themselves.
  • Multipotential Stem Cell they are cells of adult origin, present in a small proportion in each tissue of the organism, and have a certain degree of differentiation, since they come from the different germ lines. They are capable of self-regenerating and differentiating both in-vitro and in-vivo to the respective cellular subtype of the tissue of origin.
  • HSC Hematopoietic Stem Cells
  • MSC Mesenchymal Stem Cells
  • MSC Mesenchymal Stem Cells
  • ADSC adipose tissue
  • MSCs as multipotential cells, are capable of giving rise to different cell subtypes by cell differentiation, in-vitro conditions, of which adipocytes, osteocytes, chondrocytes, myocytes, skin, neurons, hematopoietic cells and other types of connective tissues are described. (7).
  • the stem cells used in the present invention correspond specifically to ADSC stem cells in suspension form incorporated into the formulation for either nanoencapsulated or unencapsulated atomization.
  • Nanoencapsulation is born primarily from a technique known as layer by deposition yesterday (layer by layer), a process initially proposed by Langmuir, which consists in the alternate deposition of thin layers of polyelectrolytes (of nanometric thickness) with opposite surface charges on a tempered charged, therefore being a self-assembly process, mediated by electrostatic interactions (Figure 1).
  • This method is used in a wide range of applications useful for industry, science and technology, as it is a simple and low-cost method (9).
  • the characteristics of the nanocapsules constructed, using the layer by layer method can be handled by factors such as; the type of polyelectrolyte, concentration, molecular mass, number of layers, final layer charge, pH, salts present and incubation time in the solution in which deposition occurs. These factors modify characteristics such as; Pore size, surface charge density, elasticity, degree of hydration of the nanocapsule, determining permeability, release kinetics, mechanical resistance of the nanocapsule, among others (10, 11).
  • ADSC cells are used as a temperate (net negative charge), where nanoencapsulation is a vehicle that allows the application of these cells overcoming some limitations associated with cell therapy and other types of encapsulation used (12).
  • MSC mesenchymal stem cells
  • stem cells by atomization are not described, such as that described in the present invention.
  • Some related application systems are known, such as the Teseel® product, which corresponds to a fibrin-based surgical sealant, but does not incorporate stem cells.
  • the Healthpoint Ltd company has developed a wound therapy based on experimental cell therapy, for the treatment of venous leg ulcers.
  • the product consists of two components that are administered topically to the wound and sequentially: a fibrinogen solution and a suspension of epidermal keratinocytes and living allogeneic dermal fibroblasts.
  • the product would release a series of growth and angiogenic factors to the microenvironment of the wound bed, product of the metabolic activity of these cells that are administered alive and that are trapped on the surface of the wound by a fibrin mesh.
  • This product also does not include any type of stem cells and the form of application is not by spray atomization.
  • the spray application allows easy application due to the simplicity of the system used (atomizer).
  • the presence of a specialist or trained person is not required for the application of the product on the wound. It can be applied by the same patient or a third party, without specialized training.
  • Spray application allows uniform distribution by determining that a uniform film or layer is formed or deposited over the entire affected surface.
  • the spray application allows ease of use due to less manipulation for its formulation. This is because the application system of the present invention does not require the presence of fibrin and thrombin so it does not coagulate.
  • Spray application allows less pain than other treatments. The lower manipulation of the wound will determine less pain for the patient during its application, which translates into greater acceptance, satisfaction and comfort for the patient.
  • the spray application allows it to be useful on any type of wound, that is, necrotic, mutant or sloughing, granulating and epithelializing.
  • the spray application allows it to be useful for any patient who requires it, whether it is a newborn, baby, child, adult or elderly.
  • the nanoencapsulated cells formulated according to the invention present another surprising feature that is the best resistance to physical (mechanical) stress and therefore minimizes the cell damage suffered during the atomization process, that is, during the passage of the cells through the valve. This can be determined because the viability of nanoencapsulated cells after atomization is greater than that of non-nanoencapsulated cells ( Figure 3); and additionally its functionality, that is, its proliferation capacity (Figure 4), and differentiation are not altered (figure 5).
  • Figure 1 Layer-to-layer deposition cycle on a loaded temper. Stage 1: polycation solution; stage 2: washing; stage 3: polyanion solution; stage 4: washing.
  • FIG. 1 Cell viability after fine cloud spray.
  • FIG. 3 Cell viability of nanoencapsulated and non-nanoencapsulated cells after fine cloud spray.
  • the figure shows the percentage of cell viability of mesenchymal stem cells derived from human adipose tissue, both nanoencapsulated and non-nanoencapsulated, before and after being atomized.
  • FIG. 4 Cell proliferation of mesenchymal stem cells derived from nanoencapsulated and non-nanoencapsulated human adipose tissue. The figure shows that the proliferation curves of nanoencapsulated and non-nanoencapsulated mesenchymal cells do not show differences.
  • FIG. 5 Differentiation of mesenchymal stem cells derived from human non-nanoencapsulated and nanoencapsulated adipocyte adipose tissue before and after atomization.
  • the photographs show images obtained under the microscope (200x) of non-nanoencapsulated ADSC cells as nanoencapsulated before and after being atomized, and subjected to stimulation of adipocyte differentiation, which is evident by staining with Oil red O.
  • the nanoencapsulation process as well as the atomization process does not affect the ability to differentiate ADSC cells into adipocytes.
  • FIG. 6 Differentiation of mesenchymal stem cells derived from non-nanoencapsulated and nanoencapsulated human adipose tissue to osteoblasts before and after atomization.
  • the photographs show images obtained under the microscope (200x) of non-nanoencapsulated ADSC cells as nanoencapsulated before and after being atomized, and subjected to stimulation of osteoblast differentiation, which is evident by staining with red Alizarin.
  • the images show that the process of Nanoencapsulation as well as atomization does not affect the ability to differentiate ADSC cells in osteoblasts.
  • FIG. 7 Live cell application system using the fine cloud atomization system.
  • the image shows the live cell application system based on fine mist spray, which comprises a container or container with an atomization system and the pharmaceutical formulation where the active agent consists of suspended live cells in a pharmaceutically acceptable vehicle.
  • the present invention describes a spray atomization system of a formulation comprising as active agent mesenchymal stem cells with and without nanoencapsulation, suspended in a vehicle, for topical application in wounds and burns of humans and animals.
