WO2016093086A1 - Treatment device - Google Patents

Treatment device Download PDF

Info

Publication number
WO2016093086A1
WO2016093086A1 PCT/JP2015/083418 JP2015083418W WO2016093086A1 WO 2016093086 A1 WO2016093086 A1 WO 2016093086A1 JP 2015083418 W JP2015083418 W JP 2015083418W WO 2016093086 A1 WO2016093086 A1 WO 2016093086A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat
heat generating
period
generating member
Prior art date
Application number
PCT/JP2015/083418
Other languages
French (fr)
Japanese (ja)
Inventor
敏文 桂木
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016540718A priority Critical patent/JPWO2016093086A1/en
Publication of WO2016093086A1 publication Critical patent/WO2016093086A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating

Definitions

  • the present invention relates to a treatment apparatus.
  • Japanese Patent Application Laid-Open No. 2012-125338 discloses a technique relating to a treatment apparatus that can apply a high-frequency voltage to a grasped living tissue, further heat the tissue, and finally cut the living tissue with a cutter.
  • a heating chip that functions as a heater for heating the electrode is provided on the electrode that functions as a heat transfer member that comes into contact with the living tissue.
  • an offset value corresponding to the amount of power supplied to the heat generating chip is calculated in consideration of the temperature difference between the electrode and the heat generating chip.
  • This treatment apparatus maintains the temperature of the heat generating chip at a control target temperature obtained by adding an offset value to the target temperature of the electrode.
  • a variable voltage source is mainly used.
  • Japanese Patent Application Laid-Open No. 2012-024583 also discloses a technique related to an apparatus for heat-treating a living tissue.
  • a variable voltage source is used, and the temperature of the heater is kept constant by adjusting the output voltage.
  • the circuit configuration of the constant voltage source is simpler than that of the variable voltage source.
  • An object of the present invention is to provide a treatment apparatus using a constant voltage source for heating a living tissue, and capable of heating the living tissue to be treated at a predetermined target temperature.
  • a treatment apparatus is a treatment apparatus for treating a biological tissue by heating it at a predetermined target temperature, wherein the treatment apparatus is in contact with the biological tissue and transfers heat to the biological tissue.
  • a drive circuit that supplies a voltage and does not supply a constant voltage of the first voltage value to the heat generating member when it is off, and a length of an on period that is a period in which the past drive circuit is on or
  • An offset value calculation unit that calculates an offset value according to a temperature difference between the heat transfer member and the heat generation member based on a length of an off period that is a period during which the drive circuit is off; and To the corrected target temperature with the offset value added
  • An output setting unit that sets the on or off of the drive circuit to maintain the temperature of the thermal member, and controls the operation of the drive circuit based on the on or off set by the output setting unit A drive control unit.
  • the treatment device is a treatment device for heating and treating a living tissue at a predetermined target temperature, and contacts the living tissue and transfers heat to the living tissue.
  • a drive circuit that supplies a constant voltage and does not supply a constant voltage having a first voltage value to the heat generating member during the off period, and the heat transfer member and the heat generating element based on a temperature drop of the heat generating member during the off period.
  • An offset value calculation unit that calculates an offset value according to a temperature difference with the member, and a length of the on period in the future so as to maintain the heating member at a corrected target temperature obtained by adding the offset value to the target temperature. Or the length of the off-period And an output setting section for constant, based on the length of the length or the OFF period of the ON period of the output setting unit has set, a drive control unit for controlling the drive circuit.
  • a treatment apparatus that can heat a biological tissue to be treated at a predetermined target temperature in a treatment apparatus that uses a constant voltage source for heat treatment of the biological tissue.
  • FIG. 1 is a diagram illustrating an outline of an example of an appearance of a treatment apparatus according to the first embodiment.
  • FIG. 2 is a diagram schematically illustrating a configuration example of the treatment apparatus according to the first embodiment.
  • FIG. 3 is a diagram illustrating an outline of a configuration example of the heat transfer member and the heater of the treatment apparatus according to the first embodiment.
  • FIG. 4 is a diagram for explaining heat transfer between the heat transfer member and the heater.
  • FIG. 5 is a flowchart illustrating an example of processing according to the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the treatment apparatus according to the first embodiment.
  • FIG. 7 is a flowchart illustrating an example of processing according to the second embodiment.
  • FIG. 8 is a diagram for explaining the operation of the treatment apparatus according to the second embodiment.
  • FIG. 9 is a diagram for explaining the operation of the treatment apparatus according to the third embodiment.
  • FIG. 1 A schematic view of the appearance of a medical treatment apparatus 1 according to this embodiment is shown in FIG.
  • the treatment device 1 is a device for use in the treatment of living tissue, and is used for, for example, treatments for cutting, incising, sealing, or anastomosing blood vessels or intestinal tracts.
  • the treatment apparatus 1 performs treatment by applying thermal energy to living tissue.
  • the treatment device 1 includes a treatment tool 100 and a control device 200.
  • the treatment tool 100 is a linear type surgical treatment tool for performing treatment by, for example, penetrating the abdominal wall.
  • the treatment instrument 100 includes a handle 160, a shaft 150 attached to the handle 160, and a grip 110 provided at the tip of the shaft 150.
  • the grasping unit 110 can be opened and closed, and is a treatment unit that grasps a living tissue to be treated and performs a treatment such as coagulation or incision of the living tissue.
  • the grip 110 side is referred to as the distal end side
  • the handle 160 side is referred to as the proximal end side.
  • the handle 160 includes a plurality of operation knobs 164 for operating the grip portion 110.
  • the shape of the treatment tool 100 shown here is only an example, and other shapes may be used as long as they have the same function.
  • the shaft may be curved.
  • the technology according to the present embodiment is not limited to the treatment apparatus used in the rigid endoscope operation as shown in FIG. 1 but is also applied to the treatment apparatus used in the endoscopic operation using the flexible endoscope. obtain.
  • the treatment instrument 100 is connected to the control device 200 via a cable 190.
  • the cable 190 and the control device 200 are connected by a connector 195, and this connection is detachable. That is, the treatment apparatus 1 is configured so that the treatment tool 100 can be replaced for each treatment.
  • a foot switch 290 is connected to the control device 200.
  • the foot switch 290 operated with a foot may be replaced with a switch operated with a hand, for example, a hand switch or another switch.
  • a hand switch or another switch When the operator operates the pedal of the foot switch 290, the supply of energy from the control device 200 to the treatment instrument 100 is switched on / off.
  • the grasping part 110 of the treatment instrument 100 includes a first grasping member 112 and a second grasping member 114.
  • the holding unit 110 is opened and closed.
  • the grasping unit 110 is configured to grasp a biological tissue that is a treatment target between the first grasping member 112 and the second grasping member 114.
  • the first gripping member 112 and the second gripping member 114 have the same configuration. That is, each of the first holding member 112 and the second holding member 114 has a heat transfer member 122.
  • the heat transfer member 122 is made of a metal having high thermal conductivity such as copper.
  • the heat transfer member 122 of the first holding member 112 and the heat transfer member 122 of the second holding member 114 are provided so as to face each other. That is, each heat transfer member 122 is provided so as to contact the living tissue.
  • Each of the heat transfer members 122 is provided with a heater 124.
  • the heater 124 has a structure in which a heat generating member 128 is provided on a substrate 126.
  • the substrate 126 is, for example, a polyimide substrate.
  • the heating member 128 is, for example, a stainless (SUS) resistance pattern formed on the substrate 126.
  • the heater 124 is disposed so that the substrate 126 is in contact with the heat generating member 128.
  • the heat generating member 128 When power is supplied to the heat generating member 128, the heat generating member 128 generates heat. Heat generated by the heat generating member 128 is transmitted to the heat transfer member 122 via the substrate 126. This heat is transmitted to the living tissue in contact with the heat transfer member 122, and the living tissue is heated.
  • the control device 200 includes a control unit 210, a storage unit 220, a drive circuit 230, an input unit 240, and a display unit 250.
  • the control device 200 controls the heating operation of the treatment instrument 100 using a pulse width modulation (PWM) method.
  • PWM pulse width modulation
  • the control unit 210 plays a central role in the control device 200.
  • the control unit 210 is connected to each unit of the control device 200.
  • the storage unit 220 stores various information used for the processing of the control unit 210.
  • the storage unit 220 stores a program for processing performed by the control unit 210.
  • the drive circuit 230 is a drive circuit for driving the heater 124.
  • the drive circuit 230 and the heater 124 are connected by a conducting wire 132.
  • the drive circuit 230 applies a voltage across the heat generating member 128 of the heater 124. Since PWM control is employed, the drive circuit 230 is configured to output a constant voltage.
  • the drive circuit 230 may not have a variable voltage value.
  • the input unit 240 is a part that receives user instructions.
  • the input unit 240 includes any one of general input devices such as a button switch, a slider, a dial, a keyboard, and a touch panel.
  • the display unit 250 is a part that displays various types of information related to the control device 200.
  • the display unit 250 includes any one of general display devices such as a liquid crystal display and a display panel using LEDs.
  • the control unit 210 includes a temperature calculation unit 211, an offset value calculation unit 212, an output setting unit 213, and a drive control unit 214.
  • the temperature calculation unit 211 calculates the temperature of the heat generating member 128.
  • the electrical resistance value of the heat generating member 128 changes according to the temperature. Therefore, the temperature calculation unit 211 calculates the temperature of the heat generating member 128 based on the electrical resistance value of the heat generating member 128. For this reason, the temperature calculation unit 211 calculates the resistance value of the heat generating member 128 based on the voltage applied to the heat generating member 128 and the current flowing through the heat generating member 128.
  • the storage unit 220 records the relationship between the resistance value and the temperature of the heat generating member 128, and the temperature calculating unit 211 refers to this relationship to acquire the temperature of the heat generating member 128.
  • the offset value calculation unit 212 calculates the offset value ⁇ T based on the past output from the drive circuit 230.
  • the offset value ⁇ T is a value corresponding to the temperature difference between the heat transfer member 122 and the heat generating member 128.
  • the offset value calculation unit 212 determines the offset value based on the length of the on period that is a period during which the driving circuit 230 is on and / or the length of the off period that is a period during which the driving circuit 230 is off. ⁇ T is calculated.
  • the output setting unit 213 sets the operation of the drive circuit 230 to maintain the temperature of the heat generating member 128 at the corrected target temperature obtained by adding the offset value ⁇ T to the target temperature of the heat transfer member 122.
  • the drive control unit 214 controls the operation of the drive circuit 230 based on the setting of the output setting unit 213.
  • the control unit 210 includes a central processing unit (CPU) or an application specific integrated circuit (ASIC) and performs various calculations.
  • An ASIC or the like may be formed for each element included in the control unit 210 such as the temperature calculation unit 211 or the like.
  • the substrate 126 of the heater 124 is slightly smaller than the heat transfer member 122 and has the same shape as the heat transfer member 122.
  • the heat generating member 128 formed on the substrate 126 has both ends provided on the base end side, and has a generally U-shaped pattern. This pattern is formed in a wave shape so as to cover a wide area of the substrate while reducing the line width in order to increase the electrical resistance value.
  • One end of a conducting wire 132 is connected to each end of the heat generating member 128. The other end of the conducting wire 132 is electrically connected to the drive circuit 230.
  • FIG. 4 The heat conduction between the heat transfer member 122 and the heater 124 will be described with reference to FIG.
  • the left side shows the positional relationship among the heat transfer member 122, the substrate 126, and the heat generating member 128.
  • the right side of FIG. 4 shows the relationship between position and temperature.
  • the upper side shows a case where the temperature of the heat generating member 128 is low
  • the lower side shows a case where the temperature of the heat generating member 128 is high.
  • the width of the arrow on the left side of FIG. 4 schematically shows the amount of heat that moves.
  • the greater the amount of heat that moves the greater the temperature difference between the heat generating member 128 and the heat transfer member 122. That is, as the amount of heat applied to the heat transfer member 122 is larger, the temperature of the heat generating member 128 needs to be set higher than the temperature of the heat transfer member 122.
  • the surgeon first operates the input unit 240 of the control device 200 to set the output conditions of the treatment device 1 such as the target temperature and heating time related to the treatment.
  • the value of each parameter may be set individually, or a set of setting values according to the technique may be selected.
  • the grasping part 110 and the shaft 150 of the treatment tool 100 are inserted into the abdominal cavity through the abdominal wall, for example.
  • the surgeon operates the operation knob 164 to open and close the grasping unit 110 and grasps the living tissue to be treated by the first grasping member 112 and the second grasping member 114.
  • the living tissue to be treated comes into contact with the heat transfer member 122 provided on the first holding member 112 and the second holding member 114.
  • the surgeon operates the foot switch 290 after grasping the living tissue to be treated by the grasping unit 110.
  • the foot switch 290 When the foot switch 290 is turned on, electric power is supplied from the control device 200 to the heater 124 via the conductive wire 132 passing through the cable 190.
  • the target temperature is 200 ° C., for example.
  • the current flows through the heat generating member 128.
  • the heat generating member 128 generates heat by this current.
  • the heat generated by the heat generating member 128 is transferred to the heat transfer member 122 through the substrate 126. As a result, the temperature of the heat transfer member 122 rises.
  • the living tissue in contact with the heat transfer member 122 is cauterized and solidified by the heat transferred to the heat transfer member 122.
  • the supply of power to the heater 124 is stopped. The treatment of the living tissue is thus completed.
  • Control by the control unit 210 will be described with reference to the flowchart shown in FIG.
  • the control of the control unit 210 starts, for example, when the power of the control device 200 is turned on.
  • step S101 the control unit 210 sets treatment conditions such as a target temperature and a treatment time based on an input to the input unit 240 by the user.
  • the target temperature of the biological tissue to be treated is assumed to be T_target1.
  • step S102 the control unit 210 determines whether an instruction to start heating is input.
  • An instruction to start heating is input, for example, when the foot switch 290 is stepped on.
  • the process returns to step S102. That is, the control unit 210 stands by until an instruction to start heating is input.
  • the process proceeds to step S103.
  • step S103 the control unit 210 sets the pulse width W of the pulse output from the drive circuit 230 in the control by the PWM method to an initial value.
  • the initial value of the pulse width W is, for example, half the output period.
  • the initial value of the pulse width W is not limited to this, and may be any value.
  • step S104 the controller 210 causes the drive circuit 230 to output the pulse having the pulse width W set in step S103. As a result, a current flows through the heat generating member 128 and the heat generating member 128 generates heat.
  • the output voltage of the drive circuit 230 is a predetermined value.
  • the controller 210 calculates the temperature of the heat generating member. More specifically, the controller 210 calculates the resistance value of the heat generating member 128 based on the current that flows during pulse output and a predetermined output voltage value. The controller 210 calculates the temperature of the heat generating member 128 based on the resistance value of the heat generating member 128.
