WO2013018521A1 - Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device - Google Patents

Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device Download PDF

Info

Publication number
WO2013018521A1
WO2013018521A1 PCT/JP2012/067814 JP2012067814W WO2013018521A1 WO 2013018521 A1 WO2013018521 A1 WO 2013018521A1 JP 2012067814 W JP2012067814 W JP 2012067814W WO 2013018521 A1 WO2013018521 A1 WO 2013018521A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion device
interconnector
receiving surface
metal foil
Prior art date
Application number
PCT/JP2012/067814
Other languages
French (fr)
Japanese (ja)
Inventor
幸代 大岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013018521A1 publication Critical patent/WO2013018521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion device module, a method for manufacturing a photoelectric conversion device module, and a photoelectric conversion device, and more particularly to a connection structure between photoelectric conversion devices in the photoelectric conversion device module.
  • photoelectric conversion devices that are solar cells using compound semiconductors or organic materials.
  • photoelectric conversion devices using silicon crystals are the mainstream.
  • a silicon substrate has been thinned in order to reduce the cost of the photoelectric conversion device.
  • photoelectric conversion devices that are currently mass-produced, there are a large number of double-sided photoelectric conversion devices that have a comb-shaped collector electrode on the light-receiving surface on which light is incident and an electrode on the back surface opposite to the light-receiving surface. is occupying.
  • the electrode formed on the light receiving surface is the light receiving surface electrode
  • the electrode formed on the back surface is the back electrode.
  • Non-Patent Document 1 discloses a PERL (Passivated Emitter, Rear Locally-diffused) structure.
  • FIG. 9 is a cross-sectional view showing the structure of the photoelectric conversion device described in Non-Patent Document 1.
  • a silicon substrate 121 having a p-type conductivity type an n-type semiconductor layer 122 is formed on the light-receiving surface side on which light is incident.
  • the n-type semiconductor layer 122 is covered with an antireflection film 123.
  • the light receiving surface electrode 124 passes through the antireflection film 123 and is in contact with the n-type semiconductor layer 122.
  • a back surface passivation film 126 patterned so as to have a plurality of openings is formed on the back surface side of the silicon substrate 121 corresponding to the positions of a plurality of openings in the back surface passivation film 126.
  • An aluminum electrode 128 is provided as an extraction electrode so as to be in contact with each back surface electric field layer 125.
  • a back electrode 127 is formed so as to cover the back surface passivation film 126 and the aluminum electrode 128.
  • FIG. 10 is a flowchart showing an example of a method for manufacturing the photoelectric conversion device of FIG. As shown in FIG. 10, first, in the texturing step (S101), an uneven structure which is a texture structure is formed.
  • the n-type semiconductor layer 122 is formed on the light receiving surface of the silicon substrate 121 by, for example, diffusing phosphorus by heat treatment.
  • an antireflection film 123 is formed on the n-type semiconductor layer 122.
  • a back surface passivation film 126 such as a silicon oxide film is formed on the back surface of the silicon substrate 121.
  • the back surface passivation film 126 is patterned and partially removed to form contact balls.
  • the contact hole is filled with aluminum, which is a p-type impurity, and heat-treated, so that the aluminum diffuses at a position in contact with the contact hole on the back surface of the silicon substrate 121.
  • the back surface electric field layer 125 which is the diffused layer is formed.
  • an aluminum electrode 128 is formed in the contact hole.
  • back electrode forming step (S107) aluminum is deposited so as to cover the back passivation film 126 and the aluminum electrode 128 to form the back electrode 127.
  • the light receiving surface electrode 124 is formed at a position where the antireflection film 123 is patterned and partially removed.
  • Non-Patent Document 1 silicon atoms in the back surface layer portion of the silicon substrate 121 are obtained by the back surface passivation film 126 while obtaining the LBSF (Local Back Surface Surface) effect by the back surface field layer 125 provided locally.
  • the unbonded hands can be terminated to reduce the surface recombination rate.
  • the photoelectric conversion efficiency and the surface recombination rate are closely related, and the photoelectric conversion efficiency can be increased by reducing the surface recombination rate as described above.
  • a photoelectric conversion device module is manufactured by connecting a plurality of photoelectric conversion devices. Specifically, a plurality of photoelectric conversion devices are electrically connected with an interconnector or the like to form a photoelectric conversion device string, and the photoelectric conversion device string is sealed with a resin or the like to manufacture a photoelectric conversion device module.
  • FIG. 11 is a cross-sectional view showing a configuration of a photoelectric conversion device module in which a plurality of photoelectric conversion devices shown in FIG. 9 are connected.
  • interconnectors located on both the left and right sides in the figure are not shown.
  • the photoelectric conversion devices 120 adjacent to each other are connected by an interconnector 153, and this is connected between the glass substrate 172 and the back sheet 174 which are transparent substrates. It is sandwiched and sealed together with a sealing material 173 made of Ethylence-Vinyl Acetate).
  • FIG. 12 is a cross-sectional view for explaining a method of manufacturing the photoelectric conversion device module shown in FIG. 12 (b) to 12 (d) do not show interconnectors located on both the left and right sides in the figure.
  • one end of the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120.
  • the light receiving surface of the photoelectric conversion device 120 is on the lower side.
  • a first EVA film 181 that is a first film-like sealing material is disposed on a glass substrate 172.
  • the plurality of photoelectric conversion devices 120 having one end of the interconnector 153 connected to the first EVA film 181 are arranged so that the light receiving surface of the photoelectric conversion device 120 is in contact with the first EVA film 181.
  • the interconnector 153 is bent, and the other end of the interconnector 153 is disposed on the back electrode 127 of another adjacent photoelectric conversion device 120.
  • the second EVA film 182 is disposed on the photoelectric conversion device 120 and the interconnector 153.
  • a flexible back sheet 174 is disposed on the second EVA film 182.
  • the photoelectric conversion device 120 and the interconnector 153 are laminated by heating and pressurizing the glass substrate 172 and the back sheet 174 while evacuating them. Thereafter, the melted first and second EVA films 181 and 182 are cured, and the photoelectric conversion device module 191 is manufactured.
  • the photoelectric conversion device 120 connected to one end of the interconnector 153 is disposed on the first EVA film 181, another photoelectric conversion adjacent to the photoelectric conversion device 120 is performed.
  • the interconnector 153 had to be bent. Since one end of the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120, when the interconnector 153 is bent, the photoelectric conversion device 120 is based on the connection point between the one end of the interconnector 153 and the light receiving surface electrode. There was a possibility that the yield or yield of the photoelectric conversion device would be reduced.
  • the present invention has been made in view of the above problems, and its purpose is to easily perform photoelectric conversion without bending the interconnector from the light receiving surface of the photoelectric conversion device to the back surface of another adjacent photoelectric conversion device. It is an object to provide a photoelectric conversion device module, a manufacturing method thereof, and a photoelectric conversion device that can manufacture the device module and can suppress a decrease in the yield of the photoelectric conversion device.
  • the photoelectric conversion device module includes a plurality of photoelectric conversion devices and an interconnector for connecting the photoelectric conversion devices to each other.
  • a metal foil as a back electrode is located on the back surface of the photoelectric conversion device.
  • the metal foil has a protrusion that is a region that does not overlap the back surface of the photoelectric conversion device in plan view.
  • the interconnector is in contact with the light receiving surface electrode formed on the light receiving surface of one of the plurality of photoelectric conversion devices and the light receiving surface side of the protruding portion of the metal foil of the other photoelectric conversion device. Yes.
  • the metal foil is a copper foil.
  • a photoelectric conversion apparatus module is further provided with the transparent substrate located in the light-receiving surface side of a some photoelectric conversion apparatus, and the back sheet located in the back surface side of a some photoelectric conversion apparatus.
  • the photoelectric conversion device and the interconnector are sealed with a sealing material between the transparent substrate and the back sheet.
  • the method for manufacturing a photoelectric conversion device module according to the present invention is such that a connecting portion protruding so as not to overlap the light receiving surface of the photoelectric conversion device main body in plan view is formed on the other end side of the interconnector.
  • a first step of connecting one end of the interconnector to the light-receiving surface electrode of the main body, a first film-shaped sealing material disposed on the transparent substrate, and a plurality of interconnectors connected to the first film-shaped sealing material And a second step of arranging the photoelectric conversion device main body so that the light receiving surface of the photoelectric conversion device main body is in contact with the first film-shaped sealing material.
  • a method for manufacturing a photoelectric conversion device module includes a method for forming an interconnector on a back surface of a photoelectric conversion device body adjacent to a photoelectric conversion device body in which an interconnector having a connection portion is connected between adjacent photoelectric conversion device bodies.
  • a fifth step of heating after sandwiching between the transparent substrate and the backsheet and laminating is
  • a photoelectric conversion device includes a silicon substrate having a first conductivity type, a semiconductor layer formed on the light-receiving surface side of the silicon substrate and having a second conductivity type different from the first conductivity type, and a semiconductor layer
  • a formed aluminum electrode and a metal foil in contact with the aluminum electrode are provided.
  • the first conductivity type is p-type.
  • the metal foil covers all the aluminum electrodes.
  • the metal foil has a protrusion that is a region that does not overlap the back surface of the photoelectric conversion device in plan view.
  • the photoelectric conversion device module can be easily manufactured, and the yield of the photoelectric conversion device can be increased. Reduction can be suppressed.
  • FIG. 2 is a cross-sectional view seen from the direction of arrows AA ′ in FIG. It is a flowchart which shows the manufacturing method of the photoelectric conversion apparatus which concerns on the same embodiment. It is sectional drawing which shows the structure of the photoelectric conversion apparatus module which concerns on one Embodiment of this invention. It is the top view which looked at the connection structure of the photoelectric conversion apparatuses in the photoelectric conversion apparatus module of FIG. 4 from the light-receiving surface side. It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus module which concerns on this embodiment shown in FIG.
  • FIG. 1 is a plan view showing a configuration of a photoelectric conversion apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken from the direction of the arrows AA ′ in FIG. In FIG. 1, the figure seen from the light-receiving surface side into which light injects in a photoelectric conversion apparatus is shown.
  • the photoelectric conversion device 40 includes a photoelectric conversion device main body 50 and a metal foil 48 that is a back electrode.
  • An antireflection film 43 and a light receiving surface electrode 51 are formed on the light receiving surface of the photoelectric conversion device main body 50.
  • the light receiving surface electrode 51 includes a main electrode 52 and a sub electrode 44.
  • the sub electrode 44 is an electrode for collecting carriers, and a plurality of sub electrodes 44 are formed apart from each other.
  • the main electrode 52 is an electrode for connecting an interconnector used when the photoelectric conversion devices 40 are connected to each other.
  • a copper foil is used as the metal foil 48.
  • the metal foil 48 is not limited to a copper foil, and for example, a gold foil or a silver foil may be used as the metal foil 48.
  • the photoelectric conversion device main body 50 is disposed on the metal foil 48.
  • the photoelectric conversion device main body 50 includes a silicon substrate 41 having a p-type conductivity type which is a first conductivity type and a thickness of about 100 ⁇ m.
  • An n-type semiconductor layer 42 of the second conductivity type is formed on the light receiving surface side where light enters in the silicon substrate 41.
  • An uneven structure, which is a texture structure, is formed on the surface of the light receiving surface of the silicon substrate 41.
  • An antireflection film 43 is formed on the light receiving surface of the silicon substrate 41.
  • a light receiving surface electrode 51 is formed on the light receiving surface of the silicon substrate 41.
  • the light-receiving surface electrode 51 passes through the antireflection film 43 and is in contact with the n-type semiconductor layer 42.
  • the sub electrode 44 only needs to be in contact with the n-type semiconductor layer 42.
  • FIG. 2 only the sub electrode 44 of the light receiving surface electrode 51 appears. In FIG. 2, the uneven structure formed on the surface of the light receiving surface is not shown.
  • a back surface passivation film 47 patterned so as to have a plurality of openings is formed on the back surface that is the surface opposite to the light receiving surface in the silicon substrate 41.
  • a back surface electric field layer 46 is formed corresponding to the positions of a plurality of openings in the back surface passivation film 47.