  • mesenchymal Stem Cells will be used as a suspension in vehicles suitable for application by means of a fine cloud atomizer (of the type "GMSP Precompressed Fine Mist Spray Pump”).
  • An objective of the present invention is to formulate a suspension of stem cells in a vehicle suitable for application by atomization, and said cells have a mechanical strength necessary to maintain their viability and functionality after the atomization process.
  • Another objective of the present invention is to formulate a suspension of mesenchymal stem cells derived from human adipose tissue, ADSC (usually lipoaspirated) whose minimum phenotype is: positive for CD105, CD90, CD73 and negative for CD14, CD19, CD45 and HLA-DR, to be incorporated into the spray spray system.
  • ADSC usually lipoaspirated
  • Another objective of the present invention is to formulate a suspension of mesenchymal stem cells derived from nanoencapsulated ADSC human adipose tissue (usually lipoaspirated) whose minimum phenotype is: positive for CD105, CD90, CD73 and negative for CD14, CD19, CD45 and HLA-DR, to be incorporated into the spray spray system.
  • the mesenchymal cells used have the ability to differentiate into fat cells, osteoblasts and chondrocytes.
  • the vehicle used for the formulation of stem cells consists of a pharmaceutically acceptable means for suspending the cells, ensuring the viability and integrity of the cells for a certain period of time between one hour and 72 hours (3 days).
  • Pharmaceutically acceptable carriers used in the formulation of the present invention are selected from physiological serum, phosphate-saline buffer (PBS), Ringer serum, Ringer-Lactate serum, autologous serum, AB donor serum.
  • PBS phosphate-saline buffer
  • Ringer serum Ringer-Lactate serum
  • autologous serum AB donor serum.
  • excipients that the formulation may contain corresponds to 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid (HEPES) buffer, bicarbonate buffer, FDC dyes (eg Blue No. 1 and blue No. 2), heparins, platelet lysates and N-acetyl cysteine (NAC).
  • HEPES 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid
  • bicarbonate buffer bicarbonate buffer
  • FDC dyes eg Blue No. 1 and blue No. 2
  • heparins heparins
  • platelet lysates and N-acetyl cysteine (NAC).
  • the vehicle used may contain agents that favor wound healing processes and antibiotic substances to ensure product sterility.
  • Agents that favor wound healing processes can be selected from chitosan, hyaluronic acid, allantoin, type 1 collagen, decoction or extract (tannins) of matico (Piper angustifolium), hydrocotyl tincture or Centella asiatica (can be alcoholic), Calendula decoctions (Calendula officinalis) and Aloe vera extracts.
  • Agents that ensure the sterility of the product can be selected from penicillin, streptomycin, gentamicin, quinolones (eg, Ciprofloxacin), silver sulfadiazine, chlorhexidine, quaternary ammonium derivatives (such as benzalkonium chloride) and lactoferrin.
  • the suspension of stem cells once formulated, is incorporated into a sterile glass neck container or container with thread in such a way that it allows the adjustment of a fine cloud atomization system (Fine Mist Spray).
  • the type of atomizer used is of the GMSP Precompressed Fine Mist Spray Pump type.
  • the volume of the container can vary between 5 ml_ and 20 ml_ depending on the surface of the wound that should be covered (considering surfaces from 5 to 300 cm 2 ).
  • Cell concentrations within the spray can vary between 5 x 10 5 and 4 x 10 6 cells per mL.
  • ADSCs are isolated from abdominal adipose tissue or lipoaspirated using collagenase. After digestion with this enzyme, the adipocytes are separated from the stromal vascular fraction (SVF) by centrifugation. The erythrocytes are lysed and the SVF fraction enriched in stem cells is washed in PBS and filtered through a 100 ⁇ mesh sieve. The cells are centrifuged and seeded in conventional culture bottles in DMEM medium + 10% FBS and antibiotics. Cell adhesion is allowed for a period of 24 to 48 hours. At the end of this period, the culture medium is replaced by fresh medium. The cells are fed every 3 days and grown at 37 ° C in a humid atmosphere of 5% CO2.
  • SVF stromal vascular fraction
  • ADSCs are isolated from abdominal adipose tissue or lipoaspirated using collagenase. After digestion with this enzyme, the adipocytes are separated from the stromal vascular fraction (SVF) by centrifugation. The erythrocytes are lysed and the SVF fraction enriched in stem cells is washed in PBS and filtered through a 100 ⁇ mesh sieve. The cells are centrifuged and seeded in conventional culture bottles in DMEM medium + 10% FBS and antibiotics. Cell adhesion is allowed for a period of 24 to 48 hours. At the end of this period, the culture medium is replaced by fresh medium. The cells are fed every 3 days and grown at 37 ° C in a humid atmosphere of 5% CO2. The cells thus obtained are subjected to the nanoencapsulation process according to the following protocol.
  • HBSS Hank's balancee! Salt Solution
  • a Polycation solution Chosan 500 pg / mL, low molecular weight 448869 Sigma-Aldrich
  • Hyaluronic Acid Chondroitin Sulfate 1: 1, 1 mg / mL. Incubate for 10 minutes at room temperature. Hyaluronic Acid, Potassium Salt, Human Umbilical Cord (H7980-13 US Biologicals). Chondroitin
  • Table 1 describes examples of the different formulations obtained by the present invention.
  • cell viability after the atomization process for both non-nanoencapsulated and nanoencapsulated cells is performed by flow cytometry, through the incorporation of propidium iodide. To do this, two aliquots of cells are stained, one before and the other after atomization, incubating them with a solution of propidium iodide (10 ⁇ g / mL) for 5-10 minutes at room temperature. Finally, the cells are analyzed by flow cytometry for counting live and dead cells.
  • Proliferation is determined using an MTT based kit, following the manufacturer's instructions.
  • stem cells are incubated in the presence of dexamethasone (1 ⁇ ), isobutyl-methyl xanthine (IBMX, 0.5 mM), indomethacin (100 ⁇ ) and insulin (10 ⁇ g mL). After 21 days, the cells are stained with Oil Red O.
  • the stem cells are incubated in the presence of dexamethasone (1 ⁇ ), ⁇ -glycerophosphate (10 mM) and 2-phosphate ascorbate (50 ⁇ g mL). After 28 days, the cells are stained with Alizarina Roja S.
  • the present invention represents a unique product for the treatment of wounds, effective for any type of wound and of any age.
  • the spray application method allows faster wound healing, thus reducing hospitalization and nursing care times required by a patient with different types of wounds.
  • Vascular insufficiency (arterial and venous)
  • Metabolic diabetes, gout
  • Infectious bacteria, fungi, parasites
  • Hematologic polycythemia, sickle cell, hypercoagulability
  • the present invention also demonstrates that nanoencapsulation of stem cells provides advantages in relation to non-nanoencapsulated cells, which corresponds to an additional advantage to those already mentioned, as shown in Figure 3, the nanoencapsulation process ( bar C) does not affect cell viability with respect to non-nanoencapsulated cells (bar A). Nanoencapsulated cells better resist the atomization process, a difference that reaches statistical significance (p ⁇ 0.05). * and # have a p ⁇ 0.05 value with respect to their preatomization control.
  • Bunnell BA Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008; 45: 115-120.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Anesthesiology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

