WO2013012101A1 - 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물 - Google Patents

지방산 트리펩타이드염 및 이를 함유하는 항균 조성물 Download PDF

Info

Publication number
WO2013012101A1
WO2013012101A1 PCT/KR2011/005216 KR2011005216W WO2013012101A1 WO 2013012101 A1 WO2013012101 A1 WO 2013012101A1 KR 2011005216 W KR2011005216 W KR 2011005216W WO 2013012101 A1 WO2013012101 A1 WO 2013012101A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
salt
antimicrobial
acid tripeptide
composition
Prior art date
Application number
PCT/KR2011/005216
Other languages
English (en)
French (fr)
Inventor
이윤섭
최혜정
Original Assignee
미원상사주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미원상사주식회사 filed Critical 미원상사주식회사
Priority to PCT/KR2011/005216 priority Critical patent/WO2013012101A1/ko
Publication of WO2013012101A1 publication Critical patent/WO2013012101A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/06Tripeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides

Definitions

  • the present invention relates to a fatty acid tripeptide salt and an antimicrobial composition comprising the same, and more particularly, excellent antiseptic power, and excellent usability and safety without blending chemical preservatives such as parabens, which have been widely used in cosmetics. It relates to an antimicrobial composition.
  • Preservatives are drugs that prevent the decay of substances. It is antiseptic to prevent decaying of flora and fauna by the action of microorganisms, and a preservative is a chemical agent added for preservation for the purpose of preservation.
  • the microorganisms causing decay include fungi, yeast and bacteria that belong to fungi.
  • antimicrobial and antifungal agents that inhibit the growth of these microorganisms can be replaced by the word preservative.
  • cosmetics consist of products in various forms. Emulsified forms such as lotions, creams, foundations, solubilized forms such as skins or some essences, and powder forms such as facial powders.
  • These various types of product formulations contain a considerable amount of water, which is easy to grow microorganisms, and contains raw materials that are nutrient sources (carbon sources, nitrogen sources and various nutrients) such as oils, surfactants, humectants, polymers, and natural substances. Rich in these available nutrients.
  • nutrient sources carbon sources, nitrogen sources and various nutrients
  • oils such as oils, surfactants, humectants, polymers, and natural substances. Rich in these available nutrients.
  • These ingredients are highly likely to grow by contaminating microorganisms during cosmetic manufacturing (primary contamination) and in use (secondary contamination), and in particular, due to their inherent characteristics, they are continuously exposed to microorganisms or contaminated by long-term storage.
  • microorganisms When microorganisms are contaminated in cosmetics, they not only change the ingredients, properties, odors or physical properties, but also reduce the efficacy of the product and cause damage to users such as inflammation or skin disease, depending on the type of contaminated bacteria. .
  • the use of these raw materials is a reason for the easier change of cosmetics by microorganisms.
  • ingredients used in cosmetics are used in cosmetics, which are called preservatives.
  • Preservatives commonly used in cosmetics include methyl paraben, ethyl paraben, ethyl paraben, propyl paraben, butyl paraben, phenoxy ethanol and dichloro, which are paraoxybenzoic acid esters. Pen (2,2'-methylenebis (4-chlorophenol)), methylisothiazolin-3-one, imidazolidinyl urea, etc. Trace amounts are used alone or in combination. However, since cosmetics are used directly on the human body for life, these preservatives in cosmetics can have a significant effect on the human body even at trace amounts.
  • Methyl, ethyl, propyl, and butyl parabens (Cosmet. Toil., 117 (4), 41 (2002)), the most commonly used of the various preservatives above, are colorless, odorless, non-volatile substances that are active over a wide pH range. (J. Dentistry., 27 (2), 101 (1999)) have low toxicity and have been used as preservatives for a long time. It is known that as the alkyl chain length increases, the antimicrobial activity increases, but the solubility in water decreases and the antimicrobial activity decreases due to protein, nonionic surfactant, and the like.
  • preservatives include formaldehyde release preservatives imidazolidinyl urea, diazolidinyl urea, methyldibromo glutaronitrile, and DMDM hydantoin While it may be less irritating on its own, concerns are raised that when such preservatives are used with amines such as TEA, DEA or MEA, nitrosamines can potentially form carcinogens that can penetrate the skin. (Fund Appl Toxicol., 213-221 (1993)).
  • sodium silicate is highly alkaline and is known as a potentially irritating preservative and mineral in cosmetics (Am J Contact Dermatitis, 133-139, September (2002)), and chlorhexidine is used topically. Preservatives are known to cause irritation (Toxicology in Vitro, 271-276, August-October (2001)).
  • preservatives are not only toxic to microbes but also to humans, so preservatives are called primary irritants among cosmetic ingredients.
  • efforts to secure antiseptic power without using such preservatives may require complex means such as aseptic manufacturing and enormous cost, which tends to lack economic versatility.
  • antimicrobial material there are antimicrobial peptides that are known in recent years, and are known to play an important role in the innate immune system and host defense of living organisms.
  • antimicrobial peptides which have been shown to exist as a kind of defense against microbial invasion from outside in various organisms including insects, amphibians and mammals, are currently being studied by researchers all over the world. More than 300 antimicrobial peptides have been found, including Defensin, Melittin, Magainin, Cecropin, Buforin, and Protegrin.
  • LL37 is a member of a peptide that has the ability to directly destroy bacteria and viruses, and has long been known as a natural antimicrobial peptide that protects the body from infection, but researchers at the Anderson Cancer Center at the University of Texas at By breaking the principle of tolerance and activating pDCs, it has been reported to cause psoriasis through autoimmune reactions (Nature, 449 (7162), 564-569. (2007)) and melittin isolated from bee venom. Although it has excellent antimicrobial activity, it is toxic to various cells including human red blood cells (Biochemical pharmacology, 75 (5), 1104-1114 (2008)). There are many constraints on the application. As such, research for the development of antimicrobial peptides with high antimicrobial activity and no cytotoxicity is in progress.
  • the present inventors have developed a fatty acid tripeptide salt having a peptide consisting of three sequences, having a very short length but having high antimicrobial activity, no toxicity, and a low cost due to a short nucleotide sequence, which is easy to synthesize.
  • an object of the present invention is to provide a fatty acid tripeptide salt having an excellent antimicrobial effect and excellent skin permeability or stability, and an antimicrobial composition containing the same.
  • Fatty acid tripeptide salt according to the present invention for achieving the above object is represented by the following formula (1).
  • R 1 is an alkyl group having 7 to 17 carbon atoms or an alkenyl group including at least one double bond
  • R 2 is CH 3 , CF 3 or CCl 3.
  • R 1 is preferably selected from alkanes consisting of heptane, tridecane, pentadecane and heptadecane.
  • R 1 may be pentadecane
  • R 2 may be CF 3 .
  • the present invention also provides an antimicrobial agent comprising the fatty acid tripeptide salt as an active ingredient.
  • the above-described fatty acid tripeptide salt provides an antimicrobial composition which is contained in 0.0001 to 1.0% by weight based on the total weight of the composition.
  • Such an antimicrobial composition may be a cosmetic composition or a pharmaceutical composition.
  • Fatty acid tripeptide salts according to the present invention have significant antibacterial and antifungal activity against a wide range of strains and thus have suitable efficacy for use as preservatives.
  • the fatty acid tripeptide salt of the present invention has a low cytotoxicity, a low molecular weight, good solubility in water using biocompatible amino acids, and an amine group introduced at the C-terminus of the amino acid to have an amide bond, thereby preventing Excellent stability and excellent chemical stability even in long-term use.
  • the present invention provides a fatty acid tripeptide salt represented by the formula (1).
  • R 1 is an alkyl group having 7 to 17 carbon atoms or an alkenyl group including at least one double bond
  • R 2 is CH 3 , CF 3 or CCl 3.
  • Fatty acid tripeptides salts according to the invention represented by formula (1) correspond to polypeptide analogs consisting of three amino acid sequences.
  • the fatty acid tripeptide salt of the present invention contains an acyl group (R 1 CO-) as a residue that binds to the N-terminus of the polypeptide.
  • R 1 represented by Formula 1 may include alkyl groups derived from alkanes such as heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, and the like. .
  • R 1 is preferably selected from tridecane, pentadecane or heptadecane, more preferably, when R 1 is pentadecane, the antibacterial effect is more excellent.
  • R 1 may also be an alkenyl group comprising at least one double bond.
  • the amino acid repeating unit of the polypeptide represented by the formula (1) is composed of three lysines (lysine), and includes an amine group as a residue that binds to the C-terminus of the polypeptide. That is, the polypeptide analogues according to the invention have amide bonds at the C-terminus.
  • R 2 represented by the formula (1) is preferably selected from CH 3 , CF 3 or CCl 3 , more preferably R 2 is CF 3 .