  • the back surface electric field layer 46 may be formed at an arbitrary position.
  • the back surface electric field layer 46 has a BSF (Back Surface Field) effect.
  • a plurality of aluminum electrodes 45 are provided as extraction electrodes so as to be in contact with the respective back surface electric field layers 46.
  • the metal foil 48 that is the back electrode has a size that covers at least all the aluminum electrodes 45.
  • the metal foil 48 is provided with a region for connecting an interconnector. As shown in FIGS. 1 and 2, in the present embodiment, the right side of the photoelectric conversion device 40 in the drawing is an area for connecting an interconnector, and overlaps the back surface of the photoelectric conversion device main body 50 in plan view.
  • a protrusion 48a which is a non-existing region, is provided.
  • FIG. 3 is a flowchart showing a method for manufacturing the photoelectric conversion device according to this embodiment.
  • the entire surface of the silicon substrate 41 is subjected to texture etching using an alkaline solution to form a textured structure.
  • n-type semiconductor layer 42 is formed by phase diffusion.
  • a method for forming the n-type semiconductor layer 42 not a vapor phase diffusion method but a coating diffusion method in which a coating solution containing phosphorus which is an n-type impurity is applied to the light receiving surface of the silicon substrate 41 and heat treatment is performed. Also good.
  • a silicon nitride film having a film thickness of about 70 nm is formed as an antireflection film 43 by an plasma CVD (Chemical Vapor Deposition) method using silane and ammonia as gas species. Formed on layer 42.
  • plasma CVD Chemical Vapor Deposition
  • the back surface of the silicon substrate 41 is treated with hydrofluoric acid and nitric acid in a state where an acid-resistant protective tape is applied to the light receiving surface of the silicon substrate 41 to prevent etching of the light receiving surface.
  • Wet etching is performed using the mixed solution.
  • the n-type semiconductor layer formed on the back surface of the silicon substrate 41 is removed, and the back surface of the silicon substrate 41 is planarized.
  • the concavo-convex structure and the n-type semiconductor layer formed on the peripheral surface of the silicon substrate 41 are also removed.
  • a silicon nitride film is formed as a back surface passivation film 47 on the back surface of the flattened silicon substrate 41 by plasma CVD.
  • the back surface passivation film 47 is etched by photolithography so as to correspond to the pattern of the predetermined back surface electric field layer 46, and a contact hole penetrating the back surface passivation film 47 is formed. Form.
  • the back surface electric field layer forming step (S7) using a screen printing method, an aluminum paste made of aluminum powder, glass frit, resin, organic solvent, and the like is printed at the position of the contact hole and dried, then 700 Bake at a temperature of °C or higher.
  • the back surface electric field layer 46 which is a diffusion layer in which aluminum is diffused is formed at a position in contact with the contact hole on the back surface of the silicon substrate 41.
  • the back surface electric field layer 46 in which aluminum is diffused becomes a p-type semiconductor layer.
  • the p-type impurity concentration in the back surface electric field layer 46 is higher than the p-type impurity concentration in the silicon substrate 41.
  • the aluminum electrode 45 is formed in a contact hole by the said baking.
  • a silver paste made of silver powder, glass frit, resin, organic solvent, and the like was printed on the light receiving surface of the silicon substrate 41 and dried using a screen printing method. Thereafter, firing is performed at a temperature of 500 ° C. or higher. Thereby, the light receiving surface electrode 51 containing silver is formed on the light receiving surface of the silicon substrate 41.
  • the light receiving surface electrode 51 fires through the antireflection film 43 during firing. That is, the light-receiving surface electrode 51 penetrates the antireflection film 43 and contacts the n-type semiconductor layer 42 and is electrically connected to the n-type semiconductor layer 42.
  • the sub-electrode 44 may be in contact with the n-type semiconductor layer 42 after firing.
  • the photoelectric conversion device main body 50 After producing the photoelectric conversion device main body 50 by the above process, the photoelectric conversion device main body 50 is disposed on the metal foil 48 as the back electrode in the back electrode forming step (S9).
  • the metal foil 48 has a size that covers at least all the aluminum electrodes 45. Therefore, regardless of the planar shape and number of aluminum electrodes 45, all the aluminum electrodes 45 and the metal foil 48 can be brought into contact with each other.
  • the interconnector connected to the light-receiving surface electrode 51 was connected to the interconnector connected to the light-receiving surface electrode 51 in the manufacturing process of the photoelectric conversion device module in the subsequent process. It is not necessary to wrap around the other photoelectric conversion device adjacent to the photoelectric conversion device, and the photoelectric conversion device module can be easily manufactured.
  • the space is shown as if there is a space between the photoelectric conversion device main body 50 and the metal foil 48, but the metal foil 48 actually follows the shape of the back surface of the photoelectric conversion device main body 50.
  • the metal foil 48 and the back surface passivation film 47 are in contact with each other in most regions on the back surface of the photoelectric conversion device main body 50.
  • the photoelectric conversion device 40 is manufactured through the above steps.
  • FIG. 4 is a cross-sectional view showing a configuration of a photoelectric conversion device module according to an embodiment of the present invention.
  • 4A is a diagram showing a cross section of the entire photoelectric conversion device module
  • FIG. 4B is an enlarged view of a range surrounded by a circle in FIG. 4A.
  • FIG. 4A interconnectors located on both the left and right sides in the figure are not shown. Further, in FIG. 4, for the sake of easy understanding, there are shown gaps between the interconnector 53 and the photoelectric conversion device main body 50 and between the interconnector 53 and the metal foil 48. It touches.
  • the photoelectric conversion devices 40 adjacent to each other are connected by an interconnector 53, and are connected to a glass substrate 72 and a back sheet 74 that are transparent substrates. And sandwiched together with a sealing material 73 made of EVA or the like.
  • the interconnector 53 connects the light receiving surface electrode 51 of the photoelectric conversion device 40 and the metal foil 48 of another photoelectric conversion device 40 adjacent to the photoelectric conversion device 40.
  • the interconnector 53 is in contact with the light receiving surface side surface of the metal foil 48 at the protruding portion 48 a of the metal foil 48.
  • FIG. 5 is a plan view of the connection structure between the photoelectric conversion devices in the photoelectric conversion device module of FIG. 4 as viewed from the light receiving surface side.
  • the connection structure of two photoelectric conversion devices is shown, and the glass substrate 72, the back sheet 74, and the sealing material 73 are not shown.
  • the two photoelectric conversion devices 40A and 40B are connected to each other by connecting the main electrode 52 of the photoelectric conversion device 40B and the metal foil 48 of the photoelectric conversion device 40A by the interconnector 53.
  • FIG. 6 is a cross-sectional view for explaining the method of manufacturing the photoelectric conversion device module according to this embodiment shown in FIG.
  • the interconnectors located on both the left and right sides in the figure are not shown.
  • one end of the interconnector 53 is connected to the light receiving surface electrode 51 of the photoelectric conversion device main body 50.
  • a connection portion 53a that protrudes without overlapping the light receiving surface of the photoelectric conversion device main body 50 in a plan view is formed.
  • the 1st EVA film 81 which is a 1st film-form sealing material is arrange
  • a plurality of photoelectric conversion device main bodies 50 to which the interconnector 53 is connected are arranged such that the light receiving surface of the photoelectric conversion device main body 50 is in contact with the first EVA film 81.
  • the metal foil 48 is arranged so as to have a protruding portion 48a facing the connecting portion 53a of the interconnector 53.
  • a second EVA film 82 that is a second film-like sealing material is disposed on the metal foil 48.
  • a back sheet 74 having flexibility is disposed on the second EVA film 82.
  • the above laminate is placed in a laminating apparatus, and is laminated by applying pressure while evacuating. Specifically, the laminate is pressed so as to be sandwiched from both sides of the glass substrate 72 and the back sheet 74. As shown in FIG. 6C, the interconnector 53 and the metal foil 48 arranged in a straight line are bent by the pressure applied for the lamination, and a part of each other overlaps and comes into contact.
  • the connection portion 53a of the interconnector 53 is bent toward the metal foil 48 side.
  • the protruding portion 48a of the metal foil 48 is bent toward the interconnector 53 side.
  • the connecting portion 53a of the interconnector 53 and the protruding portion 48a of the metal foil 48 come into contact, and the interconnector 53 and the photoelectric conversion device 40 are electrically connected.
  • the interconnector 53 and the metal foil 48 may be connected using a conductive adhesive, a conductive paste, solder, or the like before laminating.
  • the laminated body is heated to melt the first and second EVA films 81 and 82.
  • the melted first and second EVA films 81 and 82 flow so as to surround the periphery of the photoelectric conversion device 40.
  • the EVA is solidified by cooling, and the photoelectric conversion device 40 is sealed by being surrounded by the solidified EVA.
  • it can suppress that a bubble remains in solidified EVA by evacuating also at the time of a heating.
  • the interconnector 53 is connected to the protruding portion 48a of the metal foil 48 that is the back electrode of the photoelectric conversion device 40, the interconnector 53 is adjacent to the photoelectric conversion device 40 from the light receiving surface of the photoelectric conversion device 40.
  • the photoelectric conversion device module 91 can be easily manufactured without bending so as to reach the back surface of the other photoelectric conversion device 40.
  • tip, etc. can be reduced, and the fall of the yield of the photoelectric conversion apparatus 40 can be suppressed.
  • the photoelectric conversion device main body 50 was manufactured using the silicon substrate 41 sliced to have an outer shape of 156 mm ⁇ 156 mm and a thickness of 150 ⁇ m.
  • a copper foil was used as the metal foil 48, and the photoelectric conversion device main body 50 was placed on the metal foil 48 to produce a photoelectric conversion device 40.
  • the thickness of the copper foil was 50 ⁇ m.
  • a plurality of photoelectric conversion devices 40 were connected by an interconnector 53 to produce a photoelectric conversion device module 91.
  • FIG. 7 is an enlarged view of a connection portion between the interconnector and the metal foil (copper foil) in the photoelectric conversion device module according to the embodiment before the connection.
  • the length L1 of the connecting portion 53a from which the interconnector 53 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm
  • the length L2 of the protrusion 48a from which the metal foil 48 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm.
  • a photoelectric conversion device module 191 shown in FIG. 11 was produced.
  • the light-receiving surface electrode and the back surface electric field layer of the photoelectric conversion device 120 were formed in the same manner as the photoelectric conversion device 40 of the example.
  • size as an Example was used also about the silicon substrate of the photoelectric conversion apparatus 120 of a comparative example.
  • Table 1 is a table summarizing the characteristic results of the photoelectric conversion device modules of Examples and Comparative Examples.
  • Jsc is the short circuit current density
  • Voc is the open circuit voltage
  • FF is the fill factor
  • Eff is the photoelectric conversion efficiency.
  • Each value shown in Table 1 is an average value of five samples subjected to measurement.
  • Each value is a standard value with each characteristic value of the comparative example being 1.000.
  • the photoelectric conversion device is configured to reflect light in a long wavelength region having a wavelength of 850 nm or more transmitted through the photoelectric conversion device.
  • An optical confinement technique that re-enters the inside of the light source is required.
  • the effect of allowing the transmitted light to re-enter the inside of the photoelectric conversion device is called a BSR (Back Surface Reflector) effect.
  • the copper foil as the back electrode has a function of a back reflection film that exhibits the BSR effect.
  • the aluminum vapor deposition film as the back electrode is a back reflection film. It has a function.
  • FIG. 8 is a graph showing the measurement results of the spectral reflectance of the copper foil and the aluminum deposited film.
  • the vertical axis represents the reflectance and the horizontal axis represents the wavelength of light.
  • the copper foil exhibits a higher reflectance than the aluminum vapor deposition film in the long wavelength region. From this result, it is understood that a high BSR effect can be obtained by using a copper foil for the back electrode.
  • the interconnector since the interconnector is connected to the metal foil (copper foil) that is the back electrode of the photoelectric conversion device, the interconnector reaches the back surface of another photoelectric conversion device adjacent to the photoelectric conversion device from the light receiving surface of the photoelectric conversion device.
  • the photoelectric conversion device module could be easily manufactured without bending.
  • the first conductivity type may be n-type and the second conductivity type may be p-type.
  • 40, 40A, 40B, 120 photoelectric conversion device 41, 121 silicon substrate, 42, 122 n-type semiconductor layer, 43, 123 antireflection film, 44 sub-electrode, 45, 128 aluminum electrode, 46, 125 back surface electric field layer, 47 126, back surface passivation film, 48 metal foil, 48a protrusion, 50 photoelectric conversion device body, 51, 124 light receiving surface electrode, 52 main electrode, 53, 153 interconnector, 53a connection, 72, 172 glass substrate, 73, 173 Sealing material, 74,174 backsheet, 81,181 first EVA film, 82,182 second EVA film, 91,191 photoelectric conversion device module, 127 back electrode.