La presente invención describe aplicaciones terapéuticas y médicas de Células Madre Mesenquimales, mediante un sistema de aplicación por atomización en spray ("fine mist spray'). Las células madre mesenquimales utilizadas en el sistema de aplicación por atomización en spray, se encuentran en suspensión, las cuales pueden estar o no nanoencapsuladas.

Description

FORMULACIÓN EN SPRAY DE CÉLULAS MADRE MESENQUIMALES PARA EL TRATAMIENTO DE HERIDAS CRÓNICAS
La presente invención describe aplicaciones terapéuticas y médicas relacionadas con la terapia celular utilizando Células Madre Mesenquimales.
Las aplicaciones terapéuticas descritas en la presente invención se relacionan con un sistema de aplicación por atomización en spray ("fine mist spray') de células madre mesenquimales derivadas de tejido adiposo humano para aplicación tópica en heridas y quemaduras en general. La aplicación puede extenderse a uso animal, procurando células madre de origen animal.
Las células madre mesenquimales pueden ser incorporadas en el sistema de aplicación por atomización en spray, en forma de suspensión de células intactas no recubiertas como también, como células madre nanoencapsuladas.
ESTADO DE LA TÉCNICA
La terapia celular busca resolver deficiencias fisiológicas y fisiopatológicas, mediante la administración y/o implantación de células vivas y/o tejidos al organismo. Éstas se clasifican según la fuente de obtención, existiendo implantes autólogos (provenientes del mismo paciente), alogénicos (provenientes de otros donantes) y xenogénicos (provenientes de otras especies animales). En condiciones ideales la fuente más recomendada para estas terapias son las de origen autólogo, ya que al provenir del mismo paciente se evita el rechazo del implante en el organismo, al no reconocerlo como un agente extraño (1).
Fuentes de obtención alogénicos y xenogénicos tienen un potencial uso dentro del mercado farmacéutico y clínico, debido a la mayor factibilidad de obtención, cultivo y estandarización de todos los procesos, antes de llegar al paciente. Sin embargo, los implantes xenogénicos tienen un perfil de bioseguridad más bajo, por esta razón se prefiere la utilización de implantes alogénicos. Actualmente se están desarrollando las condiciones y tecnologías adecuadas para que estos tratamientos alcancen el mayor número de pacientes posibles (1 ).
Para implantes alogénicos y xenogénicos, la terapia celular muestra algunas limitaciones, principalmente en la disminución de la viabilidad celular debido al ambiente inflamatorio en el sitio de implantación y la generación de una posible respuesta inmune, que puede llevar al rechazo de las células y tejidos trasplantados y su posterior destrucción (2).
Además, se presentan limitaciones en torno a la inherente fragilidad de las células mamíferas, producto de estrés celular al que se somete antes de ser administrado al paciente, incluyendo el manejo, el transporte y el almacenamiento. Se suman a estas condiciones adversas los requerimientos metabólicos celulares, necesarios para asegurar la viabilidad celular (2, 3).
Para sortear estas limitaciones, investigaciones multidisciplinarias han utilizado herramientas inspiradas en ingeniería en tejidos, biotecnología, y nanotecnología. Aplicado a la biomedicina, esta ciencia se engloba bajo el concepto que los investigadores llaman bionanotecnología.
Células Madre (CM).
La utilización de células madre, representa una de las alternativas más prometedoras para la terapia celular y la ingeniería en tejidos, ya que tienen la potencialidad de diferenciarse en múltiples tipos celulares y la de secretar factores que estimulan el crecimiento y regeneración tisular (4). Lo particularmente novedoso, es la utilización de células madre mesenquimales de origen alogénico, gracias a su bajo potencial de inmunogenicidad y su capacidad inmunomoduladora (5, 6).
Existen diferentes tipos de células madre, clasificándose según sus capacidades proliferativas, de diferenciación, del tejido de extracción y de líneas germinales embrionarias.
• Célula Madre Totipotencial: célula que tiene el potencial de dar origen a la totalidad de los tejidos del organismo y de tejidos extraembrionarios, como también puede replicarse a sí misma. En este caso existe un solo tipo celular con estas características, la Célula Madre Embrionaria (ESC), que se origina inmediatamente después de la fecundación.
• Célula Madre Pluripotencial: son originarias de las tres capas embrionarias, el endodermo, mesodermo y ectodermo. Estas células dan origen a los diferentes tipos de tejidos correspondientes a su propia línea celular, y mantienen la capacidad de autoregenerarse.
• Célula Madre Multipotencial: son células de origen adulto, presentes en una pequeña proporción en cada tejido del organismo, y poseen cierto grado de diferenciación, ya que provienen de las diferentes líneas germinales. Son capaces de autoregenerarse y diferenciarse tanto in-vitro como in-vivo al respectivo subtipo celular del tejido de origen.
La mayoría de los estudios en células madre, incluso en ensayos clínicos humanos han utilizado Células Madre Hematopoyéticas (HSC) y también Células Madre Mesenquimales (MSC), ambas células multipotenciales provenientes de la Médula Ósea (7).
Las Células Madre Mesenquimales (MSC), también se pueden obtener de tejido adiposo (ADSC) (8). Éstas, a diferencia de otras fuentes, permiten su obtención de forma menos invasiva y sin transgresión ni conflictos morales, ya que el tejido adiposo del que se obtiene, como liposucciones y abdominoplastías, normalmente se consideran desechos.
Estas MSC, como células multipotenciales son capaces de dar origen mediante diferenciación celular, en condiciones in-vitro, a diferentes subtipos celulares de las que se describen adipocitos, osteocitos, condrocitos, miocitos, piel, neuronas, células hematopoyéticas y otros tipos de tejidos conectivos (7).
Las células madres utilizadas en la presente invención corresponden específicamente a células madres ADSC en forma de suspensión incorporadas en la formulación para atomización ya sea nanoencapsuladas o sin encapsular.
La nanoencapsulación, nace fundamentalmente de una técnica conocida como deposición layer by ¡ayer (capa por capa), un proceso inicialmente propuesto por Langmuir, que consta en la deposición alternada de finas capas de polielectrolitos (de grosor nanométrico) con cargas superficiales contrarias sobre un templado cargado, tratándose por lo tanto de un proceso de autoensamblaje, mediado por interacciones electrostáticas (Figura 1). Este método es utilizado en un amplio campo de aplicaciones útiles para la industria, ciencias y tecnología, por ser un método simple y de bajo costo (9).
Las características de las nanocápsulas construidas, utilizando el método capa por capa, pueden ser manejadas por factores como; el tipo de polielectrolito, concentración, masa molecular, número de capas, carga de la capa final, el pH, sales presentes y tiempo de incubación en la solución en que ocurre la deposición. Estos factores modifican características como; tamaño del poro, densidad de carga superficial, elasticidad, grado de hidratación de la nanocápsula, determinando la permeabilidad, cinética de liberación, resistencia mecánica de la nanocápsula, entre otras (10, 11).
Las células ADSC se utilizan como un templado (de carga neta negativa), donde la nanoencapsulación es un vehículo que posibilita la aplicación de estas células superando algunas limitaciones asociadas a la terapia celular y a otros tipos de encapsulación utilizados (12).
Las aplicaciones actualmente conocidas de células madre para el tratamiento de heridas constan principalmente de infusión sistémica en la circulación vascular, aplicación directa en el sitio de la herida (13).
Dentro de las aplicaciones directas en el sitio de la herida también se ha descrito la aplicación tópica de un cultivo autólogo de células madres mesenquimales (MSC) derivadas de médula ósea para acelerar la curación de heridas de la piel. Este sistema consta de una jeringa de doble cámara donde en una primera cámara se resuspenden las células madre que contiene una solución de fibrinógeno; mientras que una segunda cámara de la jeringa contiene una solución diluida de trombina. El sistema de entrega de MSC ha sido descrito como un spray con una jeringa (14). Este sistema no corresponde efectivamente a un spray, ya que no involucra atomización de la suspensión aplicada directamente a las heridas. Una desventaja de los productos formulados en base a células vivas, independiente de la vía de administración elegida, radica en la baja sobrevida a largo plazo de las células en la formulación. La viabilidad celular disminuye con el tiempo bajo cualquier condición de almacenamiento, ya sea 4°C o bien temperatura ambiente. Por lo tanto, este problema es común a cualquier preparación farmacéutica que utilice células vivas. Por esta razón, no existe en el estado del arte una formulación de células vivas para ser aplicada mediante atomización, ya que se esperaría un daño celular significativo después de una aplicación por atomización.