  • the temperature of the heat generating member 128 is derived, for example, by referring to a table including the relationship between the resistance value and the temperature of the heat generating member 128 stored in the storage unit 220. The temperature may be calculated using an expression representing the relationship between the resistance value of the heat generating member 128 and the temperature instead of the table.
  • step S106 the control unit 210 calculates the target temperature offset value ⁇ T based on the pulse width W of the pulse output immediately before, that is, the value related to the duty ratio.
  • C1 and C2 are predetermined constants.
  • the offset value ⁇ T is not limited to the above equation (1), and may be calculated using, for example, a quadratic equation, a high-order equation, or other equations.
  • the controller 210 determines the pulse width W of the next pulse to be output so that the temperature of the heat generating member 128 becomes the corrected target temperature T_target2.
  • W calculated using Expression (3) is larger than the maximum pulse width W_max determined based on the period of the output pulse, the pulse width W is set to the maximum pulse width W_max. Note that the maximum pulse width is, for example, about several hundred milliseconds.
  • step S108 the control unit 210 causes the drive circuit 230 to output the pulse having the pulse width W determined in step S108.
  • the control unit 210 determines whether or not the treatment is completed.
  • the condition for completing the treatment can be set to any one of the following or others, for example.
  • the treatment may be completed when the output time passes a preset treatment time.
  • the treatment may be completed when the temperature of the living tissue, that is, the temperature of the heat transfer member 122 reaches a predetermined temperature and becomes stable.
  • the treatment may be completed when a predetermined time elapses after the temperature of the living tissue reaches a predetermined temperature.
  • step S109 when the treatment is not completed, the process returns to step S105. On the other hand, when the treatment is completed, the process proceeds to step S110.
  • step S110 the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
  • the operation of the treatment apparatus 1 will be described with reference to FIG.
  • the elapsed time is shown on the horizontal axis.
  • the intervals between the plurality of broken lines extending vertically represent the period of the output pulse.
  • the first graph from the top in FIG. 6 shows the pulse output with respect to the elapsed time. That is, this figure switches between an ON state in which a voltage is applied to the heating member 128 in one cycle and an OFF state in which no voltage is applied to the heating member 128, that is, the voltage value is zero. It is shown that.
  • the shaded portion indicates that the pulse width W is increased as a result of considering the offset value ⁇ T. Therefore, if the control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ⁇ T, the pulse width W is shortened by the shaded area. Become.
  • the second graph from the top in FIG. 6 shows the offset value ⁇ T with respect to the elapsed time.
  • the offset value ⁇ T depends on the pulse width W of the pulse output immediately before.
  • the third graph from the top in FIG. 6 shows the temperature of the living tissue with respect to the elapsed time, that is, the temperature of the heat transfer member 122 by a solid line.
  • the broken line extending horizontally indicates the target temperature T_target1.
  • the alternate long and short dash line indicates the temperature of the living tissue when control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ⁇ T. Indicates. Thus, if the offset value ⁇ T is not considered, the temperature of the living tissue is lower than the target temperature T_target1.
  • the fourth graph from the top in FIG. 6 shows the temperature of the heat generating member 128 with respect to the elapsed time by a solid line.
  • the broken line extending horizontally indicates the target temperature T_target1.
  • the alternate long and short dash line of the heat generating member 128 when the control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ⁇ T. Indicates temperature.
  • the temperature of the heat generating member 128 is controlled to be the target temperature T_target1.
  • the offset value ⁇ T is taken into consideration, so that the temperature of the living tissue that is the treatment target is appropriately controlled to be the target temperature T_target1.
  • the output voltage is constant.
  • the circuit configuration of the drive circuit 230 which is an output circuit, is simpler than when the output voltage is variable.
  • the expression using the pulse width W is shown. However, the expression can be similarly expressed even when using a duty ratio or a period in which the output is off.
  • the offset value ⁇ T is determined based on the pulse width W, the duty ratio, etc. of each cycle. However, the present invention is not limited to this, and the offset value ⁇ T may be determined based on outputs of a plurality of past cycles such as a sum of pulse widths for a plurality of cycles and an average duty ratio.
  • the temperature of the heat generating member 128 is acquired based on the electric resistance value of the heat generating member 128.
  • the present invention is not limited to this, and the temperature of the heat generating member 128 may be acquired by other methods.
  • a temperature sensor may be provided on the heat generating member 128.
  • the temperature of the heat generating member 128 is acquired based on the electric resistance value of the heat generating member 128, it is not necessary to provide other elements such as a temperature sensor, and the structure of the grip portion 110 is simplified and downsized.
  • both the first gripping member 112 and the second gripping member 114 include the heat transfer member 122 and the heater 124 is shown, but the present invention is not limited thereto. That is, the heat transfer member 122 and the heater 124 may be provided on only one of the first gripping member 112 and the second gripping member 114.
  • control using PWM is performed.
  • on / off control is performed in which the output is turned on when the current temperature is lower than the target temperature, and the output is turned off when the current temperature is higher than the target temperature.
  • the output voltage is constant at a predetermined value.
  • the offset value ⁇ T is determined according to the period during which the output is on within a predetermined period. This is because the heat flux from the heat generating member 128 to the heat transfer member 122 increases as the period during which the output is on within the predetermined period, and the temperature difference between the heat generating member 128 and the heat transfer member 122 increases. Because.
  • Control by the control unit 210 according to the present embodiment will be described with reference to a flowchart shown in FIG.
  • step S201 the control unit 210 sets treatment conditions such as a target temperature and a treatment time based on an input to the input unit 240 by the user.
  • T_target1 be the target temperature of the living tissue to be treated.
  • the initial value of the target temperature T_target3 of the heat generating member 128 is also set to the target temperature T_target1 of the living tissue, for example.
  • step S202 the control unit 210 determines whether an instruction to start heating is input. When the instruction to start heating is not input, the process returns to step S202. When an instruction to start heating is input, the process proceeds to step S203. In step S203, the control unit 210 sets the output to ON, and causes the drive circuit 230 to output a predetermined voltage.
  • step S204 the control unit 210 calculates the electrical resistance value of the heat generating member 128 based on the voltage value and the current value supplied to the heat generating member 128, and obtains the temperature of the heat generating member 128.
  • step S205 the controller 210 determines whether or not the temperature of the heat generating member 128 is lower than the target temperature. When the temperature of the heat generating member 128 is lower than the target temperature, the process proceeds to step S206. In step S206, the control unit 210 sets the output to ON, and causes the drive circuit 230 to output a predetermined voltage. Thereafter, the process proceeds to step S210.
  • step S205 when the temperature of the heat generating member 128 is not lower than the target temperature, the process proceeds to step S207.
  • step S207 the control unit 210 sets the output to OFF and does not cause the drive circuit 230 to output a predetermined voltage.
  • step S208 the control unit 210 determines whether or not the period during which the output is off is longer than the predetermined period. When the off period is not longer than the predetermined period, the process returns to step S208. On the other hand, when the off period is longer than the predetermined period, the process proceeds to step S209.
  • step S209 the control unit 210 turns on the output. That is, after the output is turned off in step S207, the state where the output is off for a predetermined period is continued, and then the output is turned on.
  • the reason why the output is turned on when the predetermined period has elapsed is that since the resistance value of the heat generating member 128 cannot be calculated unless the output is turned on, the temperature of the heat generating member 128 cannot be acquired.
  • step S212 the control unit 210 determines whether or not the treatment is completed. When the treatment is not completed, the process returns to step S204. On the other hand, when the treatment is completed, the process proceeds to step S213. In step S213, the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
  • FIG. 8 shows a relationship among the output state, the offset value ⁇ T, the temperature of the living tissue, and the temperature of the heat generating member 128 with respect to the elapsed time in the case of the present embodiment.
  • a period from when the output is turned off to when it is turned on is schematically illustrated as a period of three cycles.
  • a case where the predetermined period P_1 used for calculating ⁇ T is set to a period of five cycles is schematically shown. These periods may be any period.
  • the offset value ⁇ T is taken into consideration, so that the temperature of the living tissue that is the treatment target can be appropriately controlled so as to become the initially set target temperature T_target1.
  • the amount of calculation is small because it is determined whether the output is turned on or off depending on whether the current temperature is lower than the target temperature.
  • the circuit configuration of the drive circuit 230 that is an output circuit may be simple.
  • the temperature of the heat generating member 128 cannot be acquired when the output is turned off. For this reason, the temperature of the heat generating member 128 may be excessively lowered during the period in which the output is off, or the output may be turned on even though the temperature of the heat generating member 128 is higher than the target temperature.
  • the power supply to the heat generating member 128 is not completely stopped, but a minute voltage is applied to the heat generating member 128 to always acquire the temperature of the heat generating member 128.
  • the minute voltage is a voltage that is so small that the heat generated by the heat generating member 128 can be ignored.
  • the voltage value when the drive circuit 230 is on is the first voltage value and the voltage value of the minute voltage is the second voltage value, the second voltage value is greater than the first voltage value. Is also small.
  • the temperature of the heat generating member 128 is always acquired, and the output is turned on or the minute voltage is appropriately switched based on this temperature, so that the stability of the temperature control is improved. Further, since the power supply state to the heat generating member 128 can be always grasped, it can be always monitored whether or not an abnormality has occurred in the grip portion 110.
  • the abnormality of the gripping part 110 includes, for example, breakage of the heater 124.
  • a third embodiment will be described. Here, differences from the first embodiment will be described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted.
  • PWM control is performed.
  • the offset value ⁇ T is determined according to the rate of temperature decrease during the period when the output is off.
  • control flow according to this embodiment is the same as that in the first embodiment described with reference to FIG. However, the processing in step S105 and the processing in step S106 are different from those in the first embodiment.
  • Processing of the control unit 210 according to the present embodiment will be described with reference to a flowchart shown in FIG. FIG. 9 shows the relationship among the output state, the temperature of the heat generating member 128, and the offset value ⁇ T with respect to the elapsed time in the present embodiment.
  • step S101 the control unit 210 performs an initial setting based on an input to the input unit 240 by the user.
  • control unit 210 determines whether or not an instruction to start heating has been input. When the instruction to start heating is not input, the process returns to step S102. When an instruction to start heating is input, the process proceeds to step S103.
  • step S103 the control unit 210 sets the pulse width W of the pulse output from the drive circuit 230 to an initial value.
  • the controller 210 causes the drive circuit 230 to output the pulse having the pulse width W set in step S103.
  • step S105 the controller 210 calculates the temperature of the heat generating member.
  • the control unit 210 calculates the temperature of the heat generating member 128 immediately after the output is turned on and the temperature of the heat generating member 128 immediately before the output is turned off.
  • step S106 the control unit 210 calculates an offset value ⁇ T.
  • the offset value ⁇ T is the value immediately after the output at the previous output is turned on from the temperature T1 (for example, the temperature T11 in FIG. 9) of the heat generating member 128 immediately before the output at the previous output is turned off.
  • C5 is a predetermined constant
  • t_off is the length of the off period in the previous output. It can be said that the faster the temperature drop, the easier the heat of the heat generating member 128 is taken away. In such a state, the temperature difference between the temperature of the heat generating member 128 and the temperature of the heat transfer member 122 becomes large. Therefore, in such a case, the offset value ⁇ T is set large. On the other hand, it can be said that the slower the temperature drop, the more difficult the heat of the heat generating member 128 is taken away. In such a state, the temperature difference between the temperature of the heat generating member 128 and the temperature of the heat transfer member 122 becomes small. Therefore, in such a case, the offset value ⁇ T is set small.
  • step S107 the control unit 210 sets a value obtained by adding ⁇ T to the target temperature as a corrected target temperature, and determines a pulse width W of a pulse to be output next based on the corrected target temperature.
  • step S108 the control unit 210 causes the drive circuit 230 to output the pulse having the pulse width W determined in step S108.
  • step S109 the control unit 210 determines whether or not the treatment is completed. When the treatment is not completed, the process returns to step S105. On the other hand, when the treatment is completed, the process proceeds to step S110. In step S110, the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
  • FIG. 9 will be described with reference to FIG. 9 showing the relationship between the output state with respect to the elapsed time, the temperature of the heat generating member 128, and the offset value ⁇ T in this embodiment.
  • the first graph from the top shows the output state, and here, for the purpose of explanation, numbers (1) to (6) are assigned to the pulses.
  • the second graph from the top shows the temperature of the heat generating member 128.
  • the temperature immediately before turning off the pulse (1) is T11
  • the temperature immediately after turning on the pulse (2) is T21
  • the temperature immediately before turning off the pulse (2) is T12.
  • the temperature immediately after the pulse (3) is turned on is T22
  • the temperatures are T13, T23, T14, T24, T15, and T25.
  • the third graph from the top shows the offset value ⁇ T.
  • ⁇ T1 is calculated based on the temperature T11 and the temperature T21.
  • ⁇ T2 is calculated based on the temperature T12 and the temperature T22. The same applies hereinafter.
  • the offset value ⁇ T is taken into consideration, so that the temperature of the living tissue that is the treatment target can be appropriately controlled so as to become the initially set target temperature T_target1.
  • the temperature of the heat generating member 128 is not acquired while the output is off. For this reason, in order to obtain the rate of temperature decrease during the period in which the output is off, the temperature of the heating member 128 immediately before turning off the output in the previous output and immediately after turning on the output in the previous output The temperature of the heating member 128 must be used. Therefore, when the situation changes suddenly, the previous situation may not be accurately grasped.
  • the output when the output is turned off, the power supply to the heat generating member 128 is not completely stopped, but a minute voltage is applied to the heat generating member 128.
  • the temperature of the heating member 128 is always acquired. That is, the output from the drive circuit 230 is not on or off, but on or a minute voltage.
  • the output becomes a minute voltage using the temperature of the heating member 128 immediately before the output at the previous output is set to a minute voltage and the temperature of the heating member 128 just before the output at the current output is turned on.
  • the rate of temperature decrease during a certain period can be obtained. Further, the speed may be obtained from the temperature drop during a part of the period when the output is a minute voltage.
  • the temperature of the heat generating member 128 is always acquired, so that the immediately preceding situation is accurately grasped, and the offset value ⁇ T is calculated based on the immediately preceding situation. Therefore, a more appropriate offset value ⁇ T can be calculated. Further, since the power supply state to the heat generating member 128 can be always grasped, it can be always monitored whether or not an abnormality has occurred in the grip portion 110.