Abstract

The photoelectric conversion device module is equipped with a plurality of photoelectric conversion devices (40), and with an interconnector (53) for connecting the photoelectric conversion devices (40) together. Metal foil (48) constituting a back surface electrode is positioned on the back surface of each of the photoelectric conversion devices (40). The metal foil (48) has a protruding portion (48a) which is an area that does not overlap the back surface of the photoelectric conversion device (40) in plan view. The interconnector (53) is connected to a photoreception face electrode (51) formed on the photoreception face of one photoelectric conversion device (40) from among the plurality of photoelectric conversion devices (40), and to the photoreception face side of the protruding portion (48a) of the metal foil (48) of another photoelectric conversion device (40).

Description

光電変換装置モジュール、光電変換装置モジュールの製造方法、および光電変換装置Photoelectric conversion device module, method for manufacturing photoelectric conversion device module, and photoelectric conversion device
 本発明は、光電変換装置モジュール、光電変換装置モジュールの製造方法、および光電変換装置に関し、特に、光電変換装置モジュール内の光電変換装置同士の接続構造に関する。 The present invention relates to a photoelectric conversion device module, a method for manufacturing a photoelectric conversion device module, and a photoelectric conversion device, and more particularly to a connection structure between photoelectric conversion devices in the photoelectric conversion device module.
 太陽電池である光電変換装置には、化合物半導体または有機材料などを用いた様々な種類のものがある。現在主流となっているのは、シリコン結晶を用いた光電変換装置である。近年では、光電変換装置の低コスト化を図るために、シリコン基板を薄板化している。 There are various types of photoelectric conversion devices that are solar cells using compound semiconductors or organic materials. Currently, photoelectric conversion devices using silicon crystals are the mainstream. In recent years, a silicon substrate has been thinned in order to reduce the cost of the photoelectric conversion device.
 現在量産されている光電変換装置においては、光が入射する受光面に櫛型の集電極を有し、受光面とは反対側の裏面にも電極を有する両面電極型の光電変換装置が多数を占めている。ここで、受光面に形成された電極を受光面電極、裏面に形成された電極を裏面電極とする。 In photoelectric conversion devices that are currently mass-produced, there are a large number of double-sided photoelectric conversion devices that have a comb-shaped collector electrode on the light-receiving surface on which light is incident and an electrode on the back surface opposite to the light-receiving surface. is occupying. Here, the electrode formed on the light receiving surface is the light receiving surface electrode, and the electrode formed on the back surface is the back electrode.
 両面電極型の光電変換装置において高い光電変換効率を実現するために、シリコン基板と裏面電極との接合部に局所的にp層を設けた光電変換装置を開示した先行文献として、Progress In Photovoltaics: Research and Applications,7,pp.471-474.(1999)(非特許文献1)がある。非特許文献1には、PERL(Passivated Emitter, Rear Locally-diffused)構造が開示されている。 In order to achieve high photoelectric conversion efficiency in a double-sided electrode type photoelectric conversion device, Progress In Photovoltaics is a prior art document that discloses a photoelectric conversion device in which a p + layer is locally provided at the junction between a silicon substrate and a back electrode. : Research and Applications, 7, pp. 471-474. (1999) (Non-Patent Document 1). Non-Patent Document 1 discloses a PERL (Passivated Emitter, Rear Locally-diffused) structure.
 図9は、非特許文献1に記載された光電変換装置の構造を示す断面図である。図9に示すように、p型の導電型を有するシリコン基板121において、光が入射する受光面側にn型半導体層122が形成されている。n型半導体層122は、反射防止膜123によって覆われている。受光面電極124は、反射防止膜123を貫通してn型半導体層122と接している。 FIG. 9 is a cross-sectional view showing the structure of the photoelectric conversion device described in Non-Patent Document 1. As shown in FIG. 9, in a silicon substrate 121 having a p-type conductivity type, an n-type semiconductor layer 122 is formed on the light-receiving surface side on which light is incident. The n-type semiconductor layer 122 is covered with an antireflection film 123. The light receiving surface electrode 124 passes through the antireflection film 123 and is in contact with the n-type semiconductor layer 122.
 また、シリコン基板121の裏面には、複数の開口を有するようにパターニングされた裏面パッシベーション膜126が形成されている。シリコン基板121の裏面側には、裏面パッシベーション膜126の複数の開口の位置に対応して裏面電界層125が形成されている。各々の裏面電界層125に接するように、取り出し電極としてアルミニウム電極128が設けられている。裏面パッシベーション膜126およびアルミニウム電極128を覆うように裏面電極127が形成されている。 Further, on the back surface of the silicon substrate 121, a back surface passivation film 126 patterned so as to have a plurality of openings is formed. A back surface electric field layer 125 is formed on the back surface side of the silicon substrate 121 corresponding to the positions of a plurality of openings in the back surface passivation film 126. An aluminum electrode 128 is provided as an extraction electrode so as to be in contact with each back surface electric field layer 125. A back electrode 127 is formed so as to cover the back surface passivation film 126 and the aluminum electrode 128.
 図10は、図9の光電変換装置の製造方法の一例を示すフローチャートである。図10に示すように、まず、テクスチャリング工程(S101)において、テクスチャ構造である凹凸構造を形成する。 FIG. 10 is a flowchart showing an example of a method for manufacturing the photoelectric conversion device of FIG. As shown in FIG. 10, first, in the texturing step (S101), an uneven structure which is a texture structure is formed.
 次に、pn接合形成工程(S102)において、シリコン基板121の受光面に、たとえばリンを熱処理により拡散させることによって、n型半導体層122を形成する。 Next, in the pn junction formation step (S102), the n-type semiconductor layer 122 is formed on the light receiving surface of the silicon substrate 121 by, for example, diffusing phosphorus by heat treatment.
 次に、反射防止膜形成工程(S103)において、n型半導体層122上に反射防止膜123を形成する。 Next, in the antireflection film formation step (S103), an antireflection film 123 is formed on the n-type semiconductor layer 122.
 次に、パッシベーション膜形成工程(S104)において、シリコン基板121の裏面に、たとえば酸化シリコン膜などの裏面パッシベーション膜126を形成する。 Next, in the passivation film forming step (S104), a back surface passivation film 126 such as a silicon oxide film is formed on the back surface of the silicon substrate 121.
 次に、裏面パッシベーション膜126のパターニング工程(S105)において、裏面パッシベーション膜126をパターニングして部分的に除去することによりコンタクトボールを形成する。 Next, in the patterning step (S105) of the back surface passivation film 126, the back surface passivation film 126 is patterned and partially removed to form contact balls.
 次に、裏面電界層形成工程(S106)において、コンタクトホールにp型不純物であるアルミニウムを充填して熱処理することにより、シリコン基板121の裏面においてコンタクトホールに接触している位置に、アルミニウムが拡散した拡散層である裏面電界層125を形成する。このとき、コンタクトホールにアルミニウム電極128が形成される。 Next, in the back surface field layer forming step (S106), the contact hole is filled with aluminum, which is a p-type impurity, and heat-treated, so that the aluminum diffuses at a position in contact with the contact hole on the back surface of the silicon substrate 121. The back surface electric field layer 125 which is the diffused layer is formed. At this time, an aluminum electrode 128 is formed in the contact hole.
 次に、裏面電極形成工程(S107)において、裏面パッシベーション膜126およびアルミニウム電極128を覆うようにアルミニウムを蒸着して裏面電極127を形成する。 Next, in the back electrode forming step (S107), aluminum is deposited so as to cover the back passivation film 126 and the aluminum electrode 128 to form the back electrode 127.
 次に、受光面電極形成工程(S108)において、反射防止膜123をパターニングして部分的に除去した位置に受光面電極124を形成する。 Next, in the light receiving surface electrode forming step (S108), the light receiving surface electrode 124 is formed at a position where the antireflection film 123 is patterned and partially removed.
 非特許文献1に記載の光電変換装置においては、局所的に設けた裏面電界層125によりLBSF(Local Back Surface Field)効果を得つつ、裏面パッシベーション膜126によりシリコン基板121の裏面表層部におけるシリコン原子の未結合手を終端させて、表面再結合速度を低減することができる。光電変換効率と表面再結合速度とは密接に関連しており、上述のように表面再結合速度を低減することにより光電変換効率を高くすることができる。 In the photoelectric conversion device described in Non-Patent Document 1, silicon atoms in the back surface layer portion of the silicon substrate 121 are obtained by the back surface passivation film 126 while obtaining the LBSF (Local Back Surface Surface) effect by the back surface field layer 125 provided locally. The unbonded hands can be terminated to reduce the surface recombination rate. The photoelectric conversion efficiency and the surface recombination rate are closely related, and the photoelectric conversion efficiency can be increased by reducing the surface recombination rate as described above.
 複数の光電変換装置を接続することにより、光電変換装置モジュールを作製する。具体的には、複数の光電変換装置をインターコネクタなどで電気的に接続して光電変換装置ストリングにし、その光電変換装置ストリングを樹脂などで封止することにより光電変換装置モジュールを作製する。 A photoelectric conversion device module is manufactured by connecting a plurality of photoelectric conversion devices. Specifically, a plurality of photoelectric conversion devices are electrically connected with an interconnector or the like to form a photoelectric conversion device string, and the photoelectric conversion device string is sealed with a resin or the like to manufacture a photoelectric conversion device module.
 図11は、図9に示す光電変換装置を複数接続した光電変換装置モジュールの構成を示す断面図である。なお、図11においては、図中の左右の両サイドに位置するインターコネクタを図示していない。 FIG. 11 is a cross-sectional view showing a configuration of a photoelectric conversion device module in which a plurality of photoelectric conversion devices shown in FIG. 9 are connected. In FIG. 11, interconnectors located on both the left and right sides in the figure are not shown.
 図11に示すように、光電変換装置モジュール191においては、互いに隣接する光電変換装置120同士をインターコネクタ153で接続し、それを透明基板であるガラス基板172とバックシート174との間でEVA(Ethylence-Vinyl Acetate)などからなる封止材173とともに挟み込んで封止している。 As shown in FIG. 11, in the photoelectric conversion device module 191, the photoelectric conversion devices 120 adjacent to each other are connected by an interconnector 153, and this is connected between the glass substrate 172 and the back sheet 174 which are transparent substrates. It is sandwiched and sealed together with a sealing material 173 made of Ethylence-Vinyl Acetate).
 図12は、図11に示す光電変換装置モジュールの製造方法を説明するための断面図である。なお、図12(b)~(d)では、図中の左右の両サイドに位置するインターコネクタを図示していない。 FIG. 12 is a cross-sectional view for explaining a method of manufacturing the photoelectric conversion device module shown in FIG. 12 (b) to 12 (d) do not show interconnectors located on both the left and right sides in the figure.
 まず、図12(a)に示すように、光電変換装置120の受光面電極に、インターコネクタ153の一端を接続する。 First, as shown in FIG. 12A, one end of the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120.
 図12(b)を参照して次工程を説明する。図12(b)においては、光電変換装置120の受光面が下側になっている。図12(b)に示すように、ガラス基板172上に第1フィルム状封止材である第1EVAフィルム181を配置する。その第1EVAフィルム181上にインターコネクタ153の一端が接続された複数の光電変換装置120を、光電変換装置120の受光面が第1EVAフィルム181と接するように配置する。この際、インターコネクタ153を曲げて、隣接する他の光電変換装置120の裏面電極127上にインターコネクタ153の他端を配置する。 The next process will be described with reference to FIG. In FIG. 12B, the light receiving surface of the photoelectric conversion device 120 is on the lower side. As shown in FIG. 12B, a first EVA film 181 that is a first film-like sealing material is disposed on a glass substrate 172. The plurality of photoelectric conversion devices 120 having one end of the interconnector 153 connected to the first EVA film 181 are arranged so that the light receiving surface of the photoelectric conversion device 120 is in contact with the first EVA film 181. At this time, the interconnector 153 is bent, and the other end of the interconnector 153 is disposed on the back electrode 127 of another adjacent photoelectric conversion device 120.
 次に、図12(c)に示すように、光電変換装置120およびインターコネクタ153上に第2EVAフィルム182を配置する。その第2EVAフィルム182上にフレキシブル性を有するバックシート174を配置する。 Next, as shown in FIG. 12C, the second EVA film 182 is disposed on the photoelectric conversion device 120 and the interconnector 153. A flexible back sheet 174 is disposed on the second EVA film 182.
 次に、図12(d)に示すように、ガラス基板172とバックシート174との間を真空引きしつつ加熱および加圧することで、光電変換装置120およびインターコネクタ153をラミネートする。その後、融解した第1および第2EVAフィルム181,182が硬化して、光電変換装置モジュール191が作製される。 Next, as shown in FIG. 12 (d), the photoelectric conversion device 120 and the interconnector 153 are laminated by heating and pressurizing the glass substrate 172 and the back sheet 174 while evacuating them. Thereafter, the melted first and second EVA films 181 and 182 are cured, and the photoelectric conversion device module 191 is manufactured.
 図12(b)を参照して説明したように、インターコネクタ153の一端と接続された光電変換装置120を第1EVAフィルム181上に配置する際、この光電変換装置120に隣接する他の光電変換装置120の裏面電極127上にインターコネクタ153の他端を位置させるために、インターコネクタ153を曲げる必要があった。インターコネクタ153の一端は光電変換装置120の受光面電極に接続されているため、インターコネクタ153を曲げる際に、インターコネクタ153の一端と受光面電極との接続箇所を基点として、光電変換装置120の割れまたは欠けが発生して、光電変換装置の歩留りが低下する可能性があった。 As described with reference to FIG. 12B, when the photoelectric conversion device 120 connected to one end of the interconnector 153 is disposed on the first EVA film 181, another photoelectric conversion adjacent to the photoelectric conversion device 120 is performed. In order to position the other end of the interconnector 153 on the back electrode 127 of the device 120, the interconnector 153 had to be bent. Since one end of the interconnector 153 is connected to the light receiving surface electrode of the photoelectric conversion device 120, when the interconnector 153 is bent, the photoelectric conversion device 120 is based on the connection point between the one end of the interconnector 153 and the light receiving surface electrode. There was a possibility that the yield or yield of the photoelectric conversion device would be reduced.