En el estado de la técnica, no se describen aplicaciones de células madre mediante atomización, como el que se describe en la presente invención. Se conocen algunos sistemas de aplicación relacionados, como por ejemplo el producto Teseel®, que corresponde a un sellante quirúrgico a base de fibrina, pero que no incorpora células madres.
La empresa Healthpoint Ltd, ha desarrollado una terapia contra heridas basada en terapia celular experimental, para el tratamiento de úlceras venosas de las piernas. El producto consiste de dos componentes que son administrados tópicamente sobre la herida y de manera secuencial: una solución de fibrinógeno y una suspensión de keratinocitos epidérmicos y fibroblastos dérmicos alogénicos vivos. El producto liberaría una serie de factores de crecimiento y angiogénicos al microambiente del lecho de la herida, producto de la actividad metabólica de estas células que son administradas vivas y que son atrapadas en la superficie de la herida mediante una malla de fibrina. Este producto tampoco comprende ningún tipo de células madre y la forma de aplicación tampoco es mediante atomización en spray.
Un aspecto importante a considerar tiene relación con la viabilidad celular después del proceso de atomización. El paso de las células a través de la válvula de atomización podría dañar las células ocasionando su ruptura por efectos físicos. Sin embargo, queda demostrado que este fenómeno es mínimo porque la viabilidad de las células se mantiene (Figura 2). Es decir, aunque existe una tendencia a recuperar menos células vivas después de la atomización, la diferencia no alcanza significancia estadística. Los inventores han encontrado un resultado inesperado y sorprendente al determinar que no existe un daño significativo de las células madres al someterlas al proceso de atomización, con las evidentes ventajas de aplicar dichas células madre en una nueva forma de aplicación y conservando las propiedades intactas de las células.
Hasta ahora no se conocen aplicaciones de células madre por atomización para el tratamiento de heridas, y los sistemas más comunes utilizados, no ofrecen las ventajas descritas en la presente invención. En el caso de los apositos de curación avanzada podemos mencionar como desventajas que ninguno de los apositos utilizados actualmente reúne por sí solo todas las características o requisitos ideales que debería presentar un aposito para tratar todos los tipos de heridas (necrótica, mudante o "sloughing", granulante y epitelializante).
No existe comercialmente ni se ha publicado en el estado del arte proporcionar un aposito o tratamiento único efectivo para todas las heridas crónicas.
Además, de la dificultad de no existir un sistema único de aposito para diferentes tipos de heridas, la curación de heridas avanzadas es efectiva sólo parcialmente ya que un a 50% de pacientes no logran la curación de sus heridas con esta terapia, situación que se ve aún más complicada cuando la herida presenta más de un año de antigüedad (15).
Esto se traduce adicionalmente, en que las heridas, si sanan, demoran más tiempo en cicatrizar y, dependiendo de la gravedad de la herida, es necesario evaluar continuamente el tipo de aposito a utilizar, y en qué momento se utiliza cada aposito a medida que la cicatrización o curación progresa (16).
Debido a la carencia de resultados de investigación de alta calidad relativos a la eficacia de los diversos soportes o apositos existentes, se puede decir que la aplicación de tratamientos, y por ende la elección del aposito adecuado en la práctica clínica diaria para el manejo de heridas, se basa más en los conocimientos y/o experiencia y/o costos y/o preferencia personal del médico en relación al aposito, más que en evidencia puramente científica. La presente invención muestra ventajas que no muestran los tratamientos convencionales de la curación de heridas. Entre las ventajas del sistema de aplicación por atomización o spray de la presente invención podemos mencionar:
• La aplicación por atomización permite una fácil aplicación por la sencillez del sistema utilizado (atomizador). No se necesita de la presencia de una persona especialista o capacitada para la aplicación del producto sobre la herida. Puede ser aplicado por el mismo paciente o un tercero, sin formación especializada.
• La aplicación por atomización permite la distribución uniforme determinando que se forme o deposite una película o capa uniforme sobre toda la superficie afectada.
• La aplicación por atomización permite la facilidad de uso debido a la menor manipulación para su formulación. Esto se debe a que el sistema de aplicación de la presente invención no requiere de la presencia de fibrina y trombina por lo que no coagula.
• La aplicación por atomización permite menos dolor que otros tratamientos. La menor manipulación de la herida determinará un menor dolor para el paciente durante su aplicación, lo que se traduce en una mayor aceptación, satisfacción y comodidad para el paciente.
• La aplicación por atomización permite que sea útil sobre cualquier tipo de herida, es decir, necrótica, mudante o "sloughing", granulante y epitelializante.
• La aplicación por atomización permite que sea útil para cualquier paciente que lo requiera, ya sea neonato, bebé, niño, adulto o anciano.
• La aplicación por atomización permite un menor tiempo de cuidados de enfermería.
• La aplicación por atomización permite que el tratamiento pueda ser efectuado de forma ambulatoria, disminuyendo los periodos de hospitalización y mejorando la calidad de vida de los pacientes, lo que contribuye a una mejora en la disposición del paciente y sus resultados en la cicatrización.
• Adicionalmente, a las ventajas que ofrece la administración por atomización o "spray" descritas previamente, las células nanoencapsuladas formuladas de acuerdo a la invención, presentan otra característica sorprendente que es la mejor resistencia al estrés físico (mecánico) y por ende se minimiza el daño celular sufrido durante el proceso de atomización, es decir, durante el paso de las células a través de la válvula. Esto se puede determinar porque la viabilidad de las células nanoencapsuladas después de la atomización es mayor que la de las células no-nanoencapsuladas (Figura 3); y adicionalmente su funcionalidad, es decir, su capacidad de proliferación (Figura 4), y de diferenciación no se ven alteradas (figura 5).
DESCRIPCION DE LAS FIGURAS
Figura 1 : Ciclo de deposición capa a capa sobre un templado cargado. Etapa 1 : solución de policatión; etapa 2: lavado; etapa 3: solución de polianión; etapa 4: lavado.
Figura 2. Viabilidad celular después de la atomización mediante nube fina ("fine mist spray"). En la figura se puede observar el porcentaje de viabilidad celular de las células madre mesenquimales derivadas de tejido adiposo humano antes (A) y después (B) de ser atomizadas. Eje y corresponde al porcentaje de células viables, siendo 97,25% antes de la atomización, y 88,6% después de la atomización. Los valores no alcanzaron diferencia significativa (n=3).
Figura 3. Viabilidad celular de células nanoencapsuladas y no- nanoencapsuladas después de la atomización mediante nube fina ("fine mist spray"). En la figura se indica el porcentaje de viabilidad celular de las células madre mesenquimales derivadas de tejido adiposo humano, tanto nanoencapsuladas como no-nanoencapsuladas, antes y después de ser atomizadas. A: Células no-nanoencapsuladas pre-atomización; B: Células no- nanoencapsuladas post-atomización; C: Células nanoencapsuladas pre- atomización; D: Células nanoencapsuladas post-atomización. Se observa que el proceso de nanoencapsulación (barra C) no afecta la viabilidad celular respecto de células no-nanoencapsuladas (barra A) (NS). Sin embargo, luego de atomizadas las células, se puede apreciar que las células nanoencapsuladas resisten mejor el proceso de atomización, diferencia que alcanza significancia estadística (p<0,05). (*) y (#) presentan un valor p<0,05 con respecto a su control preatomización. (n=3; NS: no significativo).