Abstract

This treatment device (1) comprises a heat transfer member (122) that is brought into contact with biological tissue and transfers heat to the biological tissue, and a heating member (128) that heats the heat transfer member. The treatment device (1) also comprises: a drive circuit (230) that supplies, to the heating member, a constant voltage of a first voltage value when ON and a constant voltage of a second voltage value when OFF; an offset value calculation unit (212) that calculates an offset value corresponding to the difference in temperature between the heat transfer member and heating member on the basis of the length of the ON period or the length of the OFF period; an output setting unit (213) that sets the drive circuit (230) to ON or OFF so that the temperature of the heating member is maintained at a revised target temperature obtained by adding the offset value to a target temperature; and a drive control unit (214) that controls operation of the drive circuit on the basis of the ON or OFF setting.

Description

処置装置Treatment device
 本発明は、処置装置に関する。 The present invention relates to a treatment apparatus.
 一般に、生体組織を把持して当該生体組織を加熱処置するための医療用の処置装置が知られている。例えば、日本国特開2012-125338号公報には、把持した生体組織に高周波電圧を印加し、さらに当該組織を加熱し、最後に当該生体組織をカッターで切断することができる処置装置に係る技術が開示されている。この処置装置では、生体組織に接触する伝熱部材として機能する電極に、当該電極を加熱するヒータとして機能する発熱チップが設けられている。この発熱チップの温度制御においては、電極と発熱チップとの温度差が考慮されて、発熱チップに供給される電力の大きさに応じたオフセット値が算出される。この処置装置は、発熱チップの温度を、電極の目標温度にオフセット値を加算することで得られる制御用の目標温度に維持する。この処置装置では、主に可変電圧源が用いられることが開示されている。 Generally, a medical treatment apparatus for grasping a living tissue and heating the living tissue is known. For example, Japanese Patent Application Laid-Open No. 2012-125338 discloses a technique relating to a treatment apparatus that can apply a high-frequency voltage to a grasped living tissue, further heat the tissue, and finally cut the living tissue with a cutter. Is disclosed. In this treatment apparatus, a heating chip that functions as a heater for heating the electrode is provided on the electrode that functions as a heat transfer member that comes into contact with the living tissue. In the temperature control of the heat generating chip, an offset value corresponding to the amount of power supplied to the heat generating chip is calculated in consideration of the temperature difference between the electrode and the heat generating chip. This treatment apparatus maintains the temperature of the heat generating chip at a control target temperature obtained by adding an offset value to the target temperature of the electrode. In this treatment apparatus, it is disclosed that a variable voltage source is mainly used.
 また、日本国特開2012-024583号公報にも、生体組織を加熱処置するための装置に係る技術が開示されている。この装置においても、可変電圧源が用いられ、出力電圧が調整されることでヒータの温度が一定に保たれる。 Japanese Patent Application Laid-Open No. 2012-024583 also discloses a technique related to an apparatus for heat-treating a living tissue. In this apparatus as well, a variable voltage source is used, and the temperature of the heater is kept constant by adjusting the output voltage.
 一般に可変電圧源と比較して、定電圧源の方が回路構成は単純となる。 Generally, the circuit configuration of the constant voltage source is simpler than that of the variable voltage source.
 本発明は、生体組織を加熱処置するための定電圧源を用いた処置装置において、処置対象である生体組織を所定の目標温度で加熱できる処置装置を提供することを目的とする。 An object of the present invention is to provide a treatment apparatus using a constant voltage source for heating a living tissue, and capable of heating the living tissue to be treated at a predetermined target temperature.
 本発明の一態様によれば、処置装置は、生体組織を所定の目標温度で加熱して治療するための処置装置であって、前記生体組織と接触し、前記生体組織に熱を伝える伝熱部材と、前記伝熱部材を加熱するように前記伝熱部材に配置された、電力が供給されることにより発熱する発熱部材と、オンであるときに前記発熱部材に第1の電圧値の定電圧を供給し、オフであるときに前記発熱部材に第1の電圧値の定電圧を供給しない駆動回路と、過去の前記駆動回路が前記オンであった期間であるオン期間の長さ又は前記駆動回路がオフであった期間であるオフ期間の長さに基づいて、前記伝熱部材と前記発熱部材との温度差に応じたオフセット値を算出するオフセット値算出部と、前記目標温度に前記オフセット値を加えた修正目標温度に前記発熱部材の温度を維持するように、前記駆動回路の前記オン又は前記オフを設定する出力設定部と、前記出力設定部が設定した前記オン又は前記オフに基づいて、前記駆動回路の動作を制御する駆動制御部とを備える。  According to one aspect of the present invention, a treatment apparatus is a treatment apparatus for treating a biological tissue by heating it at a predetermined target temperature, wherein the treatment apparatus is in contact with the biological tissue and transfers heat to the biological tissue. A member, a heat generating member disposed on the heat transfer member to heat the heat transfer member, and generating heat when power is supplied thereto; A drive circuit that supplies a voltage and does not supply a constant voltage of the first voltage value to the heat generating member when it is off, and a length of an on period that is a period in which the past drive circuit is on or An offset value calculation unit that calculates an offset value according to a temperature difference between the heat transfer member and the heat generation member based on a length of an off period that is a period during which the drive circuit is off; and To the corrected target temperature with the offset value added An output setting unit that sets the on or off of the drive circuit to maintain the temperature of the thermal member, and controls the operation of the drive circuit based on the on or off set by the output setting unit A drive control unit. *
 また、本発明の一態様によれば、処置装置は、生体組織を所定の目標温度で加熱して治療するための処置装置であって、前記生体組織と接触し、前記生体組織に熱を伝える伝熱部材と、前記伝熱部材を加熱するように前記伝熱部材に配置された、電力が供給されることにより発熱する発熱部材と、オン期間には前記発熱部材に第1の電圧値の定電圧を供給し、オフ期間には前記発熱部材に第1の電圧値の定電圧を供給しない駆動回路と、前記オフ期間における前記発熱部材の温度低下に基づいて、前記伝熱部材と前記発熱部材との温度差に応じたオフセット値を算出するオフセット値算出部と、前記目標温度に前記オフセット値を加えた修正目標温度に前記発熱部材を維持するように、将来の前記オン期間の長さ又は前記オフ期間の長さを設定する出力設定部と、前記出力設定部が設定した前記オン期間の長さ又は前記オフ期間の長さに基づいて、前記駆動回路を制御する駆動制御部とを備える。 Moreover, according to one aspect of the present invention, the treatment device is a treatment device for heating and treating a living tissue at a predetermined target temperature, and contacts the living tissue and transfers heat to the living tissue. A heat transfer member, a heat generating member disposed on the heat transfer member so as to heat the heat transfer member, and generating heat when supplied with electric power; A drive circuit that supplies a constant voltage and does not supply a constant voltage having a first voltage value to the heat generating member during the off period, and the heat transfer member and the heat generating element based on a temperature drop of the heat generating member during the off period. An offset value calculation unit that calculates an offset value according to a temperature difference with the member, and a length of the on period in the future so as to maintain the heating member at a corrected target temperature obtained by adding the offset value to the target temperature. Or the length of the off-period And an output setting section for constant, based on the length of the length or the OFF period of the ON period of the output setting unit has set, a drive control unit for controlling the drive circuit.
 本発明によれば、生体組織を加熱処置するための定電圧源を用いた処置装置において、処置対象である生体組織を所定の目標温度で加熱できる処置装置を提供できる。 According to the present invention, it is possible to provide a treatment apparatus that can heat a biological tissue to be treated at a predetermined target temperature in a treatment apparatus that uses a constant voltage source for heat treatment of the biological tissue.
図1は、第1の実施形態に係る処置装置の外観の一例の概略を示す図である。FIG. 1 is a diagram illustrating an outline of an example of an appearance of a treatment apparatus according to the first embodiment. 図2は、第1の実施形態に係る処置装置の構成例の概略を示す図である。FIG. 2 is a diagram schematically illustrating a configuration example of the treatment apparatus according to the first embodiment. 図3は、第1の実施形態に係る処置装置の伝熱部材とヒータとの構成例の概略を示す図である。FIG. 3 is a diagram illustrating an outline of a configuration example of the heat transfer member and the heater of the treatment apparatus according to the first embodiment. 図4は、伝熱部材とヒータとにおける熱伝達について説明するための図である。FIG. 4 is a diagram for explaining heat transfer between the heat transfer member and the heater. 図5は、第1の実施形態に係る処理の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of processing according to the first embodiment. 図6は、第1の実施形態に係る処置装置の動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the treatment apparatus according to the first embodiment. 図7は、第2の実施形態に係る処理の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of processing according to the second embodiment. 図8は、第2の実施形態に係る処置装置の動作を説明するための図である。FIG. 8 is a diagram for explaining the operation of the treatment apparatus according to the second embodiment. 図9は、第3の実施形態に係る処置装置の動作を説明するための図である。FIG. 9 is a diagram for explaining the operation of the treatment apparatus according to the third embodiment.
 [第1の実施形態]
 本発明の第1の実施形態について図面を参照して説明する。本実施形態に係る医療用の処置装置1の外観の概略図を図1に示す。処置装置1は、生体組織の治療に用いるための装置であり、例えば血管や腸管を切離したり切開したり、封止したり、吻合したりする処置に用いられる。処置装置1は、生体組織に熱エネルギを作用させることで処置を行う。図1に示すように、処置装置1は、処置具100と制御装置200とを備える。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the drawings. A schematic view of the appearance of a medical treatment apparatus 1 according to this embodiment is shown in FIG. The treatment device 1 is a device for use in the treatment of living tissue, and is used for, for example, treatments for cutting, incising, sealing, or anastomosing blood vessels or intestinal tracts. The treatment apparatus 1 performs treatment by applying thermal energy to living tissue. As shown in FIG. 1, the treatment device 1 includes a treatment tool 100 and a control device 200.
 処置具100は、例えば腹壁を貫通させて処置を行うための、リニアタイプの外科治療用処置具である。処置具100は、ハンドル160と、ハンドル160に取り付けられたシャフト150と、シャフト150の先端に設けられた把持部110とを有する。把持部110は、開閉可能であり、処置対象である生体組織を把持して、生体組織の凝固、切開等の処置を行う処置部である。以降説明のため、把持部110側を先端側と称し、ハンドル160側を基端側と称する。ハンドル160は、把持部110を操作するための複数の操作ノブ164を備えている。 The treatment tool 100 is a linear type surgical treatment tool for performing treatment by, for example, penetrating the abdominal wall. The treatment instrument 100 includes a handle 160, a shaft 150 attached to the handle 160, and a grip 110 provided at the tip of the shaft 150. The grasping unit 110 can be opened and closed, and is a treatment unit that grasps a living tissue to be treated and performs a treatment such as coagulation or incision of the living tissue. Hereinafter, for the sake of explanation, the grip 110 side is referred to as the distal end side, and the handle 160 side is referred to as the proximal end side. The handle 160 includes a plurality of operation knobs 164 for operating the grip portion 110.
 なお、ここで示した処置具100の形状は、もちろん一例であり、同様の機能を有していれば、他の形状でもよい。例えば、シャフトは湾曲していてもよい。また、本実施形態に係る技術は、図1に示すような硬性鏡手術に用いられる処置装置に限らず、軟性内視鏡を用いた内視鏡手術に用いられるような処置装置にも適用され得る。 In addition, the shape of the treatment tool 100 shown here is only an example, and other shapes may be used as long as they have the same function. For example, the shaft may be curved. Further, the technology according to the present embodiment is not limited to the treatment apparatus used in the rigid endoscope operation as shown in FIG. 1 but is also applied to the treatment apparatus used in the endoscopic operation using the flexible endoscope. obtain.
 処置具100は、ケーブル190を介して制御装置200に接続されている。ここで、ケーブル190と制御装置200とは、コネクタ195によって接続されており、この接続は着脱自在となっている。すなわち、この処置装置1は、処置毎に処置具100を交換することができるように構成されている。 The treatment instrument 100 is connected to the control device 200 via a cable 190. Here, the cable 190 and the control device 200 are connected by a connector 195, and this connection is detachable. That is, the treatment apparatus 1 is configured so that the treatment tool 100 can be replaced for each treatment.
 制御装置200には、フットスイッチ290が接続されている。足で操作されるフットスイッチ290は、手で操作される例えばハンドスイッチなどと称されるスイッチやその他のスイッチに置き換えられてもよい。フットスイッチ290のペダルを術者が操作することにより、制御装置200から処置具100へのエネルギの供給のオン/オフが切り換えられる。 A foot switch 290 is connected to the control device 200. The foot switch 290 operated with a foot may be replaced with a switch operated with a hand, for example, a hand switch or another switch. When the operator operates the pedal of the foot switch 290, the supply of energy from the control device 200 to the treatment instrument 100 is switched on / off.
 処置装置1の構成例について図2に示す模式図を参照してさらに説明する。処置具100の把持部110は、第1の把持部材112と第2の把持部材114とを備える。第1の把持部材112が第2の把持部材114に対して変位することで、把持部110は開閉する。把持部110は、第1の把持部材112と第2の把持部材114との間に処置対象である生体組織を把持するように構成されている。 The configuration example of the treatment apparatus 1 will be further described with reference to the schematic diagram shown in FIG. The grasping part 110 of the treatment instrument 100 includes a first grasping member 112 and a second grasping member 114. When the first holding member 112 is displaced with respect to the second holding member 114, the holding unit 110 is opened and closed. The grasping unit 110 is configured to grasp a biological tissue that is a treatment target between the first grasping member 112 and the second grasping member 114.
 第1の把持部材112と第2の把持部材114とは、同様の構成を有している。すなわち、第1の把持部材112及び第2の把持部材114は、それぞれ伝熱部材122を有する。伝熱部材122は、例えば銅といった熱伝導性が高い金属で形成されている。第1の把持部材112の伝熱部材122と第2の把持部材114の伝熱部材122とは、互いに対向するように設けられている。すなわち、各々の伝熱部材122は、生体組織に接触するように設けられている。 The first gripping member 112 and the second gripping member 114 have the same configuration. That is, each of the first holding member 112 and the second holding member 114 has a heat transfer member 122. The heat transfer member 122 is made of a metal having high thermal conductivity such as copper. The heat transfer member 122 of the first holding member 112 and the heat transfer member 122 of the second holding member 114 are provided so as to face each other. That is, each heat transfer member 122 is provided so as to contact the living tissue.
 各々の伝熱部材122には、ヒータ124が設けられている。ヒータ124は、基板126の上に発熱部材128が設けられた構造を有する。基板126は、例えばポリイミドの基板である。発熱部材128は、例えば基板126上に形成されたステンレス(SUS)の抵抗パターンである。ヒータ124は、発熱部材128に基板126が接するように配置されている。発熱部材128に電力が供給されると、発熱部材128は発熱する。発熱部材128で発生した熱は、基板126を介して、伝熱部材122に伝達される。この熱は、伝熱部材122と接触する生体組織に伝達され、当該生体組織は加熱処置される。 Each of the heat transfer members 122 is provided with a heater 124. The heater 124 has a structure in which a heat generating member 128 is provided on a substrate 126. The substrate 126 is, for example, a polyimide substrate. The heating member 128 is, for example, a stainless (SUS) resistance pattern formed on the substrate 126. The heater 124 is disposed so that the substrate 126 is in contact with the heat generating member 128. When power is supplied to the heat generating member 128, the heat generating member 128 generates heat. Heat generated by the heat generating member 128 is transmitted to the heat transfer member 122 via the substrate 126. This heat is transmitted to the living tissue in contact with the heat transfer member 122, and the living tissue is heated.
 図2に示すように、制御装置200は、制御部210と、記憶部220と、駆動回路230と、入力部240と、表示部250とを備える。本実施形態では、制御装置200は、パルス幅変調(Pulse Width Modulation;PWM)方式で処置具100の加熱動作の制御を行う。 2, the control device 200 includes a control unit 210, a storage unit 220, a drive circuit 230, an input unit 240, and a display unit 250. In the present embodiment, the control device 200 controls the heating operation of the treatment instrument 100 using a pulse width modulation (PWM) method.