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、インターコネクタを光電変換装置の受光面から隣接する他の光電変換装置の裏面に達するように曲げることなく容易に光電変換装置モジュールを製造可能で光電変換装置の歩留まりの低下を抑制できる、光電変換装置モジュール、その製造方法、および光電変換装置を提供することである。 The present invention has been made in view of the above problems, and its purpose is to easily perform photoelectric conversion without bending the interconnector from the light receiving surface of the photoelectric conversion device to the back surface of another adjacent photoelectric conversion device. It is an object to provide a photoelectric conversion device module, a manufacturing method thereof, and a photoelectric conversion device that can manufacture the device module and can suppress a decrease in the yield of the photoelectric conversion device.
 本発明に基づく光電変換装置モジュールは、複数の光電変換装置と、光電変換装置同士の間を接続するインターコネクタとを備える。光電変換装置の裏面には、裏面電極である金属箔が位置している。金属箔は、平面視において光電変換装置の裏面と重なっていない領域である突出部を有している。インターコネクタは、複数の光電変換装置のうちの1つの光電変換装置の受光面に形成された受光面電極と、他の1つの光電変換装置の金属箔の突出部の受光面側とに接している。 The photoelectric conversion device module according to the present invention includes a plurality of photoelectric conversion devices and an interconnector for connecting the photoelectric conversion devices to each other. A metal foil as a back electrode is located on the back surface of the photoelectric conversion device. The metal foil has a protrusion that is a region that does not overlap the back surface of the photoelectric conversion device in plan view. The interconnector is in contact with the light receiving surface electrode formed on the light receiving surface of one of the plurality of photoelectric conversion devices and the light receiving surface side of the protruding portion of the metal foil of the other photoelectric conversion device. Yes.
 本発明の一形態においては、金属箔が銅箔である。
 本発明の一形態においては、光電変換装置モジュールは、複数の光電変換装置の受光面側に位置する透明基板と、複数の光電変換装置の裏面側に位置するバックシートとをさらに備える。光電変換装置およびインターコネクタは、透明基板とバックシートとの間で封止材により封止されている。
In one form of the present invention, the metal foil is a copper foil.
In one form of this invention, a photoelectric conversion apparatus module is further provided with the transparent substrate located in the light-receiving surface side of a some photoelectric conversion apparatus, and the back sheet located in the back surface side of a some photoelectric conversion apparatus. The photoelectric conversion device and the interconnector are sealed with a sealing material between the transparent substrate and the back sheet.
 本発明に基づく光電変換装置モジュールの製造方法は、インターコネクタの他端側に平面視において光電変換装置本体の受光面と重ならないように突出した接続部が形成されるように、この光電変換装置本体の受光面電極にインターコネクタの一端を接続する第1工程と、透明基板上に第1フィルム状封止材を配置し、この第1フィルム状封止材上にインターコネクタを接続した複数の光電変換装置本体を、光電変換装置本体の受光面が第1フィルム状封止材と接するように配置する第2工程とを備える。また、光電変換装置モジュールの製造方法は、互いに隣接する光電変換装置本体同士間において接続部を有するインターコネクタが接続された光電変換装置本体に隣接する光電変換装置本体の裏面上に、インターコネクタの接続部と対向する突出部を有するように金属箔を配置する第3工程と、金属箔上に第2フィルム状封止材を配置し、この第2フィルム状封止材上にバックシートを配置する第4工程と、透明基板およびバックシートの両側から挟みこんでラミネートした後、加熱する第5工程とを備える。 The method for manufacturing a photoelectric conversion device module according to the present invention is such that a connecting portion protruding so as not to overlap the light receiving surface of the photoelectric conversion device main body in plan view is formed on the other end side of the interconnector. A first step of connecting one end of the interconnector to the light-receiving surface electrode of the main body, a first film-shaped sealing material disposed on the transparent substrate, and a plurality of interconnectors connected to the first film-shaped sealing material And a second step of arranging the photoelectric conversion device main body so that the light receiving surface of the photoelectric conversion device main body is in contact with the first film-shaped sealing material. In addition, a method for manufacturing a photoelectric conversion device module includes a method for forming an interconnector on a back surface of a photoelectric conversion device body adjacent to a photoelectric conversion device body in which an interconnector having a connection portion is connected between adjacent photoelectric conversion device bodies. A third step of arranging the metal foil so as to have a protruding portion facing the connecting portion, a second film-like sealing material is arranged on the metal foil, and a back sheet is arranged on the second film-like sealing material And a fifth step of heating after sandwiching between the transparent substrate and the backsheet and laminating.
 本発明に基づく光電変換装置は、第1導電型を有するシリコン基板と、シリコン基板の受光面側に形成され、第1導電型とは異なる第2導電型を有する半導体層と、半導体層上に形成された受光面電極と、シリコン基板の受光面とは反対側の裏面上に形成され、複数のコンタクトホールを有する裏面パッシベーション膜と、複数のコンタクトホールの各々においてシリコン基板の裏面と接するように形成されたアルミニウム電極と、アルミニウム電極に接する金属箔とを備える。 A photoelectric conversion device according to the present invention includes a silicon substrate having a first conductivity type, a semiconductor layer formed on the light-receiving surface side of the silicon substrate and having a second conductivity type different from the first conductivity type, and a semiconductor layer The formed light receiving surface electrode, the back surface passivation film having a plurality of contact holes, formed on the back surface opposite to the light receiving surface of the silicon substrate, and in contact with the back surface of the silicon substrate in each of the plurality of contact holes A formed aluminum electrode and a metal foil in contact with the aluminum electrode are provided.
 本発明の一形態においては、第1導電型がp型である。
 本発明の一形態においては、金属箔がすべてのアルミニウム電極を覆っている。
In one form of the invention, the first conductivity type is p-type.
In one form of the invention, the metal foil covers all the aluminum electrodes.
 本発明の一形態においては、金属箔は、平面視において光電変換装置の裏面と重なっていない領域である突出部を有する。 In one embodiment of the present invention, the metal foil has a protrusion that is a region that does not overlap the back surface of the photoelectric conversion device in plan view.
 本発明によれば、インターコネクタを光電変換装置の受光面から隣接する他の光電変換装置の裏面に達するように曲げる必要がなく、光電変換装置モジュールを容易に製造可能で光電変換装置の歩留まりの低下を抑制できる。 According to the present invention, it is not necessary to bend the interconnector from the light receiving surface of the photoelectric conversion device so as to reach the back surface of another adjacent photoelectric conversion device, the photoelectric conversion device module can be easily manufactured, and the yield of the photoelectric conversion device can be increased. Reduction can be suppressed.
本発明の一実施形態に係る光電変換装置の構成を示す平面図である。It is a top view which shows the structure of the photoelectric conversion apparatus which concerns on one Embodiment of this invention. 図1のA-A′線矢印方向から見た断面図である。FIG. 2 is a cross-sectional view seen from the direction of arrows AA ′ in FIG. 同実施形態に係る光電変換装置の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the photoelectric conversion apparatus which concerns on the same embodiment. 本発明の一実施形態に係る光電変換装置モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus module which concerns on one Embodiment of this invention. 図4の光電変換装置モジュールにおける光電変換装置同士の接続構造を受光面側から見た平面図である。It is the top view which looked at the connection structure of the photoelectric conversion apparatuses in the photoelectric conversion apparatus module of FIG. 4 from the light-receiving surface side. 図4に示す本実施形態に係る光電変換装置モジュールの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus module which concerns on this embodiment shown in FIG. 実施例の光電変換装置モジュールにおけるインターコネクタと金属箔(銅箔)とを接続する前の両者の接続箇所の拡大図である。It is an enlarged view of the connection location of both before connecting the interconnector and metal foil (copper foil) in the photoelectric conversion apparatus module of an Example. 銅箔およびアルミニウム蒸着膜の分光反射率の測定結果を示すグラフである。It is a graph which shows the measurement result of the spectral reflectance of copper foil and an aluminum vapor deposition film. 非特許文献1に記載された光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus described in the nonpatent literature 1. 図9の光電変換装置の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the photoelectric conversion apparatus of FIG. 図9に示す光電変換装置を複数接続した光電変換装置モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of the photoelectric conversion apparatus module which connected multiple photoelectric conversion apparatuses shown in FIG. 図11に示す光電変換装置モジュールの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the photoelectric conversion apparatus module shown in FIG.
 図1は、本発明の一実施形態に係る光電変換装置の構成を示す平面図である。図2は、図1のA-A′線矢印方向から見た断面図である。図1においては、光電変換装置において光が入射する受光面側から見た図を示している。 FIG. 1 is a plan view showing a configuration of a photoelectric conversion apparatus according to an embodiment of the present invention. FIG. 2 is a cross-sectional view taken from the direction of the arrows AA ′ in FIG. In FIG. 1, the figure seen from the light-receiving surface side into which light injects in a photoelectric conversion apparatus is shown.
 図1,2に示すように、光電変換装置40は、光電変換装置本体50と裏面電極である金属箔48とからなる。光電変換装置本体50の受光面には、反射防止膜43および受光面電極51が形成されている。受光面電極51は、メイン電極52とサブ電極44とからなる。サブ電極44は、キャリアを収集する電極であり、互いに離間して複数形成されている。メイン電極52は、光電変換装置40同士を接続する際に用いるインターコネクタを接続するための電極である。 1 and 2, the photoelectric conversion device 40 includes a photoelectric conversion device main body 50 and a metal foil 48 that is a back electrode. An antireflection film 43 and a light receiving surface electrode 51 are formed on the light receiving surface of the photoelectric conversion device main body 50. The light receiving surface electrode 51 includes a main electrode 52 and a sub electrode 44. The sub electrode 44 is an electrode for collecting carriers, and a plurality of sub electrodes 44 are formed apart from each other. The main electrode 52 is an electrode for connecting an interconnector used when the photoelectric conversion devices 40 are connected to each other.
 本実施形態においては、金属箔48として銅箔を用いている。ただし、金属箔48は銅箔に限られず、たとえば、金箔または銀箔などを金属箔48として用いてもよい。 In this embodiment, a copper foil is used as the metal foil 48. However, the metal foil 48 is not limited to a copper foil, and for example, a gold foil or a silver foil may be used as the metal foil 48.
 光電変換装置本体50は、金属箔48上に配置されている。光電変換装置本体50は、第1導電型であるp型の導電型を有して厚みが100μm程度であるシリコン基板41を含んでいる。シリコン基板41において光が入射する受光面側に、第2導電型であるn型半導体層42が形成されている。シリコン基板41の受光面の表面には、テクスチャ構造である凹凸構造が形成されている。 The photoelectric conversion device main body 50 is disposed on the metal foil 48. The photoelectric conversion device main body 50 includes a silicon substrate 41 having a p-type conductivity type which is a first conductivity type and a thickness of about 100 μm. An n-type semiconductor layer 42 of the second conductivity type is formed on the light receiving surface side where light enters in the silicon substrate 41. An uneven structure, which is a texture structure, is formed on the surface of the light receiving surface of the silicon substrate 41.
 シリコン基板41の受光面上に、反射防止膜43が形成されている。また、シリコン基板41の受光面上に、受光面電極51が形成されている。受光面電極51は、反射防止膜43を貫通してn型半導体層42と接している。受光面電極51においては、少なくともサブ電極44がn型半導体層42と接していればよい。図2においては、受光面電極51のうちサブ電極44のみ現れている。なお、図2では、受光面の表面に形成されている凹凸構造を図示していない。 An antireflection film 43 is formed on the light receiving surface of the silicon substrate 41. A light receiving surface electrode 51 is formed on the light receiving surface of the silicon substrate 41. The light-receiving surface electrode 51 passes through the antireflection film 43 and is in contact with the n-type semiconductor layer 42. In the light receiving surface electrode 51, at least the sub electrode 44 only needs to be in contact with the n-type semiconductor layer 42. In FIG. 2, only the sub electrode 44 of the light receiving surface electrode 51 appears. In FIG. 2, the uneven structure formed on the surface of the light receiving surface is not shown.
 また、シリコン基板41において受光面とは反対側の面である裏面には、複数の開口を有するようにパターニングされた裏面パッシベーション膜47が形成されている。シリコン基板41の裏面側には、裏面パッシベーション膜47の複数の開口の位置に対応して裏面電界層46が形成されている。ただし、裏面電界層46は、任意の位置に形成されていてもよい。裏面電界層46は、BSF(Back Surface Field)効果を奏する。各々の裏面電界層46に接するように、取り出し電極として複数のアルミニウム電極45が設けられている。 Further, a back surface passivation film 47 patterned so as to have a plurality of openings is formed on the back surface that is the surface opposite to the light receiving surface in the silicon substrate 41. On the back surface side of the silicon substrate 41, a back surface electric field layer 46 is formed corresponding to the positions of a plurality of openings in the back surface passivation film 47. However, the back surface electric field layer 46 may be formed at an arbitrary position. The back surface electric field layer 46 has a BSF (Back Surface Field) effect. A plurality of aluminum electrodes 45 are provided as extraction electrodes so as to be in contact with the respective back surface electric field layers 46.
