WO2013015666A1 - Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas - Google Patents

Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas Download PDF

Info

Publication number
WO2013015666A1
WO2013015666A1 PCT/MX2011/000143 MX2011000143W WO2013015666A1 WO 2013015666 A1 WO2013015666 A1 WO 2013015666A1 MX 2011000143 W MX2011000143 W MX 2011000143W WO 2013015666 A1 WO2013015666 A1 WO 2013015666A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulforaphane
broccoli
extract
fermentation
water
Prior art date
Application number
PCT/MX2011/000143
Other languages
English (en)
French (fr)
Inventor
Jaime Lopez Cervantes
Dalia Isabel SÁNCHEZ MACHADO
Original Assignee
Jaime Lopez Cervantes
Sanchez Machado Dalia Isabel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jaime Lopez Cervantes, Sanchez Machado Dalia Isabel filed Critical Jaime Lopez Cervantes
Publication of WO2013015666A1 publication Critical patent/WO2013015666A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/26Cyanate or isocyanate esters; Thiocyanate or isothiocyanate esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/31Brassicaceae or Cruciferae (Mustard family), e.g. broccoli, cabbage or kohlrabi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/10Preparation or pretreatment of starting material
    • A61K2236/19Preparation or pretreatment of starting material involving fermentation using yeast, bacteria or both; enzymatic treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Definitions