Figura 4. Proliferación celular de células madre mesenquimales derivadas de tejido adiposo humano nanoencapsuladas y no-nanoencapsuladas. En la figura se puede observar que las curvas de proliferación de las células mesenquimales nanoencapsuladas y no-nanoencapsuladas no presentan diferencias.
ADSC nanoencapsuladas: y=28,3 e0 227x , k=0,227, Tau=4,41 , Tiempo de duplicación = 3,06, r2 = 0,963.
ADSC no-nanoencapsuladas: y=37,6 e0 192x , k=0,192, Tau=5,20, Tiempo de duplicación = 3,60, r2 = 0,929.
Figura 5. Diferenciación de células madre mesenquimales derivadas de tejido adiposo humano no-nanoencapsuladas y nanoencapsuladas a adipocitos antes y después de la atomización. Las fotografías muestran imágenes obtenidas al microscopio (200x) de células ADSC no-nanoencapsuladas como nanoencapsuladas antes y después de ser atomizadas, y sometidas a estímulo de diferenciación a adipocito, lo cual se hace evidente mediante tinción con Oil red O. En las imágenes se aprecia que el proceso de nanoencapsulación así como el de atomización no afecta la capacidad de diferenciación de las células ADSC en adipocitos.
Figura 6. Diferenciación de células madre mesenquimales derivadas de tejido adiposo humano no-nanoencapsuladas y nanoencapsuladas a osteoblastos antes y después de la atomización. Las fotografías muestran imágenes obtenidas al microscopio (200x) de células ADSC no-nanoencapsuladas como nanoencapsuladas antes y después de ser atomizadas, y sometidas a estímulo de diferenciación a osteoblasto, lo cual se hace evidente mediante tinción con Alizarina roja. En las imágenes se aprecia que el proceso de nanoencapsulación así como el de atomización no afecta la capacidad de diferenciación de las células ADSC en osteoblastos.
Figura 7. Sistema de aplicación de células vivas mediante el sistema de atomización en nube fina. En la imagen se observa el sistema de aplicación de células vivas basado en la atomización por nube fina ("fine mist spray"), que comprende un contenedor o recipiente con sistema de atomización y la formulación farmacéutica donde el agente activo consiste en células vivas suspendidas en un vehículo farmacéuticamente aceptable.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención describe un sistema de atomización en "spray" de una formulación que comprende como agente activo células madre mesenquimales con y sin nanoencapsulación, suspendidas en un vehículo, para aplicación tópica en heridas y quemaduras de humanos y animales. Para ello se utilizará Células Madre Mesenquimales incorporadas como suspensión en vehículos apropiados para ser aplicadas mediante un atomizador de nube fina (del tipo "GMSP Precompressed Fine Mist Spray Pump").
Un objetivo de la presente invención es formular una suspensión de células madre en un vehículo adecuado para ser aplicadas mediante atomización, y dichas células presentan una resistencia mecánica necesaria para mantener su viabilidad y funcionalidad después del proceso de atomización.
Otro objetivo de la presente invención es formular una suspensión de células madre mesenquimales derivadas de tejido adiposo humano, ADSC (usualmente lipoaspirados) cuyo fenotipo mínimo es: positivo a CD105, CD90, CD73 y negativo para CD14, CD19, CD45 y HLA-DR, para ser incorporada en el sistema de atomización en "spray".
Otro objetivo de la presente invención es formular una suspensión de células madre mesenquimales derivadas de tejido adiposo humano ADSC nanoencapsuladas (usualmente lipoaspirados) cuyo fenotipo mínimo es: positivo a CD105, CD90, CD73 y negativo para CD14, CD19, CD45 y HLA-DR, para ser incorporada en el sistema de atomización en "spray". Las células mesenquimales utilizadas presentan la capacidad de diferenciarse en células adiposas, osteoblastos y condrocitos.
El vehículo utilizado para la formulación de células madre consiste en un medio farmacéuticamente aceptable para suspender las células, asegurando la viabilidad e integridad de las células durante un período determinado que comprende entre una hora y 72 horas (3 días).
Los vehículos farmacéuticamente aceptables utilizados en la formulación de la presente invención se seleccionan de suero fisiológico, tampón fosfato- salino (PBS), suero Ringer, suero Ringer-Lactato, suero autólogo, suero donante AB.
Otros excipientes que puede contener la formulación corresponde a tampón del ácido 4-(2-hidroxietil)-1-piperazin-etanosulfónico (HEPES), tampón bicarbonato, colorantes FDC (ejemplo. Azul N°1 y azul N°2), heparinas, lisados de plaquetas y N-acetil cisteína (NAC).
El vehículo utilizado puede contener agentes que favorezcan los procesos de cicatrización de heridas y sustancias antibióticas para asegurar la esterilidad del producto.
Los agentes que favorecen los procesos de cicatrización de heridas pueden ser seleccionados de quitosano, ácido hialurónico, alantoína, colágeno tipo 1 , decocción o extracto (taninos) de matico (Piper angustifolium), tintura de hidrocotilo o Centella asiática (puede ser alcohólico), decocciones de caléndula (Caléndula officinalis) y extractos de Aloe vera.
Los agentes que aseguran la esterilidad del producto pueden ser seleccionados de penicilina, estreptomicina, gentamicina, quinolonas (ejemplo, Ciprofloxacino), sulfadiazina de plata, clorhexidina, derivados amonio cuaternario (como por ejemplo cloruro de benzalconio) y lactoferrina.
La suspensión de células madre una vez formulada, se incorpora en un contenedor o recipiente de vidrio estéril de cuello con hilo de tal manera que permite el ajuste de un sistema de atomización de nube fina (Fine Mist Spray). El tipo de atomizador que se usa es del tipo GMSP Precompressed Fine Mist Spray Pump. El volumen del recipiente puede variar entre 5 ml_ y 20 ml_ dependiendo de la superficie de la herida que debe ser cubierta (considerando superficies desde 5 a 300 cm2).
Las concentraciones de células dentro del spray pueden variar entre 5 x 105 y 4 x 106 células por mL.
EJEMPLOS
Las realizaciones preferidas de la presente invención, se describen a través de los siguientes ejemplos, sin que ellos constituyan una limitación de la presente invención.
Ejemplo 1 :
Formulación de CM en suspensión:
La obtención de células madre se realizó siguiendo protocolos establecidos previamente descritos en el estado del arte (17,18).
Las ADSC son aisladas de tejido adiposo abdominal o lipoaspirados usando colagenasa. Después de la digestión con esta enzima, los adipocitos son separados de la fracción vascular estromal (SVF) por centrifugación. Los eritrocitos son lisados y la fracción SVF enriquecida en células madre es lavada en PBS y filtrada a través de un tamiz mesh 100 μητι. Las células son centrifugadas y sembradas en botellas de cultivo convencionales en medio DMEM + 10% FBS y antibióticos. Se permite la adherencia celular durante un período de 24 a 48 horas. Al término de este periodo, el medio de cultivo es sustituido por medio fresco. Las células son alimentadas cada 3 días y cultivadas a 37°C en atmósfera húmeda de CO2 al 5 %.
Ejemplo 2:
Formulación de CM en suspensión nanoencapsuladas.
La obtención de células madre se realizó siguiendo protocolos establecidos previamente descritos en el estado del arte (17,18). Las ADSC son aisladas de tejido adiposo abdominal o lipoaspirados usando colagenasa. Después de la digestión con esta enzima, los adipocitos son separados de la fracción vascular estromal (SVF) por centrifugación. Los eritrocitos son lisados y la fracción SVF enriquecida en células madre es lavada en PBS y filtrada a través de un tamiz mesh 100 μιτι. Las células son centrifugadas y sembradas en botellas de cultivo convencionales en medio DMEM + 10% FBS y antibióticos. Se permite la adherencia celular durante un período de 24 a 48 horas. Al término de este periodo, el medio de cultivo es sustituido por medio fresco. Las células son alimentadas cada 3 días y cultivadas a 37°C en atmósfera húmeda de CO2 al 5 %. Las células así obtenidas son sometidas al proceso de nanoencapsulación de acuerdo al siguiente protocolo.
Protocolo de nanoencapsulación:
1 . Obtener una suspensión de células a partir de una placa o botella de cultivo.
2. Realizar 2 lavados con Hank's balancee! Salt Solution (HBSS) para eliminar la presencia de medio de cultivo, utilizando centrifugación a 200 g por 5 minutos, retirar sobrenadante y resuspender pellet de células en HBSS.
Preparación para 1 Litro de HBSS(llevar a volumen final utilizando agua grado Milli Q):
Componentes Concentración (mM) Masa (mg)
CaCI2 (dihidrato) 1 ,3 186
MgSO4 (heptahidrato) 0,814 200
NaCI 137 8000
Figure imgf000015_0001
Na2HPO4 0,338 48
NaHCO3 4,2 350
