WO2013015251A1 - Therapeutic treatment apparatus - Google Patents

Therapeutic treatment apparatus Download PDF

Info

Publication number
WO2013015251A1
WO2013015251A1 PCT/JP2012/068610 JP2012068610W WO2013015251A1 WO 2013015251 A1 WO2013015251 A1 WO 2013015251A1 JP 2012068610 W JP2012068610 W JP 2012068610W WO 2013015251 A1 WO2013015251 A1 WO 2013015251A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
coefficient
control device
treatment
heat
Prior art date
Application number
PCT/JP2012/068610
Other languages
French (fr)
Japanese (ja)
Inventor
新二 安永
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to EP12817898.5A priority Critical patent/EP2737867B1/en
Publication of WO2013015251A1 publication Critical patent/WO2013015251A1/en
Priority to US14/162,876 priority patent/US9510890B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/082Probes or electrodes therefor
    • A61B18/085Forceps, scissors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00595Cauterization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor

Definitions

  • the present invention relates to a therapeutic treatment apparatus.
  • Japanese Patent Application Laid-Open No. 2001-190561 discloses the following therapeutic treatment apparatus.
  • This therapeutic treatment apparatus has an openable and closable holding portion that holds a biological tissue to be treated.
  • a resistance element that functions as a heater for heating the holding portion is arranged.
  • Such a therapeutic treatment apparatus can anastomose living tissues by holding the living tissues with a holding portion and heating the grasped portions of the living tissues.
  • Japanese Patent Application Laid-Open No. 2001-190561 discloses a control method for supplying a predetermined amount of power and temperature measurement based on a change in resistance value of the resistance element.
  • a method of controlling a resistance element to a predetermined temperature by feedback control is disclosed.
  • the area of the living tissue grasped by the holding portion at the time of anastomosis is not constant, and generally differs depending on the treatment. For this reason, in the control method in which the amount of electric power applied to the resistance element functioning as a heater is a predetermined constant value, the anastomosis temperature differs for each treatment. As a result, the bonding strength may become unstable.
  • the method of measuring the temperature based on the resistance value change of the resistance element and controlling the resistance element to a predetermined temperature by feedback control it is necessary to accurately acquire the resistance value and temperature characteristics of the resistance element in advance. . For this purpose, it is necessary to manage the uniformity of the resistance element with high accuracy at the time of manufacture or to accurately measure the resistance-temperature characteristics of the resistance element for each individual. As a result, the cost of the device increases.
  • the present invention can calculate the temperature of the resistance element from the resistance value and accurately control the temperature at a low cost without having to individually acquire the relationship between the resistance value and the temperature of the resistance element in advance. It is an object of the present invention to provide a therapeutic treatment apparatus.
  • a therapeutic treatment apparatus is a therapeutic treatment apparatus for heating and treating a biological tissue at a target temperature, and the therapeutic treatment apparatus is in contact with the biological tissue.
  • a treatment tool having a heat transfer section that transfers heat to a living tissue, and a resistance element that heats the heat transfer section when electric power is applied, and a treatment tool that is detachable from the treatment tool, and a resistance value of the resistance element
  • a control device that can measure R and supplies power to the resistance element to control the temperature of the heat transfer unit to heat the living tissue at the target temperature, and is provided in the treatment instrument or the control device
  • the coefficient C2 stored in advance and the coefficient C1 calculated in a state where the treatment tool and the control device are connected are used, the relationship between the resistance value of the resistance element and the temperature is individually determined in advance. It is possible to provide a therapeutic treatment apparatus that can perform accurate temperature control by calculating the temperature of a resistance element from its resistance value at a low cost without having to obtain it.
  • FIG. 1 is a schematic diagram showing a configuration example of a therapeutic treatment system according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view illustrating a configuration example of a shaft and a holding unit of the energy treatment device according to the embodiment of the present invention, and is a diagram illustrating a state in which the holding unit is closed.
  • FIG. 2B is a schematic cross-sectional view illustrating a configuration example of the shaft and the holding unit of the energy treatment device according to the embodiment of the present invention, and is a diagram illustrating a state in which the holding unit is opened.
  • FIG. 3A is a plan view illustrating an outline of a configuration example of a first holding member of the holding unit according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a therapeutic treatment system according to an embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view illustrating a configuration example of a shaft and a holding unit of the energy treatment device
  • FIG. 3B is a diagram schematically illustrating a configuration example of the first holding member of the holding unit according to the embodiment of the present invention, and is a longitudinal sectional view taken along line 3B-3B in FIG. 3A.
  • FIG. 3C is a diagram schematically illustrating a configuration example of the first holding member of the holding unit according to the embodiment of the present invention, and is a cross-sectional view taken along line 3C-3C in FIG. 3A.
  • FIG. 4A is a top view illustrating an outline of a configuration example of a heat generating chip according to an embodiment of the present invention.
  • FIG. 4B is a diagram schematically illustrating a configuration example of the heat generating chip according to the embodiment of the present invention, and is a cross-sectional view taken along line 4B-4B illustrated in FIG. 4A.
  • FIG. 5 is a diagram illustrating a configuration example of a control device according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an outline of an example of a configuration related to a heating treatment of the therapeutic treatment apparatus according to the embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of processing by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of an initial setting process by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention.
  • FIG. 9 is a flowchart showing an example of the heating treatment execution process by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention.
  • the therapeutic treatment apparatus is an apparatus for use in the treatment of living tissue, and is an apparatus that causes high-frequency energy and thermal energy to act on the living tissue.
  • the therapeutic treatment device 100 includes an energy treatment tool 120, a control device 170, and a foot switch 216.
  • the energy treatment tool 120 is a linear type surgical treatment tool for performing treatment by, for example, penetrating the abdominal wall.
  • the energy treatment device 120 includes a handle 222, a shaft 224 attached to the handle 222, and a holding portion 125 provided at the tip of the shaft 224.
  • the holding unit 125 can be opened and closed, and is a treatment unit that holds a living tissue to be treated and performs a treatment such as coagulation or incision of the living tissue.
  • the holding portion 125 side is referred to as a distal end side
  • the handle 222 side is referred to as a proximal end side.
  • the handle 222 includes a plurality of operation knobs 232 for operating the holding unit 125.
  • a nonvolatile memory 123 is provided in the handle 222 portion.
  • the memory 123 stores unique information such as an individual identification number unique to the energy treatment instrument 120 and a unique coefficient C2 used for temperature control.
  • the shape of the energy treatment device 120 shown here is, of course, an example, and other shapes may be used as long as they have the same function.
  • the shape may be a forceps or the shaft may be curved.
  • the handle 222 is connected to the control device 170 via the cable 160.
  • the cable 160 and the control device 170 are connected by a connector 165, and this connection is detachable. That is, the therapeutic treatment apparatus 100 is configured so that the energy treatment tool 120 can be exchanged for each treatment.
  • a foot switch 216 is connected to the control device 170. The foot switch 216 operated with a foot may be replaced with a switch operated with a hand or other switches. When the operator operates the pedal of the foot switch 216, the supply of energy from the control device 170 to the energy treatment tool 120 is switched ON / OFF.
  • FIGS. 2A and 2B An example of the structure of the holding part 125 and the shaft 224 is shown in FIGS. 2A and 2B.
  • 2A shows a state in which the holding unit 125 is closed
  • FIG. 2B shows a state in which the holding unit 125 is opened.
  • the shaft 224 includes a cylindrical body 242 and a sheath 244.
  • the cylindrical body 242 is fixed to the handle 222 at its proximal end.
  • the sheath 244 is disposed on the outer periphery of the cylindrical body 242 so as to be slidable along the axial direction of the cylindrical body 242.
  • a holding portion 125 is disposed at the tip of the cylindrical body 242.
  • the holding unit 125 includes a first holding member 127 and a second holding member 128.
  • the base portion of the first holding member 127 is fixed to the distal end portion of the cylindrical body 242 of the shaft 224.
  • the base of the second holding member 128 is rotatably supported by a support pin 256 at the tip of the cylindrical body 242 of the shaft 224. Therefore, the second holding member 128 rotates around the axis of the support pin 256 and opens or closes with respect to the first holding member 127.
  • the cross-sectional shape of the base portion of the first holding member 127 and the base portion of the second holding member 128 is circular.
  • the second holding member 128 is biased by an elastic member 258 such as a leaf spring so as to open with respect to the first holding member 127.
  • the second holding member 128 opens with respect to the first holding member 127 by the urging force of the elastic member 258, as shown in FIG. 2B.
  • the cylindrical body 242 includes a high-frequency electrode energization line 268 connected to a first high-frequency electrode 132 or a second high-frequency electrode 134 described later, and a heat-generating chip energization line 162 connected to the heat-generating chip 140 that is a heat-generating member. And are inserted.
  • a drive rod 252 connected to one of the operation knobs 232 on the proximal end side is disposed in the cylinder 242 so as to be movable along the axial direction of the cylinder 242.
  • a thin plate-like cutter 254 having a blade formed on the distal end side is disposed.
  • the cutter 254 When the operation knob 232 is operated, the cutter 254 is moved along the axial direction of the cylindrical body 242 via the drive rod 252. When the cutter 254 moves to the front end side, the cutter 254 is accommodated in cutter guide grooves 264 and 274 described later formed in the holding portion 125.
  • the first holding member 127 has a first holding member main body 262, and the second holding member 128 has a second holding member main body 272.
  • the first holding member main body 262 is formed with a cutter guide groove 264 for guiding the cutter 254 described above.
  • the first holding member main body 262 is provided with a recess, in which a first high-frequency electrode 132 formed of, for example, a copper thin plate is disposed. Since the first high-frequency electrode 132 has the cutter guide groove 264, the planar shape thereof is substantially U-shaped as shown in FIG. 3A.
  • a plurality of heat generating chips 140 are joined to the surface of the first high-frequency electrode 132 on the first holding member main body 262 side.
  • a sealing film 265 is formed by applying a sealing agent made of, for example, silicone so as to cover the heating chip 140, the wiring to the heating chip 140, and the first high-frequency electrode 132.
  • a high-frequency electrode conducting line 268 is electrically connected to the first high-frequency electrode 132.
  • the first high-frequency electrode 132 is connected to the cable 160 through the high-frequency electrode conducting line 268.
  • the second holding member 128 has a shape symmetric to the first holding member 127. That is, the cutter guide groove 274 is formed in the second holding member 128 at a position facing the cutter guide groove 264.
  • the second holding member main body 272 is provided with a second high-frequency electrode 134 at a position facing the first high-frequency electrode 132.
  • the second high-frequency electrode 134 is connected to the cable 160 via a high-frequency electrode energization line 268.
  • the first holding member 127 and the second holding member 128 further have a mechanism for heat generation in order to cauterize the living tissue in contact with the first high-frequency electrode 132 and the second high-frequency electrode 134.
  • the heat generating mechanism provided in the first holding member 127 and the heat generating mechanism provided in the second holding member 128 have the same form.
  • the heat generating mechanism formed on the first holding member 127 will be described as an example.
  • FIG. 4A is a top view
  • FIG. 4B is a cross-sectional view taken along line 4B-4B shown in FIG. 4A.
  • the heat generating chip 140 is formed using an alumina substrate 141.
  • a resistance pattern 143 that is a Pt thin film for heat generation is formed on one surface of the main surface of the substrate 141.
  • rectangular electrodes 145 are formed on the surface of the substrate 141 in the vicinity of the two short sides of the rectangle.
  • the electrode 145 is connected to each end of the resistance pattern 143.
  • An insulating film 147 made of, for example, polyimide is formed on the surface of the substrate 141 including the resistance pattern 143 except for the portion where the electrode 145 is formed.
  • a bonding metal layer 149 is formed on the entire back surface of the substrate 141.
  • the electrode 145 and the bonding metal layer 149 are multilayer films made of, for example, Ti, Cu, Ni, and Au.
  • the electrodes 145 and the bonding metal layer 149 have stable strength against soldering or the like.
  • the bonding metal layer 149 is provided so that the bonding is stable when the heat generating chip 140 is soldered to the first high-frequency electrode 132, for example.
  • the heat generating chip 140 is disposed on a surface (second main surface) opposite to the surface (first main surface) of the first high-frequency electrode 132 and the second high-frequency electrode 134 in contact with the living tissue. .
  • the heat generating chip 140 is fixed by soldering the surface of the bonding metal layer 149 and the second main surface of the first high-frequency electrode 132 or the second high-frequency electrode 134, respectively.
  • the case of the first high-frequency electrode 132 will be described as an example with reference to FIGS. 3A, 3B, and 3C.
  • Six heating chips 140 are discretely arranged on the first high-frequency electrode 132. That is, three heat generating chips 140 are arranged in two rows symmetrically across the cutter guide groove 264 from the base end side toward the tip end side.
  • the resistance patterns 143 of the heat generating chips 140 are connected in series via the electrodes 145. Adjacent electrodes 145 are connected by a wire 163 formed by, for example, wire bonding. A pair of heat generating chip energization lines 162 are connected to both ends of the heat generating chips connected in series. The pair of heating chip energization lines 162 is connected to the cable 160. In this way, the heat generating chip 140 is connected to the control device 170 via the wire 163, the heat generating chip conducting line 162 and the cable 160. The control device 170 controls the electric power supplied to the heat generating chip 140.
  • the plurality of heat generating chips 140 are disposed on the first high-frequency electrode 132, but this is for improving the temperature uniformity of the first high-frequency electrode 132.
  • the entire six heat generating chips 140 can be regarded as a single heat generating chip.
  • a sealing agent made of, for example, silicone is applied so as to cover the heat generating chip 140 and the heat generating chip energization line 162, and the sealing film 265 is shown in FIGS. 3A, 3B, and 3C. It is formed as follows.
  • the current output from the control device 170 flows through the resistance patterns 143 of the six heat generating chips 140. As a result, each resistance pattern 143 generates heat. When the resistance pattern 143 generates heat, the heat is transmitted to the first high-frequency electrode 132. The living tissue in contact with the first high-frequency electrode 132 is cauterized by this heat.
  • the sealing film 265 and the first holding member body 262 around the sealing film 265 have heat of the first high-frequency electrode 132 and the substrate 141. It is preferable to have a thermal conductivity lower than the conductivity. Since the thermal conductivity of the sealing film 265 and the first holding member body 262 is low, thermal conduction with less loss is realized.
  • the control device 170 includes a control unit 180, a high frequency energy output circuit 181, a heat generating chip drive circuit 182, an input unit 185, a display unit 186, a storage unit 187, and a speaker. 188 and a temperature sensor 189 are disposed.
  • the control unit 180 is connected to each unit in the control device 170 and controls each unit of the control device 170.
  • the high frequency energy output circuit 181 is connected to the energy treatment device 120, and drives the first high frequency electrode 132 and the second high frequency electrode 134 of the energy treatment device 120 under the control of the control unit 180. That is, the high-frequency energy output circuit 181 applies a high-frequency voltage to the first high-frequency electrode 132 and the second high-frequency electrode 134 via the high-frequency electrode conducting line 268.
  • the heat generating chip driving circuit 182 is connected to the energy treatment tool 120 and drives the heat generating chip 140 of the energy treatment tool 120 under the control of the control unit 180. That is, the heat generating chip driving circuit 182 supplies power to the resistance pattern 143 of the heat generating chip 140 for heating through the heat generating chip energization line 162 under the control of the control unit 180.
  • the heat generating chip drive circuit 182 can change the amount of power supplied to the heat generating chip 140.
  • the heating chip driving circuit 182 has a function of measuring a current that flows when a voltage is applied to the heating chip 140. The heat generating chip driving circuit 182 outputs the measured current value to the control unit 180.
  • the resistance value of the resistance pattern 143 changes according to the temperature of the resistance pattern 143. Therefore, if there is a relationship between the temperature of the resistance pattern 143 and the resistance value, the control unit 180 can acquire the temperature of the resistance pattern 143 based on the resistance value of the resistance pattern 143.
  • the control unit 180 calculates the resistance value of the resistance pattern 143 based on the voltage value applied to the resistance pattern 143 and the current value flowing at that time acquired from the heating chip drive circuit 182. Further, the control unit 180 calculates the temperature of the resistance pattern 143 based on the relationship between the temperature of the resistance pattern 143 and the resistance value.
