WO2013014752A1 - 無線装置 - Google Patents

無線装置 Download PDF

Info

Publication number
WO2013014752A1
WO2013014752A1 PCT/JP2011/066986 JP2011066986W WO2013014752A1 WO 2013014752 A1 WO2013014752 A1 WO 2013014752A1 JP 2011066986 W JP2011066986 W JP 2011066986W WO 2013014752 A1 WO2013014752 A1 WO 2013014752A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
event
processing unit
amplitude
wireless device
Prior art date
Application number
PCT/JP2011/066986
Other languages
English (en)
French (fr)
Inventor
和也 大槻
啓司 仁部
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2013525491A priority Critical patent/JP5610078B2/ja
Priority to PCT/JP2011/066986 priority patent/WO2013014752A1/ja
Priority to EP11869961.0A priority patent/EP2738946A4/en
Priority to CN201180072457.8A priority patent/CN103718467B/zh
Publication of WO2013014752A1 publication Critical patent/WO2013014752A1/ja
Priority to US14/150,981 priority patent/US20140119415A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1607Supply circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • H03G3/3047Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers for intermittent signals, e.g. burst signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3089Control of digital or coded signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus

Definitions

  • the present invention relates to a wireless device.
  • a wireless device such as a mobile phone includes an RF (Radio Frequency) unit (wireless unit) and a baseband processing unit, and an interface between the RF unit and the baseband processing unit is an analog signal line and digital or And an analog control line.
  • RF Radio Frequency
  • RF-IC Integrated Circuit
  • CMOS Complementary Mental-Oxide Semiconductor
  • ADC Analog Digital Converter
  • DAC Digital Analog Converter
  • a differential signal is transmitted and received between the RF-IC and the digital IC for baseband processing via a digital communication path.
  • the differential signal transmitted / received through the digital communication path is controlled to a smaller amplitude level than during normal communication when the wireless device sleeps. ing.
  • the conventional technology does not consider suppressing the occurrence of communication errors due to fluctuations in power supply voltage.
  • the amplitude level of the differential signal is adjusted so that the eye pattern formed by the waveform of the differential signal satisfies the range determined by the standard.
  • the amplitude level of the differential signal is adjusted to be as small as possible.
  • the amplitude level of the differential signal changes with the fluctuation of the power supply voltage fluctuate.
  • the amplitude level of the differential signal becomes smaller than the range determined by the standard, and a communication error may occur.
  • the disclosed technology has been made in view of the above, and an object of the present invention is to realize a wireless device capable of suppressing the occurrence of a communication error due to fluctuations in power supply voltage.
  • the wireless device disclosed in the present application is connected to a wireless unit that performs signal processing on a wireless signal, and to the wireless unit via a digital communication path, and to the wireless unit via the digital communication path.
  • a baseband processing unit that transmits and receives digital signals.
  • the wireless device includes an event activation detection unit that detects that an event that fluctuates a power supply voltage supplied to the wireless unit or the baseband processing unit is activated.
  • the wireless device increases an amplitude of a digital signal transmitted and received in the digital communication path before the event is activated.
  • a control unit is provided.
  • the wireless device disclosed in the present application it is possible to suppress the occurrence of a communication error due to the fluctuation of the power supply voltage.
  • FIG. 1 is a diagram showing an overall configuration of a mobile phone.
  • FIG. 2 is a diagram illustrating an example of communication formats of TxPath and RxPath.
  • FIG. 3 is a diagram illustrating a configuration of the baseband processing unit.
  • FIG. 4 is a flowchart showing processing of the mobile phone.
  • FIG. 5A is a diagram for explaining the effect of the processing of the mobile phone.
  • FIG. 5B is a diagram for explaining the effect of the processing of the mobile phone.
  • a wireless device disclosed in the present application will be described in detail with reference to the drawings.
  • the disclosed technology is not limited by the following embodiments.
  • a mobile phone will be described as an example of a wireless device.
  • the present invention is not limited thereto, and any device that can perform wireless communication may be used.
  • FIG. 1 is a diagram showing the overall configuration of a mobile phone.
  • the mobile phone 100 of this embodiment includes an RF (Radio Frequency) -CPU (Central Processing Unit) 200 and a baseband CPU 300.
  • the mobile phone 100 includes an application CPU 400, a user interface 502, a camera 504, a built-in battery 506, and a DC / DC converter 508.
  • the RF-CPU 200 includes a wireless unit 202.
  • the wireless unit 202 includes a DigRFv3 interface unit 210, a DAC (Digital to Analog Converter) 212, and an ADC (Analog to Digital Converter) 214.
  • DAC Digital to Analog Converter
  • ADC Analog to Digital Converter
  • the ADC 214 receives a radio signal transmitted from an external radio device via the antenna 150, converts the received radio signal into a digital signal, and outputs the digital signal to the DigRFv3 interface unit 210.
  • the DAC 212 converts the digital signal output from the DigRFv3 interface unit 210 into an analog radio signal and transmits the analog signal to the outside via the antenna 150.
  • the DigRFv3 interface unit 210 includes a DigRFv3 reception processing unit 220, an LVDS Receiver 222, a DigRFv3 transmission processing unit 230, and an LVDSDriver 232.
  • the LVDS Receiver 222 receives a transmission signal transmitted from the baseband CPU 300 via the LVDSTxPath.
  • the DigRFv3 reception processing unit 220 performs reception processing on the signal received by the LVDS Receiver 222 and outputs it to the DAC 212.
  • the DigRFv3 transmission processing unit 230 performs DigRF packetization on the digital signal received from the ADC 214 and outputs the DigRF packet to the LVDS Receiver 222.
  • the LVDSDriver 232 performs LVDS drive processing on the DigRF packet received from the DigRFv3 transmission processing unit 230 and outputs an LVDS signal to the baseband CPU 300 via the LVDSRxPath.
  • FIG. 2 is a diagram illustrating an example of communication formats of TxPath and RxPath.
  • the TxPath communication format 250 has Sync 252 which is a 16-bit synchronization detection pattern bit.
  • the TxPath communication format 250 includes an 8-bit Header 254 that notifies the type of data, and a TxIQData 256 that is a 96-bit Data bit called Payload.
  • the communication format 260 of RxPath has Sync 262 which is a 16-bit synchronization detection pattern bit.
  • the RxPath communication format 260 includes an 8-bit Header 264 that notifies the type of data, and an RxIQData 266 that is a 256-bit Data bit called Payload.
  • the baseband CPU 300 includes a baseband processing unit 302.
  • the baseband processing unit 302 includes a DigRFv3 interface unit 310.