Glucosa 5,55 1000 3. Resuspender pellet proveniente del segundo lavado en una solución de Policatión (Chitosan 500 pg/mL, bajo peso molecular 448869 Sigma- Aldrich), considerando una relación de volumen de pellet: policatión de 1 :10. Incubar por 10 minutos a temperatura ambiente.
4. Centrifugar a 200 g por 5 minutos y retirar el sobrenadante para eliminar el polielectrolito en exceso.
5. Realizar 2 lavados con la misma relación de volumen de pellet.HBSS de 1 :10, utilizando centrifugación a 200 g por 5 minutos.
6. El pellet obtenido resuspenderlo en relación 1 :10 de pelle polianión
(Acido Hialurónico:Condroitin Sulfato 1 :1 , 1 mg/mL). Incubar durante 10 minutos a temperatura ambiente. Acido Hialurónico, Sal Potásica, Cordón Umbilical Humano (H7980-13 US Biologicals). Condroitin
Sulfato, Traquea Bovina, Mw 50000 (230699 Calbiochem).
7. Centrifugar a 200 g por 5 minutos y retirar el exceso de polielectrolito.
8. Realizar 2 lavados considerando relación 1 :10 de pellet: HBSS con centrifugación a 200 g por 5 minutos.
9. Realizar el mismo proceso anterior para cada deposición de capa, alternando los polielectrolitos para mantener las interacciones iónicas opuestas en capa y capa, según el número de capas deseado.
En la tabla 1 se describen ejemplos de las diferentes formulaciones obtenidas mediante la presente invención.
Figure imgf000017_0001
Figure imgf000018_0001
Ejemplo 3
Determinación de viabilidad celular
La determinación de la viabilidad de las células y de las células nanoencapsuladas, así como de las mismas después del proceso de atomización, se realiza mediante el kit LIVE/DEAD, que hace uso de las sondas trazadoras calceína-AM y homodímero de etidio, siguiendo las instrucciones del fabricante (Figura 3).
Adicionalmente, la viabilidad celular después del proceso de atomización tanto para células no nanoencapsuladas como nanoencapsuladas, se realiza mediante citometría de flujo, a través de la incorporación de ioduro de propidio. Para ello, se tiñen dos alícuotas de células, una antes y la otra después de atomizarlas, incubándolas con una solución de ioduro de propidio (10 μg/mL) durante 5-10 minutos a temperatura ambiente. Finalmente, las células se analizan mediante citometría de flujo para el conteo de células vivas y muertas.
La determinación de la proliferación se realiza mediante un kit basado en MTT, siguiendo las instrucciones del fabricante.
La capacidad de diferenciación de las células mesenquimales se realiza siguiendo protocolos establecidos previamente descritos en el estado del arte (17. 18, 19).
Brevemente, para la diferenciación a adiposito, las células madre se incuban en presencia de dexametasona (1 μΜ), isobutil-metil xantina (IBMX, 0,5 mM), indometacina (100 μΜ) e insulina (10 μg mL). Después de 21 días, las células se tiñen con Oil Red O.
Para la diferenciación a osteoblasto, las células madre se incuban en presencia de dexametasona (1 μΜ), β-glicerofosfato (10 mM) y ascorbato 2- fosfato (50 μg mL). Después de 28 días, las células se tiñen con Alizarina Roja S.
Análisis de resultados y discusión
En el presente invento se ha demostrado que el proceso de atomización mediante nube fina no altera la viabilidad celular en células madre mesenquimales derivadas de tejido adiposo humano (Figura 2). Este sorprendente resultado abre la posibilidad de múltiples usos de atomización de células y en la presente invención se proporcionan diferentes formulaciones farmacéuticas para ser utilizadas en la curación de heridas y quemaduras en general.
El tratamiento actual de heridas, se ha basado en la utilización de apositos. Entre las desventajas de los apositos de curación avanzada, de debe considerar que ninguno reúne por si solo todas las características o requisitos que debe presentar un aposito para tratar todos los tipos de heridas, es decir, necrótica, mudante o "sloughing", granulante y epitelializante.
Esto significa que no existe un aposito o tratamiento único efectivo para todas las heridas como el que se propone en la presente invención, que puede ser aplicado a diversas heridas originadas por múltiples causas, con la consiguiente ventaja de la preparación de las formulaciones farmacéuticas, que facilita la aplicación para cualquier tipo de heridas.
Además, aunque la curación avanzada de heridas es efectiva en un gran número de casos, sigue existiendo un 50% de pacientes cuyas heridas no sanan con las terapias convencionales, situación que es aún peor cuando la herida presenta más de un año de antigüedad.
La presente invención representa un producto único para el tratamiento de heridas, efectivo para cualquier tipo de herida y de cualquier antigüedad.
El método de aplicación por atomización, descrito en la presente invención, permite una curación más rápida de heridas, disminuyendo así los tiempos de hospitalización y cuidado de enfermería que requiere un paciente que presenta diferentes tipos de heridas.
Por lo tanto, el producto desarrollado en el marco de la presente invención está indicado para las heridas crónicas de cicatrización patológica insuficiente de acuerdo a las descritas en la Tabla 2.
Tabla 2. Causas de Cicatrización Patológica Insuficiente
Úlceras por presión (escaras)
Insuficiencia vascular (arterial y venosa)
Metabólica (diabetes, gota) Infecciosa (bacterias, hongos, parásitos)
Inflamatoria (pioderma gangrenoso, vasculitis)
Hematológica (policitemia, cél. falciformes, hipercoagulabilidad)
Malignidad (Marjolin, tumores 1o y 2o, Kaposi)
Misceláneos (quemaduras, radiación, congelamiento)
El presente invento, demuestra además que la nanoencapsulación de células madre, proporciona ventajas en relación a las células no- nanoencapsuladas, lo que corresponde a una ventaja adicional a las ya mencionadas, tal como se aprecia en la figura 3, el proceso de nanoencapsulación (barra C) no afecta la viabilidad celular respecto de células no-nanoencapsuladas (barra A). Las células nanoencapsuladas resisten mejor el proceso de atomización, diferencia que alcanza significancia estadística (p<0,05). * y # presentan un valor p<0,05 con respecto a su control preatomización.
REFERENCIAS.
1. Ikada Y. Challenges in tissue engineering. J R Soc Interface 2006;3:589- 601.
2. Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 2000;42:29-64. 3.
3. Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 2008;60:124- 45.
4. Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 2007;25:818-27.
5. Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 29:118-29.
6. Le Blanc K, Ringden O. Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 2007;262:509-25.
7. Young HE, Duplaa C, Katz R, et al. Adult-derived stem cells and their potential for use in tissue repair and molecular medicine. J Cell Mol Med 2005;9:753-69.
8. Mizuno H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 2009;76:56-66.
9. Krol S, Diaspro A, Magrassi R, et al. Nanocapsules: coating for living cells. IEEE Trans Nanobioscience 2004;3:32-8.
10. Hillberg AL, Tabrizian M. Biorecognition through layer-by-layer polyelectrolyte assembly: in-situ hybridization on living cells. Biomacromolecules 2006;7:2742-50.
11. Krol S, Cavalleri O, Ramoino P, Gliozzi A, Diaspro A. Encapsulated yeast cells inside Paramecium primaurelia: a model system for protection capability of polyelectrolyte shells. J Microsc 2003;212:239-43. Veerabadran NG, Goli PL, Stewart-Clark SS, Lvov YM, Mills DK.
Nanoencapsulation of stem cells within polyelectrolyte multilayer shells.
Macromol Biosci 2007;7:877-82.
Sorrel M, Caplan A.: "Topical delivery of mesenchymal stem cell and their function in wounds". Stem Cell Research & Thetapy 2010, 1 :30 Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P: "Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds". Tissue Eng. 2007 Jun;13(6): 1299-312.ANGA
Cha J & Falanga V. Stem cells in cutaneous wound healing. Clin Dermatol. 2007; 25: 73-78
Vermeulen H, Ubbink D, Goossens A, de Vos R, Legemate D.. Apositos y agentes tópicos para heridas quirúrgicas que cicatrizan por segunda intención (Revisión Cochrane traducida). En: La Biblioteca Cochrane Plus, 2006 Número 1. Oxford: Update Software Ltd. Disponible en: http://www.update-software.com. (Traducida de The Cochrane Library, 2006 Issue 1. Chichester, UK: John Wiley & Sons, Ltd.).
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: Isolation, expansión and differentiation. Methods 2008; 45: 115-120.
Scháffler A and Büchler C. Concise review: Adipose tissue-derived stromal cells - Basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818-827.
Gomillion CT and Burg KJL. Stem cells and adipose tissue engineering. Biomaterials 2006; 27: 6052-6063