 裏面電極である金属箔48は、少なくともすべてのアルミニウム電極45を覆う大きさを有している。金属箔48には、インターコネクタを接続するための領域が設けられている。図1,2に示すように、本実施形態においては、光電変換装置40の図中の右側に、インターコネクタを接続するための領域であり、平面視において光電変換装置本体50の裏面と重なっていない領域である突出部48aを設けている。 The metal foil 48 that is the back electrode has a size that covers at least all the aluminum electrodes 45. The metal foil 48 is provided with a region for connecting an interconnector. As shown in FIGS. 1 and 2, in the present embodiment, the right side of the photoelectric conversion device 40 in the drawing is an area for connecting an interconnector, and overlaps the back surface of the photoelectric conversion device main body 50 in plan view. A protrusion 48a, which is a non-existing region, is provided.
 以下に、本発明の一実施形態に係る光電変換装置の製造方法について説明する。図3は、本実施形態に係る光電変換装置の製造方法を示すフローチャートである。 Hereinafter, a method for manufacturing a photoelectric conversion device according to an embodiment of the present invention will be described. FIG. 3 is a flowchart showing a method for manufacturing the photoelectric conversion device according to this embodiment.
 まず、テクスチャリング工程(S1)において、シリコン基板41の表面の全面に、アルカリ液を用いたテクスチャエッチングを施し、テクスチャ構造である凹凸構造を形成する。 First, in the texturing step (S1), the entire surface of the silicon substrate 41 is subjected to texture etching using an alkaline solution to form a textured structure.
 次に、pn接合形成工程(S2)において、チューブ炉にて800℃以上の温度でシリコン基板41を熱処理しつつ拡散材料としてPOCl3を用いることにより、シリコン基板41の表面の全面にリンを気相拡散させてn型半導体層42を形成する。ここで、n型半導体層42の形成方法として、気相拡散法ではなく、n型不純物であるリンを含む塗布液をシリコン基板41の受光面に塗布して熱処理を行なう塗布拡散法を用いてもよい。 Next, in the pn junction formation step (S2), by using POCl 3 as a diffusion material while heat-treating the silicon substrate 41 at a temperature of 800 ° C. or higher in a tube furnace, phosphorus is removed from the entire surface of the silicon substrate 41. The n-type semiconductor layer 42 is formed by phase diffusion. Here, as a method for forming the n-type semiconductor layer 42, not a vapor phase diffusion method but a coating diffusion method in which a coating solution containing phosphorus which is an n-type impurity is applied to the light receiving surface of the silicon substrate 41 and heat treatment is performed. Also good.
 次に、反射防止膜形成工程(S3)において、ガス種としてシランおよびアンモニアを用いてプラズマCVD(Chemical Vapor Deposition)法により、膜厚が70nm程度の窒化シリコン膜を反射防止膜43としてn型半導体層42上に形成する。 Next, in the antireflection film forming step (S3), a silicon nitride film having a film thickness of about 70 nm is formed as an antireflection film 43 by an plasma CVD (Chemical Vapor Deposition) method using silane and ammonia as gas species. Formed on layer 42.
 次に、裏面エッチング工程(S4)において、受光面のエッチング防止のために耐酸性を有する保護テープをシリコン基板41の受光面に貼った状態で、シリコン基板41の裏面をフッ酸と硝酸との混合液を用いてウエットエッチングする。これにより、シリコン基板41の裏面に形成されたn型半導体層を除去するとともに、シリコン基板41の裏面を平坦化する。この時、シリコン基板41の周面に形成されていた凹凸構造およびn型半導体層も除去される。 Next, in the back surface etching step (S4), the back surface of the silicon substrate 41 is treated with hydrofluoric acid and nitric acid in a state where an acid-resistant protective tape is applied to the light receiving surface of the silicon substrate 41 to prevent etching of the light receiving surface. Wet etching is performed using the mixed solution. Thereby, the n-type semiconductor layer formed on the back surface of the silicon substrate 41 is removed, and the back surface of the silicon substrate 41 is planarized. At this time, the concavo-convex structure and the n-type semiconductor layer formed on the peripheral surface of the silicon substrate 41 are also removed.
 次に、裏面パッシベーション膜形成工程(S5)において、平坦化されたシリコン基板41の裏面に、プラズマCVD法によって窒化シリコン膜を裏面パッシベーション膜47として形成する。 Next, in the back surface passivation film forming step (S5), a silicon nitride film is formed as a back surface passivation film 47 on the back surface of the flattened silicon substrate 41 by plasma CVD.
 次に、裏面パッシベーション膜のパターニング工程(S6)において、裏面パッシベーション膜47を所定の裏面電界層46のパターンに対応するようにフォトリソグラフィ法によりエッチングして、裏面パッシベーション膜47を貫通するコンタクトホールを形成する。 Next, in the back surface passivation film patterning step (S 6), the back surface passivation film 47 is etched by photolithography so as to correspond to the pattern of the predetermined back surface electric field layer 46, and a contact hole penetrating the back surface passivation film 47 is formed. Form.
 次に、裏面電界層形成工程(S7)において、スクリーン印刷法を用いて、アルミニウム粉末、ガラスフリット、樹脂および有機溶媒などからなるアルミニウムペーストをコンタクトホールの位置に印刷して乾燥させた後、700℃以上の温度にて焼成する。これにより、シリコン基板41の裏面においてコンタクトホールに接触している位置に、アルミニウムが拡散した拡散層である裏面電界層46が形成される。 Next, in the back surface electric field layer forming step (S7), using a screen printing method, an aluminum paste made of aluminum powder, glass frit, resin, organic solvent, and the like is printed at the position of the contact hole and dried, then 700 Bake at a temperature of ℃ or higher. Thereby, the back surface electric field layer 46 which is a diffusion layer in which aluminum is diffused is formed at a position in contact with the contact hole on the back surface of the silicon substrate 41.
 アルミニウムは、シリコンに対してp型不純物になるので、アルミニウムが拡散している裏面電界層46はp型半導体層となる。裏面電界層46におけるp型不純物濃度は、シリコン基板41におけるp型不純物濃度より高い。また、上記焼成により、コンタクトホールには、アルミニウム電極45が形成される。 Since aluminum becomes a p-type impurity with respect to silicon, the back surface electric field layer 46 in which aluminum is diffused becomes a p-type semiconductor layer. The p-type impurity concentration in the back surface electric field layer 46 is higher than the p-type impurity concentration in the silicon substrate 41. Moreover, the aluminum electrode 45 is formed in a contact hole by the said baking.
 次に、受光面電極形成工程(S8)において、スクリーン印刷法を用いて、銀粉末、ガラスフリット、樹脂および有機溶媒などからなる銀ペーストをシリコン基板41の受光面上に印刷して乾燥させた後、500℃以上の温度にて焼成する。これにより、シリコン基板41の受光面上に銀を含む受光面電極51が形成される。 Next, in the light receiving surface electrode forming step (S8), a silver paste made of silver powder, glass frit, resin, organic solvent, and the like was printed on the light receiving surface of the silicon substrate 41 and dried using a screen printing method. Thereafter, firing is performed at a temperature of 500 ° C. or higher. Thereby, the light receiving surface electrode 51 containing silver is formed on the light receiving surface of the silicon substrate 41.
 なお、受光面電極51は、焼成時に反射防止膜43をファイヤースルーする。すなわち、受光面電極51は、反射防止膜43を貫通してn型半導体層42と接触し、n型半導体層42と電気的に接続される。 The light receiving surface electrode 51 fires through the antireflection film 43 during firing. That is, the light-receiving surface electrode 51 penetrates the antireflection film 43 and contacts the n-type semiconductor layer 42 and is electrically connected to the n-type semiconductor layer 42.
 また、受光面電極51を形成する際にメイン電極52とサブ電極44とをそれぞれ異なる銀ペーストを用いて形成する場合、焼成後に少なくともサブ電極44がn型半導体層42と接していればよい。 Further, when the main electrode 52 and the sub-electrode 44 are formed using different silver pastes when forming the light-receiving surface electrode 51, at least the sub-electrode 44 may be in contact with the n-type semiconductor layer 42 after firing.
 上記の工程により光電変換装置本体50を作製した後、裏面電極形成工程(S9)において、光電変換装置本体50を裏面電極である金属箔48上に配置する。上述のように、金属箔48は、少なくともすべてのアルミニウム電極45を覆う大きさを有している。よって、アルミニウム電極45の平面形状および個数に関わらず、すべてのアルミニウム電極45と金属箔48とを接触させることができる。 After producing the photoelectric conversion device main body 50 by the above process, the photoelectric conversion device main body 50 is disposed on the metal foil 48 as the back electrode in the back electrode forming step (S9). As described above, the metal foil 48 has a size that covers at least all the aluminum electrodes 45. Therefore, regardless of the planar shape and number of aluminum electrodes 45, all the aluminum electrodes 45 and the metal foil 48 can be brought into contact with each other.
 さらに、金属箔48にインターコネクタを接続するための領域を設けているため、後工程の光電変換装置モジュールの作製工程において、受光面電極51に接続したインターコネクタを、このインターコネクタが接続された光電変換装置に隣接する他の光電変換装置の裏面に回しこむ必要がなく、光電変換装置モジュールの製造が容易になる。 Furthermore, since the area | region for connecting an interconnector to the metal foil 48 is provided, the interconnector connected to the light-receiving surface electrode 51 was connected to the interconnector connected to the light-receiving surface electrode 51 in the manufacturing process of the photoelectric conversion device module in the subsequent process. It is not necessary to wrap around the other photoelectric conversion device adjacent to the photoelectric conversion device, and the photoelectric conversion device module can be easily manufactured.
 なお、図2においては、光電変換装置本体50と金属箔48との間に空間があるかのように示したが、実際には、金属箔48は光電変換装置本体50の裏面の形状に沿って位置し、光電変換装置本体50の裏面のほとんどの領域で金属箔48と裏面パッシベーション膜47とが接している。上記の工程により、光電変換装置40が作製される。 In FIG. 2, the space is shown as if there is a space between the photoelectric conversion device main body 50 and the metal foil 48, but the metal foil 48 actually follows the shape of the back surface of the photoelectric conversion device main body 50. The metal foil 48 and the back surface passivation film 47 are in contact with each other in most regions on the back surface of the photoelectric conversion device main body 50. The photoelectric conversion device 40 is manufactured through the above steps.
 図4は、本発明の一実施形態に係る光電変換装置モジュールの構成を示す断面図である。図4(a)は、光電変換装置モジュール全体の断面を示す図であり、図4(b)は、図4(a)中の円で囲んだ範囲の拡大図である。 FIG. 4 is a cross-sectional view showing a configuration of a photoelectric conversion device module according to an embodiment of the present invention. 4A is a diagram showing a cross section of the entire photoelectric conversion device module, and FIG. 4B is an enlarged view of a range surrounded by a circle in FIG. 4A.
 なお、図4(a)においては、図中の左右の両サイドに位置するインターコネクタを図示していない。また、図4においては、見やすくするために、インターコネクタ53と光電変換装置本体50との間、および、インターコネクタ53と金属箔48との間に隙間があるように示しているが、実際はそれぞれ接している。 In FIG. 4A, interconnectors located on both the left and right sides in the figure are not shown. Further, in FIG. 4, for the sake of easy understanding, there are shown gaps between the interconnector 53 and the photoelectric conversion device main body 50 and between the interconnector 53 and the metal foil 48. It touches.
 図4に示すように、本実施形態に係る光電変換装置モジュール91においては、互いに隣接する光電変換装置40同士をインターコネクタ53で接続し、それを透明基板であるガラス基板72とバックシート74との間でEVAなどからなる封止材73とともに挟み込んで封止している。 As shown in FIG. 4, in the photoelectric conversion device module 91 according to the present embodiment, the photoelectric conversion devices 40 adjacent to each other are connected by an interconnector 53, and are connected to a glass substrate 72 and a back sheet 74 that are transparent substrates. And sandwiched together with a sealing material 73 made of EVA or the like.
 インターコネクタ53は、光電変換装置40の受光面電極51と、この光電変換装置40に隣接する他の光電変換装置40の金属箔48とを接続している。インターコネクタ53は、金属箔48における上記突出部48aにおいて金属箔48の受光面側の表面と接している。 The interconnector 53 connects the light receiving surface electrode 51 of the photoelectric conversion device 40 and the metal foil 48 of another photoelectric conversion device 40 adjacent to the photoelectric conversion device 40. The interconnector 53 is in contact with the light receiving surface side surface of the metal foil 48 at the protruding portion 48 a of the metal foil 48.
 図5は、図4の光電変換装置モジュールにおける光電変換装置同士の接続構造を受光面側から見た平面図である。図5においては、2つの光電変換装置の接続構造を示し、ガラス基板72、バックシート74および封止材73は図示していない。2つ光電変換装置40A、40Bは、光電変換装置40Bのメイン電極52と光電変換装置40Aの金属箔48とがインターコネクタ53で接続されることにより、互いに接続されている。 FIG. 5 is a plan view of the connection structure between the photoelectric conversion devices in the photoelectric conversion device module of FIG. 4 as viewed from the light receiving surface side. In FIG. 5, the connection structure of two photoelectric conversion devices is shown, and the glass substrate 72, the back sheet 74, and the sealing material 73 are not shown. The two photoelectric conversion devices 40A and 40B are connected to each other by connecting the main electrode 52 of the photoelectric conversion device 40B and the metal foil 48 of the photoelectric conversion device 40A by the interconnector 53.
 図6は、図4に示す本実施形態に係る光電変換装置モジュールの製造方法を説明するための断面図である。なお、図6(a)~(d)では、図中の左右の両サイドに位置するインターコネクタを図示していない。 FIG. 6 is a cross-sectional view for explaining the method of manufacturing the photoelectric conversion device module according to this embodiment shown in FIG. In FIGS. 6A to 6D, the interconnectors located on both the left and right sides in the figure are not shown.
 まず、図6(a)に示すように、光電変換装置本体50の受光面電極51にインターコネクタ53の一端を接続する。インターコネクタ53の他端側には、平面視において光電変換装置本体50の受光面と重ならずに突出している接続部53aが形成される。 First, as shown in FIG. 6A, one end of the interconnector 53 is connected to the light receiving surface electrode 51 of the photoelectric conversion device main body 50. On the other end side of the interconnector 53, a connection portion 53a that protrudes without overlapping the light receiving surface of the photoelectric conversion device main body 50 in a plan view is formed.
 その後、ガラス基板72上に第1フィルム状封止材である第1EVAフィルム81を配置する。その第1EVAフィルム81上に、インターコネクタ53が接続された複数の光電変換装置本体50を、光電変換装置本体50の受光面が第1EVAフィルム81と接するように配置する。 Then, the 1st EVA film 81 which is a 1st film-form sealing material is arrange | positioned on the glass substrate 72. FIG. On the first EVA film 81, a plurality of photoelectric conversion device main bodies 50 to which the interconnector 53 is connected are arranged such that the light receiving surface of the photoelectric conversion device main body 50 is in contact with the first EVA film 81.