  • This invention has its application in the field of biotechnology, specifically it refers to a novel method for obtaining sulforaphane through a process of lactic fermentation of cruciferous plants, especially broccoli, which is obtained from crop waste, as well as Identification and quantification of sulforaphane by high performance liquid chromatography (HPLC).
  • HPLC high performance liquid chromatography
  • BACKGROUND Crucifixes are a family of large and homogeneous plants which is composed of more than 2000 species, including several important cultivated plants. They are consumed as vegetables, they are a concentrated source of nutrients such as vitamins, minerals and fiber, and non-nutritive photochemical substances such as sulfur compounds.
  • the edible crucifixes are cabbage, broccoli, Brussels sprouts, cauliflower, kale, necklaces (a variety of kale from the southern United States) and kohlrabi (kohlrabi). From the crucifixes you can eat the leaves, buds and flowers, and they can be eaten raw or cooked, fermented and sometimes dried.
  • Rutabaga (turnip) and turnip are also cruciferous but, unlike other plants in this family, what is harvested and consumed is the root (Mázza, 1998).
  • Broccoli is a plant formed by fleshy and thick stems that emerge from leaf axils forming inflorescences, usually a larger central and other lateral ones.
  • the edible part is formed by a set of floral buds with their fleshy peduncles and unlike cauliflower, can produce other small laterals that leave the axillae of the leaves of the main stem (FAO, 2006).
  • FEO field-to-live
  • the myrosinase enzyme breaks the ⁇ -thioglycoside bond of glucosinolate molecules, producing glucose, sulfate, and a diverse group of aglycone products.
  • Vegetables of the Brassicacea family particularly of the Brassica genus, such as broccoli (Brassica olaraceae var. Italic), have been epidemiologically related to the reduction of certain types of cancer (Zhan et al., 1992). His anti-cancer (broccoli, especially) is due to the content of these vegetables in glucosinolates.
  • Glucosinolates also called thioglycosides
  • S-glycosides are S-glycosides in which glycine is b-D-thioglucose and aglycone is a sulfated oxime.
  • Isothiocyanate component is sulforaphane (Pokorny et al., 2001; Fimognari and Hrelia, 2007).
  • Sulforaphane is a plant chemical found in cruciferous vegetables, including broccoli. It was discovered more than a decade ago, it is a potent enzyme inducer that provides defense against cancer (Jackson, Stngletary, 2004).
  • Broccoli is a good source of glucosinolates, which are precursors of biomolecules with antimicrobial, anticarcinogenic and chemopreventive properties such as sulforaphane (1-isothiocyanate-4- (methylsulfinyl) -butane) (Van Eylen et al. 2009).
  • Sulforaphane is of great interest and conservation alternatives are being sought, to develop functional foods, which are defined as those that by virtue of their content of bioactive compounds provide a health benefit superior to basic nutrition (Delaquis and Mazza, 2000; Arala et al. 2006). Lactic fermentation is widely used to improve organoleptic properties such as taste, smell, texture, as well as nutritional composition. In addition, during this process various bioactive compounds are produced (Tolonen et al. 2002). Vegetables can be preserved or processed by salting, acidification or fermentation. The genera of Lactobacillus and Streptococcus are widely used in the fermentation of a wide variety of lactic and vegetable products (Battcock and Azam-Ali, 1998).
  • salt prior to fermentation has an effect on the selection of the predominant microflora, in addition the salt extracts vegetable juices that are rich in fermentable sugars and other nutrients.
  • Commonly fermented vegetables are cabbage, cucumbers, cauliflower, radishes and peppers, which are consumed in the East.
  • the fermented products of greater commercial importance worldwide are kimchi, pickles and sauerkraut (Battcock and Azam-Ali, 1998).
  • Broccoli is the main natural source of sulforaphane isothiocyanate, its glucorafanin precursor constitutes 50 to 80% of the total glucosinolates present in this vegetable (Borowski et al. 2008; Van Eylen et al. 2009). Cultivation practices, storage conditions and food preparation have a potential impact on glucosinolate content (Rangkadilok et al. 2002, Vallejo et al. 2003). Additionally, sulforaphane is highly reactive and unstable, so it is important to evaluate the effect of lactic fermentation on its content.
  • US 2008/031 276 A1 describes a process for the production of glucosinolates, particularly glucorafanin from cruciferous plants, where the content of the mixture, plant material and liquids is heated to inactivate enzymes and extracted with an anion exchange membrane.
  • the CN2009 patent 037363 describes a method for extracting multifunctional sulforaphane from broccoli, which consists of taking broccoli grown for 6-10 days and mincing it, freezing it and drying it, then taking 100 parts by weight and adding deionized water, methylene dichloride.
  • KR20080025000 proposes a method to amplify broccoli sulforaphane content through an extra high voltage process to produce foods containing sulforaphane as an active component.
  • document FR20050007280 discloses a method for the extraction of sulforaphane from an extract of broccoli seeds which contains glucorafanine.
  • this innovative method provides an alternative for the treatment of agricultural waste of broccoli in a comprehensive way to obtain food derivatives with beneficial properties for health and high added value, such as supplements with high fiber and / or protein content, texture improvers or active extracts rich in sulforaphane.
  • glucosinolate which is the precursor compound of sulforaphane isothiocyanate.
  • glucorafanine which is the precursor compound of sulforaphane isothiocyanate.
  • the latter has been shown to possess anticarcinogenic activity, and also has specific properties against solid tumor formation (Zhang et al., 1992; Talalay & Fahey, 2001).
  • Sulforaphane [1-isothiocyanate-4- (methylsulfinyl) butane] acts by stimulating anticancer defenses preventing the appearance of tumors.
  • the present invention proposes a method for obtaining sulforaphane by a process of lactic fermentation of the residues of the broccoli crop, which also includes the identification and quantification of the sulforaphane by high performance liquid chromatography (HPLC ) and the development of a fermented broccoli food.
  • HPLC high performance liquid chromatography
  • the characteristic method of this invention uses a lactic fermentation process to obtain sulforphane as well as high performance liquid chromatography (HPLC) in cruciferous plants, so they are not similar in any way.
  • this method is distinguished because it uses the HPLC procedure for the quantification of sulforaphane, not in seeds but in different parts (leaves, stems and inflorescences) of fresh and lyophilized cruciferous vegetables.
  • FIGURE 1 shows the pH variations during broccoli fermentation.
  • Figure 2 shows the monitoring of total titratable acidity (% ATT) in broccoli fermentation.
  • Figure 3 shows the sulforaphane content (pg / g dry matter) during the lactic fermentation process of broccoli.
  • Figure 4 shows the HPLC chromatograms obtained at 0, 12, 24 and 96 hours of fermentation of broccoli preparations.
  • the inoculum used was a commercial probiotic of immobilized cells, this was activated using 50 ml of the probiotic, 350 ml of distilled water and 50 g of commercial sucrose, homogenized and incubated at 37 ° C (Fisher Scientific, model 500) until 1.7 absorbance measured at a wavelength of 535 nm with 20 Genesys spectrophotometer (Spectronic Intruments, USA).
  • the organic extract obtained is purified in a 3 ml SPE cartridge (SiOH) according to the method of Bertelli et al. (1998). First the cartridge is activated by passing 3 ml of dichloromethane, then the whole organic extract is passed. The cartridge is then rinsed with 3 ml of ethyl acetate to remove impurities. To elute the sulforaphane, 3 ml of methanol are passed. The collected solution is dried in a vacuum oven at 45 ° C. The residue is dissolved with 2 ml of acetonitrile, sonified for 30 seconds, and the extract is filtered through a 0.45 pm cellulose membrane. Finally, 20 ⁇ are injected into the HPLC system.
  • SiOH 3 ml SPE cartridge
  • HPLC HPLC
  • LC1650 auto-injector
  • LC1460 solvent degasser software for the analysis of WinChrom data
  • pump LC1 150 column thermostat LC1150
  • array detector LC5100 diodes and an analytical column (250 mm X4.6 mm di)
  • SS-Exil ODS C18 with a particle size of 5 pm (SGE, Dandenong, Victoria, Australia).
  • the HPLC conditions are as follows: acetonitrile mobile phase: water in 30:70 (v / v) ratio; the flow rate is constant at 0.6 ml / min and the column temperature of 36 ° C.
  • the detection is performed by ultraviolet at 202 nm.
  • Figures 1 and 2 show the pH and titratable total acidity values monitored during broccoli lactic fermentation, respectively.
  • Table 1 shows the chemical composition of the fermented (96 h) and unfermented (0 h), it is observed that the protein content of the fermented is in the range of 21.44 to 24.5%, the ashes showed a range of 14.5 to 17.9%, lipids were found from 3.7 to 5.0%. In all fermented products, a significant increase in protein, lipid and ash content was observed for treatments inoculated with lactic bacteria compared to unfermented treatments (time 0 hours).
  • the raw fiber content did not show variations.
  • the fermented products obtained in the present studies improved their nutritional composition, which is attributed to the enzymatic changes that the
  • the identification of sulforaphane was made by comparing the retention times of the sulforaphane standard peak, with that of the sample, as well as its UV spectrum obtained from a wavelength scan ( ⁇ ) of 190 to 300 nm, considering ⁇ of 202 nm the optimum to record the areas of the peaks.
  • a sulforaphane standard was analyzed simultaneously.
  • Figure 3 shows the sulforaphane content in the samples obtained at 0, 4, 8, 12, 16, 24, 48 and 96 hours of fermentation for the three treatments applied.
  • the treatment without inoculum (T1) presented a sulforaphane content in the range of 100 to 207 pg / g of dry matter
  • treatment 2 with inoculum (T2) values varied from 43 to 109 pg / g of dry matter
  • Scalded and inoculum treatment showed a range of 109 to 376 ug / g dry matter.
  • sulforaphane degraded within 24 hours in treatments T1 and T2, in the case of T3 its presence was detected until 48 hours of fermentation.
  • the method also represents an alternative for the treatment of broccoli agricultural residues in an integral way to obtain food derivatives with beneficial properties for health and high added value, such as supplements with high fiber and / or protein content, texture improvers or active extracts rich in sulforaphane.