 制御部210は、制御装置200の中心的な役割を担っている。制御部210は、制御装置200の各部と接続されている。記憶部220は、制御部210の処理に用いられる各種情報を記憶している。また、記憶部220には、制御部210で行われる処理のプログラムが記録されている。 The control unit 210 plays a central role in the control device 200. The control unit 210 is connected to each unit of the control device 200. The storage unit 220 stores various information used for the processing of the control unit 210. The storage unit 220 stores a program for processing performed by the control unit 210.
 駆動回路230は、ヒータ124を駆動するための駆動回路である。駆動回路230とヒータ124とは、導線132で接続されている。駆動回路230は、ヒータ124の発熱部材128の両端に電圧を印加する。PWM方式の制御が採用されているため、駆動回路230は、定電圧を出力できるように構成されている。駆動回路230は、電圧値が可変でなくてもよい。 The drive circuit 230 is a drive circuit for driving the heater 124. The drive circuit 230 and the heater 124 are connected by a conducting wire 132. The drive circuit 230 applies a voltage across the heat generating member 128 of the heater 124. Since PWM control is employed, the drive circuit 230 is configured to output a constant voltage. The drive circuit 230 may not have a variable voltage value.
 入力部240は、ユーザの指示を受け付ける部分である。入力部240は、例えばボタンスイッチ、スライダ、ダイヤル、キーボード、タッチパネル等の一般的な入力装置の何れかを含む。表示部250は、制御装置200に係る各種情報を表示する部分である。表示部250は、例えば液晶ディスプレイ、LEDを用いた表示パネル等の一般的な表示装置の何れかを含む。 The input unit 240 is a part that receives user instructions. The input unit 240 includes any one of general input devices such as a button switch, a slider, a dial, a keyboard, and a touch panel. The display unit 250 is a part that displays various types of information related to the control device 200. The display unit 250 includes any one of general display devices such as a liquid crystal display and a display panel using LEDs.
 制御部210は、温度算出部211と、オフセット値算出部212と、出力設定部213と、駆動制御部214とを備える。 The control unit 210 includes a temperature calculation unit 211, an offset value calculation unit 212, an output setting unit 213, and a drive control unit 214.
 温度算出部211は、発熱部材128の温度を算出する。発熱部材128の電気抵抗値は、温度に応じて変化する。そこで、温度算出部211は、発熱部材128の電気抵抗値に基づいて発熱部材128の温度を算出する。このため、温度算出部211は、発熱部材128に印加された電圧と発熱部材128を流れる電流とに基づいて、発熱部材128の抵抗値を算出する。記憶部220には、発熱部材128の抵抗値と温度との関係が記録されており、温度算出部211は、この関係を参照して発熱部材128の温度を取得する。 The temperature calculation unit 211 calculates the temperature of the heat generating member 128. The electrical resistance value of the heat generating member 128 changes according to the temperature. Therefore, the temperature calculation unit 211 calculates the temperature of the heat generating member 128 based on the electrical resistance value of the heat generating member 128. For this reason, the temperature calculation unit 211 calculates the resistance value of the heat generating member 128 based on the voltage applied to the heat generating member 128 and the current flowing through the heat generating member 128. The storage unit 220 records the relationship between the resistance value and the temperature of the heat generating member 128, and the temperature calculating unit 211 refers to this relationship to acquire the temperature of the heat generating member 128.
 オフセット値算出部212は、過去の駆動回路230からの出力に基づいてオフセット値ΔTを算出する。オフセット値ΔTは、伝熱部材122と発熱部材128との温度差に応じた値となる。オフセット値算出部212は、過去の駆動回路230がオンであった期間であるオン期間の長さ及び/又は駆動回路230がオフであった期間であるオフ期間の長さに基づいて、オフセット値ΔTを算出する。 The offset value calculation unit 212 calculates the offset value ΔT based on the past output from the drive circuit 230. The offset value ΔT is a value corresponding to the temperature difference between the heat transfer member 122 and the heat generating member 128. The offset value calculation unit 212 determines the offset value based on the length of the on period that is a period during which the driving circuit 230 is on and / or the length of the off period that is a period during which the driving circuit 230 is off. ΔT is calculated.
 出力設定部213は、伝熱部材122の目標温度にオフセット値ΔTを加えた修正目標温度に発熱部材128の温度を維持するような駆動回路230の動作を設定する。駆動制御部214は、出力設定部213の設定に基づいて、駆動回路230の動作を制御する。 The output setting unit 213 sets the operation of the drive circuit 230 to maintain the temperature of the heat generating member 128 at the corrected target temperature obtained by adding the offset value ΔT to the target temperature of the heat transfer member 122. The drive control unit 214 controls the operation of the drive circuit 230 based on the setting of the output setting unit 213.
 制御部210は、Central Processing Unit(CPU)、又はApplication Specific Integrated Circuit(ASIC)等を含み、各種演算を行う。また、温度算出部211等、制御部210に含まれる要素毎に、ASIC等が形成されてもよい。 The control unit 210 includes a central processing unit (CPU) or an application specific integrated circuit (ASIC) and performs various calculations. An ASIC or the like may be formed for each element included in the control unit 210 such as the temperature calculation unit 211 or the like.
 伝熱部材122とヒータ124とについて、図3を参照してさらに説明する。図3に示すように、ヒータ124の基板126は、伝熱部材122よりも一回り小さく、伝熱部材122と同様の形状をしている。この基板126の上に形成された発熱部材128は、両端が基端側に設けられており、大凡U字形状をしたパターンを有している。このパターンは、電気的な抵抗値を増やすために線幅を細くしつつ、基板の広い範囲を覆うために波型に形成されている。発熱部材128の端部には、それぞれ導線132の一端が接続されている。この導線132の他端は、駆動回路230へと電気的に接続されている。 The heat transfer member 122 and the heater 124 will be further described with reference to FIG. As shown in FIG. 3, the substrate 126 of the heater 124 is slightly smaller than the heat transfer member 122 and has the same shape as the heat transfer member 122. The heat generating member 128 formed on the substrate 126 has both ends provided on the base end side, and has a generally U-shaped pattern. This pattern is formed in a wave shape so as to cover a wide area of the substrate while reducing the line width in order to increase the electrical resistance value. One end of a conducting wire 132 is connected to each end of the heat generating member 128. The other end of the conducting wire 132 is electrically connected to the drive circuit 230.
 伝熱部材122とヒータ124とにおける熱伝導について図4を参照して説明する。図4において、左側は、伝熱部材122と基板126と発熱部材128との位置関係を示す。また、図4の右側は、位置と温度との関係を示す。図4において、上側は、発熱部材128の温度が低い場合を示し、下側は、発熱部材128の温度が高い場合を示す。図4の左側における矢印の幅は、移動する熱量を模式的に示す。 The heat conduction between the heat transfer member 122 and the heater 124 will be described with reference to FIG. In FIG. 4, the left side shows the positional relationship among the heat transfer member 122, the substrate 126, and the heat generating member 128. Also, the right side of FIG. 4 shows the relationship between position and temperature. In FIG. 4, the upper side shows a case where the temperature of the heat generating member 128 is low, and the lower side shows a case where the temperature of the heat generating member 128 is high. The width of the arrow on the left side of FIG. 4 schematically shows the amount of heat that moves.
 図4に示すように、発熱部材128で発生する熱量が大きい程、発熱部材128から伝熱部材122へと移動する熱量は大きくなる。移動する熱量が大きい程、発熱部材128と伝熱部材122との温度差は大きくなる。すなわち、伝熱部材122に与える熱量が大きい程、発熱部材128の温度は、伝熱部材122の温度よりも高く設定される必要がある。 As shown in FIG. 4, the greater the amount of heat generated by the heat generating member 128, the greater the amount of heat that moves from the heat generating member 128 to the heat transfer member 122. The greater the amount of heat that moves, the greater the temperature difference between the heat generating member 128 and the heat transfer member 122. That is, as the amount of heat applied to the heat transfer member 122 is larger, the temperature of the heat generating member 128 needs to be set higher than the temperature of the heat transfer member 122.
 次に、本実施形態に係る処置装置1の動作について説明する。術者は、まず制御装置200の入力部240を操作して、処置に係る目標温度や加熱時間等の処置装置1の出力条件を設定する。出力条件は、各パラメータの値が個別に設定されるようになっていてもよいし、術式に応じた設定値のセットが選択されるようになっていてもよい。 Next, the operation of the treatment apparatus 1 according to this embodiment will be described. The surgeon first operates the input unit 240 of the control device 200 to set the output conditions of the treatment device 1 such as the target temperature and heating time related to the treatment. As the output condition, the value of each parameter may be set individually, or a set of setting values according to the technique may be selected.
 処置具100の把持部110及びシャフト150は、例えば、腹壁を通して腹腔内に挿入される。術者は、操作ノブ164を操作して把持部110を開閉させ、第1の把持部材112と第2の把持部材114とによって処置対象の生体組織を把持する。このとき、第1の把持部材112と第2の把持部材114とに設けられた伝熱部材122に、処置対象の生体組織が接触する。 The grasping part 110 and the shaft 150 of the treatment tool 100 are inserted into the abdominal cavity through the abdominal wall, for example. The surgeon operates the operation knob 164 to open and close the grasping unit 110 and grasps the living tissue to be treated by the first grasping member 112 and the second grasping member 114. At this time, the living tissue to be treated comes into contact with the heat transfer member 122 provided on the first holding member 112 and the second holding member 114.
 術者は、把持部110によって処置対象の生体組織を把持したら、フットスイッチ290を操作する。フットスイッチ290がオンに切り換えられると、制御装置200から、ケーブル190内を通る導線132を介してヒータ124に電力が供給される。ここで、目標温度は、例えば200℃である。このとき電流は、発熱部材128を流れる。発熱部材128は、この電流によって発熱する。発熱部材128で発生した熱は、基板126を介して、伝熱部材122に伝わる。その結果、伝熱部材122の温度は上昇する。 The surgeon operates the foot switch 290 after grasping the living tissue to be treated by the grasping unit 110. When the foot switch 290 is turned on, electric power is supplied from the control device 200 to the heater 124 via the conductive wire 132 passing through the cable 190. Here, the target temperature is 200 ° C., for example. At this time, the current flows through the heat generating member 128. The heat generating member 128 generates heat by this current. The heat generated by the heat generating member 128 is transferred to the heat transfer member 122 through the substrate 126. As a result, the temperature of the heat transfer member 122 rises.
 伝熱部材122に伝達された熱によって、伝熱部材122と接触している生体組織は焼灼され、凝固する。加熱によって生体組織が凝固したら、ヒータ124への電力の供給は停止される。以上によって生体組織の処置が完了する。 The living tissue in contact with the heat transfer member 122 is cauterized and solidified by the heat transferred to the heat transfer member 122. When the living tissue is solidified by heating, the supply of power to the heater 124 is stopped. The treatment of the living tissue is thus completed.
 制御部210による制御を図5に示すフローチャートを参照して説明する。制御部210の制御は、例えば制御装置200の電源がオンにされたときに開始する。 Control by the control unit 210 will be described with reference to the flowchart shown in FIG. The control of the control unit 210 starts, for example, when the power of the control device 200 is turned on.
 ステップS101において、制御部210は、ユーザによる入力部240への入力に基づいて、目標温度や処置時間等の処置の条件設定を行う。以降の説明では、処置対象である生体組織の目標温度をT_target1とする。 In step S101, the control unit 210 sets treatment conditions such as a target temperature and a treatment time based on an input to the input unit 240 by the user. In the following description, the target temperature of the biological tissue to be treated is assumed to be T_target1.
 ステップS102において、制御部210は、加熱開始の指示が入力されたか否かを判定する。加熱開始の指示は、例えばフットスイッチ290が踏まれることで入力される。加熱開始の指示が入力されていないとき、処理はステップS102に戻る。すなわち、制御部210は、加熱開始の指示が入力されるまで待機する。加熱開始の指示が入力されたとき、処理はステップS103に進む。 In step S102, the control unit 210 determines whether an instruction to start heating is input. An instruction to start heating is input, for example, when the foot switch 290 is stepped on. When the instruction to start heating is not input, the process returns to step S102. That is, the control unit 210 stands by until an instruction to start heating is input. When an instruction to start heating is input, the process proceeds to step S103.
 ステップS103において、制御部210は、PWM方式による制御における、駆動回路230から出力されるパルスのパルス幅Wを初期値に設定する。パルス幅Wの初期値は、例えば出力周期の半分の長さである。パルス幅Wの初期値はこれに限らず、どのような値でもよい。ステップS104において、制御部210は、ステップS103で設定されたパルス幅Wのパルスを、駆動回路230に出力させる。その結果、発熱部材128に電流が流れ、発熱部材128は発熱する。なお、駆動回路230の出力電圧は所定の値である。 In step S103, the control unit 210 sets the pulse width W of the pulse output from the drive circuit 230 in the control by the PWM method to an initial value. The initial value of the pulse width W is, for example, half the output period. The initial value of the pulse width W is not limited to this, and may be any value. In step S104, the controller 210 causes the drive circuit 230 to output the pulse having the pulse width W set in step S103. As a result, a current flows through the heat generating member 128 and the heat generating member 128 generates heat. The output voltage of the drive circuit 230 is a predetermined value.
 ステップS105において、制御部210は、発熱部材の温度を算出する。より詳細には、制御部210は、パルス出力時に流れた電流と、所定の出力電圧値とに基づいて、発熱部材128の抵抗値を算出する。制御部210は、発熱部材128の抵抗値に基づいて、発熱部材128の温度を算出する。ここで、発熱部材128の温度は、例えば記憶部220に記憶された発熱部材128の抵抗値と温度との関係を含むテーブルを参照することで導出される。テーブルではなく発熱部材128の抵抗値と温度との関係を表す式を用いて温度が算出されてもよい。 In step S105, the controller 210 calculates the temperature of the heat generating member. More specifically, the controller 210 calculates the resistance value of the heat generating member 128 based on the current that flows during pulse output and a predetermined output voltage value. The controller 210 calculates the temperature of the heat generating member 128 based on the resistance value of the heat generating member 128. Here, the temperature of the heat generating member 128 is derived, for example, by referring to a table including the relationship between the resistance value and the temperature of the heat generating member 128 stored in the storage unit 220. The temperature may be calculated using an expression representing the relationship between the resistance value of the heat generating member 128 and the temperature instead of the table.
 ステップS106において、制御部210は、直前に出力したパルスのパルス幅W、すなわちDuty比に係る値に基づいて、目標温度のオフセット値ΔTを算出する。ここでオフセット値ΔTは、例えば、
  ΔT=C1×W+C2  (1)
に基づいて算出される。ここで、C1及びC2は所定の定数である。上述の式(1)に限らず、オフセット値ΔTは、例えば2次式等や高次の式やその他の式を用いて算出されてもよい。
In step S106, the control unit 210 calculates the target temperature offset value ΔT based on the pulse width W of the pulse output immediately before, that is, the value related to the duty ratio. Here, the offset value ΔT is, for example,
ΔT = C1 × W + C2 (1)
Is calculated based on Here, C1 and C2 are predetermined constants. The offset value ΔT is not limited to the above equation (1), and may be calculated using, for example, a quadratic equation, a high-order equation, or other equations.
 ステップS107において、制御部210は、目標温度にΔTを加算した値を修正目標温度とする。すなわち、処置対象である生体組織の温度の目標値をT_target1とし、修正目標温度をT_target2としたとき、
  T_target2=T_target1+ΔT  (2)
となる。制御部210は、発熱部材128の温度を修正目標温度T_target2にするように、次に出力するパルスのパルス幅Wを決定する。パルス幅Wは、例えば、前回の出力のパルス幅をW_1とし、現在の発熱部材128の温度をT_heaterとしたときに、
  W=W_1+(T_target2-T_heater)×C3/W_1  (3)
に基づいて算出される。ここで、C3は所定の定数である。なお、式(3)を用いて算出されるWが、出力パルスの周期に基づいて決定される最大パルス幅W_maxよりも大きいとき、パルス幅Wは、最大パルス幅W_maxに設定される。なお、最大パルス幅は、例えば数百ミリ秒程度である。
In step S107, the control unit 210 sets a value obtained by adding ΔT to the target temperature as the corrected target temperature. That is, when the target value of the temperature of the living tissue to be treated is T_target1, and the corrected target temperature is T_target2,
T_target2 = T_target1 + ΔT (2)
It becomes. The controller 210 determines the pulse width W of the next pulse to be output so that the temperature of the heat generating member 128 becomes the corrected target temperature T_target2. The pulse width W is, for example, when the pulse width of the previous output is W_1 and the current temperature of the heating member 128 is T_heater,