  • control unit 180 calculates the relationship between the temperature of the resistance pattern 143 and the resistance value in order to acquire the temperature of the resistance pattern 143 as described above. More specifically, when the energy treatment tool 120 and the control device 170 are connected via the connector 165, the control unit 180 reads out the unique information of the energy treatment tool 120 from the memory 123. Further, the control unit 180 applies a minute voltage to the resistance pattern 143 of the heat generating chip 140 and acquires the resistance value of the resistance pattern 143 from the current value flowing at that time. Further, the control unit 180 acquires the environmental temperature as the calibration temperature from the temperature sensor 189.
  • the control unit 180 calculates the relationship between the temperature and resistance value of the resistance pattern 143 from the characteristics of the energy treatment tool 120, the resistance value of the resistance pattern 143, and the environmental temperature. Further, as will be described in detail later, the control unit 180 has a value relating to the relationship between the individual identification number of the energy treatment instrument 120 and the calculated temperature and resistance value among the unique information read from the memory 123, that is, detailed later.
  • the coefficient C1 to be stored is stored in the storage unit 187.
  • a foot switch (SW) 216 is connected to the control unit 180, and ON from which the treatment by the energy treatment tool 120 is performed and OFF from which the treatment is stopped are input from the foot switch 216.
  • the input unit 185 inputs various settings of the control unit 180.
  • the display unit 186 displays various types of information on the treatment apparatus 100 under the control of the control unit 180.
  • the storage unit 187 stores various data necessary for the operation of the control device 170.
  • the speaker 188 outputs an alarm sound or the like.
  • the temperature sensor 189 measures the environmental temperature.
  • FIG. 6 shows a schematic diagram in which a portion related to the heating treatment is extracted from the therapeutic treatment apparatus 100 described above.
  • the heat treatment is performed by an energy treatment device 120 including a holding unit 125 having a first high-frequency electrode 132, a second high-frequency electrode 134, and a heating chip 140, and a memory 123.
  • Control of the energy treatment tool 120 is performed by a control device 170 having a control unit 180, a heat generating chip drive circuit 182, a storage unit 187, and a temperature sensor 189.
  • the energy treatment tool 120 and the control device 170 are connected by a detachable cable 160 using a connector 165 provided on the control device 170 side. Note that the configuration related to the high-frequency treatment and the cutter described above is not necessarily required in the treatment apparatus for treatment 100 according to the present invention.
  • the first high-frequency electrode 132 or the second high-frequency electrode 134 functions as a heat transfer unit that contacts the living tissue and transfers heat to the living tissue.
  • the heat generating chip 140 functions as a resistance element that heats the heat transfer section when power is supplied.
  • the energy treatment device 120 functions as a treatment device having a heat transfer section and a resistance element.
  • the control device 170 can measure the resistance value R of the resistance element, and functions as a control device that controls the temperature of the heat transfer section by supplying power to the resistance element in order to heat the living tissue at the target temperature.
  • the memory 123 functions as a storage unit for storing the coefficient C2.
  • the temperature sensor 189 functions as a temperature sensor for measuring the environmental temperature.
  • the storage unit 187 functions as a calculated coefficient storage unit.
  • FIG. 7 shows a flowchart showing the processing by the control unit 180.
  • step S101 the control unit 180 determines whether the cable 160 to which the energy treatment device 120 is connected is connected to the control device 170 via the connector. When not connected, the control unit 180 repeats step S101. On the other hand, if the control unit 180 determines that the cable 160 to which the energy treatment device 120 is connected is connected to the control device 170, the process proceeds to step S102.
  • step S102 the control unit 180 executes an initial setting process that is a predefined process. This initial setting process will be described later in detail.
  • step S103 the control unit 180 executes an output setting process that is a predefined process.
  • the control unit 180 receives the operator's instruction via the input unit 185, and outputs the treatment conditions of the treatment apparatus 100, for example, the set power of the high frequency energy output, the target temperature Top by the thermal energy output, the heating Set time top and the like.
  • the operator may individually set each value, or the operator selects a set of setting values according to the technique, and the control unit 180 determines the output condition based on the selection. You may make it do.
  • the holding part 125 and the shaft 224 of the energy treatment device 120 are inserted into the abdominal cavity through the abdominal wall, for example.
  • the surgeon operates the operation knob 232 to open and close the holding portion 125, and grips the living tissue to be treated by the first holding member 127 and the second holding member 128.
  • the first main surface of both the first high-frequency electrode 132 provided on the first holding member 127 and the second high-frequency electrode 134 provided on the second holding member 128 is subjected to treatment. Living tissue is in contact.
  • step S104 the control unit 180 repeats the determination as to whether or not an instruction to start a high-frequency treatment by the operator has been input.
  • the operator grasps the biological tissue to be treated with the holding unit 125
  • the operator operates the foot switch 216.
  • the foot switch 216 is switched ON, and the control unit 180 determines that an instruction to start high frequency treatment has been input.
  • step S105 the control unit 180 executes a high-frequency treatment execution process.
  • high frequency power of set power is supplied from the high frequency energy output circuit 181 of the control device 170 to the first high frequency electrode 132 and the second high frequency electrode 134 via the cable 160.
  • the supplied power is, for example, about 20W to 80W.
  • the living tissue generates heat and the tissue is cauterized.
  • the tissue is denatured and solidified.
  • the control unit 180 stops the output of the high-frequency energy, and the high-frequency treatment execution process ends.
  • step S106 the control unit 180 repeats the determination of whether or not an instruction to start the heating treatment by the operator has been input. For example, when the foot switch 216 is switched ON and the control unit 180 determines that an instruction to start the heat treatment is input, the control unit 180 executes the heat treatment execution process in step S107.
  • the control device 170 supplies power to the heat generating chip 140 so that the temperature of the first high-frequency electrode 132 becomes the target temperature.
  • the target temperature is about 200 ° C., for example.
  • the current flows from the heating chip drive circuit 182 of the control device 170 through the resistance pattern 143 of each heating chip 140 via the cable 160 and the heating chip energization line 162.
  • the resistance pattern 143 of each heat generating chip 140 generates heat by current.
  • the heat generated in the resistance pattern 143 is transmitted to the first high-frequency electrode 132 through the substrate 141 and the bonding metal layer 149. As a result, the temperature of the first high-frequency electrode 132 rises. Similarly, the temperature of the second high-frequency electrode 134 also rises due to the heat generated by the current flowing through each heat generating chip 140 disposed on the second high-frequency electrode 134.
  • the living tissue in contact with the first main surface of the first high-frequency electrode 132 or the second high-frequency electrode 134 is further cauterized and further solidified by these heats. When the living tissue is solidified by heating, the output of heat energy is stopped, and the heat treatment execution procedure is ended. As described above, a series of processing by the control unit 180 ends. Finally, the operator operates the operation knob 232 to move the cutter 254 and cut the living tissue. The treatment of the living tissue is thus completed.
  • the control unit 180 acquires the temperature of the heat generating chip 140 based on the resistance value of the resistance pattern 143. That is, the heat generating chip drive circuit 182 applies a voltage to the resistance pattern 143 under the control of the control unit 180 and measures a current value flowing at that time. The heat generating chip driving circuit 182 outputs the measured current value to the control unit 180. The control unit 180 calculates the resistance value of the resistance pattern 143 based on the voltage value applied to the resistance pattern 143 and the current value acquired from the heating chip drive circuit 182. The control unit 180 calculates the temperature of the resistance pattern 143 based on the relationship between the calculated resistance value, the resistance value of the resistance pattern 143, and the temperature.
  • the temperature of the resistance pattern 143 is given by the following formula (1).
  • T C1 ⁇ R + C2 (1)
  • the coefficient C1 and the coefficient C2 are predetermined constants. Therefore, if the coefficient C1 and the coefficient C2 are known, the temperature T can be obtained from the resistance value R of the resistance pattern 143 based on the equation (1).
  • the coefficient C1 and the coefficient C2 will be described.
  • the difference in coefficient C2 between individuals is very small.
  • the coefficient C2 of the heating chip 140 of the lot can be obtained.
  • the resistance value R of the resistance pattern 143 at a certain temperature T is expressed by the following formula (6).
  • C1 (T ⁇ C2) / R (6)
  • the coefficient C1 can be obtained by measuring the resistance value at one temperature.
  • the coefficient C1 depends on the line width and thickness of the resistance pattern 143, and relatively large non-uniformity is likely to occur in the manufacturing process. Therefore, it is desired to measure the coefficient C1 for each individual treatment instrument.
  • the coefficient C2 is obtained in advance by, for example, an average value of sampling inspection for each production lot.
  • the value of the coefficient C2 is stored in the memory 123 provided in the energy treatment device 120 as described above.
  • the coefficient C1 is measured in the initial setting process during use.
  • step S201 the control unit 180 reads the individual identification number of the energy treatment device 120 and the value of the coefficient C2 from the memory 123 of the energy treatment device 120.
  • step S202 the control unit 180 determines whether or not the coefficient C1 corresponding to the individual identification number is stored in the storage unit 187.
  • step S203 the control unit 180 acquires the environmental temperature Tm measured from the temperature sensor 189 provided in the control device 170.
  • the environmental temperature Tm is set as a calibration temperature that is a temperature used for calculating the coefficient C1.
  • step S ⁇ b> 204 the control unit 180 instructs the heating chip driving circuit 182 to apply the minute voltage Vm to the resistance pattern 143 of the heating chip 140.
  • step S205 the control unit 180 instructs the heat generating chip driving circuit 182 to measure the current Im flowing through the resistance pattern 143, and acquires the measured current Im.
  • step S206 the control unit 180 calculates the resistance value Rm of the resistance pattern 143 based on the following equation (7).
  • Rm Vm / Im (7)
  • the coefficient C1 is calculated by the following expression (8).
  • C1 (Tm ⁇ C2) / Rm (8) Since this measurement is performed immediately after connection of the cable 160 to the connector 165, the temperature of the heat generating chip can be regarded as being equal to the environmental temperature.
  • step S207 the control unit 180 associates the individual identification number read in step S201 with the coefficient C1 calculated in step S206 and stores it in the storage unit 187.
  • step S208 the control unit 180 instructs the heat generating chip drive circuit 182 to stop applying the minute voltage Vm to the resistance pattern 143. Thereafter, the processing returns to step S102 of the processing shown in FIG. 7 using the coefficients C1 and C2 as return values.
  • step S202 if it is determined in step S202 that the coefficient C1 corresponding to the individual identification number is stored in the storage unit 187, the control unit 180 does not calculate the coefficient C1 in step S209, but stores the coefficient C1. The coefficient C1 corresponding to the stored individual identification number is read out. Thereafter, the processing returns to step S102 using the coefficients C1 and C2 as return values.
  • step S203 can be performed after step S205
  • step S208 can be performed after step S205.
  • step S107 in the heat treatment execution process in step S107, feedback control of the electric power supplied to the heat generating chip 140 is performed using the coefficients C1 and C2 obtained as described above.
  • the heat treatment execution process will be described with reference to the flowchart shown in FIG.
  • step S301 the control unit 180 sets various parameters to initial values, and causes the heat generation chip drive circuit 182 to start supplying power to the resistance pattern 143.
  • the elapsed time t is set to 0
  • the input power P is set to the initial input power P0
  • the voltage Vd applied to the resistance pattern 143 is set to the initial applied voltage Vd_0.
  • step S ⁇ b> 302 the control unit 180 calculates the resistance value R of the resistance pattern 143 based on the voltage Vd applied to the resistance pattern 143 and the current I flowing at this time acquired from the heat generation chip drive circuit 182.
  • step S303 the control unit 180 calculates the temperature T of the resistance pattern 143 based on Expression (1).
  • step S304 the control unit 180 calculates the power P to be input to the resistance pattern 143 by the following equation (9).
  • P C3 ⁇ (Top ⁇ T) + Pnow (9)
  • C3 is a control gain, which is given a predetermined value. Top is the target temperature, and Pnow is the power that is currently input.
  • simple proportional control with a control gain of C3 is used, but PID control may be used in order to perform more stable control.
  • step S305 the control unit 180 calculates the applied voltage V based on the following equation (10).
  • V (P ⁇ R) 0.5 (10)
  • step S ⁇ b> 306 the control unit 180 instructs the heat generating chip driving circuit 182 to apply the calculated applied voltage V to the resistance pattern 143.
  • step S307 the control unit 180 determines whether or not the elapsed time t is smaller than the treatment time top. If the elapsed time t is smaller than the treatment time top, the process returns to step S302. On the other hand, if the elapsed time t is equal to or longer than the treatment time top, the heat treatment execution process ends, and the process returns to step S107 of the process shown in FIG. As described above, while the processes in steps S302 to S307 are repeated, the power P input to the resistance pattern 143 is feedback-controlled.
  • the coefficient C1 and the coefficient C2 in order to obtain the coefficient C1 and the coefficient C2, it is not necessary to measure each resistance value at a plurality of temperatures for all the energy treatment tools 120.
  • the coefficient C1 can be obtained with high accuracy.
  • the coefficient C1 and the coefficient C2 can be obtained only by measuring the resistance value at the environmental temperature.
  • the measurement of the resistance value Rm when calculating the coefficient C1 is performed by applying the minute voltage Vm, so that the heat generating chip 140 does not become high temperature. Further, since this measurement is performed immediately after the connection of the cable 160 to the connector 165, the temperature of the heat generating chip can be regarded as being equal to the environmental temperature. Compared with the case where the temperature of the heat generating chip is raised or lowered, the temperature T can be obtained stably, so the calculation of the coefficient C1 becomes highly accurate.
  • the environmental temperature is used as the calibration temperature in the calculation of the coefficient C1
  • a temperature sensor for acquiring the temperature of the resistance pattern 143 is provided for each energy treatment tool 120. There is no need to provide it.
  • the temperature is calibrated on the assumption that the environmental temperature is constant, for example, 25 ° C. without providing the temperature sensor 189. The same treatment can be performed using the temperature.
  • the coefficient C1 is measured using the control device 170 that actually drives the energy treatment instrument 120. Therefore, individual differences of the control device 170 such as the parasitic resistance of the internal wiring and the offset of the amplifier. Is corrected. Therefore, the temperature control of the heat generating chip 140 can be performed with higher accuracy.
  • the value of the coefficient C1 once measured is reused for the same control device 170. Therefore, for example, when the energy treatment tool 120 is temporarily removed from the control device 170 for some reason after the heat treatment treatment and is reconnected without time, the heat generating chip 140 is caused by the residual heat of the heat generating chip 140. Even when there is a large temperature difference between the control device 170 and the temperature sensor 189 of the control device 170, the coefficient C1 is not updated to an incorrect value.
  • the calculated value of the coefficient C1 is stored in the storage unit 187, but it goes without saying that the same effect can be obtained even if it is stored in the memory 123.
  • the coefficient C2 since the coefficient C2 is stored in the memory 123 of the energy treatment device 120, the energy treatment device 120 having a different material for the resistance pattern 143 can be driven by the same controller 170.
  • the coefficient C2 may be stored in, for example, the storage unit 187 of the energy treatment device 120.
  • the control apparatus 170 may acquire the relationship between the individual identification number of the energy treatment tool 120 and the coefficient C2 with respect thereto, for example, online, or may acquire the information via a medium.
  • the relationship between the individual identification number and the calculated coefficient C1 is stored in the storage unit 187 of the control device 170.
  • the temperature sensor 189 for measuring the environmental temperature is arranged in the control device 170.
  • the temperature sensor is arranged in the energy treatment instrument 120, and the measured value of the temperature sensor is controlled by the control device. 170 may be configured to read.
  • the temperature sensor is disposed in the vicinity of the heat generating chip 140.
  • the calibration temperature used for calculating the coefficient C1 is not limited to the environmental temperature.
  • Equation (1) is used to calculate the temperature from the resistance value of the resistance pattern 143.
  • the temperature dependence of the resistance temperature coefficient is considered.
  • the following equation (11) can also be used.
  • T C1 ′ ⁇ R 2 + C1 ⁇ R + C2 (11)
  • the temperature dependence of the resistance temperature coefficient is related to the coefficient C1 ′.
  • C1 ′ also depends on the material of the resistance pattern 143, similarly to C1. For this reason, when the coefficient C1 ′ is used, it can be stored in the memory 123 similarly to C1.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problem described in the column of problems to be solved by the invention can be solved and the effect of the invention can be obtained. The configuration in which this component is deleted can also be extracted as an invention.