  • the DigRFv3 interface unit 310 includes a DigRFv3 transmission processing unit 320, an LVDS Sdriver 328, a DigRFv3 reception processing unit 330, an LVDS Rceiver 340, and an amplitude level control unit 350.
  • the LVDCSR receiver 340 receives the LVDS signal output from the LVDSDriver 232.
  • the DigRFv3 reception processing unit 330 performs reception processing on the LVDS signal received by the LVDSSRceiver 340, and outputs an RxI / QData signal and an RF-IC Response signal. Details of the DigRFv3 reception processing unit 330 will be described later.
  • the DigRFv3 transmission processing unit 320 performs processing for generating a transmission signal to be transmitted to an external wireless device based on the TxI / QData signal and the ControlData signal.
  • the LVDSDriver 328 performs LVDS drive processing on the transmission signal generated by the DigRFv3 transmission processing unit 320 and outputs the LVDS signal to the RF-CPU 200 via the LVDSTxPath. Details of the DigRFv3 transmission processing unit 320 will be described later.
  • the amplitude level control unit 350 detects the LVDS signal transmitted and received in TxPath and RxPath before the event is activated. Increase the amplitude.
  • the event is the activation of an application such as a TV phone mounted on the mobile phone 100, for example. Therefore, the amplitude level control unit 350 performs communication by increasing the amplitude level of the LVDS signal in advance before the application is started when there is a power supply fluctuation accompanying the start of the application such as a TV phone.
  • the amplitude level control unit 350 increases the amplitude of the LVDS signal output from the LVDSDriver 328 by increasing the voltage supplied to the LVDSDriver 328.
  • the event is not limited to the activation of the application, but includes, for example, lighting of the display unit of the mobile phone 100, activation of a vibrator when receiving an incoming call to the mobile phone 100, and activation of an alarm by the stationary function of the mobile phone 100.
  • the application CPU 400 includes an application processing unit 402, an OS (Operating System) 404, and middleware 406.
  • the application processing unit 402 performs processing for executing various types of application software installed in the mobile phone 100 such as a TV phone and image shooting. For example, when executing a TV phone application, the application processing unit 402 performs activation processing of various applications including activation of the camera 504.
  • the OS 404 performs processing such as process management and memory management of the mobile phone 100.
  • the middleware 406 when the middleware 406 receives an application activation request from the OS 404, the middleware 406 transmits the received application activation request to the application processing unit 402.
  • the middleware 406 receives, for example, a TV phone application activation request from the OS 404 as an event for changing the power supply voltage supplied to the wireless unit 202 or the baseband processing unit 302. Accordingly, the middleware 406 detects that an event that fluctuates the power supply voltage supplied to the wireless unit 202 or the baseband processing unit 302 is activated.
  • the middleware 406 receives from the application processing unit 402 that the TV phone application activation process has been completed. Accordingly, the middleware 406 detects that the activation process of the TV phone application as an event for changing the power supply voltage supplied to the wireless unit 202 or the baseband processing unit 302 is completed.
  • the user interface 502 is an input interface such as various operation keys of the mobile phone 100 or a touch panel display.
  • the user interface 502 receives a user input operation and outputs the received input operation to the application CPU 400.
  • the camera 504 is a module that is activated in response to an activation request from the application processing unit 402 and captures an image.
  • the camera 504 is activated, for example, when a TV phone application is activated, and transmits the captured image to the application processing unit 402.
  • the built-in battery 506 is a battery built in the mobile phone 100.
  • the DC / DC converter 508 converts the voltage supplied from the built-in battery 506 into a different voltage, and supplies the converted voltage to the baseband CPU 300, the application CPU 400, and the like.
  • the power supply voltage is supplied from the DC / DC converter 508 to the baseband CPU 300 and the application CPU 400.
  • the power supply voltage is supplied from the DC / DC converter 508 to the RF-CPU 200. You can also.
  • FIG. 3 is a diagram illustrating a configuration of the baseband processing unit.
  • the DigRFv3 transmission processing unit 320 includes a TxI / QControlDataMux processing unit 322, a Parallel / Serial processing unit 324, and a SyncMux processing unit 326.
  • the DigRFv3 reception processing unit 330 includes an RxI / QControlDetect processing unit 332, a Serial / Parallel processing unit 334, a SyncDetect processing unit 336, and a TimeAlignment processing unit 338.
  • the TxI / QControlDataMux processing unit 322 performs a multiplexing process of Tx / IQData and ControlData.
  • the Parallel / Serial processing unit 324 performs Serial conversion processing on the data that has been subjected to multiple processing.
  • the SyncMux processing unit 326 performs Sync bit addition processing on the serially converted data.
  • the LCDSDriver 328 performs processing for converting LVDS transmission data into an LVDS signal, and transmits the LVDS signal to the RF-CPU 200 via TxPath.
  • the LVDS Receiver 340 receives the data received by the LVDS and converts it into a Single signal.
  • the TimeAlignment processing unit 338 performs a sampling process on the reception signal received by the LVDS Receiver 340.
  • the SyncDetect processing unit 336 detects the Sync bit of the sampled data, and performs synchronization detection processing by comparing whether or not it matches the Sync pattern defined in the DigRFv3 standard.
  • the Serial / Parallel processing unit 334 performs a Parallel conversion process on the data subjected to the synchronization detection process.
  • the RxI / QControlDetect processing unit 332 analyzes the header of the data subjected to the parallel conversion process, and performs a process of branching the payload into RxI / QData and RF-ICResponse.
  • FIG. 4 is a flowchart showing processing of the mobile phone.
  • FIG. 4 shows an example of an event for changing the power supply voltage supplied to the baseband processing unit 302 when a TV phone application is activated by a user input operation during a normal voice call. Is.
  • the user interface 502 requests the OS 404 to start a TV phone (step S101). Subsequently, when the OS 404 receives a TV phone activation request from the user interface 502, the OS 404 requests the middleware 406 to activate the TV phone application (step S102).
  • the middleware 406 when the middleware 406 receives the activation request for the TV phone application, the middleware 406 notifies the baseband processing unit 302 that the TV phone application is activated (step S103).
  • a signal indicating that the TV phone application is activated is transmitted to the amplitude level control unit 350 via the baseband processing unit 302.
  • the amplitude level control unit 350 increases the amplitude of the LVDS signal output from the LVDSDriver 328 from medium to large (step S104). As a result, the amplitude of the LVDS signal is changed from medium to large.