W = W_1 + (T_target2-T_heater) × C3 / W_1 (3)
Is calculated based on Here, C3 is a predetermined constant. When W calculated using Expression (3) is larger than the maximum pulse width W_max determined based on the period of the output pulse, the pulse width W is set to the maximum pulse width W_max. Note that the maximum pulse width is, for example, about several hundred milliseconds.
 ステップS108において、制御部210は、ステップS108で決定されたパルス幅Wのパルスを、駆動回路230に出力させる。 In step S108, the control unit 210 causes the drive circuit 230 to output the pulse having the pulse width W determined in step S108.
 ステップS109において、制御部210は、処置を完了するか否かを判定する。処置の完了の条件は、例えば次の何れか又はその他に設定され得る。例えば、出力時間が予め設定した処置時間を経過したときに処置を完了してもよい。また、例えば生体組織の温度、すなわち、伝熱部材122の温度が、所定の温度に到達して安定したときに処置を完了してもよい。また、例えば生体組織の温度が所定の温度に到達してから、所定の時間が経過したときに処置を完了してもよい。 In step S109, the control unit 210 determines whether or not the treatment is completed. The condition for completing the treatment can be set to any one of the following or others, for example. For example, the treatment may be completed when the output time passes a preset treatment time. Further, for example, the treatment may be completed when the temperature of the living tissue, that is, the temperature of the heat transfer member 122 reaches a predetermined temperature and becomes stable. Further, for example, the treatment may be completed when a predetermined time elapses after the temperature of the living tissue reaches a predetermined temperature.
 ステップS109において、処置を完了しないとき、処理はステップS105に戻る。一方、処置を完了するとき、処理はステップS110に進む。ステップS110において、制御部210は、駆動回路230に出力を停止させる。その後、処理は終了する。 In step S109, when the treatment is not completed, the process returns to step S105. On the other hand, when the treatment is completed, the process proceeds to step S110. In step S110, the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
 処置装置1の動作について図6を参照して説明する。図6に示す図は、何れも横軸に経過時間を示している。図6において縦に延びる複数の破線の間隔は、出力パルスの周期を表す。 The operation of the treatment apparatus 1 will be described with reference to FIG. In each of the diagrams shown in FIG. 6, the elapsed time is shown on the horizontal axis. In FIG. 6, the intervals between the plurality of broken lines extending vertically represent the period of the output pulse.
 図6の上から1番目のグラフは、経過時間に対するパルス出力を示している。すなわち、この図は、一周期の中で発熱部材128に電圧が印加されているオンの状態と、発熱部材128に電圧が印加されていない、すなわち電圧値が零であるオフの状態とが切り替わることを示している。この図において網掛け部は、オフセット値ΔTが考慮された結果、パルス幅Wが長くなっている分を示している。したがって、仮に、オフセット値ΔTを考慮して修正目標温度T_target2を用いることなく、発熱部材128の温度を目標温度T_target1にするように制御が行われたとすると、パルス幅Wは網掛けの分だけ短くなる。 The first graph from the top in FIG. 6 shows the pulse output with respect to the elapsed time. That is, this figure switches between an ON state in which a voltage is applied to the heating member 128 in one cycle and an OFF state in which no voltage is applied to the heating member 128, that is, the voltage value is zero. It is shown that. In this figure, the shaded portion indicates that the pulse width W is increased as a result of considering the offset value ΔT. Therefore, if the control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ΔT, the pulse width W is shortened by the shaded area. Become.
 図6の上から2番目のグラフは、経過時間に対するオフセット値ΔTを示している。オフセット値ΔTは、直前に出力したパルスのパルス幅Wに応じる。 The second graph from the top in FIG. 6 shows the offset value ΔT with respect to the elapsed time. The offset value ΔT depends on the pulse width W of the pulse output immediately before.
 図6の上から3番目のグラフは、経過時間に対する生体組織の温度、すなわち伝熱部材122の温度を実線で示している。この図において横に伸びる破線は、目標温度T_target1を示している。この図において一点鎖線は、仮に、オフセット値ΔTを考慮して修正目標温度T_target2を用いることなく、発熱部材128の温度を目標温度T_target1にするように制御が行われたとした場合の生体組織の温度を示す。このように、オフセット値ΔTを考慮しないと、生体組織の温度は、目標温度T_target1よりも低くなる。 The third graph from the top in FIG. 6 shows the temperature of the living tissue with respect to the elapsed time, that is, the temperature of the heat transfer member 122 by a solid line. In this figure, the broken line extending horizontally indicates the target temperature T_target1. In this figure, the alternate long and short dash line indicates the temperature of the living tissue when control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ΔT. Indicates. Thus, if the offset value ΔT is not considered, the temperature of the living tissue is lower than the target temperature T_target1.
 図6の上から4番目のグラフは、経過時間に対する発熱部材128の温度を実線で示している。この図において横に伸びる破線は、目標温度T_target1を示している。この図において一点鎖線は、仮に、オフセット値ΔTを考慮して修正目標温度T_target2を用いることなく、発熱部材128の温度を目標温度T_target1にするように制御が行われたとした場合の発熱部材128の温度を示す。このように、オフセット値ΔTを考慮しないと、発熱部材128の温度が、目標温度T_target1となるように制御される。 The fourth graph from the top in FIG. 6 shows the temperature of the heat generating member 128 with respect to the elapsed time by a solid line. In this figure, the broken line extending horizontally indicates the target temperature T_target1. In this figure, the alternate long and short dash line of the heat generating member 128 when the control is performed so that the temperature of the heat generating member 128 becomes the target temperature T_target1 without using the corrected target temperature T_target2 in consideration of the offset value ΔT. Indicates temperature. Thus, if the offset value ΔT is not taken into consideration, the temperature of the heat generating member 128 is controlled to be the target temperature T_target1.
 本実施形態に係る処置装置1によれば、オフセット値ΔTが考慮されることで、処置対象である生体組織の温度が目標温度T_target1となるように適切に制御が行われる。本実施形態では、PWM制御が用いられているので、出力電圧は一定である。このため、出力回路である駆動回路230の回路構成は、出力電圧が可変である場合よりも単純となる。 According to the treatment apparatus 1 according to the present embodiment, the offset value ΔT is taken into consideration, so that the temperature of the living tissue that is the treatment target is appropriately controlled to be the target temperature T_target1. In this embodiment, since PWM control is used, the output voltage is constant. For this reason, the circuit configuration of the drive circuit 230, which is an output circuit, is simpler than when the output voltage is variable.
 なお、上述の実施形態では、パルス幅Wを用いた表現を示したが、Duty比や、出力がオフである期間を用いても同様に表現され得る。また、上述の実施形態では、各々の1周期のパルス幅WやDuty比等に基づいてオフセット値ΔTが決定されている。しかしながらこれに限らず、複数周期分のパルス幅の和やDuty比の平均等、過去の複数周期の出力に基づいてオフセット値ΔTが決定されてもよい。 In the above-described embodiment, the expression using the pulse width W is shown. However, the expression can be similarly expressed even when using a duty ratio or a period in which the output is off. In the above-described embodiment, the offset value ΔT is determined based on the pulse width W, the duty ratio, etc. of each cycle. However, the present invention is not limited to this, and the offset value ΔT may be determined based on outputs of a plurality of past cycles such as a sum of pulse widths for a plurality of cycles and an average duty ratio.
 上述の実施形態では、発熱部材128の温度を発熱部材128の電気抵抗値に基づいて取得している。しかしながらこれに限らず、他の方法で発熱部材128の温度が取得されてもよい。例えば、発熱部材128に温度センサが設けられてもよい。ただし、発熱部材128の電気抵抗値に基づいて発熱部材128の温度が取得されることで、温度センサ等の他の要素を設ける必要がなくなり、把持部110の構造が単純化され、小型化される。 In the above-described embodiment, the temperature of the heat generating member 128 is acquired based on the electric resistance value of the heat generating member 128. However, the present invention is not limited to this, and the temperature of the heat generating member 128 may be acquired by other methods. For example, a temperature sensor may be provided on the heat generating member 128. However, since the temperature of the heat generating member 128 is acquired based on the electric resistance value of the heat generating member 128, it is not necessary to provide other elements such as a temperature sensor, and the structure of the grip portion 110 is simplified and downsized. The
 また、上述の実施形態では、第1の把持部材112と第2の把持部材114との両方が、伝熱部材122及びヒータ124を備える場合を示したがこれに限らない。すなわち、伝熱部材122及びヒータ124は、第1の把持部材112と第2の把持部材114との何れか一方にのみ設けられていてもよい。 In the above-described embodiment, the case where both the first gripping member 112 and the second gripping member 114 include the heat transfer member 122 and the heater 124 is shown, but the present invention is not limited thereto. That is, the heat transfer member 122 and the heater 124 may be provided on only one of the first gripping member 112 and the second gripping member 114.
 [第2の実施形態]
 第2の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。第1の実施形態では、PWMを用いた制御が行われている。これに対して、本実施形態では、現在の温度が目標温度よりも低いときには出力をオンにし、現在の温度が目標温度よりも高いときには出力をオフにするオン/オフ制御が行われる。ここで、出力電圧は、所定の値で一定である。本実施形態では、所定期間内において出力がオンであった期間に応じてオフセット値ΔTが決定される。これは、所定期間内において出力がオンであった期間が長い程、発熱部材128から伝熱部材122への熱流束が大きく、発熱部材128と伝熱部材122との温度差が大きくなると考えられるためである。
[Second Embodiment]
A second embodiment will be described. Here, differences from the first embodiment will be described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted. In the first embodiment, control using PWM is performed. On the other hand, in this embodiment, on / off control is performed in which the output is turned on when the current temperature is lower than the target temperature, and the output is turned off when the current temperature is higher than the target temperature. Here, the output voltage is constant at a predetermined value. In the present embodiment, the offset value ΔT is determined according to the period during which the output is on within a predetermined period. This is because the heat flux from the heat generating member 128 to the heat transfer member 122 increases as the period during which the output is on within the predetermined period, and the temperature difference between the heat generating member 128 and the heat transfer member 122 increases. Because.
 本実施形態に係る制御部210による制御を図7に示すフローチャートを参照して説明する。 Control by the control unit 210 according to the present embodiment will be described with reference to a flowchart shown in FIG.
 ステップS201において、制御部210は、ユーザによる入力部240への入力に基づいて、目標温度や処置時間等の処置の条件設定を行う。処置対象の生体組織の目標温度をT_target1とする。発熱部材128の目標温度T_target3の初期値も、例えば生体組織の目標温度T_target1とする。 In step S201, the control unit 210 sets treatment conditions such as a target temperature and a treatment time based on an input to the input unit 240 by the user. Let T_target1 be the target temperature of the living tissue to be treated. The initial value of the target temperature T_target3 of the heat generating member 128 is also set to the target temperature T_target1 of the living tissue, for example.
 ステップS202において、制御部210は、加熱開始の指示が入力されたか否かを判定する。加熱開始の指示が入力されていないとき、処理はステップS202に戻る。加熱開始の指示が入力されたとき、処理はステップS203に進む。ステップS203において、制御部210は、出力をオンに設定し、駆動回路230に所定電圧を出力させる。 In step S202, the control unit 210 determines whether an instruction to start heating is input. When the instruction to start heating is not input, the process returns to step S202. When an instruction to start heating is input, the process proceeds to step S203. In step S203, the control unit 210 sets the output to ON, and causes the drive circuit 230 to output a predetermined voltage.
 ステップS204において、制御部210は、発熱部材128に供給している電圧値と電流値とに基づいて、発熱部材128の電気抵抗値を算出し、発熱部材128の温度を求める。 In step S204, the control unit 210 calculates the electrical resistance value of the heat generating member 128 based on the voltage value and the current value supplied to the heat generating member 128, and obtains the temperature of the heat generating member 128.
 ステップS205において、制御部210は、発熱部材128の温度が目標温度よりも低いか否かを判定する。発熱部材128の温度が目標温度よりも低いとき、処理はステップS206に進む。ステップS206において、制御部210は、出力をオンに設定し、駆動回路230に所定電圧を出力させる。その後、処理はステップS210に進む。 In step S205, the controller 210 determines whether or not the temperature of the heat generating member 128 is lower than the target temperature. When the temperature of the heat generating member 128 is lower than the target temperature, the process proceeds to step S206. In step S206, the control unit 210 sets the output to ON, and causes the drive circuit 230 to output a predetermined voltage. Thereafter, the process proceeds to step S210.
 ステップS205において、発熱部材128の温度が目標温度よりも低くないとき、処理はステップS207に進む。ステップS207において、制御部210は、出力をオフに設定し、駆動回路230に所定電圧を出力させない。 In step S205, when the temperature of the heat generating member 128 is not lower than the target temperature, the process proceeds to step S207. In step S207, the control unit 210 sets the output to OFF and does not cause the drive circuit 230 to output a predetermined voltage.
 ステップS208において、制御部210は、出力がオフである期間が所定期間よりも長いか否かを判定する。オフ期間が所定期間よりも長くないとき、処理はステップS208に戻る。一方、オフ期間が所定期間よりも長いとき、処理はステップS209に進む。 In step S208, the control unit 210 determines whether or not the period during which the output is off is longer than the predetermined period. When the off period is not longer than the predetermined period, the process returns to step S208. On the other hand, when the off period is longer than the predetermined period, the process proceeds to step S209.
 ステップS209において、制御部210は、出力をオンにする。すなわち、ステップS207で出力がオフになった後は、所定期間だけ出力がオフである状態を継続し、その後出力がオンにされる。所定期間が経過したときに出力をオンにするのは、出力がオンでないと発熱部材128の抵抗値を算出できないため発熱部材128の温度を取得できないからである。ステップS209の処理の後、処理はステップS210に進む。 In step S209, the control unit 210 turns on the output. That is, after the output is turned off in step S207, the state where the output is off for a predetermined period is continued, and then the output is turned on. The reason why the output is turned on when the predetermined period has elapsed is that since the resistance value of the heat generating member 128 cannot be calculated unless the output is turned on, the temperature of the heat generating member 128 cannot be acquired. After the process of step S209, the process proceeds to step S210.
 ステップS210において、制御部210は、直近の所定期間P_1において出力がオンになっている期間P_onの割合に応じて、オフセット値ΔTを、例えば
  ΔT=C4×P_on/P_1  (4)
に基づいて算出する。
In step S210, the control unit 210 sets the offset value ΔT, for example, ΔT = C4 × P_on / P_1 (4) according to the ratio of the period P_on in which the output is on in the most recent predetermined period P_1.
Calculate based on
 ステップS211において、制御部210は、発熱部材128の目標温度T_target3を
  T_target3=T_target1+ΔT  (5)
に基づいて算出する。
In step S211, the control unit 210 sets the target temperature T_target3 of the heat generating member 128 to T_target3 = T_target1 + ΔT (5)
Calculate based on
 ステップS212において、制御部210は、処置を完了するか否かを判定する。処置を完了しないとき、処理はステップS204に戻る。一方、処置を完了するとき、処理はステップS213に進む。ステップS213において、制御部210は、駆動回路230に出力を停止させる。その後、処理は終了する。 In step S212, the control unit 210 determines whether or not the treatment is completed. When the treatment is not completed, the process returns to step S204. On the other hand, when the treatment is completed, the process proceeds to step S213. In step S213, the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
 本実施形態の場合の経過時間に対する出力の状態、オフセット値ΔT、生体組織の温度、及び発熱部材128の温度の関係を図8に示す。図8に示す例では、出力がオフにされてからオンにされるまでの期間は、3周期分の期間とした場合を模式的に示している。また、図8に示す例では、ΔTを算出するために用いられる所定期間P_1を5周期分の期間とした場合を模式的に示している。これらの期間はどのような期間であってもよい。 FIG. 8 shows a relationship among the output state, the offset value ΔT, the temperature of the living tissue, and the temperature of the heat generating member 128 with respect to the elapsed time in the case of the present embodiment. In the example illustrated in FIG. 8, a period from when the output is turned off to when it is turned on is schematically illustrated as a period of three cycles. Further, in the example shown in FIG. 8, a case where the predetermined period P_1 used for calculating ΔT is set to a period of five cycles is schematically shown. These periods may be any period.