  • Fatty acid tripeptide salts according to the invention can be synthesized by solid phase methods using conventional peptide synthesizers.
  • the amino acids used are used in protected form at the N-terminus and in protected side chains.
  • As the protecting group for protecting the N-terminus 9-fluorenylmethyloxycarbonyl group (Fmoc) is generally used.
  • As the protecting group for protecting the reactive side chain triphenylmethyl, butyloxycarbonyl, t-butyl ester, pentamethylchroman-6-sulfonyl and the like are used.
  • Lysine an amino acid used in the present invention, may be protected at the N-terminus with a 9-fluorenylmethyloxycarbonyl group (Fmoc), and may be protected with a butyloxycarbonyl side chain amine group.
  • Resin used for the solid phase reaction is made in the form of amide C-terminal, for example, trialkoxybenzhydrylamine (Rink amide), methylbenzhydrylamine (MBHA) or 5,4-aminomethyl-3, 3-dimethoxyphenoxy valeric acid (PAL) resin can be used.
  • Peptides can be synthesized using resins in the amide form of the C-terminus. At this time, the peptide is synthesized from the C-terminal to the N-terminal direction. Upon coupling, the carboxyl group of the amino acid is activated with an activator, and after coupling, the N-terminal protecting group is removed with piperidine and the next coupling is performed.
  • Carboxylic activators include HATU (N-[(dimethylamino-)-1 H- 1,2,3-triazolo [4,5-b] pyridin-1-ylmethylene] -N-methylmethanaminium hexafluorophosphate N-oxide) and 1-hydride hydroxy-7-aza-benzotriazole (1-hydroxy-7-azabenzotriazole , HOAt) or HBTU (N - [(1 H -benzotriazol-1-yl) (dimethylamino) methylene] -N-methylmethanaminium hexafluorophosphate N-oxide) and DIEA ( N, N-diisopropylethylamine) can be used together with 1-hydroxybenzotriazole (HOBt), and N-N'-diisopropylcarbodiimide (DIC) and 1- Hydroxy-7-azabenzotriazole (HOAt) or 1-hydroxybenzotriazole (HOBt
  • the N-terminal amine group is an acyl activator having a desired alkyl group, for example, acyllanhydride and DMAP (4- ( N, N-dimethylamino) pyridine. ))
  • acyllanhydride and DMAP 4- ( N, N-dimethylamino) pyridine.
  • DMAP 4- ( N, N-dimethylamino) pyridine.
  • DIC N, N'-diisopropylcarbodiimide
  • HOAt 1-hydroxy-7-azabenzotriazole
  • HOBt 1-hydroxybenzotriazole
  • the cleavage solution then separates the polypeptide analogues from the solid resin and removes the protecting groups bound to its side chains.
  • the peptide to be normally cleaved is not in the form of a TFA salt, but in the present invention, it was confirmed that the peptide TFA salt is formed by the characteristics of the lysine residue. . This also applies to acetic acid or trichloroacetic acid.
  • all three side chain amine groups in the lysine of the peptide analogue according to the present invention can form a salt, all of the side chain amine groups 1 to 3 salts can be formed according to pH control, all salt forms It has antimicrobial activity.
  • the fatty acid peptide salt according to the present invention includes not only a form in which all three lysine side chains of the peptide form a salt with a fatty acid, but also one or two of them form a salt.
  • the present invention also provides an antimicrobial composition comprising such fatty acid tripeptide salts.
  • the antimicrobial composition includes a cosmetic composition as a composition exhibiting antimicrobial activity or antifungal activity and may also include a pharmaceutical composition.
  • the compound of formula 1 is preferably contained in 0.0001 to 1.0% by weight, more preferably 0.001 to 0.5% by weight in the antimicrobial cosmetics. If the content is less than 0.0001% by weight, the antimicrobial effect is insignificant, and if it is 0.5% by weight or more, there is a high tendency to lack economical efficiency.
  • the antimicrobial and antifungal agent containing the compound of Formula 1 may be prepared by a known cosmetic preparation method, and is not limited to general skin cosmetics, and may be applied to quasi-drugs and external medicines. These formulations may be prepared in any of the conventional formulations, and may be, for example, in the form of creams, emulsions, liquids, gels, ointments, packs, sticks, powders, and the like, but are not limited thereto. . And in the cosmetic composition of each formulation, other components in addition to the above-described fatty acid tripeptide can be suitably selected and blended by those skilled in the art without difficulty according to the formulation, purpose of use, and the like of other cosmetics.
  • compounds 307 , 313 , and 317 were all synthesized as in compound 315, and all these compounds were also used to measure antimicrobial and antifungal activity with compounds 315 of the present invention in Examples 3 and 4 below.
  • the present invention 15 strains; As a Gram-positive bacterium, Listeria monocytogenes ( Listeria monocytogenes ), Staphylococcus aureus ( Staphylococcus aureus ), Staphylococcus epidermis ( Staphylococcus epidermidis), Bacillus subtilis ( Bacillus subtilis ), E. coli as a gram-negative bacterium Escherichia.
  • Listeria monocytogenes Listeria monocytogenes
  • Staphylococcus aureus Staphylococcus aureus
  • Staphylococcus epidermis Staphylococcus epidermidis
  • Bacillus subtilis Bacillus subtilis
  • E. coli as a gram-negative bacterium Escherichia.
  • Candida albicans Candida albicans
  • Saccharomyces cerevisiae Saccharomyces cerevisiae
  • Tricosporon Bay Jelly Trichosporon beigelii
  • Malassezia puffer Malassezia furfur
  • Aspergillus niger as spore fungus Aspergillus niger
  • Aspergillus Flavor Aspergilus flavus
  • Fusarium oxysporum Fusarium oxysporum
  • a medium suitable for each bacterium was used to culture the bacteria in the slope medium, and the medium used for each was as follows.
  • L. Monocytogenes L. monocytogenes
  • BHI Brain-Heart Infusion
  • Subtilis B. subtilis
  • Luria-bertani LB, Difco
  • S. Aureus S. aureus
  • Coli E. coli
  • S. Bulgarias P. vulgaris
  • TLB Trypton Soya Broth
  • S. Epidermidis S. epidermidis
  • TSB Trypton Soya Broth
  • Aruginosa P. aeruginosa
  • s. Typhimurium S.
  • Gram-positive bacteria and negative bacteria were inoculated in each strain 1 platinum cultured in a slope medium and inoculated in the liquid medium according to Example 2, and then incubated to a mid-log phage for a predetermined temperature and time, respectively. Diluted to a cell concentration of 2x10 5 cells / ml with 1% Bakto peptone (Difco, USA) was inoculated into 96-well plates. Compounds prepared in Example 1 were added by diluting 1 / 2-fold in 96-well plates using broth microdilution method (Antimicrob. Agents Chemother., 43, 1542-1548 (1999)) for 12 hours at 37 ° C. The culture was measured using a microtiter plate reader (Tecan-Sunrise absorbance reader, Austria) to measure the absorbance at a wavelength of 620nm to determine the MIC value of each strain, the results are shown in Table 2 below.
  • Example 2 it can be seen that all of the compounds prepared in Example 1 exhibited significant antimicrobial activity against a wide variety of Gram-positive and negative bacteria. Of the compounds 315 of the present invention it can be seen that it shows the best antimicrobial activity compared to other compounds.
  • spore-like fungi Aspergillus Niger Aspergillus niger
  • Aspergillus Flavor Aspergilus flavus Fusarium oxysporum
  • PD Potato Dextrose
  • Candida albicans a yeast fungus Candida albicans ), Saccharomyces cerevisiae ( Saccharomyces cerevisiae ), Tricosporon Bay Jelly ( Trichosporon beigelii ), Malassezia puffer ( Malassezia furfur In the case of), each of the strain 1 platinum cultured in a slope medium was first inoculated in a liquid medium corresponding to Example 2 and incubated to a mid-log phage for a predetermined temperature and time, respectively. Final concentration 2 ⁇ 10 4 Cells were diluted in YPD (Yeast Extract Peptone Dextrose) medium to a cell count of 1 ml and dispensed into 96-well plates.
  • YPD Yeast Extract Peptone Dextrose
  • Example 1 the compound prepared in Example 1 was prepared using 10 mM MES (2- (YPD or PD medium). N -morpholino) ethanesulfonic acid) was added by diluting 1/2 times in buffer (pH 6). After 24 to 36 hours of incubation in a 28 ° C. incubator, the microtiter plate reader (Tecan-Sunrise absorbance reader, Austria) measures the absorbance of each well under a wavelength of 595 nm to determine the minimum growth inhibition concentration (MIC). Measured. The results of the experiments are shown in Table 3 below.
  • Example 3 it can be seen that all of the compounds prepared in Example 1 exhibited significant antimicrobial activity against a wide range of yeast and spore fungi, of which Compound 315 of the present invention was the best compared to other compounds. It can be confirmed that it shows antibacterial activity.
  • % Cell viability [(OD control -OD sample ) / OD control ] x 100
  • the lotion was prepared with the composition shown in the following [Table 4] and applied to the primary stimulation test on the human body.
  • Example 2 In order to measure the skin stability test of the compound 315 obtained in Example 1, a normal human patch test was performed to perform a primary irritation test on the human body. This trial was conducted through Spincontrol Asia, a clinical clinical company in Thailand, and 24 hours and 48 hours after applying a cosmetic prepared from the composition of the present invention to the back of 30 healthy Asian women aged 18 to 57 years. The patch was removed and the condition of the skin (irritation degree) was observed. The results were determined according to the following criteria and shown in Table 5.
  • the compound 315 according to Example 1 of the present invention may be stable even when used as a preservative for cosmetics.
  • the fatty acid tripeptide salts according to the present invention have a significant antibacterial and antifungal activity against a wide range of strains, and thus have an effect suitable for use as a preservative, and also have low cytotoxicity, excellent solubility and chemical stability, and thus are useful for industrial use. Can be.