  • the middleware 406 requests the application processing unit 402 to start a TV phone application (step S105).
  • the application processing unit 402 activates the TV phone application including the activation of the camera 504 (step S106).
  • the application processing unit 402 ends the TV phone application activation process (step S107).
  • the cellular phone 100 switches from the normal voice call mode to the TV phone mode after the activation process of the TV phone application is completed.
  • the middleware 406 notifies the baseband processing unit 302 that the TV phone application activation process has been completed (step S108).
  • a signal to the effect that the TV phone application activation process has been completed is transmitted to the amplitude level control unit 350 via the baseband processing unit 302.
  • the amplitude level control unit 350 receives a signal indicating that the activation process of the TV phone application has been completed, the amplitude level control unit 350 decreases the amplitude of the LVDS signal output from the LVDS Driver 328 from large to medium (step S109). As a result, the amplitude of the LVDS signal is changed from large to medium.
  • the amplitude level control unit 350 sets the amplitude level of the LVDS signal to be small when the mobile phone 100 is in the sleep mode. For example, when the mobile phone 100 enters the sleep mode while the amplitude of the LVDS signal is medium, the amplitude level control unit 350 changes the amplitude of the LVDS signal from medium to small. Further, when the mobile phone 100 is switched from the sleep mode to, for example, the normal voice call mode, the amplitude level control unit 350 changes the amplitude of the LVDS signal from small to medium.
  • the amplitude level of the LVDS signal is “small” in the sleep mode, “medium” in the normal mode, or when an event that changes the power supply voltage supplied to the baseband processing unit 302 is started. Is set to 3 levels of “Large”.
  • the amplitude level control unit 350 changes the amplitude level of the LVDS signal to “low” in the sleep mode, “medium” in the normal mode, and an event that changes the power supply voltage supplied to the baseband processing unit 302. Control in three stages of “Large”.
  • FIG. 5A and 5B are diagrams for explaining the effect of the processing of the mobile phone.
  • FIG. 5A shows the LVDS eye pattern 600 in the normal state, the LVDS eye pattern 604 when the power supply voltage supplied to the LVDSDriver 328 varies, and the power supply voltage 606 of the LVDSDriver 328.
  • FIG. 5B shows the LVDS eye pattern 620 when the power supply voltage supplied to the LVDSDriver 328 varies, the power supply voltage 622 of the LVDSDriver 328, and the application start / end information 624 indicating that the application is in the activated state.
  • the LVDS signal is driven with an amplitude of 300 mv, for example.
  • the amplitude of the LVDS signal is larger than the threshold range 602 in which normal communication can be performed, normal communication is performed.
  • the LVDS eye pattern 620 has an amplitude of the LVDS signal in response to the detection of the start signal 626 indicating that the application is activated in the application start / end information 624. For example, it is increased to 400 mV.
  • the power supply voltage 622 of the LVDSDriver 328 has a fluctuation 630
  • the fluctuation 632 occurs in the LVDS eye pattern 620, but the amplitude of the LVDS signal is larger than the threshold range 602 in which normal communication can be performed.
  • the power supply voltage of the LVDSDriver 328 baseband processing unit 302
  • communication can be performed normally.
  • the LVDS eye pattern 620 indicates that the amplitude of the LVDS signal is increased to, for example, 300 mv before the increase in response to the detection that the application activation process is completed in the application start / end information 624. Returned. Thereby, the power consumption of the mobile phone 100 can be reduced.
  • the mobile phone 100 of the present embodiment it is possible to suppress the occurrence of communication errors due to fluctuations in the power supply voltage. That is, when the amplitude level control unit 350 receives information indicating that the application is activated from the middleware 406 included in the application CPU 400, the amplitude level control unit 350 performs control to increase the amplitude level of the LVDS signal output from the LVDSDriver 328. Thereby, even if there is a fluctuation in the power supply voltage of the baseband processing unit 302 caused by the activation of the application, it is possible to suppress the amplitude level of the LVDS signal from becoming smaller than the threshold range determined by the standard. As a result, the occurrence of bit errors in the LVDS signal can be suppressed, so that the occurrence of communication errors can be suppressed.
  • the case where an event for changing the power supply voltage supplied to the baseband processing unit 302 is activated is described as an example, but the present invention is not limited to this.
  • the above-described embodiment can be similarly applied when an event for changing the power supply voltage supplied to the wireless unit 202 is activated. That is, if it is detected that an event that changes the power supply voltage supplied to the wireless unit 202 is activated, the amplitude of the LVDS signal transmitted and received in the digital communication path can be increased before the event is activated. .
  • an amplitude level control unit is provided in the DigRFv3 interface unit 210 of the radio unit 202, and the amplitude level control unit increases the voltage supplied to the LVDSDriver 232. Accordingly, the amplitude level control unit increases the amplitude of the LVDS signal output from the LVDSDriver 232.
  • the present invention is not limited to this.
  • the amplitude level control unit is activated in another digital communication such as I2C communication
  • an event for changing the power supply voltage supplied to the wireless unit 202 or the baseband processing unit 302 is activated.
  • the amplitude of the digital signal transmitted and received in the digital channel can be increased.
  • the amplitude level control program is connected to a radio unit that performs signal processing on a radio signal, and the radio unit via a digital communication path, and transmits and receives digital signals to and from the radio unit via the digital communication path.
  • a wireless device including a baseband processing unit is caused to execute the following processing.
  • the amplitude level control program causes the wireless device to execute a process of detecting that an event for changing the power supply voltage supplied to the wireless unit or the baseband processing unit is activated.
  • the amplitude level control program performs a process of increasing the amplitude of a digital signal transmitted / received in the digital communication path before the event is activated when the wireless device detects that the event is activated. Let it run.
  • the amplitude level control program can be distributed to computers via a communication network such as the Internet.
  • the amplitude level control program can also be executed by being recorded on a memory, a hard disk, or other computer-readable recording medium provided in the wireless device, and being read from the recording medium by the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