 本実施形態に係る処置装置1によっても、オフセット値ΔTが考慮されることで、処置対象である生体組織の温度が最初に設定された目標温度T_target1となるように適切に制御が行われ得る。本実施形態に係るオン/オフ制御では、現在の温度が目標温度よりも低いか否かに応じて出力をオンにするかオフにするかを判断するため、演算量が小さい。また、本実施形態でも出力電圧は一定であるため、出力回路である駆動回路230の回路構成は簡単でよい。 Also by the treatment apparatus 1 according to the present embodiment, the offset value ΔT is taken into consideration, so that the temperature of the living tissue that is the treatment target can be appropriately controlled so as to become the initially set target temperature T_target1. In the on / off control according to the present embodiment, the amount of calculation is small because it is determined whether the output is turned on or off depending on whether the current temperature is lower than the target temperature. Further, since the output voltage is constant in this embodiment, the circuit configuration of the drive circuit 230 that is an output circuit may be simple.
 [第2の実施形態の変形例]
 第2の実施形態の変形例について説明する。ここでは、第2の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。
[Modification of Second Embodiment]
A modification of the second embodiment will be described. Here, differences from the second embodiment will be described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted.
 第2の実施形態に係る制御では、出力をオフにするとき、発熱部材128の温度を取得できなくなる。このため、出力がオフである期間中に発熱部材128の温度が下がり過ぎたり、発熱部材128の温度が目標温度よりも高いにも関わらず出力がオンにされたりすることがある。 In the control according to the second embodiment, the temperature of the heat generating member 128 cannot be acquired when the output is turned off. For this reason, the temperature of the heat generating member 128 may be excessively lowered during the period in which the output is off, or the output may be turned on even though the temperature of the heat generating member 128 is higher than the target temperature.
 そこで本変形例では、出力をオフとするときに、発熱部材128への電力供給を完全に停止するのではなく、発熱部材128に微小電圧を印加して、発熱部材128の温度を常に取得するものとする。すなわち、駆動回路230による出力を、オン又はオフではなく、オン又は微小電圧とする。ここで、微小電圧は発熱部材128での発熱が無視できる程度に小さい電圧である。このように、駆動回路230がオンであるときの電圧値を第1の電圧値とし、微小電圧の電圧値を第2の電圧値としたときに第2の電圧値は第1の電圧値よりも小さい。発熱部材128に微小電圧を印加することにより、図7を参照して説明した第2の実施形態に係る制御における、ステップS208及びステップS209の処理が削除され得る。 Therefore, in this modification, when the output is turned off, the power supply to the heat generating member 128 is not completely stopped, but a minute voltage is applied to the heat generating member 128 to always acquire the temperature of the heat generating member 128. Shall. That is, the output from the drive circuit 230 is not on or off, but on or a minute voltage. Here, the minute voltage is a voltage that is so small that the heat generated by the heat generating member 128 can be ignored. Thus, when the voltage value when the drive circuit 230 is on is the first voltage value and the voltage value of the minute voltage is the second voltage value, the second voltage value is greater than the first voltage value. Is also small. By applying a minute voltage to the heat generating member 128, the processing of step S208 and step S209 in the control according to the second embodiment described with reference to FIG. 7 can be deleted.
 本変形例によれば、常に発熱部材128の温度が取得され、この温度に基づいて出力のオン又は微小電圧の切り替えが適宜に行われるので、温度制御の安定性が向上する。また、発熱部材128への電力供給状態が常に把握され得るので、把持部110において異常が発生していないかが常に監視され得る。ここで、把持部110の異常とは、例えばヒータ124の破損等を含む。 According to the present modification, the temperature of the heat generating member 128 is always acquired, and the output is turned on or the minute voltage is appropriately switched based on this temperature, so that the stability of the temperature control is improved. Further, since the power supply state to the heat generating member 128 can be always grasped, it can be always monitored whether or not an abnormality has occurred in the grip portion 110. Here, the abnormality of the gripping part 110 includes, for example, breakage of the heater 124.
 [第3の実施形態]
 第3の実施形態について説明する。ここでは、第1の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。第3の実施形態では、PWM方式の制御が行われる。第3の実施形態では、出力がオフになっている期間の温度低下の速度に応じてオフセット値ΔTを決定する。
[Third Embodiment]
A third embodiment will be described. Here, differences from the first embodiment will be described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted. In the third embodiment, PWM control is performed. In the third embodiment, the offset value ΔT is determined according to the rate of temperature decrease during the period when the output is off.
 本実施形態に係る制御の流れは、図5を参照して説明した第1の実施形態の場合と同様である。ただし、ステップS105の処理とステップS106の処理が第1の実施形態の場合と異なる。本実施形態に係る制御部210の処理について図5に示すフローチャートを参照して説明する。なお、本実施形態の場合の経過時間に対する出力の状態、発熱部材128の温度、及びオフセット値ΔTの関係を図9に示す。 The control flow according to this embodiment is the same as that in the first embodiment described with reference to FIG. However, the processing in step S105 and the processing in step S106 are different from those in the first embodiment. Processing of the control unit 210 according to the present embodiment will be described with reference to a flowchart shown in FIG. FIG. 9 shows the relationship among the output state, the temperature of the heat generating member 128, and the offset value ΔT with respect to the elapsed time in the present embodiment.
 ステップS101において、制御部210は、ユーザによる入力部240への入力に基づいて、初期設定を行う。ステップS102において、制御部210は、加熱開始の指示が入力されたか否かを判定する。加熱開始の指示が入力されていないとき、処理はステップS102に戻る。加熱開始の指示が入力されたとき、処理はステップS103に進む。 In step S101, the control unit 210 performs an initial setting based on an input to the input unit 240 by the user. In step S102, control unit 210 determines whether or not an instruction to start heating has been input. When the instruction to start heating is not input, the process returns to step S102. When an instruction to start heating is input, the process proceeds to step S103.
 ステップS103において、制御部210は、駆動回路230から出力されるパルスのパルス幅Wを初期値に設定する。ステップS104において、制御部210は、ステップS103で設定されたパルス幅Wのパルスを、駆動回路230に出力させる。 In step S103, the control unit 210 sets the pulse width W of the pulse output from the drive circuit 230 to an initial value. In step S104, the controller 210 causes the drive circuit 230 to output the pulse having the pulse width W set in step S103.
 ステップS105において、制御部210は、発熱部材の温度を算出する。ここで、本実施形態では、制御部210は、出力をオンにした直後の発熱部材128の温度と、出力をオフにする直前の発熱部材128の温度とを算出する。 In step S105, the controller 210 calculates the temperature of the heat generating member. Here, in the present embodiment, the control unit 210 calculates the temperature of the heat generating member 128 immediately after the output is turned on and the temperature of the heat generating member 128 immediately before the output is turned off.
 ステップS106において、制御部210は、オフセット値ΔTを算出する。ここで、本実施形態では、オフセット値ΔTは、前々回の出力における出力をオフにする直前の発熱部材128の温度T1(例えば図9における温度T11)から前回の出力における出力をオンにした直後の発熱部材128の温度T2(例えば図9における温度T21)への温度低下に応じた値とする。例えば、オフセット値ΔT(例えば図9におけるオフセット値ΔT1)は、
  ΔT=C5×(T1-T2)/t_off  (6)
に基づいて定められる。ここで、C5は所定の定数であり、t_offは、前々回の出力におけるオフ期間の長さである。温度低下が速い程、発熱部材128の熱が奪われやすい状態であるといえる。このような状態のとき、発熱部材128の温度と伝熱部材122の温度との温度差が大きくなる。そこで、このような場合、オフセット値ΔTは大きく設定される。一方、温度低下が遅い程、発熱部材128の熱が奪われにくい状態であるといえる。このような状態のとき、発熱部材128の温度と伝熱部材122の温度との温度差が小さくなる。そこで、このような場合、オフセット値ΔTは小さく設定される。
In step S106, the control unit 210 calculates an offset value ΔT. Here, in the present embodiment, the offset value ΔT is the value immediately after the output at the previous output is turned on from the temperature T1 (for example, the temperature T11 in FIG. 9) of the heat generating member 128 immediately before the output at the previous output is turned off. A value corresponding to the temperature drop of the heat generating member 128 to the temperature T2 (for example, the temperature T21 in FIG. 9). For example, the offset value ΔT (for example, the offset value ΔT1 in FIG. 9) is
ΔT = C5 × (T1-T2) / t_off (6)
It is determined based on. Here, C5 is a predetermined constant, and t_off is the length of the off period in the previous output. It can be said that the faster the temperature drop, the easier the heat of the heat generating member 128 is taken away. In such a state, the temperature difference between the temperature of the heat generating member 128 and the temperature of the heat transfer member 122 becomes large. Therefore, in such a case, the offset value ΔT is set large. On the other hand, it can be said that the slower the temperature drop, the more difficult the heat of the heat generating member 128 is taken away. In such a state, the temperature difference between the temperature of the heat generating member 128 and the temperature of the heat transfer member 122 becomes small. Therefore, in such a case, the offset value ΔT is set small.
 ステップS107において、制御部210は、目標温度にΔTを加算した値を修正目標温度とし、この修正目標温度に基づいて、次に出力するパルスのパルス幅Wを決定する。ステップS108において、制御部210は、ステップS108で決定されたパルス幅Wのパルスを、駆動回路230に出力させる。 In step S107, the control unit 210 sets a value obtained by adding ΔT to the target temperature as a corrected target temperature, and determines a pulse width W of a pulse to be output next based on the corrected target temperature. In step S108, the control unit 210 causes the drive circuit 230 to output the pulse having the pulse width W determined in step S108.
 ステップS109において、制御部210は、処置を完了するか否かを判定する。処置を完了しないとき、処理はステップS105に戻る。一方、処置を完了するとき、処理はステップS110に進む。ステップS110において、制御部210は、駆動回路230に出力を停止させる。その後、処理は終了する。 In step S109, the control unit 210 determines whether or not the treatment is completed. When the treatment is not completed, the process returns to step S105. On the other hand, when the treatment is completed, the process proceeds to step S110. In step S110, the control unit 210 causes the drive circuit 230 to stop outputting. Thereafter, the process ends.
 本実施形態の場合の経過時間に対する出力の状態、発熱部材128の温度、及びオフセット値ΔTの関係を示す図9について説明する。図9において、上から1番目のグラフは出力の状態を示し、ここでは、説明のために各パルスに(1)乃至(6)の番号を付している。 9 will be described with reference to FIG. 9 showing the relationship between the output state with respect to the elapsed time, the temperature of the heat generating member 128, and the offset value ΔT in this embodiment. In FIG. 9, the first graph from the top shows the output state, and here, for the purpose of explanation, numbers (1) to (6) are assigned to the pulses.
 上から2番目のグラフは、発熱部材128の温度を示す。ここでは説明のために、パルス(1)のオフにする直前の温度をT11とし、パルス(2)のオンした直後の温度をT21とし、パルス(2)のオフにする直前の温度をT12とし、パルス(3)のオンした直後の温度をT22とし、以下同様に、温度T13,T23、T14,T24,T15,T25とする。 The second graph from the top shows the temperature of the heat generating member 128. Here, for explanation, the temperature immediately before turning off the pulse (1) is T11, the temperature immediately after turning on the pulse (2) is T21, and the temperature immediately before turning off the pulse (2) is T12. The temperature immediately after the pulse (3) is turned on is T22, and similarly, the temperatures are T13, T23, T14, T24, T15, and T25.
 上から3番目のグラフは、オフセット値ΔTを示す。ここで、ΔT1は、温度T11と温度T21とに基づいて算出される。同様に、ΔT2は、温度T12と温度T22とに基づいて算出される。以下同様である。 The third graph from the top shows the offset value ΔT. Here, ΔT1 is calculated based on the temperature T11 and the temperature T21. Similarly, ΔT2 is calculated based on the temperature T12 and the temperature T22. The same applies hereinafter.
 本実施形態に係る処置装置1によっても、オフセット値ΔTが考慮されることで、処置対象である生体組織の温度が最初に設定された目標温度T_target1となるように適切に制御が行われ得る。 Also by the treatment apparatus 1 according to the present embodiment, the offset value ΔT is taken into consideration, so that the temperature of the living tissue that is the treatment target can be appropriately controlled so as to become the initially set target temperature T_target1.
 [第3の実施形態の変形例]
 第3の実施形態の変形例について説明する。ここでは、第3の実施形態との相違点について説明し、同一の部分については、同一の符号を付してその説明を省略する。
[Modification of Third Embodiment]
A modification of the third embodiment will be described. Here, differences from the third embodiment will be described, and the same portions will be denoted by the same reference numerals and description thereof will be omitted.
 第3の実施形態に係る制御では、出力がオフになっている間の発熱部材128の温度が取得されない。このため、出力がオフになっている期間の温度低下の速度を求めるためには、前々回の出力における出力をオフにする直前の発熱部材128の温度と、前回の出力における出力をオンにした直後の発熱部材128の温度とを用いなければならない。したがって、急激に状況が変化した場合に直前の状況が正確に把握されないことがある。 In the control according to the third embodiment, the temperature of the heat generating member 128 is not acquired while the output is off. For this reason, in order to obtain the rate of temperature decrease during the period in which the output is off, the temperature of the heating member 128 immediately before turning off the output in the previous output and immediately after turning on the output in the previous output The temperature of the heating member 128 must be used. Therefore, when the situation changes suddenly, the previous situation may not be accurately grasped.
 そこで本変形例では、第2の実施形態の変形例と同様に、出力をオフとするときに、発熱部材128への電力供給を完全に停止するのではなく、発熱部材128へ微小電圧を印加して、発熱部材128の温度を常に取得するものとする。すなわち、駆動回路230による出力を、オン又はオフではなく、オン又は微小電圧とする。これにより、前回の出力における出力を微小電圧にする直前の発熱部材128の温度と、今回の出力における出力をオンにする直前の発熱部材128の温度とを用いて、出力が微小電圧になっている期間の温度低下の速度を求めることができる。また、出力が微小電圧になっている期間の一部の期間の温度低下からその速度を求めてもよい。 Therefore, in this modified example, as in the modified example of the second embodiment, when the output is turned off, the power supply to the heat generating member 128 is not completely stopped, but a minute voltage is applied to the heat generating member 128. Thus, the temperature of the heating member 128 is always acquired. That is, the output from the drive circuit 230 is not on or off, but on or a minute voltage. As a result, the output becomes a minute voltage using the temperature of the heating member 128 immediately before the output at the previous output is set to a minute voltage and the temperature of the heating member 128 just before the output at the current output is turned on. The rate of temperature decrease during a certain period can be obtained. Further, the speed may be obtained from the temperature drop during a part of the period when the output is a minute voltage.
 本変形例によれば、常に発熱部材128の温度が取得されることで、直前の状況が正確把握され、この直前の状況に基づいてオフセット値ΔTが算出される。したがって、より適切なオフセット値ΔTが算出され得る。また、発熱部材128への電力供給状態が常に把握され得るので、把持部110において異常が発生していないかが常に監視され得る。 According to this modification, the temperature of the heat generating member 128 is always acquired, so that the immediately preceding situation is accurately grasped, and the offset value ΔT is calculated based on the immediately preceding situation. Therefore, a more appropriate offset value ΔT can be calculated. Further, since the power supply state to the heat generating member 128 can be always grasped, it can be always monitored whether or not an abnormality has occurred in the grip portion 110.
 以上説明した何れの処理においても処理の順序は適宜に変更され得る。また、一部の処理が削除されたり、その他の処理が挿入されたりしてもよい。 In any of the processes described above, the order of the processes can be changed as appropriate. Also, some processes may be deleted or other processes may be inserted.