Abstract

본 발명은 지방산 트리펩타이드염 및 이것을 유효성분으로 포함하여 항균 및 항진균 활성을 갖는 항균 조성물에 관한 것이다. 본 발명에 따른 지방산 트리펩타이드염을 포함하는 항균 조성물은 통상적인 화학 방부제를 사용하지 않으면서도 방부력이 우수하고 인체에 무해하며 안정성이 뛰어나다.

Description

지방산 트리펩타이드염 및 이를 함유하는 항균 조성물
본 발명은 지방산 트리펩타이드염 및 이를 포함하는 항균 조성물에 관한 것으로, 보다 상세하게는 종래 화장료에 널리 사용되어오던 파라벤류 등의 화학 방부제를 배합하지 않으면서도 방부력이 우수하고, 사용성 및 안전성도 우수한 항균 조성물에 관한 것이다.
방부제란 물질의 부패를 막는 약제를 말한다. 동식물성 유기물이 미생물의 작용에 의해 부패하는 것을 막는 것이 방부이고, 보존을 목적으로 방부하기 위해서 첨가하는 약제가 방부제이다. 부패를 일으키는 미생물에는 진균류에 속하는 곰팡이, 효모와 하등 미생물인 세균이 있다. 이렇듯, 이런 미생물의 생육을 억제하는 항균, 항진균제는 방부제란 말로 대체될 수 있다.
일반적으로 화장품은 다양한 형태의 제품으로 구성된다. 로션, 크림, 파운데이션과 같은 유화 형태, 스킨이나 일부 에센스와 같은 가용화 형태, 페이셜 파우더 등의 파우더 형태 등이 있다. 이런 다양한 형태의 제품제형에는 미생물이 증식하기 쉬운 상당량의 물이 함유되며, 오일, 계면활성제, 보습제, 폴리머, 천연 물질 등의 영양원(탄소원, 질소원 및 각종영양염류)이 되는 원료들을 함유하고 있어 미생물이 이용 가능한 영양성분들이 풍부하다. 이런 원료들은 화장품 제조시(1차 오염)와 사용중(2차 오염)에 미생물이 오염되어 증식할 가능성이 높고, 특히 화장품 고유의 특성상 사용을 오랫동안 하면서 지속적으로 미생물에 노출되거나 장기보관으로 화장품이 오염될 가능성은 더더욱 높아진다. 화장품에 미생물이 오염되면 제품성분이나 성상 그리고 냄새나 물성에 변화를 줄 뿐 아니라 제품의 효능을 떨어뜨리고 오염된 균의 종류에 따라 사용자에게 염증이나 피부질환 등의 병을 유발시켜 피해를 입힐 수 있다. 또한 최근들어 불고 있는 웰빙이나 자연주의 경향으로 화장품에 천연활성 물질들의 종류나 양이 점차 증가하고 있는 실정이며, 이런 원료들의 사용은 화장품의 미생물에 의한 변질이 더 쉬워지는 이유가 된다. 이러한 제품의 품질저하나 보건안전을 위해 미생물의 성장을 방지할 수 있는 성분들이 화장품에 쓰이는데 이것들을 방부제라 한다.
화장품에 주로 사용되는 방부제는 파라옥시안식향산에스테르인 메틸 파라벤(Methyl Paraben), 에틸 파라벤(Ethyl Paraben), 프로필 파라벤(Propyl Paraben), 부틸 파라벤(Butyl Paraben)등이나 페녹시 에탄올(Phenoxy Ethanol), 디클로로펜(2,2'-methylenebis(4-chlorophenol)), 메칠이소치아졸리논 (2-methylene-4-isothiazolin-3-one), 이미다졸리디닐 우레아(Imidazolidinyl Urea)등으로 화장품의 제형에 따라 단독 또는 혼합되어 미량 사용된다. 그러나 화장품은 평생을 두고 인체에 직접 사용하므로 화장품 안의 이러한 방부제들은 미량이라 하더라도 인체에 적지 않은 영향을 미칠 수 있다.
위의 여러 가지 방부제 중 가장 범용적으로 사용되는 메틸, 에틸, 프로필, 부틸 파라벤(Cosmet. Toil., 117(4), 41 (2002))은 무색, 무취의 비휘발성 물질로 넓은 pH 범위에서 활성을 보이고(J. Dentistry.,27(2), 101 (1999)) 독성이 낮아 오랫동안 방부제로 사용되고 있다. 알킬 체인 길이가 증가할수록 항균력이 증가하지만 물에 대한 용해도는 감소하고 단백질, 비이온 계면활성제등에 의해 항균력이 감소된다는 단점이 알려져 있다. 또한 독성이 낮다는 이 파라벤류의 방부제들조차 피부 알러지(Arch Dermatol., 115(10), 1231-1232 (1979), JAMA., 237(15), 1594-5 (1977)) 및 알레르기성 피부염을 유발한다는 경향(Contact Dermatiti., 43(4), 248 (2000), Contact Dermatitis, 39(3), 140 (1998), The paraben paradox, Cutis, 12, 830 (1973))을 가지고 있는 것으로 보고되고 있다. 또한 환경호르몬으로서의 가능성(Toxicol. Appl. Pharm., 153(1), 12 (1998))이 제시되었으며, 지속적인 체내 축적으로 인한 급, 만성 독성, 돌연변이 유발 등의 새로축적문제 가능성이 대두되고 있다(Food science and industry, 23(4), 68 (1990)). 자궁비대시험 연구에서 에틸, 프로필, 이소프로필, 부틸, 이소부틸 파라벤이 내분비독성을 보인다는 결과가 보고되었고(J. Fd Hyg. Safety, 21(2), 118-128 (2006)), 유방암 환자의 조직에서 파라벤류의 농도가 현저히 증가되어 있었음을 보고한 바 있으며(J Appl. Toxicol., 25(4), 301-309 (2005), J. Appl. Toxicol., 24, 167-176 (2004)), 임신한 랫드에 파라벤류를 투여하였을시 F1 male의 정자수 감소도 보고되었다(J Vet Med Sci., 64, 227-235 (2002)).
파라벤을 포함한 많은 방부제들의 사용에 있어서 여러 가지 문제점이 구체적으로 여러 논문에서 제기되었으며, 대부분 화학 합성 방부제는 화장료에 함유될 경우, 다소의 차이는 있지만 대부분 피부에 대한 알레르기, 피부염증 유발 등의 부작용을 나타낸다는 것으로, 스위스 피부 과학자들의 논문(Contact Dermatitis, 30, 276~279(1994))과 덴마크 K.E.Andersen의 논문(J. Appl. Cosmetol., 11, 65~68(1993))을 비롯한 다수의 연구결과에서 발표되어 있다.
방부제 중 포름알데히드 방출 보존제인 이미다졸리딜 우레아(imidazolidinyl urea), 디아졸리디닐 유레아(diazolidinyl urea), 메틸디브로모 글루타로니트릴(methyldibromo glutaronitrile), DMDM 하이단토인(DMDM hydantoin)의 경우는 그 자체로는 자극성이 덜 할 수 있으나, 이같은 방부제가 TEA, DEA 또는 MEA같은 아민과 함께 쓰였을 때, 니트로스아민이 잠재적으로 피부를 뚫고 들어갈 수 있는 발암물질을 형성할 수 있다는 점에서 우려가 집중된다(Fund Appl Toxicol.,213-221(1993)). 그밖에 소듐 실리케이트(sodium silicate)는 고도의 알카라인이며 화장품에서 잠재적으로 자극을 일으키는 방부제와 미네랄로 알려져 있고(Am J Contact Dermatitis, 133~139, September (2002)), 클로헥시딘(chlorhexidine)은 국소 방부제지만 자극을 일으킬 수 있다고 알려져 있다(Toxicology in Vitro, 271~276, August-October (2001)).
위의 여러 연구에서 알려져 있는 것처럼 방부제는 그 자체의 독성을 미생물에게만 나타내는 것이 아니라 사람에게도 독성을 나타내므로 화장품 원료 중 방부제를 가장 주요한 자극원(Primary irritant)이라 부를 정도이다. 이런 방부제를 사용하지 않고 방부력을 확보하기 위해서 제조 공정시 무방부 처방을 구성하려는 노력들로 무균제조 등의 복잡한 수단과 막대한 비용이 요구되기도 하는데 이는 경제적 범용성이 결여될 경향이 높다.
따라서, 많은 연구자들이 이런 방부제를 사용하지 않고 자극이 적은 항균성 원료들을 사용하기 위한 방법의 하나로 천연 항균성 물질을 연구하고 있다. 항균성 원료들로는 향신료, 우유 및 어류 등의 식품류, 정유, 한약재 등과 알칼로이드(alkaloid), 과실류의 플라보노이드(flavonoid), 피토알렉신스(phytoalexins)등이 보고되고 있다. 그러나 천연 항균성 물질은 천연 물질로서의 한계성 즉, 색취, 안정성 저하, 좁은 항균스펙트럼, 제형상의 문제 등으로 인하여 상용화 되지 못하고, 목재의 구성성분인 히노키티올, 쑥 추출물, 키토산, 목련 추출물인 마그놀롤, 자몽추출물인 DF-100 등 극히 일부만이 상용화 되고 있는 실정이다.