 電源電圧の変動に起因する通信エラーの発生を抑制することを課題とする。携帯電話機100は、無線信号に対する信号処理を行う無線部202と、無線部202とデジタル通信路を介して接続されており、デジタル通信路を介して無線部202とデジタル信号を送受信するベースバンド処理部302とを備える。また、携帯電話機100は、無線部202又はベースバンド処理部302へ供給される電源電圧を変動させるイベントが起動されることを検出するミドルウェア406を備える。また、携帯電話機100は、ミドルウェア406によってイベントが起動されることが検出されたら、イベントが起動される前に、デジタル通信路において送受信されるデジタル信号の振幅を増加させる振幅レベル制御部350を備える。

Description

無線装置
 本発明は、無線装置に関する。
 従来、携帯電話機等の無線装置は、RF(Radio Frequency)部(無線部)と、ベースバンド処理部とを含み、RF部とベースバンド処理部との間のインターフェースは、アナログ信号線とデジタル又はアナログの制御線とを含んで構成されていた。
 ところが近年、RF-IC(Integrated Circuit)のCMOS(Complementary Mental-Oxide Semiconductor)化に伴い、ADC(Analog Digital Converter)あるいはDAC(Digital Analog Converter)をRF-ICへ内蔵することが可能となってきた。これを受けて、RF-ICとベースバンド処理用のデジタルICとをデジタル通信路で接続する「DigRF」と呼ばれる規格が制定されている。
 DigRF規格におけるDigRFv3と呼ばれるバージョンでは、RF-ICとベースバンド処理用のデジタルICとの間で、デジタル通信路を介して差動信号が送受信される。ここで、従来技術では、無線装置の消費電力を抑えるために、無線装置のスリープ時には、デジタル通信路を送受信される差動信号を通常の通信時よりも小さい振幅レベルに制御することが知られている。
特開2010-56977号公報
 しかしながら、従来技術は、電源電圧の変動に起因する通信エラーの発生を抑制することは考慮されていない。
 すなわち、DigRFv3では、差動信号の波形によって形成されるアイパターンが規格で決められている範囲を満たすように差動信号の振幅レベルが調整される。一方で、無線装置の消費電力を抑えることが望まれているため、差動信号の振幅レベルはなるべく小さくなるように調整される。
 そのため、例えば無線装置のTV電話などのアプリケーションの起動によってRF-IC又はベースバンド処理用のデジタルICへ供給される電源電圧が変動したら、この電源電圧の変動にともなって差動信号の振幅レベルが変動する。その結果、差動信号の振幅レベルが規格で決められている範囲より小さくなり、通信エラーが発生する場合がある。
 開示の技術は、上記に鑑みてなされたものであって、電源電圧の変動に起因する通信エラーの発生を抑制することができる無線装置を実現することを目的とする。
 本願の開示する無線装置は、一つの態様において、無線信号に対する信号処理を行う無線部と、前記無線部とデジタル通信路を介して接続されており、前記デジタル通信路を介して前記無線部とデジタル信号を送受信するベースバンド処理部とを備える。また、無線装置は、前記無線部又は前記ベースバンド処理部へ供給される電源電圧を変動させるイベントが起動されることを検出するイベント起動検出部を備える。また、無線装置は、前記イベント起動検出部によって前記イベントが起動されることが検出されたら、前記イベントが起動される前に、前記デジタル通信路において送受信されるデジタル信号の振幅を増加させる振幅レベル制御部を備える。
 本願の開示する無線装置の一つの態様によれば、電源電圧の変動に起因する通信エラーの発生を抑制することができる。
図1は、携帯電話機の全体構成を示す図である。 図2は、TxPath,RxPathの通信フォーマットの一例を示す図である。 図3は、ベースバンド処理部の構成を示す図である。 図4は、携帯電話機の処理を示すフローチャートである。 図5Aは、携帯電話機の処理による効果を説明するための図である。 図5Bは、携帯電話機の処理による効果を説明するための図である。
 以下に、本願の開示する無線装置の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態により開示技術が限定されるものではない。以下の実施形態では、無線装置の一例として携帯電話機を挙げて説明するが、これに限らず、無線通信を行うことができる装置であればよい。
 図1は、携帯電話機の全体構成を示す図である。図1に示すように、本実施形態の携帯電話機100は、RF(Radio Frequency)-CPU(Central Processing Unit)200,及びベースバンドCPU300を備える。また、携帯電話機100は、アプリケーションCPU400,ユーザインターフェース502,カメラ504,内蔵バッテリ506,及びDC/DCコンバータ508を備える。
 RF-CPU200は、無線部202を備える。無線部202は、DigRFv3インターフェース部210と、DAC(Digital to Analog Converter)212と、ADC(Analog to Digital Converter)214とを備える。
 ADC214は、外部の無線装置から送信された無線信号を、アンテナ150を介して受信し、受信した無線信号をデジタル信号に変換してDigRFv3インターフェース部210へ出力する。DAC212は、DigRFv3インターフェース部210から出力されたデジタル信号をアナログの無線信号に変換して、アンテナ150を介して外部へ送信する。
 DigRFv3インターフェース部210は、DigRFv3受信処理部220、LVDSReceiver222、DigRFv3送信処理部230、及びLVDSDriver232を備える。LVDSReceiver222は、ベースバンドCPU300からLVDSTxPathを介して送信された送信信号を受信する。DigRFv3受信処理部220は、LVDSReceiver222で受信された信号に対して受信処理を行って、DAC212へ出力する。
 DigRFv3送信処理部230は、ADC214から受信したデジタル信号に対してDigRFパケット化を行って、LVDSReceiver222へ出力する。LVDSDriver232は、DigRFv3送信処理部230から受信したDigRFパケットに対してLVDSドライブ処理を行い、LVDSRxPathを介してLVDS信号をベースバンドCPU300へ出力する。
 ここで、LVDSTxPath及びLVDSRxPathを送受信されるLVDS信号の通信フォーマットを説明する。図2は、TxPath,RxPathの通信フォーマットの一例を示す図である。図2に示すように、TxPathの通信フォーマット250は、16bitの同期検出パターンビットであるSync252を有する。また、TxPathの通信フォーマット250は、データの種別を通知する8bitのHeader254と、Payloadと呼ばれる96bitのDataビットであるTxIQData256を有する。
 また、RxPathの通信フォーマット260は、16bitの同期検出パターンビットであるSync262を有する。また、RxPathの通信フォーマット260は、データの種別を通知する8bitのHeader264と、Payloadと呼ばれる256bitのDataビットであるRxIQData266を有する。
 図1の説明に戻って、ベースバンドCPU300は、ベースバンド処理部302を備える。また、ベースバンド処理部302は、DigRFv3インターフェース部310を備える。DigRFv3インターフェース部310は、DigRFv3送信処理部320、LVDSDriver328、DigRFv3受信処理部330、LVDSRceiver340、及び振幅レベル制御部350を備える。
 LVDSRceiver340は、LVDSDriver232から出力されたLVDS信号を受信する。DigRFv3受信処理部330は、LVDSRceiver340で受信されたLVDS信号に対して受信処理を行い、RxI/QData信号とRF-ICResponse信号を出力する。DigRFv3受信処理部330の詳細は後述する。