Abstract

The therapeutic treatment apparatus (100), which is an apparatus for treating living tissue by heating at a target temperature, comprises: a treatment implement (120); a control device (170); and storage units (123, 187). The treatment implement (120) has heat-conducting parts (132, 134) that contact the living tissue and conduct heat to the living tissue, and resistance elements (140) that heat the heat-conducting parts (132, 134) as a result of the input of electric power. The control device (170) can be attached to and detached from the therapeutic implement (120) and measures the resistance of the resistance elements (140). The storage units (123, 187) store coefficients (C2). When the therapeutic implement and the control device are connected, the control device (170) calculates a coefficient (C1) based on a correction temperature. The control device (170) calculates the temperature of the resistance elements using the resistance, coefficient (C1), and coefficient (C2), and controls the temperature of the heat-conducting parts using said temperature.

Description

治療用処置装置Therapeutic treatment device
 本発明は、治療用処置装置に関する。 The present invention relates to a therapeutic treatment apparatus.
 一般に、熱エネルギを用いて生体組織を処置する治療用処置装置が知られている。例えば日本国特開2001-190561号公報には、次のような治療用処置装置が開示されている。この治療用処置装置は、処置対象である生体組織を把持する開閉可能な保持部を有している。この保持部には、それを加熱するためのヒータとして機能する抵抗素子が配置されている。このような治療用処置装置は、生体組織を保持部で把持し、把持した部分の生体組織を加熱することで生体組織を吻合することができる。抵抗素子への投入電力量の制御について日本国特開2001-190561号公報には、所定の一定の値の電力量を投入する制御方法と、抵抗素子の抵抗値変化に基づいて温度計測を行いながらフィードバック制御によって抵抗素子を所定温度に制御する方法とが開示されている。 Generally, a treatment apparatus for treatment that treats a living tissue using thermal energy is known. For example, Japanese Patent Application Laid-Open No. 2001-190561 discloses the following therapeutic treatment apparatus. This therapeutic treatment apparatus has an openable and closable holding portion that holds a biological tissue to be treated. In this holding portion, a resistance element that functions as a heater for heating the holding portion is arranged. Such a therapeutic treatment apparatus can anastomose living tissues by holding the living tissues with a holding portion and heating the grasped portions of the living tissues. Japanese Patent Application Laid-Open No. 2001-190561 discloses a control method for supplying a predetermined amount of power and temperature measurement based on a change in resistance value of the resistance element. However, a method of controlling a resistance element to a predetermined temperature by feedback control is disclosed.
 上記のような治療用処置装置の使用において、吻合の際に保持部で把持する生体組織の面積は一定ではなく、処置毎に異なるのが一般的である。このため、ヒータとして機能する抵抗素子への投入電力量を所定の一定の値とする制御方法では、処置毎に吻合温度が異なることになる。その結果、接合強度が不安定となる可能性がある。一方、抵抗素子の抵抗値変化に基づいて温度計測を行いフィードバック制御によって抵抗素子を所定温度に制御する方法では、予め抵抗素子の抵抗値と温度との特性を正確に取得しておく必要がある。このためには、抵抗素子の均一性を製造時に高い精度で管理するか、抵抗素子の抵抗―温度特性を個体毎に正確に計測しておく必要がある。その結果、当該装置はコストアップしてしまう。 In the use of the therapeutic treatment apparatus as described above, the area of the living tissue grasped by the holding portion at the time of anastomosis is not constant, and generally differs depending on the treatment. For this reason, in the control method in which the amount of electric power applied to the resistance element functioning as a heater is a predetermined constant value, the anastomosis temperature differs for each treatment. As a result, the bonding strength may become unstable. On the other hand, in the method of measuring the temperature based on the resistance value change of the resistance element and controlling the resistance element to a predetermined temperature by feedback control, it is necessary to accurately acquire the resistance value and temperature characteristics of the resistance element in advance. . For this purpose, it is necessary to manage the uniformity of the resistance element with high accuracy at the time of manufacture or to accurately measure the resistance-temperature characteristics of the resistance element for each individual. As a result, the cost of the device increases.
 そこで本発明は、予め抵抗素子の抵抗値と温度との関係を個別に取得しておく必要なく低コストに、その抵抗値から抵抗素子の温度を算出して正確な温度制御を行うことができる治療用処置装置を提供することを目的とする。 Therefore, the present invention can calculate the temperature of the resistance element from the resistance value and accurately control the temperature at a low cost without having to individually acquire the relationship between the resistance value and the temperature of the resistance element in advance. It is an object of the present invention to provide a therapeutic treatment apparatus.
 前記目的を果たすため、本発明の一態様によれば、治療用処置装置は、生体組織を目標温度で加熱して治療するための治療用処置装置であって、前記生体組織に接触して該生体組織に熱を伝える伝熱部と、電力が投入されることによって前記伝熱部を加熱する抵抗素子と、を有する処置具と、前記処置具と着脱可能であり、前記抵抗素子の抵抗値Rを計測でき、前記目標温度で前記生体組織を加熱するために前記抵抗素子に電力を供給して前記伝熱部の温度を制御する制御装置と、前記処置具又は前記制御装置に設けられた、係数C2を格納するための記憶部と、を具備し、前記制御装置は、前記処置具と前記制御装置とが接続された状態で、校正温度に基づいて係数C1を算出し、前記抵抗素子の温度Tを、前記抵抗値R、前記係数C1、及び前記係数C2を用いてT=C1×R+C2により算出し、前記温度Tを用いて前記伝熱部の温度を制御する、ことを特徴とする。 To achieve the above object, according to one aspect of the present invention, a therapeutic treatment apparatus is a therapeutic treatment apparatus for heating and treating a biological tissue at a target temperature, and the therapeutic treatment apparatus is in contact with the biological tissue. A treatment tool having a heat transfer section that transfers heat to a living tissue, and a resistance element that heats the heat transfer section when electric power is applied, and a treatment tool that is detachable from the treatment tool, and a resistance value of the resistance element A control device that can measure R and supplies power to the resistance element to control the temperature of the heat transfer unit to heat the living tissue at the target temperature, and is provided in the treatment instrument or the control device A storage unit for storing the coefficient C2, and the control device calculates the coefficient C1 based on a calibration temperature in a state where the treatment tool and the control device are connected, and the resistance element Of the resistance value R and the coefficient C1. And calculated by T = C1 × R + C2 by using the coefficient C2, the controlling the temperature of the heat transfer unit using a temperature T, it is characterized.
 本発明によれば、予め格納された係数C2と、処置具と制御装置とが接続された状態で算出された係数C1とを用いるので、予め抵抗素子の抵抗値と温度との関係を個別に取得しておく必要なく低コストに、その抵抗値から抵抗素子の温度を算出して正確な温度制御を行うことができる治療用処置装置を提供できる。 According to the present invention, since the coefficient C2 stored in advance and the coefficient C1 calculated in a state where the treatment tool and the control device are connected are used, the relationship between the resistance value of the resistance element and the temperature is individually determined in advance. It is possible to provide a therapeutic treatment apparatus that can perform accurate temperature control by calculating the temperature of a resistance element from its resistance value at a low cost without having to obtain it.
図1は、本発明の一実施形態に係る治療用処置システムの構成例を示す概略図である。FIG. 1 is a schematic diagram showing a configuration example of a therapeutic treatment system according to an embodiment of the present invention. 図2Aは、本発明の一実施形態に係るエネルギ処置具のシャフト及び保持部の構成例を示す断面の概略図であり、保持部が閉じた状態を示す図である。FIG. 2A is a schematic cross-sectional view illustrating a configuration example of a shaft and a holding unit of the energy treatment device according to the embodiment of the present invention, and is a diagram illustrating a state in which the holding unit is closed. 図2Bは、本発明の一実施形態に係るエネルギ処置具のシャフト及び保持部の構成例を示す断面の概略図であり、保持部が開いた状態を示す図である。FIG. 2B is a schematic cross-sectional view illustrating a configuration example of the shaft and the holding unit of the energy treatment device according to the embodiment of the present invention, and is a diagram illustrating a state in which the holding unit is opened. 図3Aは、本発明の一実施形態に係る保持部の第1の保持部材の構成例の概略を示す平面図である。FIG. 3A is a plan view illustrating an outline of a configuration example of a first holding member of the holding unit according to the embodiment of the present invention. 図3Bは、本発明の一実施形態に係る保持部の第1の保持部材の構成例の概略を示す図であり、図3Aの3B-3B線に沿う縦断面図である。FIG. 3B is a diagram schematically illustrating a configuration example of the first holding member of the holding unit according to the embodiment of the present invention, and is a longitudinal sectional view taken along line 3B-3B in FIG. 3A. 図3Cは、本発明の一実施形態に係る保持部の第1の保持部材の構成例の概略を示す図であり、図3Aの3C-3C線に沿う横断面図である。FIG. 3C is a diagram schematically illustrating a configuration example of the first holding member of the holding unit according to the embodiment of the present invention, and is a cross-sectional view taken along line 3C-3C in FIG. 3A. 図4Aは、本発明の一実施形態に係る発熱チップの構成例の概略を示す上面図である。FIG. 4A is a top view illustrating an outline of a configuration example of a heat generating chip according to an embodiment of the present invention. 図4Bは、本発明の一実施形態に係る発熱チップの構成例の概略を示す図であって、図4Aに示す4B-4B線に沿う断面図である。FIG. 4B is a diagram schematically illustrating a configuration example of the heat generating chip according to the embodiment of the present invention, and is a cross-sectional view taken along line 4B-4B illustrated in FIG. 4A. 図5は、本発明の一実施形態に係る制御装置の構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of a control device according to an embodiment of the present invention. 図6は、本発明の一実施形態に係る治療用処置装置の加熱処置に関わる構成の一例の概略を示す図である。FIG. 6 is a diagram illustrating an outline of an example of a configuration related to a heating treatment of the therapeutic treatment apparatus according to the embodiment of the present invention. 図7は、本発明の一実施形態に係る治療用処置装置の制御部による処理の一例を示すフローチャートである。FIG. 7 is a flowchart showing an example of processing by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention. 図8は、本発明の一実施形態に係る治療用処置装置の制御部による初期設定処理の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of an initial setting process by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention. 図9は、本発明の一実施形態に係る治療用処置装置の制御部による加熱処置実施処理の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of the heating treatment execution process by the control unit of the therapeutic treatment apparatus according to the embodiment of the present invention.
 本発明の一実施形態について図面を参照して説明する。本実施形態に係る治療用処置装置は、生体組織の治療に用いるための装置であり、生体組織に高周波エネルギと熱エネルギとを作用させる装置である。図1に示すように、治療用処置装置100は、エネルギ処置具120と、制御装置170と、フットスイッチ216とを備えている。 An embodiment of the present invention will be described with reference to the drawings. The therapeutic treatment apparatus according to the present embodiment is an apparatus for use in the treatment of living tissue, and is an apparatus that causes high-frequency energy and thermal energy to act on the living tissue. As shown in FIG. 1, the therapeutic treatment device 100 includes an energy treatment tool 120, a control device 170, and a foot switch 216.
 エネルギ処置具120は、例えば腹壁を貫通させて処置を行うための、リニアタイプの外科治療用処置具である。エネルギ処置具120は、ハンドル222と、ハンドル222に取り付けられたシャフト224と、シャフト224の先端に設けられた保持部125とを有する。保持部125は、開閉可能であり、処置対象の生体組織を保持して、生体組織の凝固、切開等の処置を行う処置部である。以降説明のため、保持部125側を先端側と称し、ハンドル222側を基端側と称する。ハンドル222は、保持部125を操作するための複数の操作ノブ232を備えている。また、ハンドル222部分には、不揮発性のメモリ123が備えられている。メモリ123には、後に詳述するように、そのエネルギ処置具120に固有の個体識別番号や、温度制御に用いる固有の係数C2等の固有情報が記憶されている。なお、ここで示したエネルギ処置具120の形状は、もちろん一例であり、同様の機能を有していれば、他の形状でもよい。例えば、鉗子のような形状をしていてもよいし、シャフトが湾曲していてもよい。 The energy treatment tool 120 is a linear type surgical treatment tool for performing treatment by, for example, penetrating the abdominal wall. The energy treatment device 120 includes a handle 222, a shaft 224 attached to the handle 222, and a holding portion 125 provided at the tip of the shaft 224. The holding unit 125 can be opened and closed, and is a treatment unit that holds a living tissue to be treated and performs a treatment such as coagulation or incision of the living tissue. Hereinafter, for the sake of explanation, the holding portion 125 side is referred to as a distal end side, and the handle 222 side is referred to as a proximal end side. The handle 222 includes a plurality of operation knobs 232 for operating the holding unit 125. Further, a nonvolatile memory 123 is provided in the handle 222 portion. As will be described in detail later, the memory 123 stores unique information such as an individual identification number unique to the energy treatment instrument 120 and a unique coefficient C2 used for temperature control. The shape of the energy treatment device 120 shown here is, of course, an example, and other shapes may be used as long as they have the same function. For example, the shape may be a forceps or the shaft may be curved.
 ハンドル222は、ケーブル160を介して制御装置170に接続されている。ここで、ケーブル160と制御装置170とは、コネクタ165によって接続されており、この接続は着脱自在となっている。すなわち、治療用処置装置100は、処置毎にエネルギ処置具120を交換することができるように構成されている。制御装置170には、フットスイッチ216が接続されている。足で操作するフットスイッチ216は、手で操作するスイッチやその他のスイッチに置き換えてもよい。フットスイッチ216のペダルを術者が操作することにより、制御装置170からエネルギ処置具120へのエネルギの供給のON/OFFが切り換えられる。 The handle 222 is connected to the control device 170 via the cable 160. Here, the cable 160 and the control device 170 are connected by a connector 165, and this connection is detachable. That is, the therapeutic treatment apparatus 100 is configured so that the energy treatment tool 120 can be exchanged for each treatment. A foot switch 216 is connected to the control device 170. The foot switch 216 operated with a foot may be replaced with a switch operated with a hand or other switches. When the operator operates the pedal of the foot switch 216, the supply of energy from the control device 170 to the energy treatment tool 120 is switched ON / OFF.
 保持部125及びシャフト224の構造の一例を図2A及び2Bに示す。図2Aは保持部125が閉じた状態を示し、図2Bは保持部125が開いた状態を示す。シャフト224は、筒体242とシース244とを備えている。筒体242は、その基端部でハンドル222に固定されている。シース244は、筒体242の外周に、筒体242の軸方向に沿って摺動可能に配設されている。 An example of the structure of the holding part 125 and the shaft 224 is shown in FIGS. 2A and 2B. 2A shows a state in which the holding unit 125 is closed, and FIG. 2B shows a state in which the holding unit 125 is opened. The shaft 224 includes a cylindrical body 242 and a sheath 244. The cylindrical body 242 is fixed to the handle 222 at its proximal end. The sheath 244 is disposed on the outer periphery of the cylindrical body 242 so as to be slidable along the axial direction of the cylindrical body 242.
 筒体242の先端部には、保持部125が配設されている。保持部125は、第1の保持部材127と、第2の保持部材128とを備えている。第1の保持部材127の基部は、シャフト224の筒体242の先端部に固定されている。一方、第2の保持部材128の基部は、シャフト224の筒体242の先端部に、支持ピン256によって、回動可能に支持されている。したがって、第2の保持部材128は、支持ピン256の軸回りに回動し、第1の保持部材127に対して開いたり閉じたりする。 A holding portion 125 is disposed at the tip of the cylindrical body 242. The holding unit 125 includes a first holding member 127 and a second holding member 128. The base portion of the first holding member 127 is fixed to the distal end portion of the cylindrical body 242 of the shaft 224. On the other hand, the base of the second holding member 128 is rotatably supported by a support pin 256 at the tip of the cylindrical body 242 of the shaft 224. Therefore, the second holding member 128 rotates around the axis of the support pin 256 and opens or closes with respect to the first holding member 127.
 保持部125が閉じた状態では、第1の保持部材127の基部と、第2の保持部材128の基部とを合わせた断面形状は、円形となる。第2の保持部材128は、第1の保持部材127に対して開くように、例えば板バネなどの弾性部材258により付勢されている。シース244を、筒体242に対して先端側にスライドさせ、シース244によって第1の保持部材127の基部及び第2の保持部材128の基部を覆うと、図2Aに示すように、弾性部材258の付勢力に抗して、第1の保持部材127及び第2の保持部材128は閉じる。一方、シース244を、筒体242の基端側にスライドさせると、図2Bに示すように、弾性部材258の付勢力によって第1の保持部材127に対して第2の保持部材128は開く。 In a state where the holding portion 125 is closed, the cross-sectional shape of the base portion of the first holding member 127 and the base portion of the second holding member 128 is circular. The second holding member 128 is biased by an elastic member 258 such as a leaf spring so as to open with respect to the first holding member 127. When the sheath 244 is slid to the distal end side with respect to the cylindrical body 242, and the base portion of the first holding member 127 and the base portion of the second holding member 128 are covered by the sheath 244, as shown in FIG. The first holding member 127 and the second holding member 128 are closed against the urging force. On the other hand, when the sheath 244 is slid to the proximal end side of the cylindrical body 242, the second holding member 128 opens with respect to the first holding member 127 by the urging force of the elastic member 258, as shown in FIG. 2B.