그 외에 항균성 원료로는 최근 들어 많이 알려지고 있는 항균 펩타이드가 있는데, 생물체에서 생체의 선천성 면역계 및 숙주방어에 중요한 역할을 담당하는 것으로 알려져 있다. 특히, 곤충, 양서류 및 포유동물을 포함한 각종 생물체에 외부로부터의 미생물 침입에 대한 일종의 방어체계를 위해 존재하는 것으로 밝혀져 있는 항균 펩타이드는 현재 전세계 연구자들에 의하여 LL37(일명 CAMP: cathelicidin antibacterial peptide), 디펜신(Defensin), 멜리틴(Melittin), 마가이닌(Magainin), 세크로핀(Cecropin), 부포린(Buforin), 프로테그린(Protegrin)을 비롯한 300종 이상의 항균 펩타이드가 발견되어 있다.
LL37은 세균과 바이러스를 직접 파괴하는 능력을 가진 펩타이드의 일원으로서, 오랫동안 감염증으로부터 인체를 지키는 천연 항균 펩타이드로 알려져 있으나, 텍사스대학 앤더슨 암센터의 연구진은 LL37이 비정상적으로 과도하게 분비되면 내부적 관용(innate tolerance)의 원칙을 깨고 pDCs를 활성화시킴으로써 자가면역반응을 통해 건선을 유발한다(Nature, 449(7162), 564-569.(2007))고 보고하였고, 벌의 독으로부터 분리된 멜리틴(Melittin)은 우수한 항균활성을 가짐에도 불구하고 인간의 적혈구 등을 비롯한 다양한 세포에 대해서 독성(Biochemical pharmacology, 75(5), 1104-1114 (2008))을 가지기 때문에 이러한 세포 독성에 관한 문제가 항균 펩타이드의 방부제 적용에 있어서 많은 제약이 있다. 이렇듯 항균 활성이 높으면서도 세포독성이 없는 항균 펩타이드의 개발을 위한 연구가 진행 중이다.
또한 아미노산을 치환 방법등을 통해 유사체들을 합성하여 세포독성이 없고 기능이 증진된 펩타이드를 개발하더라도, 펩타이드가 확실한 효능, 효과와 안전성을 동시에 만족시키는 성분으로 큰 성장 가능성이 있다고 전망되면서도 일반적으로 1kg 당 평균 2억원을 호가하는 고가의 성분이라서 화장품에 적용이 쉽지 않고 제품 생산이 어렵다는 문제가 있다.
이에 본 발명자들은 펩타이드가 3개의 서열로 이루어져 길이가 매우 짧으면서도 높은 항균활성을 가지면서 독성이 없고, 짧은 염기서열로 인해 단가를 낮출 수 있으며 합성이 용이한 아래의 지방산 트리펩타이드염을 개발하였다.
이에 본 발명은 상기한 종래기술의 문제점을 해결하기 위하여 안출된 것이다. 따라서 본 발명의 목적은 인체에 무해하며 우수한 항균효과를 지니고 피부침투성이나 안정성이 뛰어난 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물을 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명에 따른 지방산 트리펩타이드염은 하기 화학식 1로 표시된다.
화학식 1
Figure PCTKR2011005216-appb-C000001
(상기 화학식에서, R1은 탄소수 7~17의 알킬기이거나 또는 적어도 하나 이상의 이중결합을 포함하는 알케닐기이며, R2는 CH3, CF3 또는 CCl3 이다.)
상기에서, 상기 R1은 헵탄, 트리데칸, 펜타데칸 및 헵타데칸으로 이루어진 알칸으로부터 선택되는 것이 바람직하다. 특히, 상기 R1은 펜타데칸이고, 상기 R2는 CF3일 수 있다.
본 발명은 또한 상기한 지방산 트리펩타이드염을 유효성분으로 하는 항균제을 제공한다. 특히, 상기한 지방산 트리펩타이드염이 조성물 전체 중량에 대하여 0.0001~1.0 중량%로 물에 포함되는 항균 조성물을 제공한다. 이러한 항균 조성물은 화장료 조성물이거나 의약 조성물일 수 있다.
본 발명에 따른 지방산 트리펩타이드염은 폭넓은 균주에 상당한 항균, 항진균 활성을 가짐으로서 방부제로서의 사용에 적합한 효능을 가지고 있다. 또한 본 발명의 지방산 트리펩타이드염은 생체친화적인 아미노산을 사용하여 세포독성이 적으며 분자량이 작고 물에 대한 용해도가 좋으며, 아미노산의 C-말단에 아민기가 도입되어 아마이드 결합을 가짐으로 인해 pH에 대한 안정성이 뛰어나며 장기 사용시에도 화학적 안정성이 뛰어나다.
도 1은 실시예 5에서 화합물 315의 세포 독성 측정 결과이다.
본 발명은 화학식 1로 표시되는 지방산 트리펩타이드염을 제공한다.
화학식 1
Figure PCTKR2011005216-appb-I000001
(상기 화학식에서, R1은 탄소수 7~17의 알킬기이거나 또는 적어도 하나 이상의 이중결합을 포함하는 알케닐기이며, R2는 CH3, CF3 또는 CCl3 이다.)
화학식 1로 표시되는 본 발명에 따른 지방산 트리펩타이드염은 3개의 아미노산 서열로 이루어진 폴리펩타이드 유사체에 해당한다.
먼저 본 발명의 지방산 트리펩타이드염은 폴리펩타이드의 N-말단에 결합하는 잔기로서 아실기(R1CO-)를 포함한다. 화학식 1에서 표시되는 R1의 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 언데칸, 도데칸, 트리데칸, 테트라데칸, 펜타데칸, 헥사데칸, 헵타데칸 등과 같은 알칸으로부터 유래하는 알킬기가 포함될 수 있다. 특히 R1은 트리데칸, 펜타데칸 또는 헵타데칸 중에서 선택되는 것이 바람직하고, 더욱 바람직하게는 R1이 펜타데칸인 경우, 항균효과가 더욱 우수하다. R1은 또한 최소한 하나 이상의 이중결합을 포함하는 알케닐 그룹일 수도 있다.
화학식 1에 표시되는 폴리펩타이드의 아미노산 반복단위는 3개의 라이신(lysine)에 의하여 이루어져 있으며, 폴리펩타이드의 C-말단에 결합하는 잔기로서 아민기를 포함한다. 즉, 본 발명에 따른 폴리펩타이드 유사체는 C-말단에서 아마이드 결합을 가진다.
본 발명의 폴리펩타이드 유사체에서는 라이신의 측쇄에 존재하는 아민기가 지방산과 염의 형태를 이룬다. 화학식 1에서 표시되는 R2는 CH3, CF3 또는 CCl3 중에서 선택되는 것이 바람직하고, 더욱 바람직하게는 R2는 CF3이다.
본 발명에 따른 지방산 트리펩타이드염은 통상적인 펩타이드 합성기를 사용한 고체상 방법에 의하여 합성될 수 있다. 통상적으로, 사용되는 아미노산은 N-말단이 보호된 형태 그리고 반응성 측쇄가 보호된 형태로 사용된다. N-말단을 보호하는 보호기로는 9-플루오레닐메틸옥시카르보닐기(Fmoc)가 일반적으로 사용된다. 반응성 측쇄를 보호하기 위한 보호기로는 트리페닐메틸, 부틸옥시카르보닐, t-부틸에스테르, 펜타메틸크로만-6-술포닐 등이 사용된다. 본 발명에서 사용되는 아미노산인 라이신은 9-플루오레닐메틸옥시카르보닐기(Fmoc)로 N-말단이 보호되고, 부틸옥시카르보닐로 측쇄의 아민기가 보호될 수 있다. 고체상 반응을 위하여 사용되는 수지는 C-말단이 아마이드 형태로 만들어진 것으로서, 예를 들어 트리알콕시벤즈하이드릴아민 (Rink amide), 메틸벤즈하이드릴아민(MBHA) 또는 5,4-아미노메틸-3,3-디메톡시페녹시 발레르산(PAL) 수지가 사용될 수 있다.
C-말단이 아마이드 형태로 된 수지를 사용하여 펩타이드를 합성할 수 있다. 이 때, 펩타이드는 C-말단에서부터 N-말단 방향으로 합성된다. 커플링시 아미노산의 카르복실기를 활성제로 활성화시키고, 커플링 후 N-말단의 보호기는 피페리딘으로 제거되고, 다음 커플링이 수행된다. 카르복실기 활성제로는 HATU(N-[(dimethylamino-)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide)와 1-히드록시-7-아자벤조트리아졸(1-hydroxy-7-azabenzotriazole, HOAt) 혹은 HBTU(N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide)와 1-히드록시벤조트리아졸(1-hydroxybenzotriazole, HOBt)에 DIEA(N,N-diisopropylethylamine)가 함께 이용 될 수 있고, N,N'-디이소프로필카르보디이미드(DIC)와 첨가 보조제로 1-히드록시-7-아자벤조트리아졸(HOAt) 혹은 1-히드록시벤조트리아졸(HOBt)이 함께 사용될 수 있다. 본 발명에서는 3개의 라이신이 커플링 된 후에는 N-말단의 아민기는 원하는 알킬기를 가지는 아실 활성체, 예를 들어,아실안하이드라이드(acylanhydride)와 DMAP(4-(N,N-dimethylamino)pyridine))를 함께 반응하여 N-말단에서 아마이드 결합을 형성하거나 카르복실산(Fatty acid)과 N,N'-디이소프로필카르보디이미드(DIC), 1-히드록시-7-아자벤조트리아졸(HOAt) 혹은 1-히드록시벤조트리아졸(HOBt)이 함께 사용되어 아마이드 결합을 형성 할 수 있다. 그런 후 절단용액에 의하여 폴리펩타이드 유사체는 고체 수지로부터 분리되고 또한 그것의 측쇄에 결합된 보호기가 제거된다. 이 때, 트리플루오로아세트산(TFA)을 포함하는 절단용액을 사용하게 되면, 통상적으로 절단되는 펩타이드는 TFA 염의 형태로 되지 않으나, 본 발명에서는 라이신 잔기의 특성에 의해 펩타이드 TFA 염이 형성됨을 확인하였다. 이것은 아세트산 또는 트리클로로아세트산을 사용하여도 마찬가지이다. 이 때, 본 발명에 따른 펩타이드 유사체의 라이신에 있는 측쇄 아민기 3개 모두가 염을 형성할 수 있고, pH 조절에 따라 측쇄 아민기 1개 ~ 3개의 염 형성이 모두 가능하며, 모든 염의 형태가 항균활성을 가진다. 따라서, 본 발명에 따른 지방산 펩타이드염은 펩타이드의 3개의 라이신의 측쇄 모두가 지방산과 염을 이루는 형태뿐만 아니라 그 중 1개 또는 2개가 염을 이루는 형태도 포함하는 것으로 이해할 수 있다.