Claims

REIVINDICACIONES
1. Sistema de aplicación tópica en spray CARACTERIZADO porque comprende un contenedor o recipiente con atomizador y una formulación farmacéutica donde el agente activo consiste en células vivas suspendidas en un vehículo farmacéuticamente aceptable.
2. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 1 , CARACTERIZADO porque las células vivas del agente activo corresponden a células madre mesenquimales.
3. Sistema de aplicación tópica en spray de acuerdo a la reivindicación
1 , CARACTERIZADO porque las células vivas del agente activo pueden ser nanoencapsuladas o no-nanoencapsuladas.
4. Sistema de aplicación tópica en spray de acuerdo a la reivindicación
2, CARACTERIZADO porque las células madres mesenquimales pueden ser nanoencapsuladas o no-nanoencapsuladas.
5. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 2, CARACTERIZADO porque las células madres mesenquimales presentan la capacidad de diferenciarse en células adiposas, osteoblastos y condorcitos.
6. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 2, CARACTERIZADO porque las células madres mesenquimales mantienen la viabilidad e integridad de las células durante un período determinado.
7. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 6, CARACTERIZADO porque el período de viabilidad e integridad celular comprende entre una hora y 72 horas.
8. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 1 , CARACTERIZADO porque el vehículo farmacéuticamente aceptable se selecciona del grupo constituido por suero fisiológico, tampón fosfato-salino (PBS), suero Ringer, suero Ringer-Lactato, suero autólogo, suero donante AB.
9. Sistema de aplicación tópica en spray de acuerdo a la reivindicación
8, CARACTERIZADO porque el vehículo farmacéuticamente aceptable además comprende agentes que favorecen la cicatrización y agentes que aseguran la esterilidad de la formulación farmacéutica.
10. Sistema de aplicación tópica en spray de acuerdo a la reivindicación
9, CARACTERIZADO porque los agentes que favorecen la cicatrización son seleccionados de quitosano, ácido hialurónico, alantoína, colágeno tipo 1 , decocción o extracto (taninos) de matico {Piper angustifolium), tintura de hidrocotilo o Centella asiática (puede ser alcohólico), decocciones de caléndula (Caléndula officinalis) y extractos de Aloe vera.
1 . Sistema de aplicación tópica en spray de acuerdo a la reivindicación 9, CARACTERIZADO porque los agentes que aseguran la esterilidad son seleccionados de penicilina, estreptomicina, gentamicina, quinolonas, sulfadiazina de plata, clorhexidina, derivados amonio cuaternario y lactoferrina.
12. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 8, CARACTERIZADO porque el vehículo farmacéuticamente aceptable además comprende tampón del ácido 4-(2-hidroxietil)-1 - piperazin-etanosulfónico (HEPES), tampón bicarbonato, colorantes FDC (ejemplo. Azul N°1 y azul N°2), heparinas, lisados de plaquetas y N-acetil cisteína (NAC).
13. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 1 , CARACTERIZADO porque dicho sistema comprende un contenedor o recipiente de vidrio estéril de cuello con hilo, de tal manera que permite el ajuste de un sistema de atomización de nube fina.
14. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 13, CARACTERIZADO porque el volumen del recipiente varía entre 5 ml_ y 20 ml_.
15. Sistema de aplicación tópica en spray de acuerdo a la reivindicación 1 , CARACTERIZADO porque la concentración de células en la formulación farmacéutica está en el rango de 5 x 105 a 4 x 106 células por ml_.
16. Formulación farmacéutica para ser aplicada en forma de spray CARACTERIZADA porque comprende un agente activo que consiste en células vivas suspendidas en un vehículo farmacéuticamente aceptable.
17. Formulación farmacéutica de acuerdo a la reivindicación 16, CARACTERIZADA porque las células vivas del agente activo corresponden a células madre mesenquimales.
18. Formulación farmacéutica de acuerdo a la reivindicación 16, CARACTERIZADA porque las células vivas del agente activo pueden ser nanoencapsuladas o no-nanoencapsuladas.
19. Formulación farmacéutica de acuerdo a la reivindicación 17, CARACTERIZADO porque las células madres mesenquimales pueden ser nanoencapsuladas o no-nanoencapsuladas.
20. Formulación farmacéutica de acuerdo a la reivindicación 17, CARACTERIZADA porque las células madres mesenquimales presentan la capacidad de diferenciarse en células adiposas, osteoblastos y condorcitos.
21. Formulación farmacéutica de acuerdo a la reivindicación 17, CARACTERIZADA porque las células madres mesenquimales mantienen la viabilidad e integridad de las células durante un período determinado.
22. Formulación farmacéutica de acuerdo a la reivindicación 21 , CARACTERIZADA porque el período de viabilidad e integridad celular comprende entre una hora y 72 horas.
23. Formulación farmacéutica de acuerdo a la reivindicación 16, CARACTERIZADA porque el vehículo farmacéuticamente aceptable se selecciona del grupo constituido por suero fisiológico, tampón fosfato-salino (PBS), suero Ringer, suero Ringer-Lactato, suero autólogo, suero donante AB.
24. Formulación farmacéutica de acuerdo a la reivindicación 23, CARACTERIZADA porque el vehículo farmacéuticamente aceptable además comprende agentes que favorecen la cicatrización y agentes que aseguran la esterilidad de la formulación farmacéutica.
25. Formulación farmacéutica de acuerdo a la reivindicación 24, CARACTERIZADA porque los agentes que favorecen la cicatrización son seleccionados de quitosano, ácido hialurónico, alantoína, colágeno tipo 1 , decocción o extracto (taninos) de matico (Piper angustifolium), tintura de hidrocotilo o Centella asiática (puede ser alcohólico), decocciones de caléndula (Caléndula officinalis) y extractos de Aloe vera.
26. Formulación farmacéutica de acuerdo a la reivindicación 24, CARACTERIZADA porque los agentes que aseguran la esterilidad son seleccionados de penicilina, estreptomicina, gentamicina, quinolonas, sulfadiazina de plata, clorhexidina, derivados amonio cuaternario y lactoferrina.
27. Formulación farmacéutica de acuerdo a la reivindicación 23, CARACTERIZADA porque el vehículo farmacéuticamente aceptable además comprende tampón del ácido 4-(2-hidroxietil)-1-piperazin- etanosulfónico (HEPES), tampón bicarbonato, colorantes FDC (ejemplo. Azul N°1 y azul N°2), heparinas, lisados de plaquetas y N- acetil cisteína (NAC).
28. Formulación farmacéutica de acuerdo a la reivindicación 16, CARACTERIZADA porque la concentración de células en la formulación farmacéutica está en el rango de 5 x 105 a 4 x 106 células por ml_.
29. Uso de la formulación farmacéutica de acuerdo a la reivindicación 16, CARACTERIZADO porque sirve para preparar una composición farmacéutica atomizable destinada a aplicación tópica en humanos y animales.
30. Uso de la formulación farmacéutica de acuerdo a la reivindicación 29, CARACTERIZADO porque sirve para preparar una composición farmacéutica atomizable destinada a tratar heridas.
31. Uso de la formulación farmacéutica de acuerdo a la reivindicación 30, CARACTERIZADO porque las heridas son heridas crónicas.
32. Uso de la formulación farmacéutica de acuerdo a la reivindicación 31 , CARACTERIZADO porque las heridas crónicas son producto de úlceras por presión (escaras), insuficiencia vascular (arterial y venosa), trastornos metabólicos (diabetes, gota), infecciones (bacterias, hongos, parásitos), inflamaciones (pioderma gangrenoso, vasculitis), trastornos hematológicos (policitemia, células falciformes, hipercoagulabilidad), malignidad celular (Marjolin, tumores 1o y 2o, Kaposi), y otras heridas producto de quemaduras, radiación, congelamiento.
PCT/CL2012/000041 2011-08-08 2012-08-07 Formulación en spray de células madre mesenquimales para el tratamiento de heridas crónicas WO2013020242A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12822834.3A EP2743343A4 (en) 2011-08-08 2012-08-07 SPRAY FORMULATION OF MESENCHYMAL STEM CELLS FOR THE TREATMENT OF CHRONIC WOUNDS
US14/237,842 US20140348911A1 (en) 2011-08-08 2012-08-07 Spray formulation of mesenchymal stem cells for the treatment of chronic wounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CLN1904-2011 2011-08-08
CL2011001904A CL2011001904A1 (es) 2011-08-08 2011-08-08 Formulacion farmaceutica que comprende celulas madres mesenquimales vivas suspendidas en un vehiculo farmaceuticamente aceptable, sistema de aplicacion topica en aerosol que las comprende; y su uso para tratar heridas.

Publications (1)

Publication Number Publication Date
WO2013020242A1 true WO2013020242A1 (es) 2013-02-14

Family

ID=50685690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000041 WO2013020242A1 (es) 2011-08-08 2012-08-07 Formulación en spray de células madre mesenquimales para el tratamiento de heridas crónicas

Country Status (4)

Country Link
US (1) US20140348911A1 (es)
EP (1) EP2743343A4 (es)
CL (1) CL2011001904A1 (es)
WO (1) WO2013020242A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191702A (zh) * 2016-10-19 2019-08-30 哈比尔·F·赫拉基瓦拉 用于治疗受损皮肤组织的局部敷料组合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035280A1 (en) * 2015-08-24 2017-03-02 Nugene, Inc. Skin damage healing aids and dressings
EP3399027A1 (en) 2017-05-04 2018-11-07 Medizinische Hochschule Hannover Stem-cell derived myeloid cells, generation and use thereof
CN109172124A (zh) * 2018-03-05 2019-01-11 暨南大学 一种用于眼表治疗的喷雾打印系统及其使用方法
CN108624581A (zh) * 2018-05-15 2018-10-09 中国科学院苏州生物医学工程技术研究所 一种间充质干细胞结合生物材料的微球及智能喷洒系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136244A2 (en) * 2005-06-24 2006-12-28 Cellerix, S.L. Use of adipose tissue-derived stromal stem cells in treating fistula
WO2008100442A1 (en) * 2007-02-09 2008-08-21 Biomet Biologics, Inc. Treatment of tissue defects with a therapeutic composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100219A1 (en) * 2008-02-05 2009-08-13 University Of Virginia Patent Foundation Spraying device and related method for cell aggregates and cell aggregate suspension thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136244A2 (en) * 2005-06-24 2006-12-28 Cellerix, S.L. Use of adipose tissue-derived stromal stem cells in treating fistula
WO2008100442A1 (en) * 2007-02-09 2008-08-21 Biomet Biologics, Inc. Treatment of tissue defects with a therapeutic composition