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La presente invención corresponde al campo de la biotecnología, pues se trata de un método para la obtención de sulforafano mediante un proceso de fermentación láctica del brócoli y los residuos de su cosecha, que además incluye la identificación y cuantificación del sulforafano por cromatografía líquida de alta resolución (HPLC) y el desarrollo de un alimento fermentado de brócoli. Gracias a este método es posible obtener mayores concentraciones de sulforafano en residuos de brócoli fermentados, sobre todo en aquéllos fermentados escaldados; lo cual constituye una alternativa en el desarrollo de nuevos productos debido a que se mejora la composición nutrimental y el nivel de conservación del vegetal. De igual forma, el método también representa una alternativa para el tratamiento de los residuos agrícolas de brócoli de manera integral para obtener derivados alimenticios con propiedades beneficiosas para la salud y de alto valor agregado, como suplementos con alto contenido de fibra y/o proteína, mejoradores de textura o extractos activos ricos en sulforafano. Los pasos del método consisten en: a) la preparación de las muestras; b) adición de sal, inoculo, agua y azúcar; c) mezclado; d) fermentación; e) cuantificación, extracción y purificación del sulforafano.

Description

MÉTODO DE EXTRACCIÓN DE SULFORAFANO MEDIANTE UN TRATAMIENTO DE FERMENTACIÓN LÁCTICA EN PLANTAS CRUCIFERAS
CAMPO TÉCNICO
Esta invención tiene su aplicación en el campo de la biotecnología, específicamente se refiere a un novedoso método para la obtención de sulforafano mediante un proceso de fermentación láctica de plantas cruciferas, especialmente brócoli, que se obtiene de los desechos de la cosecha, así como la identificación y cuantificación del sulforafano por cromatografía líquida de alta resolución (HPLC).
ANTECEDENTES Las cruciferas son una familia de plantas extensas y homogéneas qué se compone de más de 2000 especies, incluyendo varias plantas cultivadas importantes. Se consumen como verdura, son una fuente concentrada de nutrientes como vitaminas, minerales y fibra, y de sustancias fotoquímicas no nutritivas como por ejemplo compuestos azufrados. Entre las cruciferas comestibles están la col, el brócoli, las coles de Bruselas, la coliflor, la col rizada, los collares (una variedad de col rizada del sur de los Estados Unidos) y el kohlrabi (colinabo). De las cruciferas se puede comer las hojas, yemas y flores, y se pueden consumir crudas o cocidas, fermentadas y a veces secas. La rutabaga (nabosueco) y el nabo también son cruciferas pero, a diferencia de otras plantas de esta familia, lo que se cosecha y consume es la raíz (Mázza, 1998).
El brócoli es una planta formada por tallos carnosos y gruesos que emergen de axilas foliares formando inflorescencias, generalmente una central de mayor tamaño y otras laterales. La parte comestible, está formada por un conjunto de yemas florales con sus pedúnculos carnosos y a diferencia de la coliflor, puede producir otras pequeñas laterales que salen de las axilas de las hojas del tallo principal (FAO, 2006). Se ha demostrado que los efectos preventivos del cáncer por los vegetales cruciferos se relacionan con su particular contenido de una gran variedad de glucosinolatos, que son glucósidos contenidos en las vacuolas. Cuando los vegetales como el brócoli sufren un rompimiento celular, la enzima mirosinasa (tioglucosido glucohidrolasa), y glucosinolatos entran en contacto. La enzima mirosinasa rompe el enlace β-tioglucósido de las moléculas del glucosinolato, produciendo glucosa, sulfato, y un diverso grupo de productos de la aglicona. Hasta la fecha se han identificado más de cien compuestos de este tipo (Mazza, 2000; Matusheski, 2001 ; Fimognari y Hrelia, 2007). Los vegetales de la familia Brassicacea, en particular del género Brassica, como el brócoli (Brassica olaraceae var. itálica), se han relacionado epidemiológicamente con la reducción de ciertos tipos de cáncer (Zhan y col., 1992). Su póder anticanceroso (brócoli, sobre todo) se debería al contenido de estos vegetales en glucosinolatos.
Los glucosinolatos, también llamados tioglicósidos, son S-glicósidos en los que la glicona es b-D-tioglucosa y la aglicona es una oxima sulfatada. Como se mencionó anteriormente, la ruptura de los enlaces moleculares de los glucosinaltos genera múltiples derivados, el componente Isotiocianato mayormente caracterizado es el sulforafano (Pokorny y cois., 2001 ; Fimognari y Hrelia, 2007). El sulforafano es un producto químico de las plantas encontrado en vegetales cruciferos, incluyendo el brócoíi. Fue descubierto hace más de una década, es un potente inductor de enzimas que proveen defensa contra el cáncer (Jackson, Stngletary,2004).
Una tendencia a nivel mundial es el incremento constante de la producción y consumo del brócoli, lo anterior se atribuye a su alto contenido de nutrientes, vitaminas y antioxidantes (Moreno et al,. 2006). El brócoli es una buena fuente de glucosinolatos, los cuales son precursores de biomoléculas con propiedades antimicrobianas, anticarcinogénicas y quimiopreventivas como el sulforafano (1 - isotiocianato-4-(metilsulfinil)-butano) (Van Eylen et al. 2009). El sulforafano es de gran interés y se están buscando alternativas de conservación, para desarrollar alimentos funcionales, los cuales se definen como aquellos que por virtud de su contenido de compuestos bioactivos proveen un beneficio a la salud superior a la nutrición básica (Delaquis y Mazza, 2000; Arala et al. 2006). La fermentación láctica es ampliamente utilizada para mejorar propiedades organolépticas tales como sabor, olor, textura, así como la composición nutricional. Además, durante este proceso se producen diversos compuestos bioactivos (Tolonen et al. 2002). Los vegetales pueden ser conservados o procesados por salado, acidificación o fermentación. Los géneros de Lactobacillus y Streptococcus son ampliamente utilizados en la fermentación de una gran variedad productos lácticos y vegetales (Battcock y Azam-Ali, 1998). La adición de sal previa a la fermentación tiene efecto en la selección de la microflora predominante, además la sal extrae los jugos del vegetal que son ricos en azúcares fermentables y otros nutrientes. La interacción de la sal, ácido láctico y la ausencia de oxígeno disuelto se oponen a la proliferación de bacterias deteriorativas (ICMSF, 2005). Los vegetales comúnmente fermentados son la col, pepinos, coliflor, rábanos y pimientos, los cuales son consumidos en el Oriente. Los productos fermentados de mayor importancia comercial a nivel mundial son el kimchi, los pepinillos y el sauerkraut (Battcock y Azam-Ali, 1998).