 次に、図6(b)に示すように、互いに隣接する光電変換装置本体50同士間において接続部53aを有するインターコネクタ53が接続された光電変換装置本体50に隣接する光電変換装置本体50の裏面上に、インターコネクタ53の接続部53aと対向する突出部48aを有するように金属箔48を配置する。 Next, as illustrated in FIG. 6B, the photoelectric conversion device main body 50 adjacent to the photoelectric conversion device main body 50 to which the interconnector 53 having the connection portion 53 a is connected between the adjacent photoelectric conversion device main bodies 50. On the back surface, the metal foil 48 is arranged so as to have a protruding portion 48a facing the connecting portion 53a of the interconnector 53.
 次に、図6(c)に示すように、金属箔48上に、第2フィルム状封止材である第2EVAフィルム82を配置する。その第2EVAフィルム82上に、フレキシブル性を有するバックシート74を配置する。 Next, as shown in FIG. 6C, a second EVA film 82 that is a second film-like sealing material is disposed on the metal foil 48. On the second EVA film 82, a back sheet 74 having flexibility is disposed.
 次に、上記の積層体をラミネート装置内に配置して、真空引きしつつ加圧してラミネートする。具体的には、上記の積層体をガラス基板72およびバックシート74の両側から挟み込むように加圧する。図6(c)に示すようにまっすぐに配置したインターコネクタ53および金属箔48は、ラミネートのためにかけた加圧力を受けて曲がり、互いの一部が重なって接する。 Next, the above laminate is placed in a laminating apparatus, and is laminated by applying pressure while evacuating. Specifically, the laminate is pressed so as to be sandwiched from both sides of the glass substrate 72 and the back sheet 74. As shown in FIG. 6C, the interconnector 53 and the metal foil 48 arranged in a straight line are bent by the pressure applied for the lamination, and a part of each other overlaps and comes into contact.
 具体的には、図6(d)に示すように、光電変換装置本体50が第1EVAフィルム81に押し付けられることにより、インターコネクタ53の接続部53aが金属箔48側に曲がる。一方、光電変換装置本体50が第2EVAフィルム82に押し付けられることにより、金属箔48の突出部48aがインターコネクタ53側に曲がる。その結果、インターコネクタ53の接続部53aと金属箔48の突出部48aとが接触してインターコネクタ53と光電変換装置40とが電気的に接続される。なお、ラミネートする前に、導電性接着剤、導電性ペーストまたは半田などを用いて、インターコネクタ53と金属箔48とを接続しておいてもよい。 Specifically, as shown in FIG. 6D, when the photoelectric conversion device main body 50 is pressed against the first EVA film 81, the connection portion 53a of the interconnector 53 is bent toward the metal foil 48 side. On the other hand, when the photoelectric conversion device main body 50 is pressed against the second EVA film 82, the protruding portion 48a of the metal foil 48 is bent toward the interconnector 53 side. As a result, the connecting portion 53a of the interconnector 53 and the protruding portion 48a of the metal foil 48 come into contact, and the interconnector 53 and the photoelectric conversion device 40 are electrically connected. Note that the interconnector 53 and the metal foil 48 may be connected using a conductive adhesive, a conductive paste, solder, or the like before laminating.
 次に、ラミネートした上記積層体を加熱して、第1および第2EVAフィルム81,82を融解させる。融解した第1および第2EVAフィルム81,82は、光電変換装置40の周囲を囲むように流動する。その後、冷却することによりEVAが固化して、光電変換装置40は固化したEVAに周囲を囲まれて封止される。なお、加熱時も真空引きを行なうことにより、固化したEVA中に気泡が残留することを抑制できる。上記の工程により、光電変換装置モジュール91が作製される。 Next, the laminated body is heated to melt the first and second EVA films 81 and 82. The melted first and second EVA films 81 and 82 flow so as to surround the periphery of the photoelectric conversion device 40. Thereafter, the EVA is solidified by cooling, and the photoelectric conversion device 40 is sealed by being surrounded by the solidified EVA. In addition, it can suppress that a bubble remains in solidified EVA by evacuating also at the time of a heating. Through the above steps, the photoelectric conversion device module 91 is manufactured.
 本実施形態においては、光電変換装置40の裏面電極である金属箔48の突出部48aにインターコネクタ53を接続させるので、インターコネクタ53を光電変換装置40の受光面からこの光電変換装置40に隣接する他の光電変換装置40の裏面に達するように曲げることなく、容易に光電変換装置モジュール91を製造することができる。また、インターコネクタ53を曲げる際の光電変換装置40の割れおよび欠けなどの発生の可能性を低減して、光電変換装置40の歩留まりの低下を抑制することができる。 In the present embodiment, since the interconnector 53 is connected to the protruding portion 48a of the metal foil 48 that is the back electrode of the photoelectric conversion device 40, the interconnector 53 is adjacent to the photoelectric conversion device 40 from the light receiving surface of the photoelectric conversion device 40. Thus, the photoelectric conversion device module 91 can be easily manufactured without bending so as to reach the back surface of the other photoelectric conversion device 40. Moreover, the possibility of generation | occurrence | production of the crack of the photoelectric conversion apparatus 40 at the time of bending the interconnector 53, a chip | tip, etc. can be reduced, and the fall of the yield of the photoelectric conversion apparatus 40 can be suppressed.
 (実施例)
 156mm×156mmの外形および150μmの厚さを有するようにスライスされたシリコン基板41を用いて光電変換装置本体50を作製した。金属箔48として銅箔を用い、光電変換装置本体50を金属箔48上に配置して光電変換装置40を作製した。銅箔の厚みは50μmとした。複数の光電変換装置40をインターコネクタ53で接続して光電変換装置モジュール91を作製した。
(Example)
The photoelectric conversion device main body 50 was manufactured using the silicon substrate 41 sliced to have an outer shape of 156 mm × 156 mm and a thickness of 150 μm. A copper foil was used as the metal foil 48, and the photoelectric conversion device main body 50 was placed on the metal foil 48 to produce a photoelectric conversion device 40. The thickness of the copper foil was 50 μm. A plurality of photoelectric conversion devices 40 were connected by an interconnector 53 to produce a photoelectric conversion device module 91.
 図7は、実施例の光電変換装置モジュールにおけるインターコネクタと金属箔(銅箔)とを接続する前の両者の接続箇所の拡大図である。光電変換装置本体50の端からインターコネクタ53が突出した接続部53aの長さL1を5mm、光電変換装置本体50の端から金属箔48が突出した突出部48aの長さL2を5mmとした。 FIG. 7 is an enlarged view of a connection portion between the interconnector and the metal foil (copper foil) in the photoelectric conversion device module according to the embodiment before the connection. The length L1 of the connecting portion 53a from which the interconnector 53 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm, and the length L2 of the protrusion 48a from which the metal foil 48 protrudes from the end of the photoelectric conversion device main body 50 is 5 mm.
 また、比較例として、図11に示す光電変換装置モジュール191を作製した。なお、光電変換装置120の受光面電極および裏面電界層を、実施例の光電変換装置40と同様に形成した。また、比較例の光電変換装置120のシリコン基板についても、実施例と同じ大きさのシリコン基板を用いた。 As a comparative example, a photoelectric conversion device module 191 shown in FIG. 11 was produced. In addition, the light-receiving surface electrode and the back surface electric field layer of the photoelectric conversion device 120 were formed in the same manner as the photoelectric conversion device 40 of the example. Moreover, the silicon substrate of the same magnitude | size as an Example was used also about the silicon substrate of the photoelectric conversion apparatus 120 of a comparative example.
 表1は、実施例および比較例の光電変換装置モジュールの特性結果をまとめた表である。表1において、Jscは短絡電流密度、Vocは開放電圧、FFは曲線因子、Effは光電変換効率である。表1に示す各値は、測定を行なった5つのサンプルの平均値である。また、各値は、比較例の各特性値を1.000とした規格値で示している。 Table 1 is a table summarizing the characteristic results of the photoelectric conversion device modules of Examples and Comparative Examples. In Table 1, Jsc is the short circuit current density, Voc is the open circuit voltage, FF is the fill factor, and Eff is the photoelectric conversion efficiency. Each value shown in Table 1 is an average value of five samples subjected to measurement. Each value is a standard value with each characteristic value of the comparative example being 1.000.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例においては、各特性値とも比較例に対して高い値を得られた。特に、実施例では、比較例に対してJscが高かった。これは、実施例の裏面電極を構成する銅箔と比較例の裏面電極を構成するアルミニウム蒸着膜との光の反射率の差が表れたものと考えられる。裏面電極を銅箔にした実施例において、接触抵抗の影響は見られなかった。これはFFの結果からも明らかである。 As shown in Table 1, in the examples, a high value was obtained for each characteristic value compared to the comparative example. In particular, in the examples, Jsc was higher than in the comparative example. This is considered that the difference in the light reflectivity of the copper foil which comprises the back surface electrode of an Example, and the aluminum vapor deposition film which comprises the back surface electrode of a comparative example appeared. In the example in which the back electrode was made of copper foil, the influence of contact resistance was not observed. This is also clear from the FF results.
 厚みが100μm程度の薄いシリコン基板を用いた光電変換装置において、光電変換効率をより高くするには、光電変換装置を透過した850nm以上の波長を有する長波長域の光を反射させて光電変換装置の内部に再入射させる光閉じ込め技術が必要になる。この透過光を光電変換装置の内部に再入射させる効果をBSR(Back Surface Reflector)効果という。 In a photoelectric conversion device using a thin silicon substrate having a thickness of about 100 μm, in order to further increase the photoelectric conversion efficiency, the photoelectric conversion device is configured to reflect light in a long wavelength region having a wavelength of 850 nm or more transmitted through the photoelectric conversion device. An optical confinement technique that re-enters the inside of the light source is required. The effect of allowing the transmitted light to re-enter the inside of the photoelectric conversion device is called a BSR (Back Surface Reflector) effect.
 実施例の光電変換装置においては、裏面電極である銅箔がBSR効果を奏する裏面反射膜の機能を有し、比較例の光電変換装置においては、裏面電極であるアルミニウム蒸着膜が裏面反射膜の機能を有している。 In the photoelectric conversion device of the example, the copper foil as the back electrode has a function of a back reflection film that exhibits the BSR effect. In the photoelectric conversion device of the comparative example, the aluminum vapor deposition film as the back electrode is a back reflection film. It has a function.
 図8は、銅箔およびアルミニウム蒸着膜の分光反射率の測定結果を示すグラフである。図8においては、縦軸に反射率、横軸に光の波長を示している。図8に示すように、長波長域において銅箔がアルミニウム蒸着膜より高い反射率を示すことが確認できた。この結果から、裏面電極に銅箔を用いることにより、高いBSR効果を得ることができることが分かる。 FIG. 8 is a graph showing the measurement results of the spectral reflectance of the copper foil and the aluminum deposited film. In FIG. 8, the vertical axis represents the reflectance and the horizontal axis represents the wavelength of light. As shown in FIG. 8, it was confirmed that the copper foil exhibits a higher reflectance than the aluminum vapor deposition film in the long wavelength region. From this result, it is understood that a high BSR effect can be obtained by using a copper foil for the back electrode.
 図8および表1に示す結果から、実施例の光電変換装置モジュールにおいては、各光電変換装置の裏面電極に銅箔を用いることにより高いBSR効果を得て、比較例の光電変換装置モジュールより優れた光電変換効率を有していることが確認できた。さらに、裏面電極に銅箔を用いることで、銀および金などの貴金属を用いる場合に対してコストを抑えることができる。 From the results shown in FIG. 8 and Table 1, in the photoelectric conversion device module of the example, a high BSR effect was obtained by using a copper foil for the back electrode of each photoelectric conversion device, which was superior to the photoelectric conversion device module of the comparative example. It was confirmed that it had high photoelectric conversion efficiency. Furthermore, by using a copper foil for the back electrode, the cost can be reduced compared to the case of using a noble metal such as silver and gold.
 また、光電変換装置の裏面電極である金属箔(銅箔)にインターコネクタを接続させるので、インターコネクタを光電変換装置の受光面からこの光電変換装置に隣接する他の光電変換装置の裏面に達するように曲げることなく、容易に光電変換装置モジュールを製造することができた。 In addition, since the interconnector is connected to the metal foil (copper foil) that is the back electrode of the photoelectric conversion device, the interconnector reaches the back surface of another photoelectric conversion device adjacent to the photoelectric conversion device from the light receiving surface of the photoelectric conversion device. Thus, the photoelectric conversion device module could be easily manufactured without bending.
 本実施例においては、p型の導電型を有するシリコン基板を用いたが、n型の導電型を有するシリコン基板を用いた場合においても同様の結果が得られた。すなわち、第1導電型がn型で、第2導電型がp型でもよい。 In this example, a silicon substrate having p-type conductivity was used, but similar results were obtained when a silicon substrate having n-type conductivity was used. That is, the first conductivity type may be n-type and the second conductivity type may be p-type.
 今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 40,40A,40B,120 光電変換装置、41,121 シリコン基板、42,122 n型半導体層、43,123 反射防止膜、44 サブ電極、45,128 アルミニウム電極、46,125 裏面電界層、47,126 裏面パッシベーション膜、48 金属箔、48a 突出部、50 光電変換装置本体、51,124 受光面電極、52 メイン電極、53,153 インターコネクタ、53a 接続部、72,172 ガラス基板、73,173 封止材、74,174 バックシート、81,181 第1EVAフィルム、82,182 第2EVAフィルム、91,191 光電変換装置モジュール、127 裏面電極。 40, 40A, 40B, 120 photoelectric conversion device, 41, 121 silicon substrate, 42, 122 n-type semiconductor layer, 43, 123 antireflection film, 44 sub-electrode, 45, 128 aluminum electrode, 46, 125 back surface electric field layer, 47 126, back surface passivation film, 48 metal foil, 48a protrusion, 50 photoelectric conversion device body, 51, 124 light receiving surface electrode, 52 main electrode, 53, 153 interconnector, 53a connection, 72, 172 glass substrate, 73, 173 Sealing material, 74,174 backsheet, 81,181 first EVA film, 82,182 second EVA film, 91,191 photoelectric conversion device module, 127 back electrode.