Claims (6)

  1.  生体組織を所定の目標温度で加熱して治療するための処置装置であって、
     前記生体組織と接触し、前記生体組織に熱を伝える伝熱部材と、
     前記伝熱部材を加熱するように前記伝熱部材に配置された、電力が供給されることにより発熱する発熱部材と、
     オンであるときに前記発熱部材に第1の電圧値の定電圧を供給し、オフであるときに前記発熱部材に前記第1の電圧値よりも小さい第2の電圧値の定電圧を供給する駆動回路と、
     過去の前記駆動回路が前記オンであった期間であるオン期間の長さ又は前記駆動回路がオフであった期間であるオフ期間の長さに基づいて、前記伝熱部材と前記発熱部材との温度差に応じたオフセット値を算出するオフセット値算出部と、
     前記目標温度に前記オフセット値を加えた修正目標温度に前記発熱部材の温度を維持するように、前記駆動回路の前記オン又は前記オフを設定する出力設定部と、
     前記出力設定部が設定した前記オン又は前記オフに基づいて、前記駆動回路の動作を制御する駆動制御部と
     を備える処置装置。
    A treatment device for heating and treating a living tissue at a predetermined target temperature,
    A heat transfer member that contacts the living tissue and transfers heat to the living tissue;
    A heating member disposed on the heat transfer member so as to heat the heat transfer member and generating heat when power is supplied;
    A constant voltage having a first voltage value is supplied to the heat generating member when it is on, and a constant voltage having a second voltage value smaller than the first voltage value is supplied to the heat generating member when it is off. A drive circuit;
    Based on the length of the on period that is the period in which the drive circuit was on in the past or the length of the off period that is the period in which the drive circuit was off, the heat transfer member and the heat generating member An offset value calculation unit for calculating an offset value according to the temperature difference;
    An output setting unit that sets the on or off of the drive circuit so as to maintain the temperature of the heat generating member at a corrected target temperature obtained by adding the offset value to the target temperature;
    A treatment device comprising: a drive control unit that controls an operation of the drive circuit based on the on or the off set by the output setting unit.
  2.  前記出力設定部は、パルス幅変調方式により前記駆動回路の前記オン又は前記オフを設定する、請求項1に記載の処置装置。 The treatment apparatus according to claim 1, wherein the output setting unit sets the on or off of the drive circuit by a pulse width modulation method.
  3.  前記出力設定部は、前記発熱部材の温度が前記修正目標温度よりも低いか否かを判定し、前記発熱部材の温度が前記修正目標温度よりも低いときに前記駆動回路を前記オンに設定する、請求項1に記載の処置装置。 The output setting unit determines whether or not the temperature of the heat generating member is lower than the corrected target temperature, and sets the drive circuit to ON when the temperature of the heat generating member is lower than the corrected target temperature. The treatment device according to claim 1.
  4.  前記発熱部材の電気抵抗値に基づいて前記発熱部材の温度を算出する温度算出部をさらに備え、
     前記出力設定部は、前記温度算出部が算出した前記発熱部材の温度に基づいて前記オン期間の長さ又は前記オフ期間の長さを決定する、
     請求項1に記載の処置装置。
    A temperature calculator that calculates the temperature of the heat generating member based on the electrical resistance value of the heat generating member;
    The output setting unit determines the length of the on period or the length of the off period based on the temperature of the heat generating member calculated by the temperature calculation unit.
    The treatment device according to claim 1.
  5.  前記第2の電圧値は、零又は微小電圧値である、請求項1に記載の処置装置。 The treatment apparatus according to claim 1, wherein the second voltage value is zero or a minute voltage value.
  6.  生体組織を所定の目標温度で加熱して治療するための処置装置であって、
     前記生体組織と接触し、前記生体組織に熱を伝える伝熱部材と、
     前記伝熱部材を加熱するように前記伝熱部材に配置された、電力が供給されることにより発熱する発熱部材と、
     オン期間には前記発熱部材に第1の電圧値の定電圧を供給し、オフ期間には前記発熱部材に前記第1の電圧値よりも小さい第2の電圧値の定電圧を供給する駆動回路と、
     前記オフ期間における前記発熱部材の温度低下に基づいて、前記伝熱部材と前記発熱部材との温度差に応じたオフセット値を算出するオフセット値算出部と、
     前記目標温度に前記オフセット値を加えた修正目標温度に前記発熱部材の温度を維持するように、将来の前記オン期間の長さ又は前記オフ期間の長さを設定する出力設定部と、
     前記出力設定部が設定した前記オン期間の長さ又は前記オフ期間の長さに基づいて、前記駆動回路を制御する駆動制御部と
     を備える処置装置。
    A treatment device for heating and treating a living tissue at a predetermined target temperature,
    A heat transfer member that contacts the living tissue and transfers heat to the living tissue;
    A heating member disposed on the heat transfer member so as to heat the heat transfer member and generating heat when power is supplied;
    A drive circuit that supplies a constant voltage having a first voltage value to the heat generating member during an on period and supplies a constant voltage having a second voltage value that is smaller than the first voltage value to the heat generating member during an off period. When,
    An offset value calculation unit that calculates an offset value according to a temperature difference between the heat transfer member and the heat generation member based on a temperature decrease of the heat generation member in the off period;
    An output setting unit for setting the length of the on period in the future or the length of the off period so as to maintain the temperature of the heat generating member at the corrected target temperature obtained by adding the offset value to the target temperature;
    A treatment apparatus comprising: a drive control unit that controls the drive circuit based on the length of the on period or the length of the off period set by the output setting unit.
PCT/JP2015/083418 2014-12-12 2015-11-27 Treatment device WO2016093086A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540718A JPWO2016093086A1 (en) 2014-12-12 2015-11-27 Treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014252021 2014-12-12
JP2014-252021 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016093086A1 true WO2016093086A1 (en) 2016-06-16