 DigRFv3送信処理部320は、TxI/QData信号と、ControlData信号とに基づいて、外部の無線装置へ送信する送信信号を生成する処理を行う。LVDSDriver328は、DigRFv3送信処理部320で生成された送信信号に対してLVDSドライブ処理を行い、LVDSTxPathを介してLVDS信号をRF-CPU200へ出力する。DigRFv3送信処理部320の詳細は、後述する。
 振幅レベル制御部350は、ベースバンド処理部302へ供給される電源電圧を変動させるイベントが起動されることが検出されたら、イベントが起動される前に、TxPath及びRxPathにおいて送受信されるLVDS信号の振幅を増加させる。ここで、イベントとは、例えば携帯電話機100に搭載されたTV電話等のアプリケーションの起動である。したがって、振幅レベル制御部350は、例えばTV電話等のアプリケーションの起動に伴う電源変動がある場合に、アプリケーションの起動の前に予めLVDS信号の振幅レベルを上げて通信を行う。例えば、振幅レベル制御部350は、LVDSDriver328に供給される電圧を増加させることにより、LVDSDriver328から出力されるLVDS信号の振幅を増加させる。なお、イベントは、アプリケーションの起動に限らず、例えば、携帯電話機100の表示部の点灯、携帯電話機100への着信時のバイブレータの起動、及び携帯電話機100のステーショナリ機能によるアラームの起動などである。
 アプリケーションCPU400は、アプリケーション処理部402、OS(Operating System)404、及びミドルウェア406を備える。アプリケーション処理部402は、例えばTV電話、画像撮影などの携帯電話機100に搭載された各種のアプリケーションソフトウェアを実行するための処理を行う。アプリケーション処理部402は、例えばTV電話のアプリケーションを実行する際には、カメラ504の起動を含む各種アプリケーションの起動処理を行う。OS404は、携帯電話機100のプロセス管理及びメモリ管理などの処理を行う。
 ミドルウェア406は、例えば、OS404からアプリケーションの起動要求を受信したら、受信したアプリケーションの起動要求をアプリケーション処理部402へ送信する。ミドルウェア406は、無線部202又はベースバンド処理部302へ供給される電源電圧を変動させるイベントとして、例えばTV電話のアプリケーションの起動要求をOS404から受信する。これにより、ミドルウェア406は、無線部202又はベースバンド処理部302へ供給される電源電圧を変動させるイベントが起動されることを検出する。また、ミドルウェア406は、アプリケーション処理部402においてTV電話のアプリケーションの起動処理が終了したら、アプリケーション処理部402からTV電話のアプリケーションの起動処理が終了したことを受信する。これにより、ミドルウェア406は、無線部202又はベースバンド処理部302へ供給される電源電圧を変動させるイベントとしてのTV電話のアプリケーションの起動処理が終了したことを検出する。
 ユーザインターフェース502は、携帯電話機100の各種操作キー又はタッチパネル式の表示などの入力インターフェースである。ユーザインターフェース502は、ユーザの入力操作を受け付け、受け付けられた入力操作をアプリケーションCPU400へ出力する。
 カメラ504は、アプリケーション処理部402からの起動要求に応じて起動され、画像を撮像するモジュールである。カメラ504は、例えばTV電話のアプリケーションが起動される際に起動され、撮像した画像をアプリケーション処理部402へ送信する。内蔵バッテリ506は、携帯電話機100の内部に内蔵された電池である。DC/DCコンバータ508は、内蔵バッテリ506から供給された電圧を異なる電圧へ変換し、変換した電圧をベースバンドCPU300及びアプリケーションCPU400等へ供給する。なお、本実施形態では、DC/DCコンバータ508から、ベースバンドCPU300及びアプリケーションCPU400へ電源電圧が供給される例を示したが、DC/DCコンバータ508から、RF-CPU200へ電源電圧を供給することもできる。
 次に、ベースバンド処理部の詳細について説明する。図3は、ベースバンド処理部の構成を示す図である。図3に示すように、DigRFv3送信処理部320は、TxI/QControlDataMux処理部322、Parallel/Serial処理部324、及びSyncMux処理部326を有する。また、DigRFv3受信処理部330は、RxI/QControlDetect処理部332、Serial/Parallel処理部334、SyncDetect処理部336、及びTimeAlignment処理部338を有する。
 TxI/QControlDataMux処理部322は、Tx/IQDataとControlDataの多重処理を行う。Parallel/Serial処理部324は、多重処理を行ったデータのSerial変換処理を行う。SyncMux処理部326は、Serial変換されたデータにSyncビットの付加処理を行う。LCDSDriver328は、LVDS送信するデータをLVDS信号へ変換する処理を行い、TxPathを介してRF-CPU200へ送信する。
 LVDSReceiver340は、LVDS受信するデータを受信し、Single信号へと変換する。TimeAlignment処理部338は、LVDSReceiver340で受信した受信信号に対してサンプリング処理を行う。SyncDetect処理部336は、サンプリング処理したデータのSyncビットを検出し、DigRFv3規格で規定されたSyncパターンと一致するか否かの比較を行うことで、同期検出処理を行う。
 Serial/Parallel処理部334は、同期検出処理が行われたデータのParallel変換処理を行う。RxI/QControlDetect処理部332は、Parallel変換処理されたデータのHeaderを解析し、PayloadをRxI/QDataとRF-ICResponseとに分岐する処理を行う。
 次に、携帯電話機100の処理について説明する。図4は、携帯電話機の処理を示すフローチャートである。図4は、ベースバンド処理部302へ供給される電源電圧を変動させるイベントの一例として、通常の音声通話を行っている際にユーザの入力操作によってTV電話のアプリケーションが起動される場合を挙げたものである。
 図4に示すように、まず、ユーザインターフェース502は、ユーザの入力操作によってTV電話を起動すべき操作を受信したら、OS404へTV電話の起動要求を行う(ステップS101)。続いて、OS404は、ユーザインターフェース502からTV電話の起動要求を受信したら、ミドルウェア406へTV電話のアプリケーションの起動要求を行う(ステップS102)。
 続いて、ミドルウェア406は、TV電話のアプリケーションの起動要求を受信したら、TV電話のアプリケーションが起動される旨をベースバンド処理部302へ通知する(ステップS103)。TV電話のアプリケーションが起動される旨の信号は、ベースバンド処理部302を介して振幅レベル制御部350へ送信される。振幅レベル制御部350は、TV電話のアプリケーションが起動される旨の信号を受信したら、LVDSDriver328から出力されるLVDS信号の振幅を中から大へ増加させる(ステップS104)。これにより、LVDS信号の振幅は中から大へ変更される。
 続いて、ミドルウェア406は、アプリケーション処理部402に対してTV電話のアプリケーションの起動要求を行う(ステップS105)。アプリケーション処理部402は、ミドルウェア406からアプリケーションの起動要求を受信したら、カメラ504の起動を含むTV電話のアプリケーションを起動する(ステップS106)。続いて、アプリケーション処理部402は、TV電話のアプリケーションの起動処理を終了する(ステップS107)。携帯電話機100は、TV電話のアプリケーションの起動処理が終了したら、通常の音声通話モードからTV電話モードへ切り換わる。