본 발명은 또한 이러한 지방산 트리펩타이드염을 포함하는 항균 조성물을 제공한다. 본 발명에서 항균 조성물은 항균 활성 또는 항진균 활성을 나타내는 조성물로서 화장료 조성물을 포함하며 또한 의약 조성물도 포함할 수 있다.
화학식 1의 화합물은 항균용 화장료에 0.0001~1.0 중량%로 함유하는 것이 바람직하며, 0.001~0.5 중량%로 함유하는 것이 더욱 바람직하다. 함량이 0.0001 중량% 미만일 경우에는 항균효과가 미미하고, 0.5 중량% 이상인 경우에는 사용량에 따른 경제성이 결여될 경향이 높아진다.
상기 화학식 1의 화합물을 포함하는 항균, 항진균제는 이미 알려진 화장료 제조방법에 의해 화장료를 제조할 수 있고, 일반적인 피부 화장료에 한정되지 않고 의약부외품, 외용 의약품에도 적용할 수 있다. 이들의 제형은 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며, 예를 들어, 크림, 에멀젼, 액상, 젤, 연고, 팩, 스틱, 파우더 등의 형태로 제조할 수 있으나, 이에 한정되는 것은 아니다. 그리고 각 제형의 화장료 조성물에 있어서, 상기한 지방산 트리펩타이드 이외에 다른 성분들은 기타 화장료의 제형, 사용목적 등에 따라 당업자가 어려움 없이 적의 선정하여 배합할 수 있다.
이하, 본 발명의 바람직한 실시예 및 시험예를 기재한다.
<실시예 1> 시료준비 (합성 및 분리정제)
Figure PCTKR2011005216-appb-I000002
표 1
Compound No. R1 R2
307 C7H15 CF3
313 C13H2 7 CF3
315 C15H31 CF3
317 C17H35 CF3
위에 제시된 본 발명의 화합물 315 을 합성하기 위해, 메리필드(Merrifield)의 SPPS(Solid Phase Peptide Synthesis) 방법(J. Am. Chem. Soc., 85(14), 21492154)을 이용하였다. 발명의 펩타이드 합성을 위해 카르복실말단이 아민형태인 Rink amide resin(Trialkoxybenzhydrylamine resin)을 이용하여 합성을 시작하였으며, Fmoc(9-fluorenylmethoxy carbonyl)아미노산을 HATU(N-[(dimethylamino-)-1H -1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide)와 HOAt(1-hydroxy-7-azabenzotriazole) 혹은 HBTU(N-[(1H-benzotriazol-1-yl)(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide)와 HOBt(1-hydroxybenzotriazole)에 DIEA(N,N-diisopropylethylamine)를 함께 사용하여 커플링을 해나가는 방법으로 펩타이드의 사슬을 연장시켰다. 이때, C-말단에서부터 N-말단 방향으로 합성해 나가며, 아미노 말단에 Fmoc-아미노산을 커플링 시킨 후, 20% piperidine 용액으로 Fmoc기를 제거(Solid-Phase Synthesis: A Practical Guide (1 ed.). CRC Press. 848)하고 DMF(Dimethylforamide)으로 여러번 씻어준 다음 커플링 해나가는 방법으로 진행된다. 마지막으로 Fmoc-아미노산을 커플링 시킨 후, 20% piperidine 용액으로 Fmoc기를 제거하고 카르복실산과 N,N'-디이소프로필카르보디이미드(DIC), 1-히드록시-7-아자벤조트리아졸(HOAt)을 함께 사용하여 아실기를 커플링한 다음 DMF로 여러번 세척하여 건조시켰다. 여기에 TFA(Trifuloroacetic acid)-H2O-Triisopropylsilane(95:2.5:2.5, vol./vol.) 용액을 가하고 2 내지 3시간 반응시켜 보호기(Protecting group)의 제거 및 resin으로부터 펩타이드를 분리시킨 후, 디에틸에테르(diethylether)로 펩타이드를 침천시켰다. 상기의 방법으로 얻은 crude 펩타이드는 0.1% TFA가 포함된 아세토니트릴(acetonitrile)과 물의 구배용매조성으로 RP-HPLC(2996 Detector, 515 Pump, Waters)을 이용하여 순도를 확인하였으며, 순도확인 결과 95%이하의 펩타이드는 Prep-LC로 분리정제하여 95% 이상의 펩타이드를 얻었다. 이 펩타이드의 정확한 성분확인을 위하여 Elemental Analyzer(EA1112, CE Instrument, Italy)로 원소분석을 한 결과, 펩타이드의 원소별 함유량이 아미노산 서열로부터 계산하여 얻은 원소별 함유량과 일치하므로 정확한 아미노산 서열을 가짐을 확인하였다.
또한, 화합물 315과 마찬가지로 화합물 307, 313, 317 모두 합성 진행하였으며, 이 모든 화합물들도 아래 실시예 3, 4에서 본 발명의 화합물 315과 함께 항균, 항진균 활성을 측정하는데 이용되었다.
<실시예 2> 실험 균주의 준비
본 발명의 실시 예에서는 15종의 균주; 그람 양성균으로써 리스테리아 모노사이토제네스(Listeria monocytogenes), 스타필로코쿠스 아우레우스(Staphylococcus aureus), 스타필로코쿠스 에피더미디스(Staphylococcus epidermidis), 바실러스 섭틸리스(Bacillus subtilis), 그람 음성균으로써 에스체리치아 콜라이(Escherichia. coli), 프로테우스 불가리스(Proteus vulgaris), 슈도모나스 애루지노사(Pseudomonas aeruginosa), 살모넬라 타이피무리움(Salmonella typhimurium), 효모형 진균으로써 칸디다 알비칸스(Candida albicans), 사카로마이세스 세리비재(Saccharomyces cerevisiae), 트리코스포론 베이젤리(Trichosporon beigelii), 말라세지아 퍼퍼(Malassezia furfur), 포자형 진균으로써 아스퍼질러스 나이거(Aspergillus niger), 아스퍼질러스 플라버스(Aspergilus flavus), 푸사리움 옥시스포룸(Fusarium oxysporum)를 사용하였으며, 이 균들은 모두 한국 미생물 보존센터로부터 분양받아 사용하였다. 각 균에 알맞은 배지를 사용하여 사면배지에서의 균 배양에 이용하였으며 각각에 사용된 배지는 다음과 같다. 엘. 모노사이토제네스(L. monocytogenes)는 Brain-Heart Infusion(BHI, Difco)배지, 비. 섭틸리스(B. subtilis)는 Luria-bertani(LB, Difco)배지, 에스. 아우레우스(S. aureus), 이. 콜라이(E. coli), 피. 불가리스(P. vulgaris)는 Trypton Soya Broth(TSB, Difco)배지, 에스. 에피더미디스(S. epidermidis), 피. 애루지노사(P. aeruginosa), 에스. 타이피무리움(S. typhimurium)는 Nutrient Broth(NB, Difco)배지, 씨. 알비칸스(C. albicans), 에스. 세리비재(S. cerevisiae), 티. 베이젤리(T. beigelli)는 Yeast Extract Peptone Dextrose(YPD, Difco)배지, 엠. 퍼퍼(M. furfur)는 Sabouraud Dextrose Broth(ilB, Difco)배지, 에이. 나이거(A. niger)는 Malt Extract Broth(MEB, Difco)배지, 에이. 플라버스(A. flavus)는 Potato Dextrose Broth(PDB, Difco)배지, 에프. 옥시스포룸(F. oxysporum)는 Potato Sucrose Broth(PSB, Difco)배지를 사용하였다.
<실시예 3> 항균 활성 측정