 筒体242には、後述する第1の高周波電極132又は第2の高周波電極134に接続される高周波電極用通電ライン268と、発熱部材である発熱チップ140に接続される発熱チップ用通電ライン162とが挿通されている。筒体242の内部には、その基端側で操作ノブ232の一つと接続した駆動ロッド252が、筒体242の軸方向に沿って移動可能に配設されている。駆動ロッド252の先端側には、先端側に刃が形成された薄板状のカッタ254が配設されている。操作ノブ232を操作すると、駆動ロッド252を介してカッタ254は、筒体242の軸方向に沿って移動させられる。カッタ254が先端側に移動するとき、カッタ254は、保持部125に形成された後述するカッタ案内溝264,274内に収まる。 The cylindrical body 242 includes a high-frequency electrode energization line 268 connected to a first high-frequency electrode 132 or a second high-frequency electrode 134 described later, and a heat-generating chip energization line 162 connected to the heat-generating chip 140 that is a heat-generating member. And are inserted. A drive rod 252 connected to one of the operation knobs 232 on the proximal end side is disposed in the cylinder 242 so as to be movable along the axial direction of the cylinder 242. On the distal end side of the drive rod 252, a thin plate-like cutter 254 having a blade formed on the distal end side is disposed. When the operation knob 232 is operated, the cutter 254 is moved along the axial direction of the cylindrical body 242 via the drive rod 252. When the cutter 254 moves to the front end side, the cutter 254 is accommodated in cutter guide grooves 264 and 274 described later formed in the holding portion 125.
 第1の保持部材127は、第1の保持部材本体262を有し、第2の保持部材128は、第2の保持部材本体272を有する。図3A、3B及び3Cに示すように、第1の保持部材本体262には、前記したカッタ254を案内するためのカッタ案内溝264が形成されている。第1の保持部材本体262には、凹部が設けられ、そこには例えば銅の薄板で形成された第1の高周波電極132が配設されている。第1の高周波電極132は、カッタ案内溝264を有するので、その平面形状は、図3Aに示すように、略U字形状となっている。 The first holding member 127 has a first holding member main body 262, and the second holding member 128 has a second holding member main body 272. As shown in FIGS. 3A, 3B and 3C, the first holding member main body 262 is formed with a cutter guide groove 264 for guiding the cutter 254 described above. The first holding member main body 262 is provided with a recess, in which a first high-frequency electrode 132 formed of, for example, a copper thin plate is disposed. Since the first high-frequency electrode 132 has the cutter guide groove 264, the planar shape thereof is substantially U-shaped as shown in FIG. 3A.
 また、後に詳述するように、第1の高周波電極132の第1の保持部材本体262側の面には、複数の発熱チップ140が接合されている。この発熱チップ140と、発熱チップ140への配線等と、第1の高周波電極132とを覆うように、例えばシリコーンからなる封止剤が塗布されて封止膜265が形成されている。第1の高周波電極132には、図2A及び2Bに示すように、高周波電極用通電ライン268が電気的に接続している。第1の高周波電極132は、この高周波電極用通電ライン268を介して、ケーブル160に接続されている。 Further, as will be described in detail later, a plurality of heat generating chips 140 are joined to the surface of the first high-frequency electrode 132 on the first holding member main body 262 side. A sealing film 265 is formed by applying a sealing agent made of, for example, silicone so as to cover the heating chip 140, the wiring to the heating chip 140, and the first high-frequency electrode 132. As shown in FIGS. 2A and 2B, a high-frequency electrode conducting line 268 is electrically connected to the first high-frequency electrode 132. The first high-frequency electrode 132 is connected to the cable 160 through the high-frequency electrode conducting line 268.
 第2の保持部材128は、第1の保持部材127と対称をなす形状をしている。すなわち、第2の保持部材128には、カッタ案内溝264と対向する位置に、カッタ案内溝274が形成されている。また、第2の保持部材本体272には、第1の高周波電極132と対向する位置に、第2の高周波電極134が配設されている。第2の高周波電極134は、高周波電極用通電ライン268を介して、ケーブル160に接続されている。 The second holding member 128 has a shape symmetric to the first holding member 127. That is, the cutter guide groove 274 is formed in the second holding member 128 at a position facing the cutter guide groove 264. In addition, the second holding member main body 272 is provided with a second high-frequency electrode 134 at a position facing the first high-frequency electrode 132. The second high-frequency electrode 134 is connected to the cable 160 via a high-frequency electrode energization line 268.
 閉じた状態の保持部125が生体組織を把持する際には、把持された生体組織は、第1の高周波電極132及び第2の高周波電極134と接触する。第1の保持部材127及び第2の保持部材128は更に、第1の高周波電極132及び第2の高周波電極134に接した生体組織を焼灼するために、発熱のための機構を有する。第1の保持部材127に設けられた発熱機構と、第2の保持部材128に設けられた発熱機構とは、同様の形態を持つ。ここでは第1の保持部材127に形成された発熱機構を例に挙げて説明する。 When the holding unit 125 in the closed state grips the living tissue, the gripped living tissue comes into contact with the first high-frequency electrode 132 and the second high-frequency electrode 134. The first holding member 127 and the second holding member 128 further have a mechanism for heat generation in order to cauterize the living tissue in contact with the first high-frequency electrode 132 and the second high-frequency electrode 134. The heat generating mechanism provided in the first holding member 127 and the heat generating mechanism provided in the second holding member 128 have the same form. Here, the heat generating mechanism formed on the first holding member 127 will be described as an example.
 まず、この発熱の機構を構成する発熱チップ140について図4A及び図4Bを参照して説明する。ここで、図4Aは上面図であり、図4Bは図4Aに示した4B-4B線に沿う断面図である。発熱チップ140は、アルミナ製の基板141を用いて形成されている。基板141の主面の一方である表面には、発熱用のPt薄膜である抵抗パターン143が形成されている。また、基板141の表面の、長方形の2つの短辺近傍には、それぞれ矩形の電極145が形成されている。ここで、電極145は、抵抗パターン143のそれぞれの端部に接続している。電極145が形成されている部分を除き、抵抗パターン143上を含む基板141の表面には、例えばポリイミドで形成された絶縁膜147が形成されている。 First, the heat generating chip 140 constituting the heat generating mechanism will be described with reference to FIGS. 4A and 4B. Here, FIG. 4A is a top view, and FIG. 4B is a cross-sectional view taken along line 4B-4B shown in FIG. 4A. The heat generating chip 140 is formed using an alumina substrate 141. A resistance pattern 143 that is a Pt thin film for heat generation is formed on one surface of the main surface of the substrate 141. In addition, rectangular electrodes 145 are formed on the surface of the substrate 141 in the vicinity of the two short sides of the rectangle. Here, the electrode 145 is connected to each end of the resistance pattern 143. An insulating film 147 made of, for example, polyimide is formed on the surface of the substrate 141 including the resistance pattern 143 except for the portion where the electrode 145 is formed.
 基板141の裏面全面には、接合用金属層149が形成されている。電極145と接合用金属層149とは、例えばTiとCuとNiとAuとからなる多層の膜である。これら電極145と接合用金属層149とは、ハンダ付け等に対して安定した強度を有している。接合用金属層149は、例えば第1の高周波電極132に発熱チップ140をハンダ付けする際に、接合が安定するように設けられている。 A bonding metal layer 149 is formed on the entire back surface of the substrate 141. The electrode 145 and the bonding metal layer 149 are multilayer films made of, for example, Ti, Cu, Ni, and Au. The electrodes 145 and the bonding metal layer 149 have stable strength against soldering or the like. The bonding metal layer 149 is provided so that the bonding is stable when the heat generating chip 140 is soldered to the first high-frequency electrode 132, for example.
 発熱チップ140は、第1の高周波電極132及び第2の高周波電極134の生体組織と接する面(第1の主面)とは反対側の面(第2の主面)に配設されている。ここで発熱チップ140は、それぞれ接合用金属層149の表面と第1の高周波電極132又は第2の高周波電極134の第2の主面とをハンダ付けすることにより固定されている。 The heat generating chip 140 is disposed on a surface (second main surface) opposite to the surface (first main surface) of the first high-frequency electrode 132 and the second high-frequency electrode 134 in contact with the living tissue. . Here, the heat generating chip 140 is fixed by soldering the surface of the bonding metal layer 149 and the second main surface of the first high-frequency electrode 132 or the second high-frequency electrode 134, respectively.
 第1の高周波電極132の場合を例に挙げて、図3A、3B及び3Cを参照して説明する。第1の高周波電極132には、6個の発熱チップ140が離散的に配置されている。すなわち、発熱チップ140は、基端側から先端側に向けてカッタ案内溝264を挟んで対称に2列に3個ずつ並べて配置されている。 The case of the first high-frequency electrode 132 will be described as an example with reference to FIGS. 3A, 3B, and 3C. Six heating chips 140 are discretely arranged on the first high-frequency electrode 132. That is, three heat generating chips 140 are arranged in two rows symmetrically across the cutter guide groove 264 from the base end side toward the tip end side.
 これら発熱チップ140の抵抗パターン143は、電極145を介して直列に接続されている。隣り合う電極145同士は、例えばワイヤボンディングによって形成されたワイヤ163で接続されている。直列に接続された発熱チップの両端には、一対の発熱チップ用通電ライン162が接続されている。一対の発熱チップ用通電ライン162は、ケーブル160に接続されている。このようにして発熱チップ140は、ワイヤ163、発熱チップ用通電ライン162及びケーブル160を介して、制御装置170に接続されている。制御装置170は、発熱チップ140に投入する電力を制御する。 The resistance patterns 143 of the heat generating chips 140 are connected in series via the electrodes 145. Adjacent electrodes 145 are connected by a wire 163 formed by, for example, wire bonding. A pair of heat generating chip energization lines 162 are connected to both ends of the heat generating chips connected in series. The pair of heating chip energization lines 162 is connected to the cable 160. In this way, the heat generating chip 140 is connected to the control device 170 via the wire 163, the heat generating chip conducting line 162 and the cable 160. The control device 170 controls the electric power supplied to the heat generating chip 140.
 以上のように本実施形態では、複数の発熱チップ140が第1の高周波電極132に配置されているが、これは第1の高周波電極132の温度均一性を高めるためであり、電気的には6個の発熱チップ140全体で単一の発熱チップとみなすことができる。第1の高周波電極132上には、発熱チップ140や発熱チップ用通電ライン162を覆うように、例えばシリコーンからなる封止剤が塗布されて、封止膜265が図3A、3B及び3Cに示すように形成されている。 As described above, in the present embodiment, the plurality of heat generating chips 140 are disposed on the first high-frequency electrode 132, but this is for improving the temperature uniformity of the first high-frequency electrode 132. The entire six heat generating chips 140 can be regarded as a single heat generating chip. On the first high-frequency electrode 132, a sealing agent made of, for example, silicone is applied so as to cover the heat generating chip 140 and the heat generating chip energization line 162, and the sealing film 265 is shown in FIGS. 3A, 3B, and 3C. It is formed as follows.
 制御装置170から出力された電流は、6個の発熱チップ140の各抵抗パターン143を流れる。その結果、各抵抗パターン143は発熱する。抵抗パターン143が発熱すると、第1の高周波電極132にその熱が伝達される。この熱により、第1の高周波電極132に接した生体組織が焼灼される。 The current output from the control device 170 flows through the resistance patterns 143 of the six heat generating chips 140. As a result, each resistance pattern 143 generates heat. When the resistance pattern 143 generates heat, the heat is transmitted to the first high-frequency electrode 132. The living tissue in contact with the first high-frequency electrode 132 is cauterized by this heat.
 発熱チップ140で生じた熱を効率よく第1の高周波電極132へ伝えるために、封止膜265、及びその周囲の第1の保持部材本体262は、第1の高周波電極132や基板141の熱伝導率よりも低い熱伝導率を有することが好ましい。封止膜265及び第1の保持部材本体262の熱伝導率が低いことで、損失の少ない熱伝導が実現される。 In order to efficiently transmit the heat generated in the heat generating chip 140 to the first high-frequency electrode 132, the sealing film 265 and the first holding member body 262 around the sealing film 265 have heat of the first high-frequency electrode 132 and the substrate 141. It is preferable to have a thermal conductivity lower than the conductivity. Since the thermal conductivity of the sealing film 265 and the first holding member body 262 is low, thermal conduction with less loss is realized.
 制御装置170の内部には、図5に示すように、制御部180と、高周波エネルギ出力回路181と、発熱チップ駆動回路182と、入力部185と、表示部186と、記憶部187と、スピーカ188と、温度センサ189とが配設されている。制御部180は、制御装置170内の各部と接続しており、制御装置170の各部を制御する。高周波エネルギ出力回路181は、エネルギ処置具120と接続しており、制御部180の制御の下、エネルギ処置具120の第1の高周波電極132及び第2の高周波電極134を駆動する。すなわち、高周波エネルギ出力回路181は、高周波電極用通電ライン268を介して、第1の高周波電極132及び第2の高周波電極134に高周波電圧を印加する。 As shown in FIG. 5, the control device 170 includes a control unit 180, a high frequency energy output circuit 181, a heat generating chip drive circuit 182, an input unit 185, a display unit 186, a storage unit 187, and a speaker. 188 and a temperature sensor 189 are disposed. The control unit 180 is connected to each unit in the control device 170 and controls each unit of the control device 170. The high frequency energy output circuit 181 is connected to the energy treatment device 120, and drives the first high frequency electrode 132 and the second high frequency electrode 134 of the energy treatment device 120 under the control of the control unit 180. That is, the high-frequency energy output circuit 181 applies a high-frequency voltage to the first high-frequency electrode 132 and the second high-frequency electrode 134 via the high-frequency electrode conducting line 268.
 発熱チップ駆動回路182は、エネルギ処置具120と接続しており、制御部180の制御の下、エネルギ処置具120の発熱チップ140を駆動する。すなわち、発熱チップ駆動回路182は、制御部180の制御の下、発熱チップ用通電ライン162を介して加熱のために発熱チップ140の抵抗パターン143に電力を供給する。ここで、発熱チップ駆動回路182は、発熱チップ140に供給する電力量を変化させることができる。また、発熱チップ駆動回路182は、発熱チップ140に電圧を印加した際に流れる電流を計測する機能を有する。発熱チップ駆動回路182は、計測した電流値を制御部180に出力する。 The heat generating chip driving circuit 182 is connected to the energy treatment tool 120 and drives the heat generating chip 140 of the energy treatment tool 120 under the control of the control unit 180. That is, the heat generating chip driving circuit 182 supplies power to the resistance pattern 143 of the heat generating chip 140 for heating through the heat generating chip energization line 162 under the control of the control unit 180. Here, the heat generating chip drive circuit 182 can change the amount of power supplied to the heat generating chip 140. The heating chip driving circuit 182 has a function of measuring a current that flows when a voltage is applied to the heating chip 140. The heat generating chip driving circuit 182 outputs the measured current value to the control unit 180.
 抵抗パターン143の抵抗値は、抵抗パターン143の温度に応じて変化する。したがって、抵抗パターン143の温度と抵抗値との関係を有していれば、制御部180は、抵抗パターン143の抵抗値に基づいて、抵抗パターン143の温度を取得することができる。制御部180は、抵抗パターン143に印加した電圧値と、発熱チップ駆動回路182から取得したそのとき流れる電流値とに基づいて、抵抗パターン143の抵抗値を算出する。さらに制御部180は、抵抗パターン143の温度と抵抗値との関係に基づいて、抵抗パターン143の温度を算出する。 The resistance value of the resistance pattern 143 changes according to the temperature of the resistance pattern 143. Therefore, if there is a relationship between the temperature of the resistance pattern 143 and the resistance value, the control unit 180 can acquire the temperature of the resistance pattern 143 based on the resistance value of the resistance pattern 143. The control unit 180 calculates the resistance value of the resistance pattern 143 based on the voltage value applied to the resistance pattern 143 and the current value flowing at that time acquired from the heating chip drive circuit 182. Further, the control unit 180 calculates the temperature of the resistance pattern 143 based on the relationship between the temperature of the resistance pattern 143 and the resistance value.
 また、制御部180は、上記のように抵抗パターン143の温度を取得するために、抵抗パターン143の温度と抵抗値との関係を算出する。より具体的には、制御部180は、コネクタ165を介してエネルギ処置具120と制御装置170とが接続されたときに、メモリ123から当該エネルギ処置具120の固有情報を読み出す。さらに制御部180は、発熱チップ140の抵抗パターン143に微小電圧を印加させ、そのとき流れる電流値から抵抗パターン143の抵抗値を取得する。さらに制御部180は、温度センサ189から、校正温度としての環境温度を取得する。制御部180は、エネルギ処置具120の特性と、抵抗パターン143の抵抗値と、環境温度とから、抵抗パターン143の温度と抵抗値との関係を算出する。また、制御部180は、後に詳述するように、メモリ123から読み出した固有情報のうちエネルギ処置具120の個体識別番号と、算出した温度と抵抗値との関係に係る値、すなわち後に詳述する係数C1とを、記憶部187に格納する。 Further, the control unit 180 calculates the relationship between the temperature of the resistance pattern 143 and the resistance value in order to acquire the temperature of the resistance pattern 143 as described above. More specifically, when the energy treatment tool 120 and the control device 170 are connected via the connector 165, the control unit 180 reads out the unique information of the energy treatment tool 120 from the memory 123. Further, the control unit 180 applies a minute voltage to the resistance pattern 143 of the heat generating chip 140 and acquires the resistance value of the resistance pattern 143 from the current value flowing at that time. Further, the control unit 180 acquires the environmental temperature as the calibration temperature from the temperature sensor 189. The control unit 180 calculates the relationship between the temperature and resistance value of the resistance pattern 143 from the characteristics of the energy treatment tool 120, the resistance value of the resistance pattern 143, and the environmental temperature. Further, as will be described in detail later, the control unit 180 has a value relating to the relationship between the individual identification number of the energy treatment instrument 120 and the calculated temperature and resistance value among the unique information read from the memory 123, that is, detailed later. The coefficient C1 to be stored is stored in the storage unit 187.