Family

ID=56107276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083418 WO2016093086A1 (en) 2014-12-12 2015-11-27 Treatment device

Country Status (2)

Country Link
JP (1) JPWO2016093086A1 (en)
WO (1) WO2016093086A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198208A1 (en) * 2017-04-25 2018-11-01 オリンパス株式会社 Treatment system
CN109640853A (en) * 2016-08-04 2019-04-16 奥林巴斯株式会社 Control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534068A (en) * 2005-03-25 2008-08-28 オリジン・メッドシステムズ・インコーポレイテッド Tissue welding and cutting equipment
JP2012125338A (en) * 2010-12-14 2012-07-05 Olympus Corp Therapeutic treatment apparatus, and control method of the same
JP2012161566A (en) * 2011-02-09 2012-08-30 Olympus Medical Systems Corp Therapeutical treatment device and method for controlling the same
JP2013022354A (en) * 2011-07-25 2013-02-04 Olympus Corp Therapeutical treatment apparatus
WO2014119391A1 (en) * 2013-02-01 2014-08-07 オリンパス株式会社 Therapeutic treatment device and control method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534068A (en) * 2005-03-25 2008-08-28 オリジン・メッドシステムズ・インコーポレイテッド Tissue welding and cutting equipment
JP2012125338A (en) * 2010-12-14 2012-07-05 Olympus Corp Therapeutic treatment apparatus, and control method of the same
JP2012161566A (en) * 2011-02-09 2012-08-30 Olympus Medical Systems Corp Therapeutical treatment device and method for controlling the same
JP2013022354A (en) * 2011-07-25 2013-02-04 Olympus Corp Therapeutical treatment apparatus
WO2014119391A1 (en) * 2013-02-01 2014-08-07 オリンパス株式会社 Therapeutic treatment device and control method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640853A (en) * 2016-08-04 2019-04-16 奥林巴斯株式会社 Control device
CN109640853B (en) * 2016-08-04 2021-10-22 奥林巴斯株式会社 Control device
WO2018198208A1 (en) * 2017-04-25 2018-11-01 オリンパス株式会社 Treatment system

Also Published As

Publication number Publication date
JPWO2016093086A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5931604B2 (en) Therapeutic treatment device
JP4624697B2 (en) Surgical instrument
JP6289701B2 (en) Control device and surgical device
US10456188B2 (en) Heating treatment apparatus and controller of the same
JP5820649B2 (en) Therapeutic treatment device
JP5412602B2 (en) Treatment system and method of operating a treatment system
JP5814685B2 (en) Therapeutic treatment device
US9504515B2 (en) Treatment device
JP5767053B2 (en) Therapeutic treatment device
WO2016093086A1 (en) Treatment device
JP2012161566A (en) Therapeutical treatment device and method for controlling the same
JP5959789B1 (en) Control device for energy treatment device and energy treatment system
US10314636B2 (en) Treatment apparatus and method for controlling the same
JP2012249807A (en) Treatment apparatus for therapy, and control method for the same
JP2006180936A (en) Heating treatment device
WO2017094063A1 (en) Surgery system, surgical instrument, method for controlling surgical instrument, and program for controlling surgical instrument
WO2014148199A1 (en) Therapeutic treatment device
JP2014023757A (en) Medical treatment device and control method of the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540718

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868597

Country of ref document: EP

Kind code of ref document: A1