El brócoli es la principal fuente natural del isotiocianato sulforafano, su precursor glucorafanina constituye del 50 al 80 % de los glucosinolatos totales presentes en este vegetal (Borowski et al. 2008; Van Eylen et al. 2009). Las prácticas de cultivo, condiciones de almacenamiento y la preparación del alimento tienen un impacto potencial en el contenido de glucosinolatos (Rangkadilok et al. 2002, Vallejo et al. 2003). Adicionalmente, el sulforafano es altamente reactivo e inestable, por ello es importante evaluar el efecto de la fermentación láctica en su contenido.
Después de realizar una búsqueda de la información tecnológica para conocer el estado del arte en esta materia, no se obtuvieron resultados relevántes relacionados con la presente invención.
Por mencionar algunos ejemplos, el documento US 2008/031 276 A1 describe un proceso para la producción de glucosinolatos particularmente glucorafanina de plantas cruciferas, donde el contenido de la mezcla, material de la planta y en los líquidos se calienta para inactivar las enzimas y se extrae con una membrana de intercambio anionico. La patente CN2009 037363 describe un método para extraer sulforafano multifuncional del brócoli, el cual consiste en tomar brócoli crecido durante 6-10 días y picarlo, congelarlo y secarlo, posteriormente se toman 100 partes por peso y se le agrega agua desionizada, dicloruro de metileno, 0.001 -003 partes por peso de VC y 0.1 -0.3 partes por peso de Na2S, el valor del pH es ajustado a 4-6, entonces la solución es hidrolizada por 6-1 Oh a 5-35 DEG C, finalmente el sulforafano es obtenido después de filtrar, lavar y purificar.
Otro documento, el KR20080025000, propone un método para amplificar el contenido de sulforafano de brócoli a través de un proceso de extra alto voltaje para producir alimentos que contienen sulforafano como un componente activo. Por su parte, el documento FR20050007280 revela un método para la extracción de sulforafano a partir de un extracto de semillas de brócoli el cual contiene glucorafanina.
Por lo anterior, se considera que no existen antecedentes relevantes que hayan revelado el novedoso procedimiento que se describe a continuación.
OBJETO DE LA INVENCIÓN
A nivel mundial se producen alrededor de 19,107,751 toneladas de brócoli y coliflor, donde China e India son los principales productores, generan el 70% de la producción total. Estados Unidos y México ocupan el sexto y séptimo lugar y son los principales productores del mercado latinoamericano (FAO, 2009). Asimismo, se estima que del total de la producción se obtiene un remanente de aproximadamente 38,000,000 toneladas de inflorescencias además de hojas y tallos. Por lo tanto, la gran cantidad de residuos agrícolas producidos cada año constituye un problemática para los agricultores, ya que se genera una inversión por disposición de residuos así como contaminación ambiental.
En México en el año 2007 se obtuvo una producción anual de brócoli de 266, 018
toneladas, para las cuales se calcula que se generaron 960 toneladas de residuos.
Por lo anterior, este método innovador proporciona una alternativa para el tratamiento de los residuos agrícolas de brócoli de manera integral para obtener derivados alimenticios con propiedades beneficiosas para la salud y de alto valor agregado, como suplementos con alto contenido de fibra y/o proteína, mejoradores de textura o extractos activos ricos en sulforafano.
Actualmente existe un gran interés por el glucosinolato, glucorafanina, que es el compuesto precursor del isotiocianato sulforafano. Este último se ha comprobado que posee actividad anticarcinogénica, además presenta propiedades específicas contra la formación de tumores sólidos (Zhang y col. ,1992; Talalay & Fahey, 2001 ). De igual forma, se ha demostrado el importante papel dé la incorporación del brócoli en la dieta con el propósito de prevenir un gran número de tumores e inhibir la ocurrencia de cáncer gracias a la presencia de sulforafano procedente de la glucorafanina presente en germinados de brócoli. El sulforafano [1 -isotiocianato-4-(metilsulfinil) butano], actúa estimulando las defensas anticancerígenas previniendo la aparición de tumores.
En consideración a lo anteriormente expuesto, la presente invención propone un método para la obtención de sulforafano mediante un proceso de fermentación láctica de los residuos de la cosecha de brócoli, que además incluye la identificación y cuantificación del sulforafano por cromatografía líquida de alta resolución (HPLC) y el desarrollo de un alimento fermentado de brócoli. A diferencia de los procedimientos ya conocidos, el método característico de esta invención utiliza un proceso de fermentación láctica para la obtención de sulforfano así como la cromatografía líquida de alta resolución (HPLC) en plantas cruciferas, por lo que no son similares en ninguna manera.
De igual forma, este método se distingue porque utiliza el procedimiento HPLC para la cuantificación de sulforafano, no en semillas sino en distintas partes (hojas, tallos e inflorescencias) de vegetales cruciferos frescos y liofilizados.
DESCRIPCION DE LA INVENCIÓN
Los detalles característicos de este novedoso método se muestran claramente en la siguiente descripción y en los dibujos que se acompañan, así como una ilustración de aquélla y siguiendo los mismos signos de referencia para indicar las partes y las figuras mostradas.
BREVE DESCRIPCIÓN DE LAS FIGURAS 1 . La Figura 1 muestra las variaciones de pH durante la fermentación de brócoli.
2. La Figura 2 muestra el monitoreo de la acidez total titulable (% ATT) en la fermentación de brócoli.