 ミドルウェア406は、アプリケーション処理部402においてTV電話のアプリケーションの起動処理が終了したら、TV電話のアプリケーションの起動処理が終了した旨をベースバンド処理部302へ通知する(ステップS108)。TV電話のアプリケーションの起動処理が終了した旨の信号は、ベースバンド処理部302を介して振幅レベル制御部350へ送信される。振幅レベル制御部350は、TV電話のアプリケーションの起動処理が終了した旨の信号を受信したら、LVDSDriver328から出力されるLVDS信号の振幅を大から中へ減少させる(ステップS109)。これにより、LVDS信号の振幅は大から中へ変更される。
 なお、振幅レベル制御部350は、携帯電話機100がスリープモードの際には、LVDS信号の振幅レベルを小に設定する。例えば、LVDS信号の振幅が中の状態で携帯電話機100がスリープモードになった場合には、振幅レベル制御部350は、LVDS信号の振幅を中から小へ変更する。また、携帯電話機100がスリープモードから例えば通常の音声通話モードへ切り替わった場合には、振幅レベル制御部350は、LVDS信号の振幅を小から中へ変更する。すなわち、本実施形態の携帯電話機100は、LVDS信号の振幅レベルが、スリープモードにおける「小」、通常モードにおける「中」、ベースバンド処理部302へ供給される電源電圧を変動させるイベントの起動時における「大」の3段階に設定される。言い換えれば、振幅レベル制御部350は、LVDS信号の振幅レベルを、スリープモードにおける「小」、通常モードにおける「中」、及びベースバンド処理部302へ供給される電源電圧を変動させるイベントの起動時における「大」の3段階で制御する。
 次に、携帯電話機100の処理による効果を説明する。図5A,図5Bは、携帯電話機の処理による効果を説明するための図である。図5Aは、通常状態におけるLVDSアイパターン600と、LVDSDriver328へ供給される電源電圧に変動が生じた場合のLVDSアイパターン604と、LVDSDriver328の電源電圧606とを示したものである。図5Bは、LVDSDriver328へ供給される電源電圧に変動が生じた場合のLVDSアイパターン620と、LVDSDriver328の電源電圧622と、アプリケーションが起動状態を示すアプリ開始終了情報624を示したものである。
 まず、図5AのLVDSアイパターン600に示すように、通常状態では、LVDS信号は例えば振幅300mvで駆動される。この場合、LVDS信号の振幅は、正常に通信が行える閾値範囲602より大きいので、正常に通信が行われる。
 一方、例えばTV電話などのアプリケーションの起動によりカメラ504での電流消費が開始され、そのときの突入電流によりDC/DCコンバータ508で電源変動が発生し、その結果、ベースバンド処理部302への電流供給に影響を及ぼす場合がある。これにより、LVDSDriver328の電源電圧606に変動608が生じた場合には、LVDSアイパターン604は、変動610が生じた箇所については、LVDS信号の振幅が、正常に通信が行える閾値範囲602より小さくなる。その結果、例えば、図2で示したSyncビットがエラーになった場合、図3で示したSyncDetect処理部336においてSyncパターンを検出することができず、I/QDataやControlDataが破棄される場合がある。また、ControlDataそのものにビットエラーが生じる場合もある。そのため、無線通信データを正常に送受信できなくなるため、RF-IC200の制御が困難になったり、スループットの劣化を招いたりする問題が発生するおそれがある。
 これに対して、図5Bに示すように、LVDSアイパターン620は、アプリ開始終了情報624における、アプリケーションが起動される旨を示す開始信号626が検出されたことに応じて、LVDS信号の振幅が例えば400mvへ増加される。これにより、LVDSDriver328の電源電圧622に変動630が生じた場合であっても、LVDSアイパターン620には変動632が生じるが、LVDS信号の振幅は、正常に通信が行える閾値範囲602より大きくなる。その結果、アプリケーションの起動に起因してLVDSDriver328(ベースバンド処理部302)の電源電圧が変動したとしても、正常に通信を行うことができる。
 また、図5Bに示すように、LVDSアイパターン620は、アプリ開始終了情報624における、アプリケーションの起動処理が終了したことが検出されたことに応じて、LVDS信号の振幅が例えば増加前の300mvへ戻される。これによって、携帯電話機100の消費電力を低減することができる。
 以上、本実施形態の携帯電話機100によれば、電源電圧の変動に起因する通信エラーの発生を抑制することができる。すなわち、振幅レベル制御部350は、アプリケーションCPU400に含まれるミドルウェア406からアプリケーションが起動される旨の情報を受信したら、LVDSDriver328から出力されるLVDS信号の振幅レベルを上げる制御を行う。これにより、アプリケーションの起動に起因するベースバンド処理部302の電源電圧の変動があったとしても、LVDS信号の振幅レベルが規格で決められている閾値範囲より小さくなることを抑制することができる。その結果、LVDS信号のビットエラーの発生を抑えることができるため、通信エラーの発生を抑制することができる。
 なお、上述の実施形態は、ベースバンド処理部302へ供給される電源電圧を変動させるイベントが起動された場合を例に挙げて説明を行ったが、これには限られない。例えば、無線部202へ供給される電源電圧を変動させるイベントが起動された場合にも同様に、上述の実施形態を適用することができる。すなわち、無線部202へ供給される電源電圧を変動させるイベントが起動されることが検出されたら、イベントが起動される前に、デジタル通信路において送受信されるLVDS信号の振幅を増加させることができる。この場合、例えば、無線部202のDigRFv3インターフェース部210に振幅レベル制御部を設け、この振幅レベル制御部が、LVDSDriver232に供給される電圧を増加させる。これにより、振幅レベル制御部は、LVDSDriver232から出力されるLVDS信号の振幅を増加させる。
 また、上述の実施形態は、RF-CPU200とベースバンドCPU300との間のDigRF規格によるデジタル通信において、LVDS信号の振幅を増加させる例を挙げて説明したが、これには限られない。例えば、振幅レベル制御部は、I2C通信などの他のデジタル通信においても同様に、無線部202またはベースバンド処理部302へ供給される電源電圧を変動させるイベントが起動されることが検出されたら、イベントが起動される前に、デジタル通信路において送受信されるデジタル信号の振幅を増加させることができる。
 なお、上述の実施形態は、主に携帯電話機100を中心に説明したが、これに限らず、あらかじめ用意された振幅レベル制御プログラムをコンピュータで実行することによって、上述の実施形態と同様の機能を実現することができる。すなわち、振幅レベル制御プログラムは、無線信号に対する信号処理を行う無線部と、前記無線部とデジタル通信路を介して接続されており、前記デジタル通信路を介して前記無線部とデジタル信号を送受信するベースバンド処理部とを備えた無線装置に、以下の処理を実行させる。振幅レベル制御プログラムは、無線装置に、前記無線部又は前記ベースバンド処理部へ供給される電源電圧を変動させるイベントが起動されることを検出する処理を実行させる。また、振幅レベル制御プログラムは、無線装置に、前記イベントが起動されることが検出されたら、前記イベントが起動される前に、前記デジタル通信路において送受信されるデジタル信号の振幅を増加させる処理を実行させる。なお、振幅レベル制御プログラムは、インターネットなどの通信ネットワークを介してコンピュータに配布することができる。また、振幅レベル制御プログラムは、無線装置に設けられたメモリ、ハードディスク、その他のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
100 携帯電話機
202 無線部
232 LVDSDriver
302 ベースバンド処理部
328 LVDSDriver
350 振幅レベル制御部
402 アプリケーション処理部
406 ミドルウェア