Claims (9)

  1.  複数の光電変換装置(40)と、
     前記光電変換装置(40)同士の間を接続するインターコネクタ(53)とを
    を備え、
     前記光電変換装置(40)の裏面には、裏面電極である金属箔(48)が位置し、
     前記金属箔(48)は、平面視において前記光電変換装置(40)の前記裏面と重なっていない領域である突出部(48a)を有し、
     前記インターコネクタ(53)は、前記複数の光電変換装置(40)のうちの1つの前記光電変換装置(40)の受光面に形成された受光面電極(51)と、他の1つの前記光電変換装置(40)の前記金属箔(48)の前記突出部(48a)の受光面側とに接している、光電変換装置モジュール。
    A plurality of photoelectric conversion devices (40);
    An interconnector (53) for connecting the photoelectric conversion devices (40) to each other;
    On the back surface of the photoelectric conversion device (40), a metal foil (48) as a back electrode is located,
    The metal foil (48) has a protrusion (48a) that is a region not overlapping the back surface of the photoelectric conversion device (40) in plan view,
    The interconnector (53) includes a light receiving surface electrode (51) formed on a light receiving surface of one of the plurality of photoelectric conversion devices (40) and the other photoelectric conversion device. A photoelectric conversion device module in contact with the light receiving surface side of the protrusion (48a) of the metal foil (48) of the conversion device (40).
  2.  前記金属箔(48)が銅箔である、請求項1に記載の光電変換装置モジュール。 The photoelectric conversion device module according to claim 1, wherein the metal foil (48) is a copper foil.
  3.  前記複数の光電変換装置(40)の受光面側に位置する透明基板(72)と、
     前記複数の光電変換装置(40)の裏面側に位置するバックシート(74)と
    をさらに備え、
     前記光電変換装置(40)および前記インターコネクタ(53)は、前記透明基板(72)と前記バックシート(74)との間で封止材(73)により封止されている、請求項1または2に記載の光電変換装置モジュール。
    A transparent substrate (72) located on the light receiving surface side of the plurality of photoelectric conversion devices (40);
    A backsheet (74) positioned on the back side of the plurality of photoelectric conversion devices (40),
    The photoelectric conversion device (40) and the interconnector (53) are sealed with a sealing material (73) between the transparent substrate (72) and the back sheet (74). The photoelectric conversion device module according to 2.
  4.  インターコネクタ(53)の他端側に平面視において光電変換装置本体(50)の受光面と重ならないように突出した接続部(53a)が形成されるように、該光電変換装置本体(50)の受光面電極(51)に前記インターコネクタ(53)の一端を接続する第1工程と、
     透明基板(72)上に第1フィルム状封止材(81)を配置し、該第1フィルム状封止材(81)上に前記インターコネクタ(53)を接続した複数の前記光電変換装置本体(50)を、前記光電変換装置本体(50)の前記受光面が前記第1フィルム状封止材(81)と接するように配置する第2工程と、
     互いに隣接する前記光電変換装置本体(50)同士間において前記接続部(53a)を有する前記インターコネクタ(53)が接続された前記光電変換装置本体(50)に隣接する前記光電変換装置本体(50)の裏面上に、前記インターコネクタ(53)の前記接続部(53a)と対向する突出部(48a)を有するように金属箔(48)を配置する第3工程と、
     前記金属箔(48)上に第2フィルム状封止材(82)を配置し、該第2フィルム状封止材(82)上にバックシート(74)を配置する第4工程と、
     前記透明基板(72)および前記バックシート(74)の両側から挟みこんでラミネートした後、加熱する第5工程と
    を備える、光電変換装置モジュールの製造方法。
    The photoelectric conversion device main body (50) is formed on the other end side of the interconnector (53) so that a connecting portion (53a) protruding so as not to overlap the light receiving surface of the photoelectric conversion device main body (50) in plan view is formed. A first step of connecting one end of the interconnector (53) to the light receiving surface electrode (51);
    A plurality of the photoelectric conversion device main bodies in which a first film-like sealing material (81) is disposed on a transparent substrate (72), and the interconnector (53) is connected to the first film-like sealing material (81) (50) is disposed so that the light receiving surface of the photoelectric conversion device main body (50) is in contact with the first film-shaped sealing material (81);
    The photoelectric conversion device main body (50) adjacent to the photoelectric conversion device main body (50) to which the interconnector (53) having the connection portion (53a) is connected between the photoelectric conversion device main bodies (50) adjacent to each other. A third step of disposing a metal foil (48) on the back surface of the interconnector (53) so as to have a protrusion (48a) facing the connection portion (53a) of the interconnector (53);
    A fourth step of disposing a second film-shaped encapsulant (82) on the metal foil (48) and disposing a backsheet (74) on the second film-shaped encapsulant (82);
    And a fifth step of heating after sandwiching the transparent substrate (72) and the back sheet (74) from both sides and laminating them.
  5.  第1導電型を有するシリコン基板(41)と、
     前記シリコン基板(41)の受光面側に形成され、前記第1導電型とは異なる第2導電型を有する半導体層(42)と、
     前記半導体層(42)上に形成された受光面電極(51)と、
     前記シリコン基板(41)の前記受光面とは反対側の裏面上に形成され、複数のコンタクトホールを有する裏面パッシベーション膜(47)と、
     前記複数のコンタクトホールの各々において前記シリコン基板(41)の前記裏面と接するように形成されたアルミニウム電極(45)と、
     前記アルミニウム電極(45)に接する金属箔(48)と
    を備えた、光電変換装置。
    A silicon substrate (41) having a first conductivity type;
    A semiconductor layer (42) formed on the light receiving surface side of the silicon substrate (41) and having a second conductivity type different from the first conductivity type;
    A light-receiving surface electrode (51) formed on the semiconductor layer (42);
    A back surface passivation film (47) formed on the back surface opposite to the light receiving surface of the silicon substrate (41) and having a plurality of contact holes;
    An aluminum electrode (45) formed in contact with the back surface of the silicon substrate (41) in each of the plurality of contact holes;
    A photoelectric conversion device comprising a metal foil (48) in contact with the aluminum electrode (45).
  6.  前記第1導電型がp型である、請求項5に記載の光電変換装置。 The photoelectric conversion device according to claim 5, wherein the first conductivity type is a p-type.
  7.  前記金属箔(48)が銅箔である、請求項5に記載の光電変換装置。 The photoelectric conversion device according to claim 5, wherein the metal foil (48) is a copper foil.
  8.  前記金属箔(48)がすべての前記アルミニウム電極(45)を覆っている、請求項5に記載の光電変換装置。 The photoelectric conversion device according to claim 5, wherein the metal foil (48) covers all the aluminum electrodes (45).
  9.  前記金属箔(48)は、平面視において前記光電変換装置(40)の前記裏面と重なっていない領域である突出部(48a)を有する、請求項5に記載の光電変換装置。 The photoelectric conversion device according to claim 5, wherein the metal foil (48) has a protruding portion (48a) which is a region not overlapping the back surface of the photoelectric conversion device (40) in a plan view.
PCT/JP2012/067814 2011-07-29 2012-07-12 Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device WO2013018521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-166647 2011-07-29
JP2011166647A JP2013030665A (en) 2011-07-29 2011-07-29 Photoelectric conversion device module, manufacturing method of the same, and photoelectric conversion device