 制御部180には、フットスイッチ(SW)216が接続されており、フットスイッチ216からエネルギ処置具120による処置が行われるONと、処置が停止されるOFFとが入力される。入力部185は、制御部180の各種設定等を入力する。表示部186は、制御部180の制御下で治療用処置装置100の各種情報を表示する。記憶部187は、制御装置170の動作に必要な各種データが記憶されている。スピーカ188は、アラーム音などを出力する。温度センサ189は、環境温度を計測する。 A foot switch (SW) 216 is connected to the control unit 180, and ON from which the treatment by the energy treatment tool 120 is performed and OFF from which the treatment is stopped are input from the foot switch 216. The input unit 185 inputs various settings of the control unit 180. The display unit 186 displays various types of information on the treatment apparatus 100 under the control of the control unit 180. The storage unit 187 stores various data necessary for the operation of the control device 170. The speaker 188 outputs an alarm sound or the like. The temperature sensor 189 measures the environmental temperature.
 上記説明した治療用処置装置100のうち、特に加熱処置に係る部分を抜き出した模式図を図6に示す。この図に示すように、加熱処置は、第1の高周波電極132及び第2の高周波電極134並びに発熱チップ140を有する保持部125と、メモリ123とを備えるエネルギ処置具120によって行われる。エネルギ処置具120の制御は、制御部180と発熱チップ駆動回路182と記憶部187と温度センサ189とを有する制御装置170によって行われる。エネルギ処置具120と制御装置170とは、制御装置170側に設けられたコネクタ165を用いて着脱自在なケーブル160によって接続されている。なお、前記した高周波処置やカッタに係る構成は、本発明に係る治療用処置装置100においては必ずしも必要ではない。 FIG. 6 shows a schematic diagram in which a portion related to the heating treatment is extracted from the therapeutic treatment apparatus 100 described above. As shown in this figure, the heat treatment is performed by an energy treatment device 120 including a holding unit 125 having a first high-frequency electrode 132, a second high-frequency electrode 134, and a heating chip 140, and a memory 123. Control of the energy treatment tool 120 is performed by a control device 170 having a control unit 180, a heat generating chip drive circuit 182, a storage unit 187, and a temperature sensor 189. The energy treatment tool 120 and the control device 170 are connected by a detachable cable 160 using a connector 165 provided on the control device 170 side. Note that the configuration related to the high-frequency treatment and the cutter described above is not necessarily required in the treatment apparatus for treatment 100 according to the present invention.
 このように、例えば第1の高周波電極132又は第2の高周波電極134は、生体組織に接触して生体組織に熱を伝える伝熱部として機能する。例えば発熱チップ140は、電力が投入されることによって前記伝熱部を加熱する抵抗素子として機能する。例えばエネルギ処置具120は、伝熱部と抵抗素子とを有する処置具として機能する。例えば制御装置170は、抵抗素子の抵抗値Rを計測でき、目標温度で生体組織を加熱するために抵抗素子に電力を供給して伝熱部の温度を制御する制御装置として機能する。例えばメモリ123は、係数C2を格納するための記憶部として機能する。例えば温度センサ189は、環境温度を計測するための温度センサとして機能する。例えば記憶部187は、算出係数記憶部として機能する。 Thus, for example, the first high-frequency electrode 132 or the second high-frequency electrode 134 functions as a heat transfer unit that contacts the living tissue and transfers heat to the living tissue. For example, the heat generating chip 140 functions as a resistance element that heats the heat transfer section when power is supplied. For example, the energy treatment device 120 functions as a treatment device having a heat transfer section and a resistance element. For example, the control device 170 can measure the resistance value R of the resistance element, and functions as a control device that controls the temperature of the heat transfer section by supplying power to the resistance element in order to heat the living tissue at the target temperature. For example, the memory 123 functions as a storage unit for storing the coefficient C2. For example, the temperature sensor 189 functions as a temperature sensor for measuring the environmental temperature. For example, the storage unit 187 functions as a calculated coefficient storage unit.
 次に本実施形態に係る治療用処置装置100の動作を説明する。制御部180による処理を表すフローチャートを図7に示す。ステップS101において制御部180は、エネルギ処置具120が接続しているケーブル160が、コネクタを介して制御装置170に接続されたか否かを判定する。接続されていないとき、制御部180はステップS101を繰り返す。一方、制御部180がエネルギ処置具120が接続したケーブル160が制御装置170に接続されたと判定したら、処理はステップS102に進む。ステップS102において制御部180は、定義済み処理である初期設定処理を実行する。この初期設定処理については、後に詳述する。 Next, the operation of the therapeutic treatment apparatus 100 according to this embodiment will be described. FIG. 7 shows a flowchart showing the processing by the control unit 180. In step S101, the control unit 180 determines whether the cable 160 to which the energy treatment device 120 is connected is connected to the control device 170 via the connector. When not connected, the control unit 180 repeats step S101. On the other hand, if the control unit 180 determines that the cable 160 to which the energy treatment device 120 is connected is connected to the control device 170, the process proceeds to step S102. In step S102, the control unit 180 executes an initial setting process that is a predefined process. This initial setting process will be described later in detail.
 ステップS103において制御部180は、定義済み処理である出力設定処理を実行する。出力設定処理では、制御部180は、入力部185を介して術者の指示を受け取り、治療用処置装置100の出力条件、例えば、高周波エネルギ出力の設定電力、熱エネルギ出力による目標温度Top、加熱時間top等を設定する。ここで、術者がそれぞれの値を個別に設定するようにしてもよいし、術者は術式に応じた設定値のセットを選択し、その選択に基づいて制御部180が出力条件を決定するようにしてもよい。 In step S103, the control unit 180 executes an output setting process that is a predefined process. In the output setting process, the control unit 180 receives the operator's instruction via the input unit 185, and outputs the treatment conditions of the treatment apparatus 100, for example, the set power of the high frequency energy output, the target temperature Top by the thermal energy output, the heating Set time top and the like. Here, the operator may individually set each value, or the operator selects a set of setting values according to the technique, and the control unit 180 determines the output condition based on the selection. You may make it do.
 エネルギ処置具120の保持部125及びシャフト224は、例えば、腹壁を通して腹腔内に挿入される。術者は、操作ノブ232を操作して保持部125を開閉させ、第1の保持部材127と第2の保持部材128とによって処置対象の生体組織を把持する。このとき、第1の保持部材127に設けられた第1の高周波電極132と第2の保持部材128に設けられた第2の高周波電極134との両方の第1の主面に、処置対象の生体組織が接触している。 The holding part 125 and the shaft 224 of the energy treatment device 120 are inserted into the abdominal cavity through the abdominal wall, for example. The surgeon operates the operation knob 232 to open and close the holding portion 125, and grips the living tissue to be treated by the first holding member 127 and the second holding member 128. At this time, the first main surface of both the first high-frequency electrode 132 provided on the first holding member 127 and the second high-frequency electrode 134 provided on the second holding member 128 is subjected to treatment. Living tissue is in contact.
 ステップS104において制御部180は、術者による高周波処置開始の指示が入力されたか否かの判定を繰り返す。術者は、保持部125によって処置対象の生体組織を把持したら、フットスイッチ216を操作する。例えばフットスイッチ216がONに切り換えられ、制御部180が高周波処置開始の指示が入力されたと判定する。このとき、ステップS105において制御部180は、高周波処置実施処理を実行する。高周波処置実施処理では、制御装置170の高周波エネルギ出力回路181から、ケーブル160を介して第1の高周波電極132及び第2の高周波電極134に、設定電力の高周波電力が供給される。供給される電力は、例えば20W~80W程度である。その結果、生体組織は発熱し、組織が焼灼される。この焼灼により、当該組織は変性し、凝固する。所定時間の経過後、又は術者の指示に基づいて、制御部180は高周波エネルギの出力を停止し、高周波処置実施処理は終了する。 In step S104, the control unit 180 repeats the determination as to whether or not an instruction to start a high-frequency treatment by the operator has been input. When the operator grasps the biological tissue to be treated with the holding unit 125, the operator operates the foot switch 216. For example, the foot switch 216 is switched ON, and the control unit 180 determines that an instruction to start high frequency treatment has been input. At this time, in step S105, the control unit 180 executes a high-frequency treatment execution process. In the high frequency treatment execution process, high frequency power of set power is supplied from the high frequency energy output circuit 181 of the control device 170 to the first high frequency electrode 132 and the second high frequency electrode 134 via the cable 160. The supplied power is, for example, about 20W to 80W. As a result, the living tissue generates heat and the tissue is cauterized. By this cauterization, the tissue is denatured and solidified. After the elapse of the predetermined time or based on the operator's instruction, the control unit 180 stops the output of the high-frequency energy, and the high-frequency treatment execution process ends.
 ステップS106において制御部180は、術者による加熱処置開始の指示が入力されたか否かの判定を繰り返す。例えばフットスイッチ216がONに切り換えられ、制御部180が加熱処置開始の指示が入力されたと判定したら、ステップS107において制御部180は、加熱処置実施処理を実行する。加熱処置実施処理では、後に詳述するようにして、制御装置170は第1の高周波電極132の温度が目標温度になるように発熱チップ140に電力を供給する。ここで、目標温度は、例えば200℃程度である。このとき電流は、制御装置170の発熱チップ駆動回路182から、ケーブル160及び発熱チップ用通電ライン162を介して、各発熱チップ140の抵抗パターン143を流れる。各発熱チップ140の抵抗パターン143は、電流によって発熱する。 In step S106, the control unit 180 repeats the determination of whether or not an instruction to start the heating treatment by the operator has been input. For example, when the foot switch 216 is switched ON and the control unit 180 determines that an instruction to start the heat treatment is input, the control unit 180 executes the heat treatment execution process in step S107. In the heat treatment execution process, as will be described in detail later, the control device 170 supplies power to the heat generating chip 140 so that the temperature of the first high-frequency electrode 132 becomes the target temperature. Here, the target temperature is about 200 ° C., for example. At this time, the current flows from the heating chip drive circuit 182 of the control device 170 through the resistance pattern 143 of each heating chip 140 via the cable 160 and the heating chip energization line 162. The resistance pattern 143 of each heat generating chip 140 generates heat by current.
 抵抗パターン143で発生した熱は、基板141及び接合用金属層149を介して、第1の高周波電極132に伝わる。その結果、第1の高周波電極132の温度は上昇する。同様に、第2の高周波電極134の温度も、第2の高周波電極134に配置された各発熱チップ140を流れる電流による発熱で上昇する。これらの熱によって第1の高周波電極132又は第2の高周波電極134の第1の主面と接触している生体組織は更に焼灼され、更に凝固する。加熱によって生体組織が凝固したら、熱エネルギの出力は停止され、加熱処置実施処置は終了する。以上のようにして、制御部180による一連の処理は終了する。最後に術者は、操作ノブ232を操作してカッタ254を移動させ、生体組織を切断する。以上によって生体組織の処置が完了する。 The heat generated in the resistance pattern 143 is transmitted to the first high-frequency electrode 132 through the substrate 141 and the bonding metal layer 149. As a result, the temperature of the first high-frequency electrode 132 rises. Similarly, the temperature of the second high-frequency electrode 134 also rises due to the heat generated by the current flowing through each heat generating chip 140 disposed on the second high-frequency electrode 134. The living tissue in contact with the first main surface of the first high-frequency electrode 132 or the second high-frequency electrode 134 is further cauterized and further solidified by these heats. When the living tissue is solidified by heating, the output of heat energy is stopped, and the heat treatment execution procedure is ended. As described above, a series of processing by the control unit 180 ends. Finally, the operator operates the operation knob 232 to move the cutter 254 and cut the living tissue. The treatment of the living tissue is thus completed.
 上記のような加熱処置において、発熱チップ140による加熱における温度制御には、高い精度が求められる。本実施形態では、制御部180は、発熱チップ140の温度を抵抗パターン143の抵抗値に基づいて取得する。すなわち、制御部180の制御下で発熱チップ駆動回路182は、抵抗パターン143に電圧を印加し、そのとき流れる電流値を計測する。発熱チップ駆動回路182は、計測した電流値を制御部180に出力する。制御部180は、抵抗パターン143に印加した電圧値と、発熱チップ駆動回路182から取得した電流値とに基づいて、抵抗パターン143の抵抗値を算出する。制御部180は、算出した抵抗値と抵抗パターン143の抵抗値と温度との関係に基づいて、抵抗パターン143の温度を算出する。 In the heating treatment as described above, high accuracy is required for temperature control in heating by the heat generating chip 140. In the present embodiment, the control unit 180 acquires the temperature of the heat generating chip 140 based on the resistance value of the resistance pattern 143. That is, the heat generating chip drive circuit 182 applies a voltage to the resistance pattern 143 under the control of the control unit 180 and measures a current value flowing at that time. The heat generating chip driving circuit 182 outputs the measured current value to the control unit 180. The control unit 180 calculates the resistance value of the resistance pattern 143 based on the voltage value applied to the resistance pattern 143 and the current value acquired from the heating chip drive circuit 182. The control unit 180 calculates the temperature of the resistance pattern 143 based on the relationship between the calculated resistance value, the resistance value of the resistance pattern 143, and the temperature.
 抵抗パターン143の抵抗値Rと温度Tとの関係について説明する。抵抗パターン143の温度は、下記式(1)で与えられる。 
  T=C1×R+C2            (1)
ここで、係数C1及び係数C2は所定の定数である。したがって、係数C1及び係数C2が既知であれば、式(1)に基づいて抵抗パターン143の抵抗値Rから温度Tを求めることができる。以下、係数C1及び係数C2について説明する。
A relationship between the resistance value R of the resistance pattern 143 and the temperature T will be described. The temperature of the resistance pattern 143 is given by the following formula (1).
T = C1 × R + C2 (1)
Here, the coefficient C1 and the coefficient C2 are predetermined constants. Therefore, if the coefficient C1 and the coefficient C2 are known, the temperature T can be obtained from the resistance value R of the resistance pattern 143 based on the equation (1). Hereinafter, the coefficient C1 and the coefficient C2 will be described.
 温度T1のときの抵抗値R1とし、温度T2のときの抵抗値R2とすると、式(1)より、次式(2)及び(3)が成り立つ。 
  T1=C1×R1+C2          (2)
  T2=C1×R2+C2          (3)
 ここで、抵抗値R1及びR2の比をαとする。すなわち、次式(4)とする。 
  α=R2/R1              (4)
すると、式(2)(3)(4)より、次式(5)が得られる。 
  C2=(T1×α―T2)/(α-1)   (5)
ここで、αは抵抗パターン143の材料によって決まる値である。すなわち、製造工程で不均一さが生じる抵抗パターン143の線幅や厚さには依存しない。したがって、同一材料を用いた同一構造の発熱チップ140では、個体間の係数C2の差異はごく小さい。係数C2の導出には2つの異なる温度で抵抗値を計測する必要がある。しかしながら、個体間の差異が小さいことから、全ての発熱チップ140について計測する必要はなく、例えは発熱チップ140の製造ロット毎に抜き取り検査を行って平均値を算出することで十分な精度でそのロットの発熱チップ140の係数C2を得ることができる。
When the resistance value R1 at the temperature T1 is set to the resistance value R2 at the temperature T2, the following formulas (2) and (3) are established from the formula (1).
T1 = C1 × R1 + C2 (2)
T2 = C1 × R2 + C2 (3)
Here, the ratio of the resistance values R1 and R2 is α. That is, it is set as the following formula (4).
α = R2 / R1 (4)
Then, the following equation (5) is obtained from the equations (2), (3), and (4).
C2 = (T1 × α−T2) / (α−1) (5)
Here, α is a value determined by the material of the resistance pattern 143. That is, it does not depend on the line width or thickness of the resistance pattern 143 that causes non-uniformity in the manufacturing process. Therefore, in the heat generating chip 140 having the same structure using the same material, the difference in coefficient C2 between individuals is very small. In order to derive the coefficient C2, it is necessary to measure the resistance value at two different temperatures. However, since the difference between individuals is small, it is not necessary to measure all of the heat generating chips 140. For example, by performing a sampling inspection for each manufacturing lot of the heat generating chips 140 and calculating an average value, the measurement can be performed with sufficient accuracy. The coefficient C2 of the heating chip 140 of the lot can be obtained.
 係数C2が既知である場合、ある温度Tにおける抵抗パターン143の抵抗値Rは、下記式(6)で表される。 
  C1=(T-C2)/R          (6)
この式から明らかなとおり、係数C2が既知であれば、ある一つの温度における抵抗値を計測することで係数C1が取得され得る。
When the coefficient C2 is known, the resistance value R of the resistance pattern 143 at a certain temperature T is expressed by the following formula (6).
C1 = (T−C2) / R (6)
As is apparent from this equation, if the coefficient C2 is known, the coefficient C1 can be obtained by measuring the resistance value at one temperature.
 ここで、係数C1は、抵抗パターン143の線幅や厚さには依存し、製造工程において比較的大きな不均一さが生じ易い。したがって、処置具の個体毎に係数C1を計測することが望まれる。 Here, the coefficient C1 depends on the line width and thickness of the resistance pattern 143, and relatively large non-uniformity is likely to occur in the manufacturing process. Therefore, it is desired to measure the coefficient C1 for each individual treatment instrument.