Claims (4)

  1.  無線信号に対する信号処理を行う無線部と、
     前記無線部とデジタル通信路を介して接続されており、前記デジタル通信路を介して前記無線部とデジタル信号を送受信するベースバンド処理部と、
     前記無線部又は前記ベースバンド処理部へ供給される電源電圧を変動させるイベントが起動されることを検出するイベント起動検出部と、
     前記イベント起動検出部によって前記イベントが起動されることが検出されたら、前記イベントが起動される前に、前記デジタル通信路において送受信されるデジタル信号の振幅を増加させる振幅レベル制御部と、
     を備えることを特徴とする無線装置。
  2.  前記振幅レベル制御部は、前記無線部に設けられ、前記ベースバンド処理部へ前記デジタル信号を送信する第1のドライバに供給する電圧を増加させるか、又は前記ベースバンド処理部に設けられ、前記無線部へ前記デジタル信号を送信する第2のドライバに供給する電圧を増加させる
     ことを特徴とする請求項1に記載の無線装置。
  3.  前記イベントの起動処理が終了したことを検出するイベント起動終了検出部をさらに備え、
     前記振幅レベル制御部は、前記イベント起動終了検出部によって前記イベントの起動処理が終了したことが検出されたら、前記デジタル通信路において送受信されるデジタル信号の振幅を増加前の振幅に戻す
     ことを特徴とする請求項1に記載の無線装置。
  4.  前記イベントは、前記無線装置のアプリケーションの起動、前記無線装置の表示部の点灯、前記無線装置への着信時のバイブレータの起動、及び前記無線装置のアラームの起動の少なくとも1つである
     ことを特徴とする請求項1に記載の無線装置。
PCT/JP2011/066986 2011-07-26 2011-07-26 無線装置 WO2013014752A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013525491A JP5610078B2 (ja) 2011-07-26 2011-07-26 無線装置
PCT/JP2011/066986 WO2013014752A1 (ja) 2011-07-26 2011-07-26 無線装置
EP11869961.0A EP2738946A4 (en) 2011-07-26 2011-07-26 WIRELESS APPARATUS
CN201180072457.8A CN103718467B (zh) 2011-07-26 2011-07-26 无线装置
US14/150,981 US20140119415A1 (en) 2011-07-26 2014-01-09 Wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066986 WO2013014752A1 (ja) 2011-07-26 2011-07-26 無線装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/150,981 Continuation US20140119415A1 (en) 2011-07-26 2014-01-09 Wireless device