그람 양성균, 음성균 모두 사면배지에서 배양된 각 균주 1 백금이를 취해 실시예 2에 해당하는 액체배지에 접종하여 각각 적당한 온도와 일정시간동안 중간-로그 상(mid-log phage)까지 배양한 다음, 1% 박토 펩톤(Difco, USA)으로 2х105 세포/ml의 균체 농도가 되도록 희석하여 96-웰 플레이트에 접종하였다. 실시예 1에서 준비한 화합물들을 각각 broth microdilution 방법(Antimicrob. Agents Chemother., 43, 1542-1548(1999))을 이용하여 96-웰 플레이트에 1/2배씩 희석하여 첨가한 후 37℃에서 12시간 동안 배양하였고, 마이크로타이터 플레이트 판독기(Tecan-Sunrise absorbance reader, Austria)을 이용하여 620nm의 파장에서 흡광도를 측정하여 각 균주의 MIC값을 결정하였으며, 그 결과를 하기 표 2에 나타내었다.
표 2 그람 양성균 및 그람 음성균에 대한 항균 펩타이드의 항균 활성
생육최소저해농도(㎍/ml) 펩타이드
화합물 307 화합물 313 화합물 315 화합물 317
그람 양성균 L. monocytogenes 13.75 5.86 3.91 7.81
S. aureus 13.75 7.81 3.91 13.75
S. epidermis 31.24 7.81 7.81 13.75
B. subtilis 13.75 13.75 7.81 13.75
그람 음성균 E. coli 13.75 7.81 3.91 7.81
P. vulgaris 31.24 13.75 3.91 7.81
P. aeruginosa 62.5 13.75 7.81 13.75
S. typhimurium 62.5 31.24 7.81 13.75
표 2을 참조하면, 실시예 1에서 준비한 화합물 모두 그람 양성균, 음성균의 폭넓은 균주에 대하여 상당한 항균력을 나타냄을 알 수 있다. 그 중 본 발명의 화합물 315의 경우 다른 화합물에 비해 가장 좋은 항균력을 나타냄을 확인 할 수 있다.
<실시예 4> 항진균 활성 측정
다양한 진균성 병원균에 대한 항진균 활성을 측정하기위하여 포자형 진균인 아스퍼질러스 나이거(Aspergillus niger), 아스퍼질러스 플라버스(Aspergilus flavus), 푸사리움 옥시스포룸(Fusarium oxysporum)는 사면배지에서 포자로 형성된 균을 0.08% Triton x-100으로 포집하고, 그 포집 현탁액의 80ul를 PD(Potato Dextrose) 배지에 희석하여 최종농도 2×104 세포/1ml의 균수가 되도록 96-웰 플레이트에 분주하였다. 효모형 진균인 칸디다 알비칸스(Candida albicans), 사카로마이세스 세리비재(Saccharomyces cerevisiae), 트리코스포론 베이젤리(Trichosporon beigelii), 말라세지아 퍼퍼(Malassezia furfur)의 경우는 우선 사면배지에서 배양된 각 균주 1 백금이를 취해 각각 실시예 2에 해당하는 액체배지에 접종하여 각각 적당한 온도와 일정시간동안 중간-로그 상(mid-log phage)까지 배양하였고, 최종농도 2×104 세포/1ml의 균수가 되도록 YPD(Yeast Extract Peptone Dextrose)배지에 희석하여 96-웰 플레이트에 분주하였다. 그 후 상기 실시예 1에서 준비한 화합물을 YPD나 PD 배지가 포함된 10mM MES(2-(N-morpholino)ethanesulfonic acid) 버퍼(pH 6)에 1/2배씩 희석하여 첨가하였다. 이를 28℃배양기에서 각각 24시간에서 36시간까지 배양한 후, 마이크로타이터 플레이트 판독기(Tecan-Sunrise absorbance reader, Austria)로 595nm의 파장 하에서의 각 웰의 흡광도를 측정하여 최소 생육 저지농도(MIC)를 측정하였다. 상기 실험 수행의 결과를 하기 표 3에 나타내었다.
표 3 효모형 진균 및 포자형 진균에 대한 항균 펩타이드의 항균 활성
생육 최소 저해 농도(ug/ml) 펩타이드
화합물 307 화합물 313 화합물 315 화합물 317
효모형 진균 C. albicans 128 96 64 96
C. tropicalis 128 128 64 128
T. beigelli 256 192 128 128
M. furfur 512 192 128 256
포자형 진균 A. niger 512 512 256 256
A. flavus 512 512 256 384
F. oxysporum 1024 768 512 640
표 3을 참조하면, 실시예 1에서 준비한 화합물 모두 효모형 진균, 포자형 진균의 폭넓은 균주에 대하여 상당한 항균력을 나타냄을 알 수 있었으며, 그 중 본 발명의 화합물 315의 경우 다른 화합물에 비해 가장 좋은 항균력을 나타냄을 확인 할 수 있다.
<실시예 5> 세포 독성 측정(MTT 분석)
96-웰 플레이트의 각 웰에 B16F10 세포를 2.5x103 cell/웰 (final volume 100ul)로 넣고, 37°C, 5% CO2 인큐베이터에서 24시간 배양한 후, 각 웰의 배지를 제거하고, 새로운 DMEM(Dulbecco’s modied Eagle's medium, Phenol red-free)으로 갈아주었다. 각각의 웰에 화합물 315를 농도별로 처리하였고, 인큐베이터에서 48시간 배양하였다. 배양이 끝나기 3시간 전 10ul의 MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)용액 (5mg/ml in PBS)을 각 웰에 넣었다. 배양이 끝나면 각 웰의 배양액을 제거하고, 100ul의 DMSO(Dimethylsulfoxide) 용액을 넣어 생성된 Formazin을 녹였다. 마이크로타이터 플레이트 판독기(Tecan-Sunrise absorbance reader, Austria)를 이용하여 540nm에서 흡광도를 측정하였으며, 시료 대신 DMSO를 처리한 음성대조군을 기준으로 세포생존율(%)을 다음 [수학식 1]에 의하여 구하였다. 세포생존율에 대한 결과는 도 1에 나타내었다.
수학식 1
세포생존률(%) = [(ODcontrol-ODsample)/ODcontrol] x 100
<실시예 6> 인체에 대한 1차 자극성 시험
아래 [표 4]에 나타낸 조성으로 로션을 제조하여 인체에 대한 1차 자극성 시험에 적용하였다.
표 4 1차 자극성 시험을 위한 로션 Formulation
유상 수상
성분 함량(중량%) 성분 함량(중량%)
Mineral Oil 6.0 화합물 315 0.01
Stearic acid 2.7 Glycerin 4.0
Cetyl alcohol 2.0 Methyl paraben 0.5
Propyl paraben 0.05 TEA 0.5
Tween 60 1.2 Distilled water 82.64
Aracel 83 0.4
상기 실시예 1에서 얻은 화합물 315의 피부 안정성 검사를 측정하기 위하여 통상의 인체 첩포 시험(Human patch test)를 실시하여 인체에 대한 1차 자극성 시험을 행하였다. 이 시험은 태국의 임상전문 업체인 Spincontrol Asia를 통해 진행하였으며, 18세~57세의 건강한 아시아인 여자 30명의 등 안쪽에 본 발명의 조성물로부터 제조된 화장품을 첩포한 후 24시간 후와 48시간 후에 첩포를 제거하여 피부의 상태(자극 정도)를 관찰하였다. 그 결과를 다음 기준에 따라 판정하여 표 5에 나타냈다.
<판정기준>
* Erythema
No redness = 0
Weak redness = +1
Moderate redness = +2
Strong redness = +3
Very strong redness = +4
* Oedema
No oedema = 0
Weak oedema = +1
Moderate oedema = +2
Strong oedema = +3
Very strong oedema = +4
* Scaling
No scaling = 0
Weak scaling = +1
Moderate scaling = +2
Strong scaling = +3
Very strong scaling = +4
[표 5]
Figure PCTKR2011005216-appb-I000003
인체에 대한 1차 자극성 시험에 관한 상기 [표 5]에 나타낸 바와 같이 [표 4]의 조성물로부터 제조된 화합물 315의 피부 안정성을 측정해 본 결과, 본 발명의 조성물을 직접 피부에 사용해 보아도 트러블이나 알레르기를 일으키는 사람이 없는 것으로 확인되었다. 따라서, 본 발명의 실시예 1에 따른 화합물 315은 화장품의 보존제로 사용하여도 안정하다 할 수 있다.
본 발명에 따른 지방산 트리펩타이드염은 폭넓은 균주에 상당한 항균, 항진균 활성을 가짐으로서 방부제로서의 사용에 적합한 효능을 가지고 있고, 또한 낮은 세포독성, 우수한 용해도 및 화학적 안정성을 가지고 있어 산업적으로 유용하게 활용될 수 있다.

Claims (7)

  1. 하기 화학식 1 로 표시되는 지방산 트리펩타이드염.
    화학식 1
    Figure PCTKR2011005216-appb-I000004
    (상기 화학식에서, R1은 탄소수 7~17의 알킬기이거나 또는 적어도 하나 이상의 이중결합을 포함하는 알케닐기이며, R2는 CH3, CF3 또는 CCl3 이다.)
  2. 제1항에 있어서,
    상기 R1은 헵탄, 트리데칸, 펜타데칸 및 헵타데칸으로 이루어진 알칸으로부터 선택되는 것임을 특징으로 하는 지방산 트리펩타이드염.
  3. 제1항에 있어서,
    상기 R1은 펜타데칸이고, 상기 R2는 CF3인 것을 특징으로 하는 지방산 트리펩타이드염.
  4. 제1항에 있어서,
    상기 지방산 트리펩타이드염에 있어서, 3개의 라이신 측쇄의 아민과 염을 형성하는 상기 지방산(R2COOH)의 개수는 1~3인 것을 특징으로 하는 지방산 트리펩타이드염.
  5. 제1항에서 제4항까지의 어느 한 항에 따른 지방산 트리펩타이드염을 유효성분으로 하는 항균제.
  6. 제1항에서 제4항까지의 어느 한 항에 따른 지방산 트리펩타이드염이 조성물 전체 중량에 대하여 0.0001~1.0 중량%로 물에 포함되는 항균 조성물.
  7. 제6항에 있어서,
    상기 항균 조성물은 화장료 조성물이거나 의약 조성물인 것을 특징으로 하는 항균 조성물.
PCT/KR2011/005216 2011-07-15 2011-07-15 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물 WO2013012101A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005216 WO2013012101A1 (ko) 2011-07-15 2011-07-15 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005216 WO2013012101A1 (ko) 2011-07-15 2011-07-15 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물