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
ALTMAN ANDREW M ET AL.: "IFATS collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model.", STEM CELLS (DAYTON, OHIO), vol. 27, January 2009 (2009-01-01), UNITED STATES, pages 250 - 258, XP002697123 *
BUNNELL BA; FLAAT M; GAGLIARDI C; PATEL B; RIPOLL C.: "Adipose-derived stem cells: Isolation, expansion and differentiation", METHODS, vol. 45, 2008, pages 115 - 120, XP022796172, DOI: doi:10.1016/j.ymeth.2008.03.006
CHA J; FALANGA V.: "Stem cells in cutaneous wound healing", CLIN DERMATOL., vol. 25, 2007, pages 73 - 78, XP005868992, DOI: doi:10.1016/j.clindermatol.2006.10.002
FALANGA V; IWAMOTO S; CHARTIER M; YUFIT T; BUTMARC J; KOUTTAB N; SHRAYER D; CARSON P: "Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds", TISSUE ENG., vol. 13, no. 6, June 2007 (2007-06-01), pages 1299 - 312, XP055106091, DOI: doi:10.1089/ten.2006.0278
GARCIA-OLMO DAMIAN ET AL.: "A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.", DISEASES OF THE COLON AND RECTUM, vol. 48, July 2005 (2005-07-01), pages 1416 - 1423, XP019368931 *
GOMILLION CT; BURG KJL.: "Stem cells and adipose tissue engineering", BIOMATERIALS, vol. 27, 2006, pages 6052 - 6063
HILLBERG AL; TABRIZIAN M.: "Biorecognition through layer-by-layer polyelectrolyte assembly: in-situ hybridization on living cells", BIOMACROMOLECULES, vol. 7, 2006, pages 2742 - 50, XP002621749, DOI: doi:10.1021/BM060266J
IKADA Y.: "Challenges in tissue engineering", J R SOC INTERFACE, vol. 3, 2006, pages 589 - 601
KROL S; CAVALLERI 0; RAMOINO P; GLIOZZI A; DIASPRO A.: "Encapsulated yeast cells inside Paramecium primaurelia: a model system for protection capability of polyelectrolyte shells", J MICROSC, vol. 212, 2003, pages 239 - 43
KROL S; DIASPRO A; MAGRASSI R ET AL.: "Nanocapsules: coating for living cells", IEEE TRANS NANOBIOSCIENCE, vol. 3, 2004, pages 32 - 8, XP011108763, DOI: doi:10.1109/TNB.2004.824279
LE BLANC K; RINGDEN O.: "Immunomodulation by mesenchymal stem cells and clinical experience", J INTERN MED, vol. 262, 2007, pages 509 - 25, XP002571510, DOI: doi:10.1111/J.1365-2796.2007.01844.X
MIZUNO H.: "Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review", J NIPPON MED SCH, vol. 76, 2009, pages 56 - 66, XP055165855, DOI: doi:10.1272/jnms.76.56
MUZZARELLI RICCARDO A A.: "Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone.", CARBOHYDRATE POLYMERS, vol. 76, 17 March 2009 (2009-03-17), pages 167 - 182, XP025913412 *
PUISSANT B; BARREAU C; BOURIN P ET AL.: "Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells", BR J HAEMATOL, vol. 129, 2005, pages 118 - 29, XP002377924, DOI: doi:10.1111/j.1365-2141.2005.05409.x
SCHÄFFLER A; BÜCHLER C.: "Concise review: Adipose tissue-derived stromal cells - Basic and clinical implications for novel cell-based therapies", STEM CELLS, vol. 25, 2007, pages 818 - 827
SCHAFFLER A; BUCHLER C.: "Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies", STEM CELLS, vol. 25, 2007, pages 818 - 27
See also references of EP2743343A4
SORREL M; CAPLAN A.: "Topical delivery of mesenchymal stem cell and their function in wounds", STEM CELL RESEARCH & THETAPY, vol. 1, 2010, pages 30, XP055168212, DOI: doi:10.1186/scrt30
ULUDAG H; DE VOS P; TRESCO PA.: "Technology of mammalian cell encapsulation", ADV DRUG DELIV REV, vol. 42, 2000, pages 29 - 64, XP002302229, DOI: doi:10.1016/S0169-409X(00)00053-3
VEERABADRAN NG; GOLI PL; STEWART-CLARK SS; LVOV YM; MILLS DK.: "Nanoencapsulation of stem cells within polyelectrolyte multilayer shells", MACROMOL BIOSCI, vol. 7, 2007, pages 877 - 82, XP008145274, DOI: doi:10.1002/mabi.200700061
VERMEULEN H; UBBINK D; GOOSSENS A; DE VOS R; LEGEMATE D: "En: La Biblioteca Cochrane Plus", 2006, JOHN WILEY & SONS, LTD., article "Apositos y agentes topicos para heridas quirurgicas que cicatrizan por segunda intencion (Revision Cochrane traducida"
WILSON JT; CHAIKOF EL.: "Challenges and emerging technologies in the immunoisolation of cells and tissues", ADV DRUG DELIV REV, vol. 60, 2008, pages 124 - 45, XP022388003, DOI: doi:10.1016/j.addr.2007.08.034
YOUNG HE; DUPLAA C; KATZ R ET AL.: "Adult-derived stem cells and their potential for use in tissue repair and molecular medicine", J CELL MOL MED, vol. 9, 2005, pages 753 - 69, XP009091345, DOI: doi:10.1111/j.1582-4934.2005.tb00510.x

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110191702A (zh) * 2016-10-19 2019-08-30 哈比尔·F·赫拉基瓦拉 用于治疗受损皮肤组织的局部敷料组合物

Also Published As

Publication number Publication date
EP2743343A4 (en) 2015-03-18
EP2743343A1 (en) 2014-06-18
US20140348911A1 (en) 2014-11-27
CL2011001904A1 (es) 2012-03-09

Similar Documents

Publication Publication Date Title
Qian et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release
Kaisang et al. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing
Hashemzadeh et al. Stem cell therapy in the heart: Biomaterials as a key route
Miguez-Pacheco et al. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues
Davis et al. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells
JP6123018B2 (ja) 胎盤物質由来の製剤並びにその製造方法及び使用方法
Gomez-Mauricio et al. A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model
US20190262494A1 (en) Topical dressing composition for the treatment of damaged skin tissue
WO2013020242A1 (es) Formulación en spray de células madre mesenquimales para el tratamiento de heridas crónicas
CN103463675B (zh) 一种抗菌抗肿瘤骨科植入材料及其制备方法
KR102167029B1 (ko) 라미닌 및 히알루론산을 포함하는 약학적 조성물
CN107185031B (zh) 一种具有生物活性的医用敷料及其制备方法
Rioja et al. Distributed vasculogenesis from modular agarose-hydroxyapatite-fibrinogen microbeads
CN109517872A (zh) 红景天苷在保护干细胞活性中的应用
Li et al. Application progress of nanotechnology in regenerative medicine of diabetes mellitus
RU2012140379A (ru) Способы и композиции для повышения срока выживаемости жирового трансплантата
US10532128B2 (en) Implantable cellular therapy device for treatment of graft versus host disease and tolerance induction
Rivero et al. Nanofibrous scaffolds for skin tissue engineering and wound healing applications
Cao et al. Animal tissue-derived biomaterials for promoting wound healing
US10780129B2 (en) Use of mesenchymal stem cells in treating osteoarthritis
WO2020180202A1 (ru) Композиция на основе наночастиц диоксида церия и полисахаридов бурых водорослей для лечения ран
Fan et al. SB216763-loaded multifunctional copper-doped bioglass 3D printed scaffold promotes wound healing and functional skin regeneration
KR20210021165A (ko) 지방줄기세포 유래 스페로이드를 포함하는 조건 배지를 유효성분으로 포함하는 상처 치유용 약학 조성물
Umar Stem cell’s secretome delivery systems
Li et al. Nanomaterials Modulating the Fate of Dental-Derived Mesenchymal Stem Cells Involved in Oral Tissue Reconstruction: A Systematic Review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822834

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012822834

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012822834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14237842

Country of ref document: US