Publications (1)

Publication Number Publication Date
WO2013014752A1 true WO2013014752A1 (ja) 2013-01-31

Family

ID=47600642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066986 WO2013014752A1 (ja) 2011-07-26 2011-07-26 無線装置

Country Status (5)

Country Link
US (1) US20140119415A1 (ja)
EP (1) EP2738946A4 (ja)
JP (1) JP5610078B2 (ja)
CN (1) CN103718467B (ja)
WO (1) WO2013014752A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210141911A1 (en) * 2017-06-05 2021-05-13 Sony Semiconductor Solutions Corporation Communication device and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235648A (ja) * 1992-02-24 1993-09-10 Hitachi Denshi Ltd 電力増幅器の位相補償回路
JPH0981884A (ja) * 1995-09-12 1997-03-28 Hitachi Ltd フィールド計器用コミュニケータ
JP2009038474A (ja) * 2007-07-31 2009-02-19 Fujitsu Microelectronics Ltd 送信装置
JP2010056977A (ja) 2008-08-29 2010-03-11 Renesas Technology Corp 半導体集積回路およびその動作方法
JP2011517183A (ja) * 2008-03-31 2011-05-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239602B1 (en) * 2001-01-18 2010-12-29 NTT DoCoMo, Inc. Transmission power control apparatus, transmission power control method, and mobile station
US7324561B1 (en) * 2003-06-13 2008-01-29 Silicon Clocks Inc. Systems and methods for generating an output oscillation signal with low jitter
JP4008458B2 (ja) * 2005-05-06 2007-11-14 シャープ株式会社 1ビットディジタルアンプ装置
JP4858959B2 (ja) * 2006-06-06 2012-01-18 ルネサスエレクトロニクス株式会社 差動信号駆動回路及び差動信号駆動方法
US8188788B2 (en) * 2010-04-23 2012-05-29 Samsung Electro-Mechanics Systems and methods for a discrete resizing of power devices with concurrent power combining structure for radio frequency power amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235648A (ja) * 1992-02-24 1993-09-10 Hitachi Denshi Ltd 電力増幅器の位相補償回路
JPH0981884A (ja) * 1995-09-12 1997-03-28 Hitachi Ltd フィールド計器用コミュニケータ
JP2009038474A (ja) * 2007-07-31 2009-02-19 Fujitsu Microelectronics Ltd 送信装置
JP2011517183A (ja) * 2008-03-31 2011-05-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線回路
JP2010056977A (ja) 2008-08-29 2010-03-11 Renesas Technology Corp 半導体集積回路およびその動作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738946A4

Also Published As

Publication number Publication date
EP2738946A4 (en) 2015-01-07
EP2738946A1 (en) 2014-06-04
CN103718467B (zh) 2017-02-15
JP5610078B2 (ja) 2014-10-22
CN103718467A (zh) 2014-04-09
JPWO2013014752A1 (ja) 2015-02-23
US20140119415A1 (en) 2014-05-01

Similar Documents

Publication Publication Date Title
US9432941B2 (en) Method for performing wake-up control with aid of wake-up packet, and associated apparatus
US20210120559A1 (en) Pucch collision processing method and terminal
US7139590B2 (en) Mobile apparatus capable of automatic detection and communication of voice and digital data
WO2018216904A1 (ko) 전자 장치 및 전자 장치에서 블루투스 기반의 데이터를 전송하는 방법
US8548535B2 (en) Mobile communication terminal
US8351883B2 (en) Momentary burst protocol for wireless communication
JP7278404B2 (ja) 伝送方法、ネットワーク機器及び端末
KR20150137069A (ko) 유선 인터페이스를 통한 오디오/비디오 전송을 위한 절전
US20240028068A1 (en) Link training method and related device
CN111600692A (zh) 一种信道监听方法、信息传输方法、终端及网络设备
WO2020171546A1 (en) Method for processing audio data and electronic device therefor
WO2021083104A1 (zh) 节能信号检测方法和终端
US7970352B2 (en) Wireless communication device
JP5610078B2 (ja) 無線装置
US11095939B2 (en) Image display device and system thereof
CN112612745A (zh) 数据传输方法、装置、电子设备以及可读存储介质
JP2011239223A (ja) 無線伝送制御システム及びこれを用いた無線伝送システム
US20150022724A1 (en) Remote controller and remote controller set applied to display device
US11061464B2 (en) Electronic device, method for reducing power consumption, and apparatus
JP5620438B2 (ja) 携帯端末および通信制御方法
JP4094612B2 (ja) 携帯端末の受信帯域切替回路及びその方法
EP3358762B1 (en) Communication device, information processing device, and communication method
CN113489508B (zh) 供电控制方法、供电控制装置、电子设备和可读存储介质
CN113722260A (zh) 保护电路、串行总线系统、电路保护方法及移动终端
JP3779670B2 (ja) 移動通信端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525491

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011869961

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE