WO2013012290A2 - Cover material for battery and method for manufacturing same - Google Patents

Cover material for battery and method for manufacturing same Download PDF

Info

Publication number
WO2013012290A2
WO2013012290A2 PCT/KR2012/005824 KR2012005824W WO2013012290A2 WO 2013012290 A2 WO2013012290 A2 WO 2013012290A2 KR 2012005824 W KR2012005824 W KR 2012005824W WO 2013012290 A2 WO2013012290 A2 WO 2013012290A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
packaging material
battery packaging
aluminum
barrier layer
Prior art date
Application number
PCT/KR2012/005824
Other languages
French (fr)
Korean (ko)
Other versions
WO2013012290A3 (en
Inventor
김홍건
김기홍
김정겸
윤종윤
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Priority claimed from KR1020120079254A external-priority patent/KR20130011976A/en
Publication of WO2013012290A2 publication Critical patent/WO2013012290A2/en
Publication of WO2013012290A3 publication Critical patent/WO2013012290A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is the outermost layer; A barrier layer comprising aluminum or aluminum alloy foil; And it relates to a battery packaging material including the innermost layer, and more particularly, to provide a battery packaging material and a manufacturing method thereof having an oxide film layer formed on at least one surface of the barrier layer exhibiting a surface resistance of at least O.lkQ / ciif.
  • the packaging material has an effect of significantly improving corrosion resistance and electrical insulation while maintaining moisture barrier property.
  • lithium ion secondary batteries use a liquid electrolyte
  • lithium ion secondary batteries use aluminum cans as packaging materials to prevent leakage of electrolyte and reduce the risk of explosion. Therefore, the lithium ion secondary battery is heavy and bulky due to the aluminum cans used as the packaging material, and even if the aluminum cans are used, the risk of explosion exists because of the use of an ionic liquid electrolyte. This has a low disadvantage. As a result, the company continues to research and develop to further increase energy density while reducing safety and volume.
  • Lithium polymer secondary batteries can be pouched to reduce the weight of batteries, thereby reducing production costs and increasing the shape of the batteries. Can be. Since the lithium polymer secondary battery uses a laminate pouch as a packaging material, the lithium polymer secondary battery can be thinned. These polymer batteries, notebooks, It is used in portable terminal devices (mobile phones, PDAs, etc.), video cameras, electric vehicles, energy storage batteries, robots, satellites, etc.
  • the structure of a lithium polymer secondary battery having such an advantage is that a laminated aluminum pouch, which is a packaging material, is connected to an electrode terminal (anode: A1, negative electrode: Ni or Cu) which is a metal, and an electrolyte is laminated therein.
  • an electrode terminal anode: A1, negative electrode: Ni or Cu
  • an electrolyte is laminated therein.
  • the internal electrolyte is exposed to moisture, acid and heat are generated by hydrolysis.
  • the internal electrolyte may combine with hydrogen to generate strong acidic toxic gas (Gas), causing the battery to explode.
  • hydrofluoric acid (HF) in the electrolyte has a high penetration force, and passes through the polypropylene film layer, which is the innermost layer of the pouch, to reach the aluminum thin film layer and dissolve and corrode the aluminum thin film layer surface.
  • HF hydrofluoric acid
  • the surface of the aluminum thin film layer is treated with a chemical conversion treatment solution and then laminated with a thermoplastic resin to produce a packaging material.
  • the packaging material of the lithium polymer secondary battery is a multilayer including a can type formed by processing a metal and a base layer (or outermost layer) / aluminum layer (or barrier layer) / sealant layer (or innermost layer) as basic elements. The thing which produced the film on the pouch is used.
  • a general battery packaging material is composed of an outermost layer made of a polyester resin and / or a polyamide resin, an inner layer of a barrier layer made of aluminum or an alloy thereof, or a thermoplastic resin.
  • Methyl carbonate (MC), dimethyl carbonate (DMC) and the like are used as the electrolyte of the polymer battery, and an acid such as hydrofluoric acid (HF) is generated by the reaction of the battery. Adhesiveness, moisture barrier, and electrical insulation between the aluminum film and the electrode to prevent lamination are required.
  • the barrier layer of the conventional lithium polymer secondary battery is ozone treatment, Attempts have been made to improve physical properties such as adhesion through plasma treatment, gamma ray treatment, heat treatment, or chemical treatment such as chromate or phosphate.
  • a technique for improving acid resistance and electrical insulation, in particular, electrical insulation of the barrier layer is disclosed. It is difficult to find.
  • a barrier layer of aluminum or aluminum alloy thin film of a "polymer battery by performing the anodization (anodizing) forming a porous aluminum oxide film on the aluminum film, compared to the barrier layer by chromium chemical conversion adhesive It was possible to obtain a battery packaging material that improved the corrosion resistance, electrolytic resistance and electrical insulation while maintaining.
  • an object of the present invention is to provide a battery packaging material excellent in acid resistance and electrical insulation.
  • Another object of the present invention is to provide a method of manufacturing the battery packaging material.
  • aspects of this invention is an outermost layer, containing aluminum or an aluminum alloy, a barrier layer and an innermost layer comprising a, and comprises a porous oxide film layer formed of at least a positive electrode on one surface oxidation treatment (anodizing) of the barrier layer was 0.1 'kffi / cm It relates to a battery packaging material having a surface resistance of two or more.
  • One embodiment of the present invention relates to a method for producing a battery packaging material including a porous oxide film by performing anodizing (at least one surface) of the barrier layer.
  • the barrier layer in which an oxide film is formed on aluminum is significantly improved in corrosion resistance, electrolytic resistance, and electrical insulation while maintaining adhesiveness as compared to the barrier layer formed by the conventional chemical conversion treatment.
  • the specific surface area is properly Adjusted to provide a packaging material with improved adhesion.
  • the present invention forms an oxide layer on the aluminum or aluminum alloy as a barrier layer using an anodizing method, while maintaining the moisture barrier property and adhesion of the barrier layer by conventional chemical conversion treatment, There is an effect of dramatically improving the insulation.
  • FIG. 1 is a schematic view showing an embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
  • FIG. 2 is a schematic view showing another embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
  • FIG. 3 is a schematic view showing still another embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
  • the battery packaging material includes an outermost layer, a barrier layer and an innermost layer containing aluminum or an aluminum alloy, and includes a porous oxide film layer formed by anodizing on at least one surface of the barrier layer and O
  • the present invention relates to a battery packaging material having a surface resistance of .lkQ / oif or more.
  • the battery packaging material may be a battery packaging material for a pouch, and is preferably for a lithium polymer secondary battery.
  • ' battery packaging material is the outermost layer 10 consisting of a PET layer 11 and a nylon layer 12;
  • the innermost layer 18 composed of a barrier layer 13 on which a Crab oxide film layer 14 and a Crab oxide film layer 15 are formed, and a metal adhesive olefin resin layer 18 and a heat adhesive resin layer 19. This sequentially It has a laminated structure. .
  • the battery packaging material is the outermost layer 10 consisting of a PET layer 11 and 0-nylon layer 12; It has a structure in which the innermost layer 18 which consists of the barrier layer 13 in which only the 1st oxide film layer 14 was formed, and the metal adhesive olefin resin layer 18 and the heat-adhesive resin layer 19 was sequentially laminated. .
  • the battery packaging material is the outermost layer 10 consisting of a PET layer 11 and 0-nylon layer 12; It has a barrier layer 13 in which only the 2nd oxide film layer 15 was formed, the metal adhesive olefin resin layer 18, and a heat adhesive resin layer.
  • a porous oxide film having a thickness of 1 to several tens can be formed on the aluminum surface.
  • the anodization conditions are adjusted to form the oxide film layers 14 and 16 on one surface or both surfaces of the aluminum constituting the barrier layer to have a surface resistance of at least O.lkQ / oif.
  • the oxide layer 14, 16 is porous, 0.2 to 10 / zm, preferably o. m to 5 // m, more preferably 0.5 / ffli to 1 /. If the thickness exceeds 10, it is not preferable because the oxide film tends to be damaged in implementing the continuous process.
  • the pore particle diameter of the oxide layer is l, 000 nm or less, for example, Iran to l, 000 nm, more preferably 200 nm or less, for example Iran to 200 nm, in terms of adhesion performance and electrical insulation properties. It can be seen that the corrosion resistance decreases as the unit size and size increase.
  • the specific surface area of the oxide film layer is preferably in the range of 0.5 mVg to 100 mVg.
  • the specific surface area of the oxide film layer may be selected in an appropriate range in consideration of the improvement of adhesion and the prevention of delamination caused by hydrofluoric acid, electrolyte, and the like.
  • the porous oxide film has an improved surface area due to the pores, thereby significantly increasing the adhesion performance between the outermost layer (substrate layer) 10 and the innermost layer 17. In addition, since electrical insulation properties are exhibited, a new performance of electrical insulation can be given to the barrier layer 13.
  • the chemical conversion treatment layer formed by the chromatization treatment and the chemical conversion treatment method such as phosphate on the barrier layer does not have electrical insulation. Therefore, when the aluminum surface comes into contact with an electric current, electricity conduction occurs immediately.
  • the functionality of the cell pouch can be further improved. For example, when aluminum of the barrier layer is exposed to an electrode or an electrolyte due to damage of the outermost layer (substrate layer) 10 and the innermost layer (silane layer) 17, the performance of the polymer battery is significantly reduced. However, if electrical insulation is provided as in the present invention, higher battery performance can be achieved.
  • the outermost layer 10, barrier layer 13 and innermost layer 17 may be composed of all components known in the field of battery packaging materials.
  • the outermost layer 10 is used to protect the aluminum thin film used as the barrier layer 13 and to protect against pressure or force from the outside, weather resistance, chemical resistance, formability of the packaging material It is preferable to consist of the polyester-based resin layer 11 and / or the stretched polyamide-based resin layer 12 stretched in the biaxial direction in consideration of the above.
  • polyester resin examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), copolyester, or polycarbonate (PC) film
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • copolyester or polycarbonate (PC) film
  • the biaxially stretched polyamide film resin includes nylon 6, nylon 6.6, a copolymer of nylon 6 and nylon 6.6, nylon 6.10 and polymethacrylylene amidamide (MXD 6), and the like. It may be composed of a single or multiple layers of one or more components selected from the group consisting of.
  • MXD 6 polymethacrylylene amidamide
  • the barrier layer is a charge for preventing gas and water vapor from penetrating into the lithium battery from the outside, and pinholes and processability of the barrier layer.
  • a composite of aluminum or nickel with a thickness of about 15 or more, or an inorganic compound such as silicon oxide or alumina may be added. Can be.