Publications (1)

Publication Number Publication Date
WO2013018521A1 true WO2013018521A1 (en) 2013-02-07

Family

ID=47629052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067814 WO2013018521A1 (en) 2011-07-29 2012-07-12 Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP2013030665A (en)
WO (1) WO2013018521A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
JP2016523452A (en) * 2013-09-25 2016-08-08 晶澳(▲揚▼州)太▲陽▼能科技有限公司 Crystalline silicon solar cell having local aluminum back surface electric field which is translucent on both sides and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184876A1 (en) * 2013-05-14 2014-11-20 三菱電機株式会社 Foreign object removal device and method for producing solar cell using same
WO2016152649A1 (en) * 2015-03-25 2016-09-29 ナミックス株式会社 Solar cell module and method for manufacturing same
WO2017056483A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Solar battery module
JP6534021B2 (en) * 2018-03-05 2019-06-26 パナソニックIpマネジメント株式会社 Method of manufacturing solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243224A (en) * 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006073617A (en) * 2004-08-31 2006-03-16 Sharp Corp Solar cell and manufacturing method thereof
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
WO2009157079A1 (en) * 2008-06-26 2009-12-30 三菱電機株式会社 Solar battery cell and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243224A (en) * 1997-12-26 1999-09-07 Canon Inc Photovoltaic element module, manufacture thereof and non-contact treatment
JP2004247402A (en) * 2003-02-12 2004-09-02 Sanyo Electric Co Ltd Solar cell module and its manufacturing method
JP2006073617A (en) * 2004-08-31 2006-03-16 Sharp Corp Solar cell and manufacturing method thereof
JP2007201331A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Photovoltaic module
WO2009157079A1 (en) * 2008-06-26 2009-12-30 三菱電機株式会社 Solar battery cell and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262229A (en) * 1985-09-13 1987-03-18 Minolta Camera Co Ltd Camera with multi-split photometer
JP2016523452A (en) * 2013-09-25 2016-08-08 晶澳(▲揚▼州)太▲陽▼能科技有限公司 Crystalline silicon solar cell having local aluminum back surface electric field which is translucent on both sides and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013030665A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5869608B2 (en) Solar cell module
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
JP6189971B2 (en) Solar cell and solar cell module
EP2869350B1 (en) Solar cell module
TWI597856B (en) Solar cell and manufacturing method thereof
WO2013039158A1 (en) Solar cell module
WO2013018521A1 (en) Photoelectric conversion device module, method for producing photoelectric conversion device module, and photoelectric conversion device
US20120211049A1 (en) Solar cell element and solar cell module
JP2008270743A5 (en)
JP6495649B2 (en) Solar cell element and solar cell module
WO2016068237A1 (en) Solar cell module
JP5495777B2 (en) Solar cell module
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
KR101092468B1 (en) Solar cell and manufacturing mehtod of the same
JP2013048146A (en) Solar cell module
WO2014054605A1 (en) Photoelectric conversion device, method for manufacturing photoelectric conversion device, and photoelectric conversion module
CN109041583B (en) Solar cell element and solar cell module
JP2015106585A (en) Method for manufacturing solar cell element and solar cell module
JP5452755B2 (en) Method for manufacturing photovoltaic device
WO2015146413A1 (en) Solar cell and solar cell module using same
EP3355361B1 (en) Solar cell having high photoelectric conversion efficiency and method for producing solar cell having high photoelectric conversion efficiency
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US11217711B2 (en) Photovoltaic device, solar cell string of photovoltaic devices, and solar cell module including either photovoltaic device or solar cell string
WO2018235202A1 (en) Solar battery cell and solar battery module
JP2016189439A (en) Solar cell element and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12819374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12819374

Country of ref document: EP

Kind code of ref document: A1