 以上のことから、本実施形態では、係数C2は、例えば製造ロット毎の抜き取り検査の平均値等によって予め求めておく。そして、この係数C2の値は、上述のとおりエネルギ処置具120に備えられたメモリ123に記憶しておく。一方、係数C1は、使用時の初期設定処理において計測する。 From the above, in this embodiment, the coefficient C2 is obtained in advance by, for example, an average value of sampling inspection for each production lot. The value of the coefficient C2 is stored in the memory 123 provided in the energy treatment device 120 as described above. On the other hand, the coefficient C1 is measured in the initial setting process during use.
 本実施形態における初期設定処理の例を図8に示すフローチャートを参照して説明する。ステップS201において制御部180は、エネルギ処置具120のメモリ123から、そのエネルギ処置具120の個体識別番号と係数C2の値とを読み出す。ステップS202において制御部180は、記憶部187に個体識別番号に対応する係数C1が格納されているか否かを判定する。 An example of the initial setting process in the present embodiment will be described with reference to the flowchart shown in FIG. In step S201, the control unit 180 reads the individual identification number of the energy treatment device 120 and the value of the coefficient C2 from the memory 123 of the energy treatment device 120. In step S202, the control unit 180 determines whether or not the coefficient C1 corresponding to the individual identification number is stored in the storage unit 187.
 ステップS202の判定において、記憶部187に個体識別番号に対応する係数C1が格納されていないと判定されたら、処理はステップS203に進む。ステップS203において制御部180は、制御装置170に備えられた温度センサ189から計測した環境温度Tmを取得する。本実施形態では、この環境温度Tmを、係数C1の算出に用いる温度である校正温度とする。ステップS204において制御部180は、発熱チップ駆動回路182に指令して発熱チップ140の抵抗パターン143に微小電圧Vmを印加させる。ステップS205において制御部180は、発熱チップ駆動回路182に指令して抵抗パターン143を流れる電流Imを計測させ、計測した電流Imを取得する。 If it is determined in step S202 that the coefficient C1 corresponding to the individual identification number is not stored in the storage unit 187, the process proceeds to step S203. In step S203, the control unit 180 acquires the environmental temperature Tm measured from the temperature sensor 189 provided in the control device 170. In the present embodiment, the environmental temperature Tm is set as a calibration temperature that is a temperature used for calculating the coefficient C1. In step S <b> 204, the control unit 180 instructs the heating chip driving circuit 182 to apply the minute voltage Vm to the resistance pattern 143 of the heating chip 140. In step S205, the control unit 180 instructs the heat generating chip driving circuit 182 to measure the current Im flowing through the resistance pattern 143, and acquires the measured current Im.
 ステップS206において制御部180は、次式(7)に基づいて抵抗パターン143の抵抗値Rmを算出する。 
  Rm=Vm/Im             (7)
さらに、得られたRmと、ステップS201で取得した係数C2と、ステップS203で計測した環境温度Tmと、式(6)とに基づいて、次式(8)により、係数C1を算出する。 
  C1=(Tm-C2)/Rm        (8)
なお、ケーブル160のコネクタ165への接続直後にこの計測が行われることから、発熱チップの温度は環境温度と等しいとみなすことができる。
In step S206, the control unit 180 calculates the resistance value Rm of the resistance pattern 143 based on the following equation (7).
Rm = Vm / Im (7)
Further, based on the obtained Rm, the coefficient C2 acquired in step S201, the environmental temperature Tm measured in step S203, and the expression (6), the coefficient C1 is calculated by the following expression (8).
C1 = (Tm−C2) / Rm (8)
Since this measurement is performed immediately after connection of the cable 160 to the connector 165, the temperature of the heat generating chip can be regarded as being equal to the environmental temperature.
 ステップS207において制御部180は、ステップS201で読み出した個体識別番号と、ステップS206で算出した係数C1とを関連付けて、記憶部187に格納する。ステップS208において制御部180は、発熱チップ駆動回路182に指令して、抵抗パターン143への微小電圧Vmの印加を停止させる。その後処理は、係数C1及びC2を戻り値として、図7に示した処理のステップS102に戻る。 In step S207, the control unit 180 associates the individual identification number read in step S201 with the coefficient C1 calculated in step S206 and stores it in the storage unit 187. In step S208, the control unit 180 instructs the heat generating chip drive circuit 182 to stop applying the minute voltage Vm to the resistance pattern 143. Thereafter, the processing returns to step S102 of the processing shown in FIG. 7 using the coefficients C1 and C2 as return values.
 一方、ステップS202の判定において、記憶部187に個体識別番号に対応する係数C1が格納されていると判定されたら、ステップS209において制御部180は、係数C1の算出を行わずに、記憶部187から記憶されている個体識別番号に対応する係数C1を読み出す。その後処理は、係数C1及びC2を戻り値として、ステップS102に戻る。 On the other hand, if it is determined in step S202 that the coefficient C1 corresponding to the individual identification number is stored in the storage unit 187, the control unit 180 does not calculate the coefficient C1 in step S209, but stores the coefficient C1. The coefficient C1 corresponding to the stored individual identification number is read out. Thereafter, the processing returns to step S102 using the coefficients C1 and C2 as return values.
 なお、ここに示した処理手順は一例であり、処理順序は適宜変更することができる。例えば、ステップS203は、ステップS205の後に行うことができるし、ステップS208は、ステップS205の後に行うことができる。 Note that the processing procedure shown here is an example, and the processing order can be changed as appropriate. For example, step S203 can be performed after step S205, and step S208 can be performed after step S205.
 本実施形態では、ステップS107における加熱処置実施処理において、上記のようにして得られた係数C1及びC2を用いて発熱チップ140に投入する電力のフィードバック制御を行う。加熱処置実施処理を図9に示したフローチャートを参照して説明する。 In the present embodiment, in the heat treatment execution process in step S107, feedback control of the electric power supplied to the heat generating chip 140 is performed using the coefficients C1 and C2 obtained as described above. The heat treatment execution process will be described with reference to the flowchart shown in FIG.
 ステップS301において制御部180は、各種パラメータを初期値に設定し、発熱チップ駆動回路182に抵抗パターン143への電力の投入を開始させる。例えば、経過時間tを0とし、投入電力Pを初期投入電力P0とし、抵抗パターン143に印加する電圧Vdを初期印加電圧Vd_0に設定する。 In step S301, the control unit 180 sets various parameters to initial values, and causes the heat generation chip drive circuit 182 to start supplying power to the resistance pattern 143. For example, the elapsed time t is set to 0, the input power P is set to the initial input power P0, and the voltage Vd applied to the resistance pattern 143 is set to the initial applied voltage Vd_0.
 ステップS302において制御部180は、抵抗パターン143への印加電圧Vdと、発熱チップ駆動回路182から取得したこのとき流れる電流Iとに基づいて、抵抗パターン143の抵抗値Rを算出する。ステップS303において制御部180は、式(1)に基づいて抵抗パターン143の温度Tを算出する。ステップS304において制御部180は、次式(9)により、抵抗パターン143に投入する電力Pを算出する。 
  P=C3×(Top-T)+Pnow    (9)
ここで、C3は制御ゲインであり、所定の値が与えられている。Topは目標温度であり、Pnowは現在投入されている電力である。ここでは制御ゲインをC3とする単純な比例制御としているが、より安定した制御を行うために、PID制御を用いてもよい。
In step S <b> 302, the control unit 180 calculates the resistance value R of the resistance pattern 143 based on the voltage Vd applied to the resistance pattern 143 and the current I flowing at this time acquired from the heat generation chip drive circuit 182. In step S303, the control unit 180 calculates the temperature T of the resistance pattern 143 based on Expression (1). In step S304, the control unit 180 calculates the power P to be input to the resistance pattern 143 by the following equation (9).
P = C3 × (Top−T) + Pnow (9)
Here, C3 is a control gain, which is given a predetermined value. Top is the target temperature, and Pnow is the power that is currently input. Here, simple proportional control with a control gain of C3 is used, but PID control may be used in order to perform more stable control.
 ステップS305において制御部180は、次式(10)に基づいて印加電圧Vを算出する。 
  V=(P×R)0.5            (10)
 ステップS306において制御部180は、発熱チップ駆動回路182に指令して、算出した印加電圧Vを抵抗パターン143に印加させる。
In step S305, the control unit 180 calculates the applied voltage V based on the following equation (10).
V = (P × R) 0.5 (10)
In step S <b> 306, the control unit 180 instructs the heat generating chip driving circuit 182 to apply the calculated applied voltage V to the resistance pattern 143.
 ステップS307において制御部180は、経過時間tが処置時間topよりも小さいか否かを判定する。経過時間tが処置時間topよりも小さければ、処理はステップS302に戻る。一方、経過時間tが処置時間top以上であれば、加熱処置実施処理は終了し、処理は図7に示す処理のステップS107に戻る。以上のようにして、ステップS302乃至ステップS307の処理が繰り返される間、抵抗パターン143に投入される電力Pはフィードバック制御される。 In step S307, the control unit 180 determines whether or not the elapsed time t is smaller than the treatment time top. If the elapsed time t is smaller than the treatment time top, the process returns to step S302. On the other hand, if the elapsed time t is equal to or longer than the treatment time top, the heat treatment execution process ends, and the process returns to step S107 of the process shown in FIG. As described above, while the processes in steps S302 to S307 are repeated, the power P input to the resistance pattern 143 is feedback-controlled.
 本実施形態によれば、係数C1及び係数C2を得るために、全てのエネルギ処置具120を対象として複数の温度における各抵抗値を計測する必要がない。係数C2を予めエネルギ処置具120に格納しておき、単一の温度における抵抗値を計測することで、高い精度で係数C1を得ることができる。このため、各エネルギ処置具120の使用前に、環境温度において抵抗値を計測するだけで係数C1及び係数C2を得ることができる。その結果、製造時の検査工程において全てのエネルギ処置具120を対象とした計測を行う必要がないので、検査工程のコストを低減させることができる。 According to this embodiment, in order to obtain the coefficient C1 and the coefficient C2, it is not necessary to measure each resistance value at a plurality of temperatures for all the energy treatment tools 120. By storing the coefficient C2 in the energy treatment device 120 in advance and measuring the resistance value at a single temperature, the coefficient C1 can be obtained with high accuracy. For this reason, before using each energy treatment tool 120, the coefficient C1 and the coefficient C2 can be obtained only by measuring the resistance value at the environmental temperature. As a result, since it is not necessary to perform measurement for all the energy treatment tools 120 in the inspection process at the time of manufacture, the cost of the inspection process can be reduced.
 また、本実施形態においては、係数C1を算出する際の抵抗値Rmの計測では、微小電圧Vmの印加によって行うので、発熱チップ140が高温になることがない。また、ケーブル160のコネクタ165への接続直後にこの計測が行われることから、発熱チップの温度は環境温度と等しいとみなすことができる。発熱チップの温度を上下させた場合と比較して、温度Tを安定して取得することができるので、係数C1の算出は高精度となる。 Further, in the present embodiment, the measurement of the resistance value Rm when calculating the coefficient C1 is performed by applying the minute voltage Vm, so that the heat generating chip 140 does not become high temperature. Further, since this measurement is performed immediately after the connection of the cable 160 to the connector 165, the temperature of the heat generating chip can be regarded as being equal to the environmental temperature. Compared with the case where the temperature of the heat generating chip is raised or lowered, the temperature T can be obtained stably, so the calculation of the coefficient C1 becomes highly accurate.
 また、係数C1の算出では、校正温度として環境温度を用いているので、制御装置170に温度センサ189を設けておけば、抵抗パターン143の温度を取得するための温度センサをエネルギ処置具120毎に設ける必要がない。また、精度を多少犠牲にする場合、又は環境温度が安定している場所で用いる場合、温度センサ189を設けずに、例えば環境温度が25℃等一定であると仮定して、その温度を校正温度として用いて同様の処理を行うこともできる。 Further, since the environmental temperature is used as the calibration temperature in the calculation of the coefficient C1, if the temperature sensor 189 is provided in the control device 170, a temperature sensor for acquiring the temperature of the resistance pattern 143 is provided for each energy treatment tool 120. There is no need to provide it. Further, when the accuracy is somewhat sacrificed or when used in a place where the environmental temperature is stable, the temperature is calibrated on the assumption that the environmental temperature is constant, for example, 25 ° C. without providing the temperature sensor 189. The same treatment can be performed using the temperature.
 また本実施形態によれば、係数C1の計測を、当該エネルギ処置具120を実際に駆動する制御装置170を用いて行うので、内部配線の寄生抵抗やアンプのオフセット等、制御装置170の個体差が補正される。したがって、より高精度に発熱チップ140の温度制御を行うことができる。 In addition, according to the present embodiment, the coefficient C1 is measured using the control device 170 that actually drives the energy treatment instrument 120. Therefore, individual differences of the control device 170 such as the parasitic resistance of the internal wiring and the offset of the amplifier. Is corrected. Therefore, the temperature control of the heat generating chip 140 can be performed with higher accuracy.
 また、一度計測された係数C1の値は、同一の制御装置170に対しては再利用される。したがって、例えば加熱治療処置を行った後に何等かの理由で一時的にエネルギ処置具120を制御装置170から取り外し、時間を経ずに再接続した場合等、発熱チップ140の残熱で発熱チップ140と制御装置170の温度センサ189との間に大きな温度差がある場合でも、係数C1が誤った値に更新されることがない。なお、本実施形態では、算出された係数C1の値を記憶部187に格納しているが、メモリ123に格納しても同様の効果が得られることは言うまでもない。 Also, the value of the coefficient C1 once measured is reused for the same control device 170. Therefore, for example, when the energy treatment tool 120 is temporarily removed from the control device 170 for some reason after the heat treatment treatment and is reconnected without time, the heat generating chip 140 is caused by the residual heat of the heat generating chip 140. Even when there is a large temperature difference between the control device 170 and the temperature sensor 189 of the control device 170, the coefficient C1 is not updated to an incorrect value. In the present embodiment, the calculated value of the coefficient C1 is stored in the storage unit 187, but it goes without saying that the same effect can be obtained even if it is stored in the memory 123.
 また、本実施形態では、係数C2をエネルギ処置具120のメモリ123に格納しているので、抵抗パターン143の素材が異なるエネルギ処置具120を、同一の制御装置170で駆動することができる。なお、抵抗パターン143の素材が単一で、かつ製造ロット間の不均一さが非常に小さい場合には、エネルギ処置具120の例えば記憶部187に係数C2を格納するようにしてもよい。またエネルギ処置具120の個体識別番号とそれに対する係数C2との関係を、制御装置170が例えばオンラインで取得したり、その情報をメディアを介して取得したりしてもよい。 In the present embodiment, since the coefficient C2 is stored in the memory 123 of the energy treatment device 120, the energy treatment device 120 having a different material for the resistance pattern 143 can be driven by the same controller 170. In addition, when the material of the resistance pattern 143 is single and the non-uniformity between manufacturing lots is very small, the coefficient C2 may be stored in, for example, the storage unit 187 of the energy treatment device 120. Moreover, the control apparatus 170 may acquire the relationship between the individual identification number of the energy treatment tool 120 and the coefficient C2 with respect thereto, for example, online, or may acquire the information via a medium.
 また、本実施形態では、個体識別番号とそれに対する算出した係数C1との関係を、制御装置170の記憶部187に格納しているが、エネルギ処置具120に設けられたメモリ123やその他のメモリに格納するようにしてもよい。 In the present embodiment, the relationship between the individual identification number and the calculated coefficient C1 is stored in the storage unit 187 of the control device 170. However, the memory 123 provided in the energy treatment instrument 120 or other memory You may make it store in.
 また、本実施形態では、環境温度を計測するための温度センサ189を制御装置170内に配置しているが、温度センサをエネルギ処置具120に配置して、その温度センサの計測値を制御装置170が読み出す構成としてもよい。この場合、温度センサは発熱チップ140の近傍に配置されることが特に好適である。この場合は、係数C1を算出するにあたって用いる校正温度は環境温度に限らない。 In this embodiment, the temperature sensor 189 for measuring the environmental temperature is arranged in the control device 170. However, the temperature sensor is arranged in the energy treatment instrument 120, and the measured value of the temperature sensor is controlled by the control device. 170 may be configured to read. In this case, it is particularly preferable that the temperature sensor is disposed in the vicinity of the heat generating chip 140. In this case, the calibration temperature used for calculating the coefficient C1 is not limited to the environmental temperature.
 また、本実施形態では、抵抗パターン143の抵抗値からその温度を算出するにあたって、式(1)を用いたが、より高精度の温度計測を行うために、抵抗温度係数の温度依存性を考慮するには、次式(11)を用いることもできる。 
  T=C1´×R+C1×R+C2     (11)
この場合は抵抗温度係数の温度依存性は、係数C1´と関係する。ここでC1´もC1と同様に抵抗パターン143の材質に依存する。このため、係数C1´を用いる場合は、これをC1と同様にメモリ123に記憶させておくことができる。
In the present embodiment, Equation (1) is used to calculate the temperature from the resistance value of the resistance pattern 143. However, in order to perform temperature measurement with higher accuracy, the temperature dependence of the resistance temperature coefficient is considered. For this purpose, the following equation (11) can also be used.
T = C1 ′ × R 2 + C1 × R + C2 (11)
In this case, the temperature dependence of the resistance temperature coefficient is related to the coefficient C1 ′. Here, C1 ′ also depends on the material of the resistance pattern 143, similarly to C1. For this reason, when the coefficient C1 ′ is used, it can be stored in the memory 123 similarly to C1.
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, the problem described in the column of problems to be solved by the invention can be solved and the effect of the invention can be obtained. The configuration in which this component is deleted can also be extracted as an invention.

Claims (6)

  1.  生体組織を目標温度で加熱して治療するための治療用処置装置(100)であって、
      前記生体組織に接触して該生体組織に熱を伝える伝熱部(132,134)と、
      電力が投入されることによって前記伝熱部(132,134)を加熱する抵抗素子(140)と、
     を有する処置具(120)と、
     前記処置具(120)と着脱可能であり、前記抵抗素子(140)の抵抗値Rを計測でき、前記目標温度で前記生体組織を加熱するために前記抵抗素子に電力を供給して前記伝熱部の温度を制御する制御装置(170)と、
     前記処置具又は前記制御装置に設けられた、係数C2を格納するための記憶部(123;187)と、
     を具備し、
     前記制御装置(170)は、
      前記処置具と前記制御装置とが接続された状態で、校正温度に基づいて係数C1を算出し、
      前記抵抗素子の温度Tを、前記抵抗値R、前記係数C1、及び前記係数C2を用いて
       T=C1×R+C2
      により算出し、
      前記温度Tを用いて前記伝熱部の温度を制御する、
     ことを特徴とする治療用処置装置(100)。
    A therapeutic treatment apparatus (100) for heating and treating a living tissue at a target temperature,
    A heat transfer section (132, 134) that contacts the living tissue and transfers heat to the living tissue;
    A resistance element (140) that heats the heat transfer section (132, 134) by applying electric power;
    A treatment instrument (120) having:
    The treatment tool (120) is detachable, can measure the resistance value R of the resistance element (140), supplies power to the resistance element to heat the living tissue at the target temperature, and transfers the heat. A control device (170) for controlling the temperature of the section;
    A storage unit (123; 187) for storing the coefficient C2 provided in the treatment instrument or the control device;
    Comprising
    The control device (170)
    In a state where the treatment tool and the control device are connected, the coefficient C1 is calculated based on the calibration temperature,
    The temperature T of the resistance element is determined by using the resistance value R, the coefficient C1, and the coefficient C2. T = C1 × R + C2
    Calculated by
    Controlling the temperature of the heat transfer section using the temperature T;
    The therapeutic treatment apparatus (100) characterized by the above-mentioned.
  2.  前記係数C1の算出は、前記処置具(120)と前記制御装置(170)とが接続された後、前記加熱の開始前に行われることを特徴とする請求項1に記載の治療用処置装置(100)。 The therapeutic treatment device according to claim 1, wherein the calculation of the coefficient C1 is performed before the heating is started after the treatment tool (120) and the control device (170) are connected. (100).
  3.  前記校正温度は、環境温度であり、
     前記係数C1は、前記環境温度と、計測した前記抵抗値Rと、読み出した前記係数C2とに基づいて算出される、
     ことを特徴とする請求項1又は2に記載の治療用処置装置(100)。
    The calibration temperature is an environmental temperature,
    The coefficient C1 is calculated based on the environmental temperature, the measured resistance value R, and the read coefficient C2.
    The therapeutic treatment device (100) according to claim 1 or 2, characterized in that
  4.  前記処置具(120)又は前記制御装置(170)に設けられた、前記環境温度を計測するための温度センサ(189)をさらに具備することを特徴とする請求項3に記載の治療用処置装置(100)。 The therapeutic treatment apparatus according to claim 3, further comprising a temperature sensor (189) for measuring the environmental temperature, which is provided in the treatment instrument (120) or the control device (170). (100).
  5.  前記処置具(120)又は前記制御装置(170)に設けられた算出係数記憶部(123;187)をさらに具備し、
     前記制御装置(170)は、算出した前記係数C1を前記算出係数記憶部(123;187)に格納する、
     ことを特徴とする請求項1又は2に記載の治療用処置装置(100)。
    A calculation coefficient storage unit (123; 187) provided in the treatment instrument (120) or the control device (170);
    The control device (170) stores the calculated coefficient C1 in the calculated coefficient storage unit (123; 187).
    The therapeutic treatment device (100) according to claim 1 or 2, characterized in that
  6.  前記制御装置(170)は、前記処置具(120)と前記制御装置(170)とが初めて接続された際には前記係数C1を算出し、2回目以降に接続された際には前記算出係数記憶部(123;187)に格納された前記係数C1を読み出し、前記伝熱部(132,134)の温度を制御することを特徴とする請求項5に記載の治療用処置装置(100)。 The control device (170) calculates the coefficient C1 when the treatment instrument (120) and the control device (170) are connected for the first time, and calculates the coefficient when the connection is made after the second time. The therapeutic treatment device (100) according to claim 5, wherein the coefficient C1 stored in the storage unit (123; 187) is read out, and the temperature of the heat transfer unit (132, 134) is controlled.
PCT/JP2012/068610 2011-07-25 2012-07-23 Therapeutic treatment apparatus WO2013015251A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12817898.5A EP2737867B1 (en) 2011-07-25 2012-07-23 Device for medical treatment
US14/162,876 US9510890B2 (en) 2011-07-25 2014-01-24 Treatment device for medical treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011161898A JP5820649B2 (en) 2011-07-25 2011-07-25 Therapeutic treatment device
JP2011-161898 2011-07-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/162,876 Continuation US9510890B2 (en) 2011-07-25 2014-01-24 Treatment device for medical treatment

Publications (1)

Publication Number Publication Date
WO2013015251A1 true WO2013015251A1 (en) 2013-01-31

Family

ID=47601098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068610 WO2013015251A1 (en) 2011-07-25 2012-07-23 Therapeutic treatment apparatus

Country Status (4)

Country Link
US (1) US9510890B2 (en)
EP (1) EP2737867B1 (en)
JP (1) JP5820649B2 (en)
WO (1) WO2013015251A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119391A1 (en) 2013-02-01 2014-08-07 オリンパス株式会社 Therapeutic treatment device and control method therefor
JPWO2016093086A1 (en) * 2014-12-12 2017-04-27 オリンパス株式会社 Treatment device
US10987159B2 (en) * 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
JPWO2017090165A1 (en) * 2015-11-26 2018-08-30 オリンパス株式会社 Treatment system and treatment tool
JPWO2017183199A1 (en) * 2016-04-22 2019-02-28 オリンパス株式会社 Thermal energy treatment device
WO2018198374A1 (en) * 2017-04-28 2018-11-01 オリンパス株式会社 Resistance-temperature characteristic calculation method, treatment system, and resistance-temperature characteristic calculation program
WO2019003346A1 (en) * 2017-06-28 2019-01-03 オリンパス株式会社 Method of manufacturing handpiece of operation system, method of setting handpiece characteristics of operation system, handpiece of operation system, and operation system
CN110507413B (en) * 2019-09-16 2020-06-19 浙江大学 Microwave therapeutic instrument with controllable ablation effective hot area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339039A (en) * 1999-05-25 2000-12-08 Tokyo Electron Ltd Method and device for controlling temperature of heating means and heat processor
JP2001190561A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Coagulation treatment tool
JP2007037845A (en) * 2005-08-04 2007-02-15 Olympus Medical Systems Corp Heat generation treating apparatus
JP2010065661A (en) * 2008-09-12 2010-03-25 Autonetworks Technologies Ltd Glow plug control device, control method and computer program

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387052B1 (en) * 1991-01-29 2002-05-14 Edwards Lifesciences Corporation Thermodilution catheter having a safe, flexible heating element
US5720293A (en) * 1991-01-29 1998-02-24 Baxter International Inc. Diagnostic catheter with memory
US5553622A (en) * 1991-01-29 1996-09-10 Mckown; Russell C. System and method for controlling the temperature of a catheter-mounted heater
JP3547130B2 (en) * 1991-10-01 2004-07-28 バクスター・インターナショナル・インコーポレイテッド Diagnostic catheter with memory device
WO1993015654A1 (en) * 1992-02-10 1993-08-19 Interflo Medical, Inc. System and method for controlling the temperature of a catheter-mounted heater
US6423056B1 (en) * 1998-12-31 2002-07-23 Ball Semiconductor, Inc. Injectable thermal balls for tumor ablation
JP4624697B2 (en) * 2004-03-12 2011-02-02 オリンパス株式会社 Surgical instrument
US20080097559A1 (en) * 2006-10-19 2008-04-24 Eggers Philip E Method and apparatus for carrying out the controlled heating of dermis and vascular tissue
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US8840609B2 (en) * 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000339039A (en) * 1999-05-25 2000-12-08 Tokyo Electron Ltd Method and device for controlling temperature of heating means and heat processor
JP2001190561A (en) 2000-01-12 2001-07-17 Olympus Optical Co Ltd Coagulation treatment tool
JP2007037845A (en) * 2005-08-04 2007-02-15 Olympus Medical Systems Corp Heat generation treating apparatus
JP2010065661A (en) * 2008-09-12 2010-03-25 Autonetworks Technologies Ltd Glow plug control device, control method and computer program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2737867A4

Also Published As

Publication number Publication date
EP2737867A1 (en) 2014-06-04
EP2737867A4 (en) 2015-01-07
US20140142562A1 (en) 2014-05-22
EP2737867B1 (en) 2017-04-26
US9510890B2 (en) 2016-12-06
JP5820649B2 (en) 2015-11-24
JP2013022354A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
JP5820649B2 (en) Therapeutic treatment device
JP5931604B2 (en) Therapeutic treatment device
JP5814685B2 (en) Therapeutic treatment device
JP5622551B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
WO2012081515A1 (en) Treatment device
US9504515B2 (en) Treatment device
US9629677B2 (en) Treatment device for medical treatment
WO2017002449A1 (en) Thermotherapeutic device and control device thereof
JP2013034614A (en) Therapeutical treatment apparatus
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
JP2012161565A (en) Therapeutical treatment device
JP5933768B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
JP5959789B1 (en) Control device for energy treatment device and energy treatment system
WO2016093086A1 (en) Treatment device
JP2012249807A (en) Treatment apparatus for therapy, and control method for the same
JP6000717B2 (en) THERAPEUTIC TREATMENT DEVICE AND ITS CONTROL METHOD
WO2014148199A1 (en) Therapeutic treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012817898

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012817898

Country of ref document: EP