  • the barrier layer 13 is preferably a foil of aluminum or aluminum alloy having a thickness of 20 to 80 in consideration of workability.
  • the aluminum foil is preferably a 10, 80 alloy-based aluminum foil because the high purity series has excellent processability.
  • the aluminum substrate may optionally include silicon, boron, germanium, arsenic, antimony, copper, magnesium, manganese, zinc, lithium, iron, chromium, vanadium, titanium, bismuth, .potassium, tin, lead zirconium, nickel, cobalt and It may be an alloy containing an element selected from the group consisting of a combination thereof.
  • the barrier layer 13 is subjected to anodization of aluminum foil to give an electrical insulation function to form porous oxide films 14 and 16.
  • the aluminum surface is preferably washed with alkali for the purpose of removing oil. It is a method of changing the surface of aluminum metal into alumina ceramic using electrochemical method. When the method is applied, the aluminum metal itself is oxidized and converted into alumina ceramic, and the surface of the aluminum is stronger than steel and wear resistance is better than that of hard chromium plating. It does not peel off like plating or coating (coating), and the changed alumina ceramic surface has excellent electrical insulation (1500Volt) and electricity flows well inside.
  • the anodizing treatment may be used in various ways such as sulfuric acid method, hydroxyl method, chromic acid method, phosphoric acid method or boric acid method.
  • the anodization current density of 0.5A / dm 2 to 50A / dm, using an electrolyte solution of from about 10 ° C 'to 35 ° C comprising sulfuric acid, chromic acid, boric acid, dioxane, or in a common acid compound
  • the reaction can be made in, and the process can be performed in about 5 seconds to 60 minutes.
  • the oxide layer thus treated is a porous oxide (A1 2 0 3 ) layer, which has the inherent function of the barrier layer, and improves electrical insulation, acid resistance, metal adhesion, and wear resistance. '
  • the oxide film layers 14 and 16 treated according to the present invention exhibit electrical insulation properties, and firmly adhere the aluminum foil and the olefinic resin layer having metal adhesion to the oxide film layer by hydrofluoric acid generated by hydrolysis of the electrolyte solution and the electrolyte solution.
  • the lamination can be prevented while preventing the lamination.
  • the innermost layer 17 is polyolefin-based, polycetylene-based, polypropylene-based, polybutylene-based, ethylene copolymer, propylene copolymer, polyester-based, polyamide-based, polycarbonate-based, fluorine-based, silicone-based , Acrylic, ethylene-propylene-diene-monomer rubber (EPDM) and mixtures thereof.
  • it is a polyolefin resin layer or the mixed resin layer of polybutadiene and a polyolefin.
  • the innermost layer 17 is coextruded without using the barrier layer and the adhesive, and the coextrusion is performed by the extrusion coating method under the conditions of the die and screw temperature in the range of 300 ° C. in the locrc,
  • the sealant layer (the innermost layer) can be bonded to the metal without an adhesive in the molten state, and the thickness thereof is preferably between 200 and 200 for reasons of strength reinforcement and interlayer peeling during heat sealing of the battery.
  • the innermost layer 17 may be composed of a composite layer using a film such as PET, polyolefin film, nylon, or the like depending on its function.
  • a film such as PET, polyolefin film, nylon, or the like depending on its function.
  • the metal adhesive olefin resin layer 18 and the heat adhesive resin layer 19 can be formed in multiple layers.
  • the metal adhesive olefin resin layer (intermediate layer) 18 is a modified polyolefin resin, and forms a layer containing a mixture of ethylene and modified propylene, modified butadiene, acrylic acid or methacrylic acid, modified acrylic acid, or the like alone or singly. You can.
  • the heat adhesive resin layer (the innermost layer) 19 is a lithium battery.
  • Low density polyethylene, high density polyethylene, linear low density polyethylene, ethylene copolymers, ethylene-propylene copolymers, polybutadiene, ethylene-butadiene-propylene copolymers, propylene resins and the like may be used alone or in combination.
  • a method for manufacturing a battery packaging material including an outermost layer, a barrier layer including an aluminum or aluminum alloy foil, and an innermost layer, wherein anodizing is performed on at least one surface of the barrier layer. It provides a battery packaging material comprising the step of forming an aluminum oxide film.
  • the manufacturing method may further include performing dry lamination on one surface and the outermost layer of the barrier layer, and co-extruding the innermost layer on the other surface of the barrier layer.
  • the anodizing treatment is to treat the aluminum or aluminum alloy of the barrier layer in an electrolyte solution containing 0.1% to 25% of the acid solution, and the acid of the electrolyte solution which can be used for the anodizing treatment may be sulfuric acid, chromic acid, It may be at least one selected from the group consisting of phosphoric acid, oxalic acid and phosphoric acid, for example, 10-25% sulfuric acid, 0.1-10% oxalic acid, 5-15% phosphoric acid or 2-15% It may be chromic acid, and in the case of using a sulfuric acid solution may be used by adding an additional oxalic acid.
  • the anodization treatment is 0.5A / dm ! It can be carried out at 5 seconds to 60 minutes with a current density of from 50 A / dm 2 .
  • the temperature of the electrolyte solution is 10 ° C to 35 ° C, more preferably 15 ° C 3 to 3 ( rc, may be a non-uniform thickness of the aluminum oxide filmworm if outside the numerical range and the problem of pore size control.
  • the coextrusion has a die and screw temperature of 100 ° C to 300 ° C Under the condition of the innermost layer resin may be carried out by extruding together with the barrier layer in a molten state.
  • the outermost layer was composed of PET (about 6) / 0-nylon (about 15), and a soft aluminum foil of 80 alloy series degreasing treatment having a thickness of about 50 mm 3 was used as the barrier layer.
  • the aluminum foil was reacted for about 2 minutes at a current density of about lA / dnf using an electrolyte solution of about 20 ° C. in which 0.4% of oxalic acid was added as an additive to sulfuric acid concentration 1, and a thickness of about 0.5 was applied to both sides of aluminum.
  • the outermost layer and the barrier layer were laminated by a dry lamination method of injecting a urethane-based adhesive between the two layers, drying them, and bonding each other at a constant temperature and pressure.
  • the barrier layer and the innermost layer had a metal adhesive olefin resin layer therebetween, and co-extruded the adhesive resin in a molten state with a high temperature T-die to manufacture a battery packaging material.
  • the coextrusion was carried out by an extrusion coating method with a die and screw temperature of about 210 ° C to coat the anodized aluminum oxide film and the heat-adhesive resin layer in-line.
  • a mixed resin of modified ethylene and modified propylene was used as the metal adhesive olefin resin layer.
  • Example 2 was the same as in Example 1 except that the current density and reaction time were changed to lA / dm 2 and 3 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film was about 0.8im. Was carried out.
  • Example 3 is the same as in Example 1 except that the current density and reaction time are changed to lA / dm 2 and 4 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film is about 1 ⁇ . Was carried out.
  • Example 4 was carried out in the same manner as in Example 1 except that the current density and reaction time were changed to lA / dm 2 and 20 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film was about 5. It was.
  • Example 5 was carried out in the same manner except that the electrolyte solution used in Example 3 was treated with 3% chromic acid instead of the mixed solution of sulfuric acid and oxalic acid.
  • Example 6 was carried out in the same manner except that the electrolyte solution used in Example 3 was treated with 10% phosphoric acid instead of the mixed solution of sulfuric acid and oxalic acid.
  • Example 7 was carried out in the same manner as in Example 3, except that the electrolyte solution used in Example 3 was treated with oxalic acid of 5> instead of the mixed solution of sulfuric acid and oxalic acid.
  • Example 2 The soft aluminum foil of the dealloyed 80 alloy series having a thickness of about 50 used in Example 1 was carried out in the same manner except that aluminum foil without an oxide film was used. Comparative Example 2
  • a soft aluminum foil of a dealloyed 80 alloy series having a thickness of about 50iffli used in Example 1 was used as a barrier layer, and a chemical conversion solution was coated on one surface of the barrier layer by a reverse roll coating method (thickness 0. an) and dried (heat treated) at 230 ° C. for 10 seconds to form an anticorrosion layer 120.
  • Comparative Example 2 a trivalent chemical conversion film was obtained, and an electrical conduction test of a specimen (5 ⁇ 5 cm) was performed by a current application method, and the results are shown in Table 1 below.
  • Adhesion was tested by the peel test method of the innermost layer and aluminum on the specimen (5x5cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, the results are shown in Table 2 below.
  • Examples 1 to 7 of a battery packaging material including an aluminum oxide film as a barrier layer instead of the chromium chemical conversion layer are used for anodizing treatment. Corrosion does not occur, it can be seen that the resistance to corrosion is improved when used in the battery later.
  • Example 10 Instead of the electrolyte solution of 20 ° C used to form the aluminum oxide film on the surface of the aluminum foil in Example 1, using an electrolyte solution of 25 ° C in Example 8 and an electrolyte solution of 30 ° C in Example 9 Except that, substantially the same as in Example 1, the reaction was performed at a current density of about lA / dm 2 for about 2 minutes to form a film of aluminum oxide (A1 2 0 3 ) having a thickness of about 0.5, on both surfaces of the aluminum.
  • Aluminum oxide-forming soft aluminum foil was prepared, and a battery packaging material using the same.
  • Example 1 When forming an aluminum oxide film on the surface of the aluminum foil in Example 1, to produce an aluminum foil having an aluminum oxide film on the surface in the same manner as in Example 1, except that the voltage was treated with 1.5A / dm, A battery packaging material using the same was prepared.
  • Example 1 When forming an aluminum oxide film on the surface of the aluminum foil in Example 1, the aluminum oxide on the surface in the same manner as in Example 1 except that the electrolyte solution was treated with 5% oxalic acid instead of sulfuric acid and oxalic acid mixed solution An aluminum foil having a film was produced, and a battery packaging material using the same was produced.
  • an aluminum foil having an aluminum oxide film on its surface was prepared in the same manner as in Example 1 except that the oxide film was used as it was without forming an oxide film on the aluminum alloy-based soft aluminum foil having a thickness of about 50. And the battery packaging material using this was manufactured. ⁇ Test Example 2 >
  • the pore sizes of the oxide films prepared according to Examples 1, 8 and 9 were measured by SEM and shown in Table 4.
  • An anodizing film was impregnated with 3.5% solution to visually check the salt water test.
  • the corrosion degree was measured according to the following criteria, and the results are shown in Table 4 below.
  • Example 1 Comparative Example 4 to the porous anodized film (5X5cin) prepared in accordance with the peel test method of the innermost layer and the aluminum (Peel) test method, the results are shown in Table 5 below It was.
  • the barrier layer in which an oxide film is formed on aluminum according to the present invention has corrosion resistance, electrolytic resistance, and electrical insulation while maintaining adhesiveness as compared to the barrier layer by conventional chromium chemical conversion treatment.
  • the result is a dramatic improvement.
  • the corrosion resistance decreases as the unit pore size increases, and the adhesion strength increases as the specific surface area increases. .

Abstract

The present invention provides a pouch-type cover material for a battery, comprising: an outermost layer; a barrier layer comprising aluminum or aluminum alloy plating; and an innermost layer, wherein an oxidized coating layer is formed on at least one surface of the barrier layer so that the battery has a surface resistance of at least 0.1 ㏀/㎠. The cover material effectively maintains a moisture-repellent property while effectively and significantly increasing durability to corrosion and electricity insulation.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
전지용 포장재 및 그의 제조방법 【기술분야]  Battery packaging material and its manufacturing method [technical field]
본 발명은 최외층; 알루미늄 또는 알루미늄 합금 박을 포함하는 배리어층; 및 최내층을 포함하는 전지용 포장재에 관한 것으로서, 더욱 구체적으로는 배리어층의 적어도 일면에 산화 피막층이 형성되어 O.lkQ/ciif 이상의 표면저항을 나타내는 전지용 포장재 및 이의 제조방법을 제공한다. 상기 포장재는 수분 차단성을 유지하면서도 내식성 및 전기절연성을 획기적으로 향상된 효과가 있다.  The present invention is the outermost layer; A barrier layer comprising aluminum or aluminum alloy foil; And it relates to a battery packaging material including the innermost layer, and more particularly, to provide a battery packaging material and a manufacturing method thereof having an oxide film layer formed on at least one surface of the barrier layer exhibiting a surface resistance of at least O.lkQ / ciif. The packaging material has an effect of significantly improving corrosion resistance and electrical insulation while maintaining moisture barrier property.
[배경기술】 Background Art
리튬이온 이차 전지는 액체 전해질을 사용하기 때문에 리튬이온 이차 전지는 전해액이 새어 나오는 것을 막고 폭발의 위험성을 감소시키기 위해 알루미늄 캔을 포장 재료로 사용한다. 따라서, 리튬이온 이차 전지는 포장 재료로 사용되는 알루미늄 캔으로 인해 무게가 무겁고 부피가 클 수 밖에 없고, 이러한 알루미늄 캔을 사용한다고 하더라도 이온상태의 액체 전해질을 사용하기 때문에 폭발의 위험이 상존하고 있어 안전성이 낮은 단점이 있다. 그에 따라, 이러한 안전성 향상과 부피를 감소시키면서 에너지 밀도를 더욱 높이기 위한 업체들의 연구개발을 끊임없이 이어지고 있다.  Because lithium ion secondary batteries use a liquid electrolyte, lithium ion secondary batteries use aluminum cans as packaging materials to prevent leakage of electrolyte and reduce the risk of explosion. Therefore, the lithium ion secondary battery is heavy and bulky due to the aluminum cans used as the packaging material, and even if the aluminum cans are used, the risk of explosion exists because of the use of an ionic liquid electrolyte. This has a low disadvantage. As a result, the company continues to research and develop to further increase energy density while reducing safety and volume.
최근 이러한 리튬이온 이차 전지의 단점을 개선 보완한 전지로서 리튬 폴리머 이차 전지가 개발되고 있다. 리튬 폴리머 이차 전지는 외장재를 파우치 형태로 할 수 있어 전지를 경량화 할 수 있고, 이를 통해 전지를 생산할 때 생산단가를 절감할 수 있으며, 전지의 형상을 다양하게 할 수 있어 제품경쟁력을 한 차원 끌어 올릴 수 있다. 리튬 폴리머 이차 전지는 포장재로 파미네이트 파우치를 사용하기 때문에 리튬 폴리머 이차 전지를 박형화할 수 있다. 이러한 폴리머 전지는, 노트북, 휴대단말장치 (휴대전화, PDA 등), 비디오카메라, 전기자동차, 에너지저장용 축전지, 로봇, 위성 등에 사용된다. Recently, a lithium polymer secondary battery has been developed as a battery which improves and supplements the disadvantages of the lithium ion secondary battery. Lithium polymer secondary batteries can be pouched to reduce the weight of batteries, thereby reducing production costs and increasing the shape of the batteries. Can be. Since the lithium polymer secondary battery uses a laminate pouch as a packaging material, the lithium polymer secondary battery can be thinned. These polymer batteries, notebooks, It is used in portable terminal devices (mobile phones, PDAs, etc.), video cameras, electric vehicles, energy storage batteries, robots, satellites, etc.
이러한 장점을 갖는 리튬 폴리머 이차 전지의 구조는, 포장재인 라미네이트 알루미늄 파우치가 금속인 전극단자 (양극: A1, 음극: Ni 또는 Cu)에 연결되어 있고, 내부에 전해질이 층전되어 있다. 그런데, 상기 내부 전해질은 수분에 노출되게 되면, 가수분해에 의해 산과 열이 발생하고, 공기 중에 노출되게 되면, 수소와 결합하여 강산성의 독성 가스 (Gas)가 발생하여 전지가 폭발할 위험이 있다. 또한, 이 전해질에 있는 불산 (HF)은 침투력이 강하여 파우치의 최내층인 폴리프로필렌 필름층을 통과하여 알루미늄 박막층에 도달하게 되고, 알루미늄 박막층 표면을 용해, 부식하게 된다. 이렇게 알루미늄 박막층의 표면이 부식되게 되면 상기 알투미늄 박막층과 최내층의 접착력이 떨어져 상기 최내층이 박리되게 되고, 내부 전해질이 공기나 수분에 더욱 많이 노출되게 되어 전지가 폭발할 위험이 증가한다.  The structure of a lithium polymer secondary battery having such an advantage is that a laminated aluminum pouch, which is a packaging material, is connected to an electrode terminal (anode: A1, negative electrode: Ni or Cu) which is a metal, and an electrolyte is laminated therein. However, when the internal electrolyte is exposed to moisture, acid and heat are generated by hydrolysis. When the internal electrolyte is exposed to air, the internal electrolyte may combine with hydrogen to generate strong acidic toxic gas (Gas), causing the battery to explode. In addition, hydrofluoric acid (HF) in the electrolyte has a high penetration force, and passes through the polypropylene film layer, which is the innermost layer of the pouch, to reach the aluminum thin film layer and dissolve and corrode the aluminum thin film layer surface. When the surface of the aluminum thin film layer is corroded, the adhesion between the aluminum thin film layer and the innermost layer is reduced, and the innermost layer is peeled off, and the internal electrolyte is more exposed to air or moisture, thereby increasing the risk of explosion of the battery.
이렇게 내부 전해질에 의해 발생하는 포장재 내층의 박리를 방지하기 위해서 알루미늄 박막층의 표면을 화성처리액으로 처리한 후, 열가소성 수지와합지하여 포장재를 제조하고 있다.  In order to prevent the peeling of the inner layer of the packaging material generated by the internal electrolyte, the surface of the aluminum thin film layer is treated with a chemical conversion treatment solution and then laminated with a thermoplastic resin to produce a packaging material.
한편, 리튬 폴리머 이차전지의 포장재로는 금속을 가공하여 용기화한 캔 타입과 기재층 (또는 최외층 )/알루미늄층 (또는 배리어층) /실란트층 (또는 최내층)을 기본요소로 포함하는 다층필름을 파우치 상으로 제조한 것이 사용되고 있다. 일반적인 전지포장재는 폴리에스테르 수지 및 /또는 폴리아마이드 수지로 되어있는 최외층 /알루미늄 또는 그의 합금재질의 배리어층 /열가소성 수지의 최내층으로 구성되어 있다.  On the other hand, the packaging material of the lithium polymer secondary battery is a multilayer including a can type formed by processing a metal and a base layer (or outermost layer) / aluminum layer (or barrier layer) / sealant layer (or innermost layer) as basic elements. The thing which produced the film on the pouch is used. A general battery packaging material is composed of an outermost layer made of a polyester resin and / or a polyamide resin, an inner layer of a barrier layer made of aluminum or an alloy thereof, or a thermoplastic resin.
폴리머 전지의 전해질로 메틸카보네이트 (MC), 디메틸카보네이트 (DMC) 등이 사용되며, 전지의 반웅에 의해 불산 (HF)과 같은 산이 생성되므로, 상기 배리어층은 내산성, 최외층과 최내층과의 디라미네이션을 방지하기 위한 접착성, 수분 차단성, 및 알루미늄 필름과 전극 간의 전기절연성이 요구된다.  Methyl carbonate (MC), dimethyl carbonate (DMC) and the like are used as the electrolyte of the polymer battery, and an acid such as hydrofluoric acid (HF) is generated by the reaction of the battery. Adhesiveness, moisture barrier, and electrical insulation between the aluminum film and the electrode to prevent lamination are required.
그러나, 기존의 리튬 폴리머 이차전지의 배리어층은 오존처리, 플라즈마 처리, 감마선 처리, 열처리, 또는 크로메이트 또는 인산염 등의 화성처리를 통해 접착성 등의 물성을 개선하기 위한 시도들이 있었으나, 상기 배리어층의 내산성 및 전기절연성, 특히 전기절연성을 향상시키고자 한 기술은 찾기 어려운 실정이다. However, the barrier layer of the conventional lithium polymer secondary battery is ozone treatment, Attempts have been made to improve physical properties such as adhesion through plasma treatment, gamma ray treatment, heat treatment, or chemical treatment such as chromate or phosphate. However, a technique for improving acid resistance and electrical insulation, in particular, electrical insulation of the barrier layer is disclosed. It is difficult to find.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
이에 본 발명에서는' 폴리머 전지의 배리어층인 알루미늄 또는 알루미늄 합금 박막을 양극산화처리 (anodizing)를 수행하여 상기 알루미늄 박막에 다공성 산화알루미늄 피막을 형성하여, 크롬 화성처리에 의한 배리어층과 비교하여 접착성을 유지하면서도 내식성, 내전해성 및 전기절연성을 향상시킨 전지용 포장재를 얻을 수 있었다. In the present invention, by a barrier layer of aluminum or aluminum alloy thin film of a "polymer battery by performing the anodization (anodizing) forming a porous aluminum oxide film on the aluminum film, compared to the barrier layer by chromium chemical conversion adhesive It was possible to obtain a battery packaging material that improved the corrosion resistance, electrolytic resistance and electrical insulation while maintaining.
이에, 본 발명의 목적은 내산성 및 전기 절연성이 우수한 전지용 포장재를 제공하는 것이다.  Accordingly, an object of the present invention is to provide a battery packaging material excellent in acid resistance and electrical insulation.
본 발명의 다른 목적은 상기 전지용 포장재를 제조하는 방법을 제공하는 것이다.  Another object of the present invention is to provide a method of manufacturing the battery packaging material.
【과제의 해결 수단】 [Measures of problem]
본 발명의 일예는 최외층, 알루미늄 또는 알루미늄 합금을 포함하는 배리어층 및 최내층을 포함하며, 상기 배리어층의 적어도 일면에 양극산화처리 (anodizing)로 형성된 다공성 산화 피막층을 포함하고 0.1 ' kffi/cm2 이상의 표면저항을 갖는 전지용 포장재에 관한 것이다. Aspect of this invention is an outermost layer, containing aluminum or an aluminum alloy, a barrier layer and an innermost layer comprising a, and comprises a porous oxide film layer formed of at least a positive electrode on one surface oxidation treatment (anodizing) of the barrier layer was 0.1 'kffi / cm It relates to a battery packaging material having a surface resistance of two or more.
본 발명의 일예는 배리어층의 적어도 일면에 양극산화처리 (anodizing)를 수행하여 다공성 산화피막을 포함하고 전지용 포장재의 제조방법에 관한 것이다.  One embodiment of the present invention relates to a method for producing a battery packaging material including a porous oxide film by performing anodizing (at least one surface) of the barrier layer.
본 발명에 따라 알루미늄에 산화피막을 형성시킨 배리어층은 기존의 크름 화성처리에 의한 배리어층과 비교하여 접착성을 유지하면서도 내식성, 내전해성 및 전기절연성 등이 획기적으로 향상시켰다. 또한, 다공성 산화피막에 형성된 기공을 통해 내부식성을 향상시키고, 비표면적을 적절히 조절하여 향상된 접착력을 갖는 포장재를 제공한다. According to the present invention, the barrier layer in which an oxide film is formed on aluminum is significantly improved in corrosion resistance, electrolytic resistance, and electrical insulation while maintaining adhesiveness as compared to the barrier layer formed by the conventional chemical conversion treatment. In addition, through the pores formed in the porous oxide film to improve the corrosion resistance, the specific surface area is properly Adjusted to provide a packaging material with improved adhesion.
【발명의 효과】 【Effects of the Invention】
전술한 바와 같이, 본 발명은 양극산화처리 방법을 이용하여 배리어층인 알루미늄 또는 알루미늄 합금에 산화피막층을 형성시켜, 기존의 화성처리에 의한 배리어층의 수분 차단성 및 접착성을 유지하면서도 내산성 및 전기절연성을 획기적으로 향상시킨 효과가 있다.  As described above, the present invention forms an oxide layer on the aluminum or aluminum alloy as a barrier layer using an anodizing method, while maintaining the moisture barrier property and adhesion of the barrier layer by conventional chemical conversion treatment, There is an effect of dramatically improving the insulation.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명에 따라 산화피막층을 갖는 전지용 포장재의 적층 구조의 일 실시 형태를 나타낸 개략도이다.  1 is a schematic view showing an embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
도 2는 본 발명에 따라 산화피막층을 갖는 전지용 포장재의 적층 구조의 다른 실시 형태를 나타낸 개략도이다.  2 is a schematic view showing another embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
도 3은 본 발명에 따라 산화피막층을 갖는 전지용 포장재의 적층 구조의 또 다른 실시 형태를 나타낸 개략도이다.  3 is a schematic view showing still another embodiment of a laminated structure of a battery packaging material having an oxide film layer according to the present invention.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 본 발명을 더욱 자세히 설명하고자 한다.  Hereinafter, the present invention will be described in more detail.
본 발명의 일예에서, 전지용 포장재는 최외층, 알루미늄 또는 알루미늄 합금을 포함하는 배리어층 및 최내층을 포함하며, 상기 배리어층의 적어도 일면에 양극산화처리 (anodizing)로 형성된 다공성 산화 피막층을 포함하고 O.lkQ/oif 이상의 표면저항을 갖는 전지용 포장재에 관한 것이다.  In one embodiment of the present invention, the battery packaging material includes an outermost layer, a barrier layer and an innermost layer containing aluminum or an aluminum alloy, and includes a porous oxide film layer formed by anodizing on at least one surface of the barrier layer and O The present invention relates to a battery packaging material having a surface resistance of .lkQ / oif or more.
상기 전지용 포장재는 파우치용 전지용 포장재일 수 있으며, 리튬 폴리머 2차 전지용인 것이 바람직하다.  The battery packaging material may be a battery packaging material for a pouch, and is preferably for a lithium polymer secondary battery.
본 발명의 구체예에서, 도 1에 도시된 바와 같이, '전지용 포장재는 PET층 (11) 및 으나일론층 (12)로 구성된 최외층 (10); 게 1 산화피막층 (14) 및 게 2 산화피막층 (15)이 형성된 배리어층 (13), 및 금속 접착성 올레핀계 수지층 (18) 및 열접착성 수지층 (19)으로 구성된 최내층 (18)이 순차적으로 적층된 구조를 갖는다. . In an embodiment of the present invention, as shown in Figure 1, ' battery packaging material is the outermost layer 10 consisting of a PET layer 11 and a nylon layer 12; The innermost layer 18 composed of a barrier layer 13 on which a Crab oxide film layer 14 and a Crab oxide film layer 15 are formed, and a metal adhesive olefin resin layer 18 and a heat adhesive resin layer 19. This sequentially It has a laminated structure. .
본 발명에 또 다른 일예에서, 도 2에 도시된 바와 같이, 전지용 포장재는 PET층 (11) 및 0-나일론층 (12)로 구성된 최외층 (10); 제 1 산화피막층 (14) 만이 형성된 배리어층 (13), 및 금속 접착성 올레핀계 수지층 (18) 및 열접착성 수지층 (19)으로 구성된 최내층 (18)이 순차적으로 적층된 구조를 갖는다.  In another embodiment of the present invention, as shown in Figure 2, the battery packaging material is the outermost layer 10 consisting of a PET layer 11 and 0-nylon layer 12; It has a structure in which the innermost layer 18 which consists of the barrier layer 13 in which only the 1st oxide film layer 14 was formed, and the metal adhesive olefin resin layer 18 and the heat-adhesive resin layer 19 was sequentially laminated. .
본 발명에 또 다른 일예에서, 도 3에 도시된 바와 같이, 전지용 포장재는 PET층 (11) 및 0-나일론층 (12)로 구성된 최외층 (10); 제 2 산화피막층 (15) 만이 형성된 배리어층 (13), 및 금속 접착성 올레핀계 수지층 (18) 및 열접착성 수지층을 갖는다.  In another embodiment of the present invention, as shown in Figure 3, the battery packaging material is the outermost layer 10 consisting of a PET layer 11 and 0-nylon layer 12; It has a barrier layer 13 in which only the 2nd oxide film layer 15 was formed, the metal adhesive olefin resin layer 18, and a heat adhesive resin layer.
• 알루미늄 또는 알루미늄 합금의 박막을 양극산화처리 (anodizing)를 실시하면, 알루미늄 표면에 1 내지 수십 의 두께를 갖는 다공성 산화피막이 형성될 수 있다. 본 발명에서는 양극산화처리 조건을 조절하여 상기 배리어층을 구성하는 알루미늄의 일 표면 또는 양 표면에 O.lkQ/oif 이상의 표면저항을 갖도록 산화피막층 (14, 16)을 형성시킨다.  • When anodizing a thin film of aluminum or aluminum alloy, a porous oxide film having a thickness of 1 to several tens can be formed on the aluminum surface. In the present invention, the anodization conditions are adjusted to form the oxide film layers 14 and 16 on one surface or both surfaces of the aluminum constituting the barrier layer to have a surface resistance of at least O.lkQ / oif.
상기 산화피막층 (14, 16)은 다공성이며, 0.2 내지 10/zm, 바람직하게는 o. m 내지 5//m, 더욱 바람직하게는 0.5/ffli 내지 1/ 의 두께를 갖는다. 상기 두께가 10 를 초과하면 연속공정을 구현함에 있어 산화피막이 손상되는 경향이 있어 바람직하지 않다.  The oxide layer 14, 16 is porous, 0.2 to 10 / zm, preferably o. m to 5 // m, more preferably 0.5 / ffli to 1 /. If the thickness exceeds 10, it is not preferable because the oxide film tends to be damaged in implementing the continuous process.
또한, 상기 산화피막층의 기공 입경은 접착성능 및 전기절연 특성 면에서 l,000nm 이하, 예를 들면 Iran 내지 l,000nm이 , 더욱 바람직하게는 200nm이하, 예를 들면 Iran 내지 200nm 이다. 단위 기^ᅳ、사이즈가 클수록 내 부식성이 감소하는 경향을 알 수 있다.  In addition, the pore particle diameter of the oxide layer is l, 000 nm or less, for example, Iran to l, 000 nm, more preferably 200 nm or less, for example Iran to 200 nm, in terms of adhesion performance and electrical insulation properties. It can be seen that the corrosion resistance decreases as the unit size and size increase.
상기 산화피막층의 비표면적은 0.5mVg 내지 100 mVg의 범위가 바람직하다. 상기 산화피막층의 비표면적이 클수록 접착력이 향상된다. 상기 산화피막층의 비표면적은 접착성 향상 및 불산, 전해질 등에 의한 디라미네이션 방지 측면을 고려하여 적절한 범위로 선택할 수 있다.  The specific surface area of the oxide film layer is preferably in the range of 0.5 mVg to 100 mVg. The larger the specific surface area of the oxide film layer, the better the adhesion. The specific surface area of the oxide film layer may be selected in an appropriate range in consideration of the improvement of adhesion and the prevention of delamination caused by hydrofluoric acid, electrolyte, and the like.
이러한 다공성 산화피막은 기공으로 인해 표면적이 향상되어 최외층 (기재층) (10) 및 최내층 (17)과의 접착성능을 현저하게 상승시켜 준다. 또한, 전기절연 특성을 나타내기 때문에, 배리어층 (13)에 전기절연이라는 새로운 성능을 부여할 수 있다. The porous oxide film has an improved surface area due to the pores, thereby significantly increasing the adhesion performance between the outermost layer (substrate layer) 10 and the innermost layer 17. In addition, since electrical insulation properties are exhibited, a new performance of electrical insulation can be given to the barrier layer 13.
기존에 배리어층에 크로메이트 처리와 인산염 등의 화성처리 방법에 의해 형성된 화성처리층은 전기 절연성이 없기 때문에, 알루미늄 표면이 전류와 닿게 되면 바로 통전현상이 있으나, 본 발명은 알루미늄에 전기절연성을 부여하여 셀 파우치의 기능성을 더욱 향상시킬 수 있다. 예를 들어, 최외층 (기재층) (10)과, 최내층 (실란층) (17)의 손상으로 인해 배리어층의 알루미늄이 전극 또는 전해질에 노출된 경우, 폴리머 전지의 성능은 현격하게 줄어든다. 그러나, 본 발명에서와 같이 전기 절연성을 부여하면, 좀 더 높은 전지 성능을 구현할 수 있게 된다.  Conventionally, the chemical conversion treatment layer formed by the chromatization treatment and the chemical conversion treatment method such as phosphate on the barrier layer does not have electrical insulation. Therefore, when the aluminum surface comes into contact with an electric current, electricity conduction occurs immediately. The functionality of the cell pouch can be further improved. For example, when aluminum of the barrier layer is exposed to an electrode or an electrolyte due to damage of the outermost layer (substrate layer) 10 and the innermost layer (silane layer) 17, the performance of the polymer battery is significantly reduced. However, if electrical insulation is provided as in the present invention, higher battery performance can be achieved.
본 발명에 따르면, 상기 최외층 (10), 배리어층 (13) 및 최내층 (17)은 전지용 포장재 분야에서 알려진 모든 성분으로 구성될 수 있다.  According to the present invention, the outermost layer 10, barrier layer 13 and innermost layer 17 may be composed of all components known in the field of battery packaging materials.
바람직하게는, 상기 최외층 (10)은 배리어층 (13)으로 사용되는 알루미늄 박막을 보호하고, 외부에서의 압력 또는 힘에 대하여 보호하는 목적으로 사용되므로, 포장재의 내후성, 내화학성, 성형성을 등을 감안하여 2축 방향으로 연신된 폴리에스테르계 수지층 (11) 및 /또는 연신 폴리아미드계 수지층 (12)로 구성된 것이 바람직하다. 상기 최외층 (10)의 두께로서는 5ωη 내지 50/im이 바람직하고, 좀 더 바람직하게는 l zm 내지 30/im 정도이다. 두께가 너무 얇으면 그 충 자체에 핀홀이 발생할 가능성 및 외력에 대한 보호 효과가 감소된다.  Preferably, since the outermost layer 10 is used to protect the aluminum thin film used as the barrier layer 13 and to protect against pressure or force from the outside, weather resistance, chemical resistance, formability of the packaging material It is preferable to consist of the polyester-based resin layer 11 and / or the stretched polyamide-based resin layer 12 stretched in the biaxial direction in consideration of the above. As thickness of the said outermost layer 10, 5 omega -50 / im is preferable, More preferably, it is about l zm-30 / im. Too thin a thickness reduces the likelihood of pinholes in the filling itself and the protection against external forces.
상기 폴리에스테르계 수지의 예로는 폴리에틸렌테레프탈레이트 (PET), 폴리부틸렌테레프탈레이트 (PBT), 폴리에틸렌나프탈레이트 (PEN), 폴리부틸렌나프탈레이트 (PBN), 공중합폴리에스테르, 또는 폴리카보네이트 (PC) 필름 등이 있고, 상기 이축 연신된 폴리아마이드 필름 수지로서 나일론 (nylon) 6, 나일론 6.6, 나일론 6과 나일론 6.6과의 공중합체, 나일론 6.10 및 폴리메타키실릴렌 아미파미드 (MXD 6)등으로 구성되는 군으로부터 하나 이상 선택된 성분으로 단일 또는 복합층 구성할 수 있다. 또한, 내열성, 내후성, 내화학성이 개선된 폴리을레핀계 수지가 있다면, 그것을 적용하여 층을 구성할 수 있다. 상기 최외층 (10)은 드라이 라미네이션, 압출 라미네이션 등의 방법으로 배리어층 (13)과 접착된다. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), copolyester, or polycarbonate (PC) film The biaxially stretched polyamide film resin includes nylon 6, nylon 6.6, a copolymer of nylon 6 and nylon 6.6, nylon 6.10 and polymethacrylylene amidamide (MXD 6), and the like. It may be composed of a single or multiple layers of one or more components selected from the group consisting of. In addition, if there is a polyolefin resin with improved heat resistance, weather resistance, and chemical resistance, it can be applied to form a layer. The outermost layer 10 is dry It adhere | attaches with the barrier layer 13 by methods, such as lamination and extrusion lamination.
상기 배리어층은 외부로부터 리튬전지의 내부에 가스 및 수증기가 침투하는 것을 방지하기 위한 충으로, 배리어층의 핀홀, 및 가공적성 The barrier layer is a charge for preventing gas and water vapor from penetrating into the lithium battery from the outside, and pinholes and processability of the barrier layer.
(파우치화, 엠보스 형성)을 안정화하고, 또한, 내핀홀을 갖게 하기 위하여 두께 약 15 이상의 알루미늄, 니켈 등의 금속, 또는 무기화합물, 예를 들면 산화규소, 알루미나 등을 첨가하여 복합체로 구성할 수 있다. In order to stabilize (pouch formation and embossing) and to have pin holes, a composite of aluminum or nickel with a thickness of about 15 or more, or an inorganic compound such as silicon oxide or alumina may be added. Can be.
본 발명에 있어서, 상기 배리어층 (13)은 가공성을 고려하여 20 내지 80 의 두께를 갖는 알루미늄 또는 알루미늄 합금의 박이 바람직하다. 상기 알루미늄 박은 순도가 높은 계열이 가공성이 우수하므로 10, 80 합금 (alloy) 계열의 알루미늄 박이 바람직하다. 또한, 상기 알루미늄 기재는 선택적으로 실리콘, 붕소, 게르마늄, 비소, 안티몬, 구리, 마그네슘, 망간, 아연 , 리튬, 철 , 크롬, 바나듐, 티타늄, 비스무스, .칼륨, 주석 , 납 지르코늄, 니켈, 코발트 및 이들의 조합으로 이루어진 군에서 선택된 원소를 포함하는 합금일 수 있다.  In the present invention, the barrier layer 13 is preferably a foil of aluminum or aluminum alloy having a thickness of 20 to 80 in consideration of workability. The aluminum foil is preferably a 10, 80 alloy-based aluminum foil because the high purity series has excellent processability. In addition, the aluminum substrate may optionally include silicon, boron, germanium, arsenic, antimony, copper, magnesium, manganese, zinc, lithium, iron, chromium, vanadium, titanium, bismuth, .potassium, tin, lead zirconium, nickel, cobalt and It may be an alloy containing an element selected from the group consisting of a combination thereof.
본 발명에 따르면, 상기 배리어층 (13)은 전기절연 기능을 부여하기 위해 알루미늄 박을 양극산화처리를 수행하여 다공성의 산화피막 (14, 16)을 형성시킨다.  According to the present invention, the barrier layer 13 is subjected to anodization of aluminum foil to give an electrical insulation function to form porous oxide films 14 and 16.
상기 알루미늄 표면은 유분의 제거를 목적으로 알칼리 세정을 행하는 것이 바람직하다. 알미늄금속 표면을 전기화학적 방법을 이용하여 알루미나 세라믹으로 변화시켜 주는 공법이다. 이공법을 적용하게 되면 알미늄금속 자체가 산화되어 알루미나 세라믹으로 변화되며 알미늄 표면의 성질을 철강보다 강하고 경질크롬도금보다 내마모성이 우수하다. 도금이나 도장 (코팅)처럼 박리되지 않으며, 변화된 알루미나 세라믹표면은 전기절연성 (1500Volt)이 뛰어나며 안쪽은 전기가 잘 흐른다.  The aluminum surface is preferably washed with alkali for the purpose of removing oil. It is a method of changing the surface of aluminum metal into alumina ceramic using electrochemical method. When the method is applied, the aluminum metal itself is oxidized and converted into alumina ceramic, and the surface of the aluminum is stronger than steel and wear resistance is better than that of hard chromium plating. It does not peel off like plating or coating (coating), and the changed alumina ceramic surface has excellent electrical insulation (1500Volt) and electricity flows well inside.
양극산화처리는 황산법, 수산법, 크롬산법, 인산법 또는 붕산법 등의 방법이 다양하게 사용될 수 있다. 예를 들어, 양극산화처리는 황산, 크롬산, 붕산, 옥산산 또는 그들의 흔합물을 포함하는 약 10°C '내지 35°C의 전해질 용액을 사용하여 0.5A/dm2 내지 50A/dm의 전류밀도에서 반웅이 이루어질 수 있으며, 상기 공정은 약 5초에서 60분 정도가 수행할 수 있다. 이렇게 처리된 산화피막층은 다공성의 산화물 (A1203) 층으로서, 배리어층의 고유의 기능과 함께 전기절연성, 내산성, 금속 접착성, 내마모성 등이 향상된다.' The anodizing treatment may be used in various ways such as sulfuric acid method, hydroxyl method, chromic acid method, phosphoric acid method or boric acid method. For example, the anodization current density of 0.5A / dm 2 to 50A / dm, using an electrolyte solution of from about 10 ° C 'to 35 ° C comprising sulfuric acid, chromic acid, boric acid, dioxane, or in a common acid compound The reaction can be made in, and the process can be performed in about 5 seconds to 60 minutes. The oxide layer thus treated is a porous oxide (A1 2 0 3 ) layer, which has the inherent function of the barrier layer, and improves electrical insulation, acid resistance, metal adhesion, and wear resistance. '
본 발명에 따라 처리된 산화피막층 (14, 16)은 전기절연성을 나타내며, 알루미늄 박과 금속 접착성을 갖는 올레핀계 수지층을 견고하게 접착시켜 전해액 및 전해액의 가수분해에 의해 발생하는 불산에 의한 디라미네이션을 방지함과 동시에 성형시의 층의 박리를 방지할 수 있다.  The oxide film layers 14 and 16 treated according to the present invention exhibit electrical insulation properties, and firmly adhere the aluminum foil and the olefinic resin layer having metal adhesion to the oxide film layer by hydrofluoric acid generated by hydrolysis of the electrolyte solution and the electrolyte solution. The lamination can be prevented while preventing the lamination.
본 발명에 있어서, 상기 최내층 (17)은 폴리올레핀계, 폴리쎄틸렌계, 폴리프로필렌계, 폴리부틸렌계, 에틸렌코폴리머, 프로필렌코폴리머, 폴리에스테르계, 폴리아마이드계, 폴리카보네이트계, 불소계, 실리콘계, 아크릴계, 에틸렌-프로필렌-다이엔-모노머 러버 (EPDM) 및 이들의 흔합물로 이루어진 군으로부터 선택된 수지층으로 구성된다. 바람직하게는, 폴리올레핀계 수지층 또는 폴리부타디엔과 폴리올레핀의 흔합 수지층이다. 본 발명에 있어서, 상기 최내층 (17)은 상기 배리어층과 접착제를 사용하지 않고 공압출되며, 상기 공압출은 다이 및 스크류 온도가 locrc에서 300°C 범위의 조건으로 압출 코팅 공법으로 수행되어, 실란트층 (최내층)을 용융상태로 접착제 없이 금속과 접착될 수 있으며, 그 두께는 ΙΟ ιη 내지 200 가 추후 전지의 열씰링시 강도보강과 층간박리의 이유에서 바람직하다. In the present invention, the innermost layer 17 is polyolefin-based, polycetylene-based, polypropylene-based, polybutylene-based, ethylene copolymer, propylene copolymer, polyester-based, polyamide-based, polycarbonate-based, fluorine-based, silicone-based , Acrylic, ethylene-propylene-diene-monomer rubber (EPDM) and mixtures thereof. Preferably, it is a polyolefin resin layer or the mixed resin layer of polybutadiene and a polyolefin. In the present invention, the innermost layer 17 is coextruded without using the barrier layer and the adhesive, and the coextrusion is performed by the extrusion coating method under the conditions of the die and screw temperature in the range of 300 ° C. in the locrc, The sealant layer (the innermost layer) can be bonded to the metal without an adhesive in the molten state, and the thickness thereof is preferably between 200 and 200 for reasons of strength reinforcement and interlayer peeling during heat sealing of the battery.
상기 최내층 (17)은 기능에 따라 PET, 폴리을레핀 필름, 나일론 등과 같은 필름을 이용한 복합층으로 구성해도 무방하다. 예를 들어, 도 1 내지 3에서와 같이, 금속 접착성 올레핀계 수지층 (18) 및 열접착성 수지층 (19)으로 다층으로 형성할 수 있다.  The innermost layer 17 may be composed of a composite layer using a film such as PET, polyolefin film, nylon, or the like depending on its function. For example, as shown in Figs. 1 to 3, the metal adhesive olefin resin layer 18 and the heat adhesive resin layer 19 can be formed in multiple layers.
상기 금속 접착성 을레핀계 수지층 (중간층) (18)은 변성 폴리을레핀계 수지로서, 변성에틸렌과 변성프로필렌, 변성 부타디엔, 아크릴산 또는 메타크릴산, 변성 아크릴산 등으로 흔합 또는 단독으로 포함하는 층을 형성시킬 수 있다.  The metal adhesive olefin resin layer (intermediate layer) 18 is a modified polyolefin resin, and forms a layer containing a mixture of ethylene and modified propylene, modified butadiene, acrylic acid or methacrylic acid, modified acrylic acid, or the like alone or singly. You can.
상기 열접착성 수지층 (최내충) (19)은 리튬 전지. 본체에 양극 및 음극에 각각 접착된 금속 탭을 외부에 돌출한 상태로 열접착하는 목적으로 저밀도 폴리에틸렌, 고밀도 폴리에틸렌, 선형 저밀도 폴리에틸렌, 에틸렌 공중합체, 에틸렌-프로필렌 공중합체, 폴리부타디엔, 에틸렌-부타디엔- 프로필렌 공중합체, 프로필렌계 수지 등이 단독 또는 흔합하여 사용될 수 있다. The heat adhesive resin layer (the innermost layer) 19 is a lithium battery. For the purpose of thermal bonding in the state of protruding the metal tab bonded to the anode and the cathode respectively to the main body Low density polyethylene, high density polyethylene, linear low density polyethylene, ethylene copolymers, ethylene-propylene copolymers, polybutadiene, ethylene-butadiene-propylene copolymers, propylene resins and the like may be used alone or in combination.
본 발명의 또 다른 구체예에서, 최외층, 알루미늄 또는 알루미늄 합금 박을 포함하는 배리어층 및 최내층을 포함하는 전지용 포장재의 제조방법으로서, 상기 배리어층의 적어도 일면에 양극산화처리 (anodizing)를 수행하여 산화알루미늄 피막을 형성하는 단계를 포함하는 전지용 포장재를 제공한다.  In another embodiment of the present invention, a method for manufacturing a battery packaging material including an outermost layer, a barrier layer including an aluminum or aluminum alloy foil, and an innermost layer, wherein anodizing is performed on at least one surface of the barrier layer. It provides a battery packaging material comprising the step of forming an aluminum oxide film.
또한 상기 제조방법은 상기 배리어층의 일 표면과 최외층을 드라이 라미네이션을 수행하고, 상기 배리어층의 다른 표면에 최내층을 공압출시키는 단계를 추가로 포함할 수 있다. 본 발명의 구체적인 산용액을 0.1% 내지 25% 농도로 포함하는 전해질 용액에서 배리어층의 알루미늄 또는 알루미늄 합금 박을 0.5A/dm2 내지 50A/dm2의 전류밀도에서 5초에서 60분 동안 양극산화처리 (anodizing)롤 수행하여 산화알루미늄 피막층을 제조하고; 상기 피막층을 갖는 배리어층의 일 표면과 최외층을 드라이 라미네이션 처리를 하고; 및 상기 피막층을 갖는 배리어층의 다른 표면에 최내층을 공압출시키는 단계를 포함하는 파우치형 전지용 포장재의 제조방법을 제공할 수 있다. In addition, the manufacturing method may further include performing dry lamination on one surface and the outermost layer of the barrier layer, and co-extruding the innermost layer on the other surface of the barrier layer. Anodizing the aluminum or aluminum alloy foil of the barrier layer in an electrolyte solution containing 0.1% to 25% of the specific acid solution of the present invention for 5 seconds to 60 minutes at a current density of 0.5A / dm 2 to 50A / dm 2 Performing anodizing roll to prepare an aluminum oxide film layer; Dry laminating a surface and an outermost layer of the barrier layer having the coating layer; And coextruding the innermost layer to another surface of the barrier layer having the coating layer.
상기 양극산화처리는 산용액을 0.1% 내지 25% 농도로 포함하는 전해질 용액에서 배리어층의 알루미늄 또는 알루미늄 합금을 처리하는 것으로서, 상기 양극산화처리에 사용 가능한 전해질 용액의 산으로는 황산, 크름산, 인산, 옥살산 및 인산으로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 예를 들면, 10-25% 농도의 황산, 0.1-10% 농도의 옥살산, 5-15% 농도의 인산 또는 2-15%의 크롬산일 수 있다, 또한 황산 용액을 사용하는 경우 옥살산을 추가로 첨가하여 사용할 수도 있다.  The anodizing treatment is to treat the aluminum or aluminum alloy of the barrier layer in an electrolyte solution containing 0.1% to 25% of the acid solution, and the acid of the electrolyte solution which can be used for the anodizing treatment may be sulfuric acid, chromic acid, It may be at least one selected from the group consisting of phosphoric acid, oxalic acid and phosphoric acid, for example, 10-25% sulfuric acid, 0.1-10% oxalic acid, 5-15% phosphoric acid or 2-15% It may be chromic acid, and in the case of using a sulfuric acid solution may be used by adding an additional oxalic acid.
상기 양극산화처리는 0.5A/dm! 내지 50A/dm2의 전류밀도로 5초에서 60분 동안 수행할 수 .있다. The anodization treatment is 0.5A / dm ! It can be carried out at 5 seconds to 60 minutes with a current density of from 50 A / dm 2 .
상기 전해질 용액의 온도는 10°C 내지 35 °C, 더욱 바람직하게는 15 °C 내지 3(rc일 수 있으며, 상기 수치범위를 벗어나는 경우 산화알루니늄 피막충의 두께가 불균일하다는 문제점과 기공크기조절의 문제점이 있다. 상기 공압출은 다이 및 스크류 온도가 100 °C 내지 300 °C의 조건에서 최내층 수지를 용융상태로 배리어층과 함께 압출하여 수행할 수 있다. The temperature of the electrolyte solution is 10 ° C to 35 ° C, more preferably 15 ° C 3 to 3 ( rc, may be a non-uniform thickness of the aluminum oxide filmworm if outside the numerical range and the problem of pore size control. The coextrusion has a die and screw temperature of 100 ° C to 300 ° C Under the condition of the innermost layer resin may be carried out by extruding together with the barrier layer in a molten state.
[실시예]  EXAMPLE
이하 실시 예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 본 발명의 보호범위가 하기 실시예로 한정되는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to the following examples, but the protection scope of the present invention is not limited to the following examples.
<실시예 1〉  Example 1
최외층은 PET (약 6 )/0-나일론 (약 15 )으로 구성하고, 배리어층으로는 약 50卿의 두께를 갖는 탈지처리한 80 합금계열의 연질 알루미늄 박을 사용하였다. 상기 알루미늄박을 황산 농도 1 에 첨가제로 옥살산 0.4%농도로 첨가한 약 20°C의 전해질 용액을 사용하여 약 lA/dnf의 전류밀도에서 약 2분간 반웅시켜 알루미늄의 양쪽면에 약 0.5 의 두께를 갖는 산화알루미늄 (A1203)의 피막을 형성된 산화알루미늄 형성 연질 알루미늄박을 제조하였다. The outermost layer was composed of PET (about 6) / 0-nylon (about 15), and a soft aluminum foil of 80 alloy series degreasing treatment having a thickness of about 50 mm 3 was used as the barrier layer. The aluminum foil was reacted for about 2 minutes at a current density of about lA / dnf using an electrolyte solution of about 20 ° C. in which 0.4% of oxalic acid was added as an additive to sulfuric acid concentration 1, and a thickness of about 0.5 was applied to both sides of aluminum. An aluminum oxide forming soft aluminum foil having a film of aluminum oxide (A1 2 0 3 ) having was prepared.
상기 최외층과 배리어층은 두층 사이에 우레탄계 접착제를 주입하여 건조시킨 후 일정온도 및 압력으로 상호 접착시키는 드라이 라미네이숀 방법으로 적층시켰다. 상기 배리어층과 최내층은 그 사이에 금속 접착성 올레핀계 수지층 두고, 고온 T-die로 상기 접착성 수지를 용융상태로 공압출시켜 전지용 포장재를 제조하였다.  The outermost layer and the barrier layer were laminated by a dry lamination method of injecting a urethane-based adhesive between the two layers, drying them, and bonding each other at a constant temperature and pressure. The barrier layer and the innermost layer had a metal adhesive olefin resin layer therebetween, and co-extruded the adhesive resin in a molten state with a high temperature T-die to manufacture a battery packaging material.
상기 공압출은 다이 및 스크류 온도가 약 210 °C의 조건으로 압출 코팅 공법으로 수행되어 양극 산화알루미늄 필름과 열접착성 수지층을 인- 라인 (In-line)으로 코팅하였다. 상기 금속 접착성 올레핀계 수지층은 변성에틸렌과 변성프로필렌의 흔합수지를 사용하였다. The coextrusion was carried out by an extrusion coating method with a die and screw temperature of about 210 ° C to coat the anodized aluminum oxide film and the heat-adhesive resin layer in-line. As the metal adhesive olefin resin layer, a mixed resin of modified ethylene and modified propylene was used.
<실시예 2 내지 4> <Examples 2 to 4>
실시예 2는 상기 실시예 1에서 전류밀도와 반웅시간을 각각 lA/dm2 및 3분간으로 변경시켜 양극산화처리를 수행하고, 얻어진 산화피막의 두께를 약 0.8im로 한 것을 제외하고는 동일하게 실시하였다. 실시예 3은 상기 실시예 1에서 전류밀도와 반웅시간을 각각 lA/dm2 및 4분간으로 변경시켜 양극산화처리를 수행하고, 얻어진 산화피막의 두께를 약 1卿로 한 것을 제외하고는 동일하게 실시하였다. Example 2 was the same as in Example 1 except that the current density and reaction time were changed to lA / dm 2 and 3 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film was about 0.8im. Was carried out. Example 3 is the same as in Example 1 except that the current density and reaction time are changed to lA / dm 2 and 4 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film is about 1 卿. Was carried out.
실시예 4는 상기 실시예 1에서 전류밀도와 반웅시간을 각각 lA/dm2 및 20분간으로 변경시켜 양극산화처리를 수행하고, 얻어진 산화피막의 두께를 약 5 로 한 것을 제외하고는 동일하게 실시하였다. Example 4 was carried out in the same manner as in Example 1 except that the current density and reaction time were changed to lA / dm 2 and 20 minutes, respectively, to perform anodization, and the thickness of the obtained oxide film was about 5. It was.
[표 1]  TABLE 1
Figure imgf000013_0001
Figure imgf000013_0001
<실시예 5 내지 7> <Examples 5 to 7>
실시예 5는 실시예 3에서 사용한 전해질용액의 황산 및 옥살산의 흔합용액 대신에 3% 크롬산으로 처리한 것을 제외하고는 동일하게 실시하였다.  Example 5 was carried out in the same manner except that the electrolyte solution used in Example 3 was treated with 3% chromic acid instead of the mixed solution of sulfuric acid and oxalic acid.
실시예 6은 실시예 3에서 사용한 전해질용액의 황산 및 옥살산의 흔합용액 대신에 10%의 인산으로 처리한 것을 제외하고는 동일하게 실시하였다.  Example 6 was carried out in the same manner except that the electrolyte solution used in Example 3 was treated with 10% phosphoric acid instead of the mixed solution of sulfuric acid and oxalic acid.
실시예 7 은 실시예 3에서 사용한 전해질용액의 황산 및 옥살산의 흔합용액 대신에 5>의 옥살산으로 처리한 것을 제외하고는 동일하게 실시하였다.  Example 7 was carried out in the same manner as in Example 3, except that the electrolyte solution used in Example 3 was treated with oxalic acid of 5> instead of the mixed solution of sulfuric acid and oxalic acid.
<비교예 1> Comparative Example 1
실시예 1에서 사용한 약 50 의 두께를 갖는 탈지처리한 80 합금계열의 연질 알루미늄 박에 대해서, 산화피막을 형성시키지 않은 알루미늄 박을 사용한 것을 제외하고는 동일하게 실시하였다. <비교예 2〉 The soft aluminum foil of the dealloyed 80 alloy series having a thickness of about 50 used in Example 1 was carried out in the same manner except that aluminum foil without an oxide film was used. Comparative Example 2
실시예 1에서 사용한 약 50iffli의 두께를 갖는 탈지처리한 80 합금계열의 연질 알루미늄 박을 배리어층으로 사용하고, 상기 배리어층의 일면에 화성처리액을 리버스 를 (Reverse Roll) 코팅 법으로 코팅 (두께 0. an)하여, 230°C에서 10초간 건조 (열처리)하여 부식방지층 (120)을 형성시켰다. A soft aluminum foil of a dealloyed 80 alloy series having a thickness of about 50iffli used in Example 1 was used as a barrier layer, and a chemical conversion solution was coated on one surface of the barrier layer by a reverse roll coating method (thickness 0. an) and dried (heat treated) at 230 ° C. for 10 seconds to form an anticorrosion layer 120.
비교예 2에서는 크름 3가의 화성처리막을 얻었으며, 시편 (5X5cm)의 전기 통전 시험을 전류 인가 방법으로 수행하였고, 그 결과를 하기 표 1에 기재하였다.  In Comparative Example 2, a trivalent chemical conversion film was obtained, and an electrical conduction test of a specimen (5 × 5 cm) was performed by a current application method, and the results are shown in Table 1 below.
<실험예 1> Experimental Example 1
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따라 제조된 전지용 포장재의 물성을 다음과 같은 방법으로 시험하고 그 결과를 표시하였다.  The physical properties of the battery packaging material prepared according to Examples 1 to 7 and Comparative Examples 1 to 2 were tested in the following manner and the results were displayed.
1) 통전시험  1) energization test
시편 (5x5cm)의 전기 통전 시험을 전류 인가 방법으로 수행하였고, 그 결과를 하기 표 2에 기재하였다.  An electrical conduction test of the specimen (5 × 5 cm) was performed by the current application method, the results are shown in Table 2 below.
2) 저항측정법에 의한 표면저항시험  2) Surface resistance test by resistance measurement
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따른 전지용 포장재의 시편 (5X5cm)에 대해 저항측정방법으로 표면저항을 측정하고, 그 결과를 하기 표 2에 기재하였다.  Surface resistance was measured by the resistance measurement method for the specimen (5X5cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, the results are shown in Table 2 below.
3) 접착력 시험  3) Adhesion Test
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따른 전지용 포장재의 시편 (5x5cm)에 대해 최내층과 알루미늄의 필 (Peel) 테스트 방법으로 접착력을 시험하였고, 그 결과를 하기 표 2에 기재하였다.  Adhesion was tested by the peel test method of the innermost layer and aluminum on the specimen (5x5cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, the results are shown in Table 2 below.
[표 2]  TABLE 2
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000014_0001
Figure imgf000015_0001
4) 내식성시험 4) Corrosion Resistance Test
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따른 전지용 포장재의 시편 (5 X 5cm)에 대해, NaCl(3.5%)에 각 표면 처리별 알루미늄을 함침시켜 부식 유무를 확인하여 내식성 시험을 수행하였고, 그 결과를 하기 표 3에 기재하였다.  For specimens (5 X 5 cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, NaCl (3.5%) was impregnated with aluminum for each surface treatment to check the presence of corrosion and to perform a corrosion resistance test. The results are shown in Table 3 below.
<부식정도〉  Corrosion level
© : 부식없음  © : No corrosion
O: 매우 일부 면적에서 혹갈색 부식이 관찰되나 기능에는 영향을 미치지 아니함  O: Brownish corrosion is observed in very small areas but does not affect function
Δ : 부분적으로 혹갈색 부식이 관찰되어 기능에 다소 영향을 미침 X : 상당부분 혹갈색 부식이 관찰됨 기능을 달성할 수 없음  Δ: Partially brownish brown corrosion is observed and affects the function somewhat. X: A lot of brownish brown corrosion is observed.
5) 내전해액 시험 5) electrolyte solution test
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따른 전지용 포장재의 시편 (5X5cm)에 대해, 전해액 (DMC+MC+LiPF6)에 아노다이징 필름을 함침시켜 육안으로 확인하여 내전해액 시험을 수행하였고, 그 결과를 하기 표 3에 기재하였다. With respect to the specimen (5X5cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, the electrolytic solution test was performed by visually impregnating an anodizing film in the electrolyte (DMC + MC + LiPF 6 ), The results are shown in Table 3 below.
6) 크랙발생 여부  6) Crack occurrence
상기 실시예 1 내지 7 및 비교예 1 내지 2에 따른 전지용 포장재의 시편 (5X5cm)에 대해, 시편을 90° 이상으로 10차례 이상 구부린 후, 아노다이징 필름을 육안으로 확인하여 크랙 발생유무 시험하였고, 그 결과를 하기 표 3에 기재하였다. 상기 표 3에서, X는 크랙이 발생하지 않았음에 대한 표시이고, Δ은 미세크랙의 발생에 대한 표시이다. With respect to the specimen (5X5cm) of the battery packaging material according to Examples 1 to 7 and Comparative Examples 1 to 2, after bending the specimen 10 times or more at 90 ° , The anodizing film was visually checked and tested for cracks, and the results are shown in Table 3 below. In Table 3, X is an indication that no crack has occurred, and Δ is an indication of the occurrence of microcracks.
[표 3]  TABLE 3
Figure imgf000016_0001
상기 표에 나타낸 바와 같이, 크롬 화성처리층을 배리어층으로 갖는 비교예 2와 달리, 크롬 화성처리층 대신에 배리어층으로서 산화알루미늄 피막을 포함하는 전지용 포장재에 관한 실시예 1 내지 7은 아노다이징 처리시 부식이 발생되지 않아, 추 후 전지에 사용시 부식에 대한 저항성이 향상되었음을 알 수 있다.
Figure imgf000016_0001
As shown in the above table, unlike Comparative Example 2 having the chromium chemical conversion layer as a barrier layer, Examples 1 to 7 of a battery packaging material including an aluminum oxide film as a barrier layer instead of the chromium chemical conversion layer are used for anodizing treatment. Corrosion does not occur, it can be seen that the resistance to corrosion is improved when used in the battery later.
〈실시예 8-9>  <Example 8-9>
실시예 1에서 알루미늄박의 표면에 산화알루미늄 피막을 형성할 때 사용한 20°C의 전해질 용액 대신에, 실시예 8에서는 25°C의 전해질 용액 및 실시예 9에서는 30°C의 전해액 용액올 사용한 것을 제외하고는, 실질적으로 실시예 1과 동일하게 약 lA/dm2의 전류밀도에서 약 2분간 반웅시켜 알루미늄의 양 표면에 약 0.5,의 두께를 갖는 산화알루미늄 (A1203)의 피막을 형성된 산화알루미늄 형성 연질 알루미늄박을 제조하고, 이를 사용한 전지용 포장재를 제조하였다. <실시예 10> Instead of the electrolyte solution of 20 ° C used to form the aluminum oxide film on the surface of the aluminum foil in Example 1, using an electrolyte solution of 25 ° C in Example 8 and an electrolyte solution of 30 ° C in Example 9 Except that, substantially the same as in Example 1, the reaction was performed at a current density of about lA / dm 2 for about 2 minutes to form a film of aluminum oxide (A1 2 0 3 ) having a thickness of about 0.5, on both surfaces of the aluminum. Aluminum oxide-forming soft aluminum foil was prepared, and a battery packaging material using the same. <Example 10>
상기 실시예 1에서 알루미늄박의 표면에 산화알루미늄 피막을 형성할 때, 전압을 1.5A/dm으로 처리한 것을 제외하고는 실시예 1과 동일하게 표면에 산화알루미늄 피막을 갖는 알루미늄박을 제조하고, 이를 사용한 전지용 포장재를 제조하였다.  When forming an aluminum oxide film on the surface of the aluminum foil in Example 1, to produce an aluminum foil having an aluminum oxide film on the surface in the same manner as in Example 1, except that the voltage was treated with 1.5A / dm, A battery packaging material using the same was prepared.
<실시예 11> <Example 11>
상기 실시예 1에서 알루미늄박의 표면에 산화알루미늄 피막을 형성할 때, 전해질용액으로 황산 및 옥살산의 흔합용액 대신에 5%의 옥살산으로 처리한 것을 제외하고는 실시예 1과 동일하게 표면에 산화알루미늄 피막을 갖는 알루미늄박을 제조하고, 이를 사용한 전지용 포장재를 제조하였다.  When forming an aluminum oxide film on the surface of the aluminum foil in Example 1, the aluminum oxide on the surface in the same manner as in Example 1 except that the electrolyte solution was treated with 5% oxalic acid instead of sulfuric acid and oxalic acid mixed solution An aluminum foil having a film was produced, and a battery packaging material using the same was produced.
<비교여 14 > <Comparative Woman 14>
배리어층으로는 약 50 의 두께를 갖는 탈지처리한 80 합금계열의 연질 알루미늄박에 산화피막을 형성시키지 않고 그대로 사용한 것을 제외하고는 실시예 1과 동일하게 표면에 산화알루미늄 피막을 갖는 알루미늄박을 제조하고, 이를 사용한 전지용 포장재를 제조하였다. <시험예 2> As the barrier layer, an aluminum foil having an aluminum oxide film on its surface was prepared in the same manner as in Example 1 except that the oxide film was used as it was without forming an oxide film on the aluminum alloy-based soft aluminum foil having a thickness of about 50. And the battery packaging material using this was manufactured. <Test Example 2 >
1) 산화피막의 기공크기  1) Pore size of oxide film
상기 실시예 1, 8 및 9에 따라 제조된 산화 피막의 기공 크기를 SEM으로 측정하여 표 4에 나타냈다.  The pore sizes of the oxide films prepared according to Examples 1, 8 and 9 were measured by SEM and shown in Table 4.
2) 내염수시험 (부식시험 )  2) Salt water test (corrosion test)
상기 실시예 1, 8 및 9에 따라 제조된 산화 피막쎄 대해, 염화나트륨 Sodium chloride for the oxide film prepared according to Examples 1, 8 and 9 above
3.5% 용액에 아노다이징 필름을 함침시켜 육안으로 확인하여 내염수시험을 수행하였고 하기 기준에 따라 부식정도를 측정하여, 그 결과를 하기 표 4에 기재하였다. An anodizing film was impregnated with 3.5% solution to visually check the salt water test. The corrosion degree was measured according to the following criteria, and the results are shown in Table 4 below.
<부식정도〉 © : 부식없음 <Corrosion degree> © : No corrosion
o: 매우 일부 면적에서 흑갈색 부식이 관찰되나 기능에는 영향 아니함  o: Dark brown corrosion is observed in very small areas but does not affect function
Δ: 부분적으로 혹갈색 부식이 관찰되어 기능에 다소 영향을 미침 Δ: Partially brownish corrosion is observed, slightly affecting function
X : 상당부분 혹갈색 부식이 관찰됨 기능을 달성할 수 없음 X : A considerable part of brownish corrosion is observed. Function cannot be achieved.
[표 4]  TABLE 4
Figure imgf000018_0001
Figure imgf000018_0001
3) 비표면적 시험 3) Specific surface area test
상기 실시예 1, 10 및 11, 비교예 4에 따라 제조된 다공성 양극 산화 피막의 표면적을 달리하여 상기 실시 예에 따른 시편의 비표면적 시험을 BET 측정장비 (Autosorb-iQXQuantachrome instruments사)로 77K, N2 gas로 측정하였으며, 그 결과를 하기 표 5에 기재하였다.  By changing the surface area of the porous anodic oxide film prepared according to Examples 1, 10 and 11, Comparative Example 4, the specific surface area test of the specimen according to the embodiment was carried out by BET measuring equipment (Autosorb-iQX Quantachrome instruments) of 77K, N2. It was measured by gas, and the results are shown in Table 5 below.
4) 접착력 시험  4) Adhesion Test
상기 실시예 1, 10 및 11, 비교 예 4에 따라 제조된 다공성 양극 산화 피막 (5X5cin)에 대해 최내층과 알루미늄의 필 (Peel) 테스트 방법으로 접착력을 시험하였고, 그 결과를 하기 표 5에 기재하였다.  In Example 1, 10 and 11, Comparative Example 4 to the porous anodized film (5X5cin) prepared in accordance with the peel test method of the innermost layer and the aluminum (Peel) test method, the results are shown in Table 5 below It was.
[표 5]  TABLE 5
Figure imgf000018_0002
상기 표 2 내지 5로부터 알 수 있는 바와 같이, 본 발명에 따라 알루미늄에 산화피막을 형성시킨 배리어층은 기존의 크롬 화성처리에 의한 배리어층과 비교하여 접착성을 유지하면서도 내식성, 내전해성 및 전기절연성 등이 획기적으로 향상된 결과를 알 수 있다. 또한, 단위 기공 사이즈가 클수록 내 부식성이 감소하는 경향을 알 수 있으며, 비표면적이 클수록 접착력이 향상됨을 알 수 있다. .
Figure imgf000018_0002
As can be seen from Tables 2 to 5, the barrier layer in which an oxide film is formed on aluminum according to the present invention has corrosion resistance, electrolytic resistance, and electrical insulation while maintaining adhesiveness as compared to the barrier layer by conventional chromium chemical conversion treatment. The result is a dramatic improvement. In addition, it can be seen that the corrosion resistance decreases as the unit pore size increases, and the adhesion strength increases as the specific surface area increases. .
[부호의 설명] [Description of the code]
10: 최외층 11: PET층  10: outermost layer 11: PET layer
12: 0-나일론층 13: 배리어층  12 : 0-nylon layer 13: barrier layer
14: 제 1산화피막층 15: 알루미늄층  14: first oxide film layer 15: aluminum layer
16: 제 2산화피막층 17: 최내층  16: second oxide layer 17: innermost layer
18: 을레핀계 수지층 19: 열접착성 수지층  18: olefin resin layer 19: heat adhesive resin layer

Claims

[특허청구범위] [Patent Claims]
【청구항 1】  [Claim 1]
최외층, 알루미늄 또는 알루미늄 합금을 함유하는 배리어층 및 최내층을 포함하며, _ Outermost layer, including barrier layer and innermost layer containing aluminum or aluminum alloy, _
상기 배리어층의 적어도 일면에 형성된 산화알루미늄 피막층을 포함하고 0.11ίΩ/αη2 이상의 표면저항을 갖는 전지용 포장재. A battery packaging material comprising an aluminum oxide film layer formed on at least one surface of the barrier layer and having a surface resistance of 0.11 Ω / α 2 or more.
【청구항 2】  [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 산화 피막층의 두께는 0.2 내지 10 인 것을 특징으로 하는 전지용 포장재 .  The thickness of the oxide film layer is a battery packaging material, characterized in that 0.2 to 10.
【청구항 3】  [Claim 3]
제 1 항에 있어서,  The method of claim 1,
상기 피막층은 기공입경이 lnm 내지 l,000nm인 기공을 포함하는 전지용 포장재 .  The coating layer is a battery packaging material containing pores having a pore particle diameter of lnm to l, 000nm.
【청구항 4】  [Claim 4]
제 3 항에 있어서,  The method of claim 3,
상기 피막층은 기공입경이 lnm 내지 200nm인 기공을 포함하는 전지용 포장재 .  The coating layer is a battery packaging material containing pores having a pore size of lnm to 200nm.
【청구항 5】  [Claim 5]
제 1 항에 있어서,  The method of claim 1,
상기 피막층은 0.5m7g 내지 lOOmVg 범위의 비표면적을 갖는 전지용 포장재 . . ·  The coating layer is a battery packaging material having a specific surface area in the range of 0.5m7g to 100mVg. . ·
【청구항 6】  [Claim 6]
제 1 항에 있어서,  The method of claim 1,
상기 피막층은 상기 알루미늄 또는 알루미늄 합금의 적어도 일면을 양극산화처리 (anodizing)으로 형성된 것인 전지용 포장재.  The coating layer is a battery packaging material that is formed by anodizing at least one surface of the aluminum or aluminum alloy.
【청구항 7】  [Claim 7]
제 1 항에 있어서,  The method of claim 1,
상기 배리어층의 두께가 20 내지 80/观인 전지용 포장재. A battery packaging material having a thickness of the barrier layer of 20 to 80 / mm 3.
【청구항 8】 [Claim 8]
게 1 항에 있어서,  According to claim 1,
상기 최외층은 연신 폴리에스테르계 수지, 연신 폴리아미드계 수지 또는 이들의 흔합물을 포함하는 전지용 포장재 . The outermost layer is a battery packaging material comprising a stretched polyester resin, a stretched polyamide resin or a mixture thereof.
【청구항 9】 [Claim 9]
제 1 항에 있어서,  The method of claim 1,
상기 최내층은 폴리올레핀계, 폴리에틸렌계, 폴리프로필렌계, 폴리부틸렌계, 에틸렌코폴리머, 프로필렌코폴리머, 폴리에스테르계, 폴리아마이드계, 폴리카보네이트계, 불소계, 실리콘계, 아크릴계, 에틸렌- 프로필렌-다이엔-모노머 러버 (EPra«) 및 이들의 흔합물로 이루어진 군으로부터 선택된 1종 이상의 수지를 포함하는 전지용 포장재.  The innermost layer is polyolefin, polyethylene, polypropylene, polybutylene, ethylene copolymer, propylene copolymer, polyester, polyamide, polycarbonate, fluorine, silicone, acrylic, ethylene-propylene-diene A battery packaging material comprising at least one resin selected from the group consisting of monomer rubbers (EPra «) and combinations thereof.
【청구항 10】  [Claim 10]
최외층, 알루미늄 또는 알루미늄 합금을 함유하는 배리어층 및 최내층을 포함하는 전지용 포장재의 제조방법으로서,  As a manufacturing method of a battery packaging material comprising an outermost layer, a barrier layer containing aluminum or an aluminum alloy, and an innermost layer,
상기 배리어층의 적어도 일면에 양극산화처리 (anodizing)를 수행하여 산화알루미늄 피막을 형성하는 단계를 포함하는, 전지 포장재의 제조방법. And anodizing the at least one surface of the barrier layer to form an aluminum oxide film.
【청구항 11] [Claim 11]
제 10 항에 있어서,  The method of claim 10,
상기 양극산화처리는 0.5A/dm 내지 50A/dm2의 전류밀도로 5초에서 60분 동안수행되는 것인 전지 포장재의 제조방법. Wherein the anodizing is a method of manufacturing a battery packaging material that is performed for 5 minutes to 60 minutes at a current density of 0.5A / dm to 50A / dm 2 .
[청구항 12】 [Claim 12]
제 10 항에 있어서,  The method of claim 10,
상기 양극산화처리는 0.1% 내지 25% 농도의 산을 포함하는 전해질 용액에서 수행되는 것인 전지 포장재의 제조방법.  Wherein the anodizing is a method of manufacturing a battery packaging material that is carried out in an electrolyte solution containing an acid of 0.1% to 25% concentration.
【청구항 13】  [Claim 13]
제 12 항에 있어서,  The method of claim 12,
상기 전해질 용액의 온도는 10°C 내지 35°C 범위인 전지용 포장재의 제조방법. Temperature of the electrolyte solution is a method for producing a battery packaging material in the range of 10 ° C to 35 ° C.
【청구항 14】 제 12 항에 있어서, [Claim 14] The method of claim 12,
상기 산은 황산, 크름산, 인산, 붕산 및 옥살산으로 이루어진 군에서 선택된 1종 이상인 전지용 포장재의 제조방법.  The acid is a method for producing a battery packaging material of at least one selected from the group consisting of sulfuric acid, chromic acid, phosphoric acid, boric acid and oxalic acid.
【청구항 15】  [Claim 15]
제 10 항에 있어서,  The method of claim 10,
상기 배리어층의 일 표면과 최외층을 드라이 라미네이션을 수행하고, 상기 배리어층의 다른 표면에 최내층을 공압출시키는 단계를 추가로 포함하는 전지용 포장재의 제조방법.  Dry lamination of one surface and the outermost layer of the barrier layer, and co-extruded the innermost layer on the other surface of the barrier layer.
【청구항 16]  [Claim 16]
제 15 항에 있어서 ,  The method of claim 15,
상기 공압출 단계는 배리어층과 최내층 사이에 접착성 수지를 개재시키고, 용융상태로 공압출시키는 것인 전지용 포장재의 제조방법.  The co-extrusion step is a battery packaging material manufacturing method of co-extrusion in a molten state by interposing an adhesive resin between the barrier layer and the innermost layer.
【청구항 17】  [Claim 17]
제 15 항에 있어서,  The method of claim 15,
상기 공압출단계는 다이 및 스크류 온도가 100 °C 내지 300 °C의 조건에서 수행되는 것인 전지용 포장재의 제조방법. The coextrusion step is a method for producing a battery packaging material that is carried out under the conditions of the die and screw temperature is 100 ° C to 300 ° C.
PCT/KR2012/005824 2011-07-21 2012-07-20 Cover material for battery and method for manufacturing same WO2013012290A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110072492 2011-07-21
KR10-2011-0072492 2011-07-21
KR10-2012-0079254 2012-07-20
KR1020120079254A KR20130011976A (en) 2011-07-21 2012-07-20 Packaging material for cell and process for producing the same

Publications (2)

Publication Number Publication Date
WO2013012290A2 true WO2013012290A2 (en) 2013-01-24
WO2013012290A3 WO2013012290A3 (en) 2013-04-11

Family

ID=47558641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005824 WO2013012290A2 (en) 2011-07-21 2012-07-20 Cover material for battery and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2013012290A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687996A (en) * 2014-09-26 2021-04-20 大日本印刷株式会社 Packaging material for battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070105305A (en) * 2004-11-30 2007-10-30 산드빅 인터렉츄얼 프로퍼티 에이비 Fuel cell component comprising a complex oxide forming coating
KR20100022014A (en) * 2007-05-21 2010-02-26 쇼와 덴코 패키징 가부시키가이샤 Packing material for battery case and battery case
US20100310930A1 (en) * 2009-03-02 2010-12-09 Lg Chem, Ltd. Pouch and secondary battery comprising the same
JP2011071127A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071127A (en) * 2003-04-09 2011-04-07 Nitto Denko Corp Adhesive-carrying porous film for cell separator, and application thereof
KR20070105305A (en) * 2004-11-30 2007-10-30 산드빅 인터렉츄얼 프로퍼티 에이비 Fuel cell component comprising a complex oxide forming coating
KR20100022014A (en) * 2007-05-21 2010-02-26 쇼와 덴코 패키징 가부시키가이샤 Packing material for battery case and battery case
US20100310930A1 (en) * 2009-03-02 2010-12-09 Lg Chem, Ltd. Pouch and secondary battery comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112687996A (en) * 2014-09-26 2021-04-20 大日本印刷株式会社 Packaging material for battery
CN112687996B (en) * 2014-09-26 2022-11-22 大日本印刷株式会社 Packaging material for battery

Also Published As

Publication number Publication date
WO2013012290A3 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP4431822B2 (en) Packaging material with excellent moldability and packaging container molded using the same
JP4360139B2 (en) Battery case packaging material and battery case molded using the same
KR101366217B1 (en) Packaging material for polymer cell and process for producing the same
KR102411295B1 (en) Outer material and power storage device for power storage device
CN105552250B (en) Outer packaging material for electricity storage device and electricity storage device
KR20130081445A (en) Aluminium pouch film for the secondary battery, the pack containing the same and the secondary battery containing the same
KR20130011976A (en) Packaging material for cell and process for producing the same
JP4372898B2 (en) Laminated body and polymer battery packaging material using the same
KR20130062901A (en) Outer packaging material for battery or capacitor, and process for production thereof
JP4922544B2 (en) Method for producing battery case packaging material
JP6738164B2 (en) Exterior material for power storage device and power storage device
KR101379490B1 (en) Packaging material for polymer cell and process for producing the same
KR100874384B1 (en) Laminate Sheet for Battery Case and Lithium Secondary Battery Containing the Same
JP6738189B2 (en) Exterior material for power storage device and power storage device
KR20170142625A (en) Aluminium pouch film for secondary battery and the manufacturing method of the same
KR20090092108A (en) Laminate sheet for secondary battery package and secondary battery employed with the same
KR100995884B1 (en) The manufacturing method of the packing material for the bulk lithium polymer secondary battery
JP4736188B2 (en) Lithium ion battery packaging material and manufacturing method thereof
KR20130081446A (en) The manufacturing method of aluminium pouch film for the secondary battery
WO2013012290A2 (en) Cover material for battery and method for manufacturing same
JP5609920B2 (en) Polymer battery
WO2017169028A1 (en) Exterior material for power storage device, and power storage device
JP2017147225A (en) Battery packaging material, method of producing the same, and battery
JP2014182872A (en) Sheath material for batteries, and aluminum foil
KR102537677B1 (en) Laminated structure for cell-type battery pouch with pinhole removal layer and pouch-type secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815533

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12815533

Country of ref document: EP

Kind code of ref document: A2