3. En la Figura 3 se aprecia el contenido de sulforafano (pg/g materia seca) durante el proceso de fermentación láctica del brócoli.
4. La Figura 4 muestra los cromatogramas HPLC obtenidos a las 0, 12, 24 y 96 horas de fermentación de los preparados de brócoli.
Para el desarrollo de la presente invención, se procede con la siguiente metodología:
Estándar y reactivos
- El estándar de sulforafano y acetonitrjlo grado HPLC fueron de Sigma- Aldrich (St. Louis, MO, USA).
- El diclorometano (CH2CI2) y metanol grado HPLC fueron de EMD Chemicals Inc. (Darmstadt, Germany).
- El acetato de etilo y las columnas de 3 mi Bakerbond SPE silica gel (SiOH) se adquirieron en J.T, Baker S.A. (Xalostoc, México).
- El ácido clorhídrico, ácido bórico, hidróxido de sodio fueron obtenidos de Productos Químicos Monterrey (Monterrey, Nuevo León México).
- La mezcla reactiva de selenio fue de Merck (Darmstadt, Germany).
- El pH del agua ácida se ajustó utilizando una solución de ácido clorhídrico 0.1 N Material vegetal
- Se utilizaron muestras frescas de brócoli (Brassica olerácea L. var. itálica).
- Las inflorescencias se lavaron con agua corriente para eliminar las partículas de tierra, se eliminó el exceso de humedad, se procedió a su trituración y homogenización utilizando una batidora de inmersión (Oster, modelo 2616, Sunbeam Mexicana).
- Un lote de brócoli se escaldó a 60°C durante 5 minutos antes de la homogenización.
Activación del inoculo
El inoculo utilizado fue un probiótico comercial de células inmovilizadas, éste fue activado utilizando 50 mi del probiótico, 350 mi de agua destilada y 50 g de sacarosa comercial, se homogenizó y se incubó a 37°C (Fisher Scientific, modelo 500) hasta una absorbancia de 1.7 medido a una longitud de onda de 535 nm con espectrofotómetro 20 Genesys (Spectronic Intruments, USA).
Preparación de los fermentados
Se probaron tres tratamientos para realizar la fermentación, en todos los casos se adicionó 1 % de NaCI en polvo la cual se incorporo al brócoli triturado y esta mezcla se dejó reposar durante 20 minutos. Posteriormente, al tratamiento 1 (T1 ) se le adiciono 33 % de agua (fermentación espontánea), al tratamiento 2 (T2) un 33 % de inoculo de bacterias ácido lácticas activado, y para el tratamiento 3 (T3) se utilizó el brócoli escaldado adicionado con 33 % de inoculo activado. Para la fermentación todos los materiales fueron incubados a 30°C por 96 horas. Durante el proceso de fermentación se determinaron el pH, acidez total titulable y contenido de sulforafano a las 0, 4, 8, 12, 16, 24, 48, 72 y 96 horas.
Determinación de pH y acidez total titulable (ATT) El pH y la acidez se determinaron de acuerdo a los métodos establecidos por la AOAC (1984).
Composición química
Las muestras obtenidas de los tres tratamientos al tiempo 0 y a las 96 horas de fermentación se secaron en horno (Felisa, Modelo FE291 D) a 60°C por 5 horas, y a los residuos secos se les determinó el contenido de humedad, cenizas, proteína y fibra cruda de acuerdo a los métodos oficiales de la AOAC (1984). Para evaluar el contenido de lípidos totales se utilizó una mezcla de cloroformo metanol 2:1 según el método de Sánchez-Machado et al. (2004).
Cuantificación de sulforafano
Conversión de glucorafanina a sulforafano. La muestra se homogeniza (1 g), y se adicionan 4 mi de agua ácida (pH=6.0), luego se incuba a 45 ± 2°C en baño de agua durante 2.5 horas. Al final de la incubación se observa que se ha evaporado aproximadamente el 70 % del peso inicial de la muestra-agua ácida. Extracción de sulforafano con diclorometano. El sulforafano se extrae del residuo con 20 mi de diclorometano por sonificación durante 1 minuto; después se reposa 1 hora a 25 °C. El extracto se filtra en papel Whatman Nú.41 , realizando 2 lavados con 3 mi de diclorometano cada uno de ellos.
Purificación en columna SPE. El extracto orgánico obtenido se purifica en un cartucho de 3 mi SPE (SiOH) de acuerdo al método de Bertelli et al. (1998). Primero el cartucho se activa pasando 3 mi de diclorometano, luego se pasa todo el extracto orgánico. A continuación se enjuaga el cartucho con 3 mi de acetato de etilo para eliminar las impurezas. Para eluir el sulforafano se pasan 3 mi de metanol. La solución colectada se seca en estufa de vacío a 45°C. El residuo se disuelve con 2 mi de acetonitrilo, se sonifica por 30 segundos, y el extracto se filtra a través de una membrana de celulosa de 0.45 pm. Finalmente, se inyectan 20 μΙ en el sistema HPLC.
Equipo y condiciones cromatográficas. Se utiliza un sistema HPLC (GBC, Dandenog, Australia) equipado con autoinyector LC1650, desgasificadór de solventes en línea LC1460, software para el análisis de los datos WinChrom, bomba LC1 150, termostato para columna LC1150, detector de arreglo de diodos LC5100 y una columna analítica (250 mm X4,6 mm d.i.) SS-Exil ODS C18 con un tamaño de partícula de 5 pm (SGE, Dandenong, Victoria, Australia). Las condiciones HPLC son las siguientes: fase móvil acetonitrilo:agua en proporción 30:70 (v/v); la velocidad del flujo es constante a 0.6 ml/min y la temperatura de la columna de 36°C. La detección se realiza por ultravioleta a 202 nm.
Monitoreo de pH y acidez total titulable (ATT)
Las Figuras 1 y 2 muestran los valores de pH y acidez total titulable monitoreados durante la fermentación láctica de brócoli, respectivamente.
Se puede observar que a medida que la fermentación avanza el pH disminuye debido a la producción de ácidos orgánicos (Figura 1 ), y se incrementa el %ATT expresado como ácido láctico (Figura 2). Se observaron cambios significativos en los valores de pH y ATT durante las primeras 24 horas de fermentación, sin presentarse variación significativa a las 96 horas. Estos parámetros son importantes para verificar que la fermentación se está llevando a cabo adecuadamente. El rango de pH en los tratamientos al inicio de la fermentación fue de 5 (T2, T3) a 6.3 (T1 ), y disminuyó entre 3.68 (T2, T3) a 4.2 (T1 ) al final de la fermentación (96 horas). En el caso de la ATT el valor varia de 0.73 (T1 ) a 1 .2 % (T2, T3). Los valores de pH y ATT se encuentran entre los rangos reportados por diversos autores durante la fermentación de diversos vegetales (Kim et al. 1999, Gardner et al. 2001 , Tolonen et al. 2002). Los fermentados T1 a las 96 horas mostró signos de deterioro (espuma, licuefacción y olores desagradables). En el caso del T2 presentó olores fuertes y desagradables comparados con el T3.
Composición química
La composición química de los tres fermentados (tiempo=0) está en el rango de 20.9 a 21.5 % para proteína, de 11.4 a 15.6 para cenizas, de 1 .6 a 2.6 para lípidos y 13.3 % de fibra cruda. Estos valores son similares a los reportados por Campas-Baypoli et al. (2009) en harinas de brócoli. Sin embargo, el contenido de cenizas es mayor, lo anterior se atribuye a la adición de NaCI para el tratamiento de los substratos. En ia Tabla 1 se presenta la composición química de los fermentados (96 h) y sin fermentar (0 h), se observa que el contenido de proteína de los fermentados está en el rango de 21 .4 a 24.5 %, las cenizas mostraron un rango de 14.5 a 17.9 %, los lípidos se encontraron de 3.7 a 5.0 %. En todos los fermentados se observó un incremento significativo del contenido de proteína, lípidos y cenizas para los tratamientos inoculados con bacterias lácticas respecto a los tratamientos sin fermentar (tiempo 0 horas).
El contenido de fibra cruda no presentó variaciones. En general los productos fermentados obtenidos en el presente estudios mejoraron su composición nutrimental, lo cual es atribuido a los cambios enzimáticos que ejercen las
Tabla 1
Tratamiento Proteína Ceniza Lípidos Carbohidratos" Fibra cruda
T1-0 horas 20.86 ± 0.14a 15.59 ± 0.34a 2.64 ± 0.01a 60.90 ± 0.36 13.33 ± 0.24a
T1-96 horas 21.38 ± 0.29a 17.91 ± 0.14b 4.62 ± 0.41 b 56.09 ± 0.52 13.30 ± 0.15a
T2-0 horas 21.40 ± 0.12a 12.23 ± 0.21a 1.69 ± 0.19a 64.68 ± 0.30 13.30 ± 0.28a
T2-96 horas 24.16 ± 0.26b 17.64 ± 0.14b 5.09 ± 0.36b 53.11± 0.46 13.22 ± 0.34a
T3-0 horas 21.46 ± 0.25a 11.42 ± 0.20a 1.59 ± 0.30a 65.53 ± 0.44 13,28 ± 0.20a
T3-96 horas 24.54 ± 0.13b 14.98 ± 0.25b 3.65 ± 0.29° 56.83± 0.40 13.24 ± 0.22a aLos datos expresan la media ± la desviación estándar por triplicado
bLos carbohidratos totales =100 -∑ (proteína + lípidos + cenizas)
cPor columna letras diferentes por tratamiento significa diferencias significativas (P≥0.05) bacterias ácido lácticas en el substrato, además del incremento en su biomasa.
Los resultados anteriores son similares a los obtenidos durante la fermentación de col, caupi, coliflor entre otros (Kim et al. 1999, Kasangi et al. 2010).
Identificación y cuantificación de sulforafano
La identificación del sulforafano se realizó comparando los tiempos de retención del pico del estándar de sulforafano, con el de la muestra, así como a su espectro UV obtenido de un barrido de longitudes de onda (λ) de 190 a 300 nm, considerándose la λ de 202 nm la óptima para registrar las áreas de los picos. La curva de calibración se generó a partir de seis concentraciones diferéntes del estándar de sulforafano en el rango de 4 a 80 g/ml. La ecuación obtenida al graficar la concentración (pg/ml) y el área de los picos (y = 100773x - 87954) presenta una adecuada relación entre las variables de la curva expresada como coeficiente de correlación (r2 = 0.9999). Durante el análisis de las muestras simultáneamente se analizó un estándar de sulforafano.
Contenido de sulforafano en los fermentados
En la Figura 3 se presenta el contenido de sulforafano en las muestras obtenidas a las 0, 4, 8, 12, 16, 24, 48 y 96 horas de fermentación para los tres tratamientos aplicados. El tratamiento sin inoculo (T1 ) presentó un contenido de sulforafano en el rango de 100 a 207 pg/g de materia seca, el tratamiento 2 con inoculo (T2) los valores variaron de 43 a 109 pg/g de materia seca y por último el tratamiento escaldado y con inoculo (T3) mostró un rango de 109 a 376 ug/g materia seca. Bajo las condiciones de fermentación aplicadas el sulforafano se degradó en un tiempo de 24 horas en los tratamientos T1 y T2, en el caso dé T3 se detectó su presencia hasta las 48 horas de fermentación. Por otro lado, los resultados muestran que el T3 donde se realizó el escaldado (60°C por 5 minutos) de la materia prima antes de la fermentación se observó un incrementó en el contenido de sulforafano respecto a los tratamientos sin escaldar. Lo anterior se puede atribuir a que durante el proceso de conversión de glucorafanina a sulforafano las proporciones obtenidas de los productos de la hidrólisis enzimática pueden variar de acuerdo a las condiciones de reacción. En el caso del escaldado existen reportes de la inactivación de un cofactor de la enzima mirosinasa, conocida como proteína ESP (epitioespecífica) que favorece la formación de sulforafano nitrilo (compuesto sin actividad biológica), mejorando el rendimiento del compuesto de interés sulforafano (Matushesky et al. 2004, Rungapamestry et al. 2006). Por otro lado, algunos autores han reportado que las bacterias lácticas poseen enzimas con actividad semejante a la mirosinasa y que pueden intervenir en el proceso de conversión a sulforafano (Tolonen et al. 2002, Fuller et al. 2007). Comparando los tratamientos aplicados no se logró observar lo anterior, posiblemente debido a que los factores que intervienen en mayor medida en la conversión de glucorafanina a sulforafano se atribuye a la actividad de las enzimas mirosinasas, el pH y la presencia de Fe+2 (Rungapamestry et al. 2006). En la Figura 4 se presentan los cromatogramas obtenidos en diversos tiempos de fermentación para los tres tratamientos aplicados durante el proceso de fermentación.
En consideración a lo anterior, gracias a este novedoso método es posible obtener mayores concentraciones de sulforafano en residuos de brócoli fermentados, sobre todo en aquellos fermentados escaldados; lo cual constituye una alternativa en el desarrollo de nuevos productos debido a que se mejora la composición nutrimental y el nivel de conservación del vegetal. De igual forma, el método también representa una alternativa para el tratamiento de los residuos agrícolas de brócoli de manera integral para obtener derivados alimenticios con propiedades beneficiosas para la salud y de alto valor agregado, como suplementos con alto contenido de fibra y/o proteína, mejoradores de textura o extractos activos ricos en sulforafano.

Claims

REIVINDICACIONES
Después de haber descrito suficientemente mi invención, considero como una novedad y reclamo como de mi exclusiva propiedad el contenido de las siguientes reivindicaciones:
1. Un método para la obtención de sulforafano mediante un proceso de fermentación láctica del brócoli y los residuos de su cosecha, que incluye la identificación y cuantificación del sulforafano por cromatografía líquida de alta resolución (HPLC), caracterizado porque comprende las siguientes etapas:
Preparar las muestras;
- Activar el inoculo;
- Preparar los fermentados;
- Determinar el pH y acides total titulable;
- Cuantificar el sulforafano;
• Convertir la glucorafanina en sulforafano;
• Extraer el sulforafano;
• Purificar el extracto de sulforafano;
• Establecer las condiciones cromatográficas; e
- Identificar y cuantificar el sulforafano.
2. El método de la reivindicación anterior, caracterizado porque para preparar las muestras:
- Se utilizan inflorescencias de brócoli como muestras;
- Se lavan con agua para eliminar las partículas de tierra;
- Se elimina el exceso de humedad y se trituran y homogenizan; y
- Un lote de brócoli se escalda a 60°C durante 5 minutos antes de la homogenización. 3. El método de la reivindicación 1 , caracterizado porque se utiliza un inoculo que consiste en un probiótico de células inmovilizadas, el cual se activa utilizando 50 mi del probiótico, 350 mi de agua destilada y 50 g de sacarosa, se homogeniza y se incuba a 37°C hasta una absorbencia de 1.7 medido a una longitud de onda de 535 nm con espectrofotómetro.
El método de la reivindicación 1 , caracterizado porque para preparar los fermentados:
- Se adiciona 1 % de NaCI en polvo al brócoli triturado y esta mezcla se deja reposar durante 20 minutos;
- A la mezcla se le pueden aplicar tres tratamientos, ya sea agregando 33 % de agua, un 33 % de inoculo de bacterias ácido lácticas activado p un 33 % de inoculo activado para el brócoli escaldado; y
- Las mezclas anteriores son incubadas a 30°C por 96 horas para su fermentación.
El método de la reivindicación 1 , caracterizado porque el pH y la acidez se determinan de acuerdo a los métodos establecidos por la AOAC.
El método de la reivindicación 1 , caracterizado porque para la conversión de glucorafanina a sulforafano, la muestra se homogeniza (1 g), se adicionan 4 mil de agua ácida (pH=6.0) y se incuba a 45 ± 2°C en baño de agua durante 2.5 horas.
El método de las reivindaciones 1 y 6, caracterizado porque el sulforafano se extrae del residuo con 20 mi de diclorometano por sonificación durante 1 minuto, después se reposa 1 hora a 25 °C y finalmente el extracto se filtra, realizando 2 lavados con 3 mi de diclorometano cada uno de ellos.
El método de las reivindicaciones 1 , 6 y 7, caracterizado porque para purificar el extracto orgánico obtenido:
- Se utiliza un cartucho de 3 mi SPE (SiOH);
- El cartucho se activa pasando 3 mi de diclorometano, luego se pasa todo el extracto orgánico;
- Se enjuaga el cartucho con 3 mi de acetato de etilo para eliminar las impurezas; - Para eluir el sulforafano se pasan 3 mi de metanol y la solución colectada se seca en estufa de vacío a 45°C;
- El residuo se disuelve con 2 mi de acetonitrilo, se sonifica por 30 segundos, y el extracto se filtra a través de una membrana de celulosa de 0.45 μπι; y
- Se inyectan 20 μΙ en el sistema HPLC.
9. El método de la reivindicación 1 , caracterizado porque para la cromatografía líquida de alta resolución se utiliza un sistema HPLC (GBC, Dandehog, Australia) equipado con autoinyector LC1650, desgasificador de solventes en línea LC1460, software para el análisis de los datos WinChrom, bomba LC1 150, termostato para columna LC1 150, detector de arreglo de diodos LC5100 y una columna analítica (250 mm X4.6 mm d.i.) SS-Exil ODS C18 con un tamaño de partícula de 5 pm (SGE, Dandenong, Victoria, Australia).
10. El método de la reivindicación 1 y 9, caracterizado porque las condiciones HPLC son las siguientes: fase móvil acetonitrilo:agua en proporción 30:70 (v/v); la velocidad del flujo es constante a 0.6 ml/min y la temperatura de la columna de 36°C; la detección se realiza por ultravioleta a 202 nm.
1 1 . El método de la reivindicación 1 , caracterizado porque la identificación del sulforafano se realiza:
- Comparando los tiempos de retención del pico del estándar de sulforafano, con el de la muestra, así como a su espectro UV obtenido de un barrido de longitudes de onda (λ) de 190 a 300 nm, considerándose la λ de 202 nm la óptima para registrar las áreas de los picos;
- La curva de calibración se genera a partir de seis concentraciones diferentes del estándar de sulforafano en el rango de 4 a 80 pg/ml;
- La ecuación obtenida al graficar la concentración (pg/ml) y el área de los picos (y = 100773x - 87954) presenta una adecuada relación entré las variables de la curva expresada como coeficiente de correlación (r2 = 0.9999); y - Durante el análisis de las muestras simultáneamente se analiza un estándar de sulforafano.
12. El extracto de sulforafano obtenido por el método de cualquiera de las reivindicaciones anteriores.
13. El extracto de la reivindicación anterior, caracterizado porque posee propiedades anticancerígenas. 14. El uso del extracto de sulforafano de las reivindicaciones 12 y 13, para elaborar alimentos con propiedades anticancerígenas.
15. El uso del extracto de sulforafano de las reivindicaciones 12 y 13, para elaborar suplementos alimenticios con propiedades anticancerígenas.
PCT/MX2011/000143 2011-07-25 2011-11-23 Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas WO2013015666A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2011007850A MX2011007850A (es) 2011-07-25 2011-07-25 Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas.
MXMX/A/2011/007850 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013015666A1 true WO2013015666A1 (es) 2013-01-31

Family

ID=47601333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2011/000143 WO2013015666A1 (es) 2011-07-25 2011-11-23 Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas

Country Status (2)

Country Link
MX (1) MX2011007850A (es)
WO (1) WO2013015666A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160279090A1 (en) * 2015-03-25 2016-09-29 Anne-Marie Kosi-Kupe Nutritional supplement and process of preparation
CN114747444A (zh) * 2022-04-29 2022-07-15 四川农业大学 一种提高萝卜品质的栽培方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033616A1 (de) * 2005-07-19 2007-01-25 Biopro Ag Biological Products Verfahren zur Herstellung von Extrakten aus Brassica-Arten und ihre Verwendung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033616A1 (de) * 2005-07-19 2007-01-25 Biopro Ag Biological Products Verfahren zur Herstellung von Extrakten aus Brassica-Arten und ihre Verwendung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAMPAS-BAYPOLI O. ET AL.: "Contenido of sulforafano (1-isotiocianato-4 (metilsulfinil)-butano) in vegetales cruciferos", ARCHIVOS LATINOAMERICANOS DE NUTRICION, vol. 59, 2009, pages 95 - 100 *
CAMPAS-BAYPOLI O. ET AL.: "HPLC method validation for measurement of sulforaphane level in broccoli by-products", BIOMEDICAL CHROMATOGRAPHY, vol. 24, 2010, pages 387 - 392 *
MATUSHESKI N. V. ET AL.: "Preparative HPLC method for the purification of sulforaphane and sulforaphane nitrile from Brassica oleracea", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 49, 2001, pages 1867 - 1872 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160279090A1 (en) * 2015-03-25 2016-09-29 Anne-Marie Kosi-Kupe Nutritional supplement and process of preparation
US10195171B2 (en) 2015-03-25 2019-02-05 Clojjic Llc Process of preparation of nutritional supplement containing sulforaphane
US10758509B2 (en) * 2015-03-25 2020-09-01 Anne-Marie Kosi-Kupe Nutritional supplement and process of preparation
CN114747444A (zh) * 2022-04-29 2022-07-15 四川农业大学 一种提高萝卜品质的栽培方法

Also Published As

Publication number Publication date
MX2011007850A (es) 2013-01-31

Similar Documents

Publication Publication Date Title
Lim et al. Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout
Gurrieri et al. Chemical characterization of Sicilian prickly pear (Opuntia ficus indica) and perspectives for the storage of its juice
Stintzing et al. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition
KR101496359B1 (ko) 숨쉬는 산야초 효소의 제조방법
EP2813138A1 (en) Technique and method for producing functional material originated from ice plant, and functional component
Panda et al. Fermentation of sapota (Achras sapota Linn.) fruits to functional wine
Kim et al. Mucilage removal from cactus cladodes (Opuntia humifusa Raf.) by enzymatic treatment to improve extraction efficiency and radical scavenging activity
KR101898300B1 (ko) 천연자원 기능성 물질의 발효숙성액을 이용한 기능성 천일염 제조방법 및 이 방법에 의해 제조된 소금
AU2008284737A1 (en) Chlorella extract-containing material and method of improving the storage stability thereof
Badia et al. Capsicum annuum L.: An overview of biological activities and potential nutraceutical properties in humans and animals
CN114980875A (zh) 提取物、可消费产品及用于富集提取物中的生物活性代谢物方法
KR101038752B1 (ko) 산삼배양근과 자일리톨을 함유한 김치
WO2013015666A1 (es) Método de extracción de sulforafano mediante un tratamiento de fermentación láctica en plantas crucíferas
KR101143379B1 (ko) 오디식초음료
Kadam et al. Fermentation and characterization of wine from dried Ficus carica (L) using Saccharomyces cerevisiae NCIM 3282
Soare et al. Bioactive compounds and antioxidant capacity in some genotypes of white cabbage (Brassica oleracea var. capitata f. alba)
KR101321143B1 (ko) 유산균을 이용한 기능성 발효 산마늘 및 제조방법
KR101264744B1 (ko) 미생물 발효로 추출되는 제주송이 양액재배용 기능성 조성물과 이를 이용한 양액재배방법 및 이를 이용한 기능성 소재
US20180319762A1 (en) 5-deoxy-irilin B Having Angiotensin-I-converting enzyme Inhibition Activity derived from Salicornia SPP. and Composition Containing the Same
KR20160104219A (ko) 와송식초의 제조방법 및 이의 방법으로 제조된 와송식초를 함유하는 음료조성물
KR20120108533A (ko) 제주송이에서 추출되는 양액재배용 기능성 조성물과 이를 이용한 양액재배방법 및 이를 이용한 예방과 그 치료용 소재
KR101797088B1 (ko) 발아보리 전초 추출물을 함유하는 기능성 식품의 제조방법
KR100874785B1 (ko) 항균성 성분이 함유된 간장의 제조 방법 및 이에 의하여제조된 간장
KR20130077282A (ko) 인삼 전초를 이용한 인삼 식초의 제조 방법 및 이를 포함하는 항비만 식품 조성물
KR100547048B1 (ko) 포도 즙액의 동충하초 균사체 액상 배양액을 포함하는건강 보조 식품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870153

Country of ref document: EP

Kind code of ref document: A1