Publications (1)

Publication Number Publication Date
WO2013012101A1 true WO2013012101A1 (ko) 2013-01-24

Family

ID=47558267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005216 WO2013012101A1 (ko) 2011-07-15 2011-07-15 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물

Country Status (1)

Country Link
WO (1) WO2013012101A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160073192A (ko) * 2014-12-16 2016-06-24 동덕여자대학교 산학협력단 지질 베시클에 캡슐화된 지방산 트리펩타이드 염을 포함하는 화장료용 항균 방부제 및 이의 제조방법
WO2019004563A1 (en) * 2017-06-30 2019-01-03 Cell-Rege Cosmetics Co., Ltd. METHOD FOR PREPARING ETHOSOME ENCAPSULATED IN BIOACTIVE SUBSTANCE, ETHOSOME COMPOSITION, AND COSMETIC COMPOSITION COMPRISING ETHOSOME COMPOSITION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319563B1 (ko) * 1993-06-08 2002-02-19 훽스트 악티엔게젤샤프트 약리학적 작용을 갖는 악티노플레인스 종으로부터의 리포펩타이드, 이의 제조방법 및 이를 함유하는 약제학적 조성물
US20070072808A1 (en) * 2003-06-19 2007-03-29 Yeda Research & Development Co. Ltd. Antimicrobial and anticancer lipopeptides
KR20070044079A (ko) * 2000-01-20 2007-04-26 큐비스트 파마슈티컬즈 인코포레이티드 고순도 리포펩티드와 그 제조 방법, 리포펩티드 미셀과 그제조 방법, 및 고순도 리포펩티드 및 리포펩티드 미셀을함유하는 약학 조성물
KR20090122469A (ko) * 2000-12-18 2009-11-30 큐비스트 파마슈티컬즈 인코포레이티드 정제된 리포펩티드의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100319563B1 (ko) * 1993-06-08 2002-02-19 훽스트 악티엔게젤샤프트 약리학적 작용을 갖는 악티노플레인스 종으로부터의 리포펩타이드, 이의 제조방법 및 이를 함유하는 약제학적 조성물
KR20070044079A (ko) * 2000-01-20 2007-04-26 큐비스트 파마슈티컬즈 인코포레이티드 고순도 리포펩티드와 그 제조 방법, 리포펩티드 미셀과 그제조 방법, 및 고순도 리포펩티드 및 리포펩티드 미셀을함유하는 약학 조성물
KR20090122469A (ko) * 2000-12-18 2009-11-30 큐비스트 파마슈티컬즈 인코포레이티드 정제된 리포펩티드의 제조 방법
US20070072808A1 (en) * 2003-06-19 2007-03-29 Yeda Research & Development Co. Ltd. Antimicrobial and anticancer lipopeptides

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160073192A (ko) * 2014-12-16 2016-06-24 동덕여자대학교 산학협력단 지질 베시클에 캡슐화된 지방산 트리펩타이드 염을 포함하는 화장료용 항균 방부제 및 이의 제조방법
KR101678152B1 (ko) * 2014-12-16 2016-11-21 동덕여자대학교 산학협력단 지질 베시클에 캡슐화된 지방산 트리펩타이드 염을 포함하는 화장료용 항균 방부제 및 이의 제조방법
WO2019004563A1 (en) * 2017-06-30 2019-01-03 Cell-Rege Cosmetics Co., Ltd. METHOD FOR PREPARING ETHOSOME ENCAPSULATED IN BIOACTIVE SUBSTANCE, ETHOSOME COMPOSITION, AND COSMETIC COMPOSITION COMPRISING ETHOSOME COMPOSITION
US11452679B2 (en) 2017-06-30 2022-09-27 Binotec Co., Ltd. Method of preparing bioactive substance-encapsulated ethosome, ethosome composition, and cosmetic composition including ethosome composition

Similar Documents

Publication Publication Date Title
KR101899552B1 (ko) 전복에서 유래한 항균 펩타이드 유사체 및 이를 포함하는 항균용 약학 조성물
KR101345333B1 (ko) 라이신 및 트립토판 잔기가 4번 반복된 신규한 항균 및 항진균 펩타이드 및 이의 용도
KR101734064B1 (ko) 마이시니딘 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
ES2729237T3 (es) Lipopéptidos antimicrobianos cortos
KR101599587B1 (ko) 다제내성균에 대한 항균, 항진균, 항염증 활성을 보이는 프로태티아마이신 항생펩타이드 유도체 및 그 용도
US9862749B2 (en) Analogue peptide CMA3 derived from CM-MA peptide and use thereof
WO2013012101A1 (ko) 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물
WO2019225786A1 (ko) 정향, 히비스커스, 및 코코넛 추출물을 유효성분으로 포함하는 항균 및 항진균 조성물
KR101151878B1 (ko) 지방산 트리펩타이드염 및 이를 함유하는 항균 조성물
KR101540638B1 (ko) 여드름균에 대한 저해 활성과 항염증 활성에 대한 프로태티아마이신 항생펩타이드 유도체의 거울상 이성질체 아미노산 잔기 및 그 용도
KR101710486B1 (ko) 올리고펩타이드 유도체 및 이를 포함하는 주름개선용 조성물
KR101625268B1 (ko) 여드름 개선 효과를 보이는 프로태티아마이신 항생펩타이드 유도체 및 그 용도
KR101976573B1 (ko) 홍어 껍질 유래의 신규한 항균 펩타이드 및 이의 용도
KR101430084B1 (ko) 프로피오니박테리움 아크네스에 작용하는 신규한 항생 펩타이드 및 이의 용도
KR102243335B1 (ko) 흰점박이꽃무지 유래 항균 펩타이드인 프로테티아마이신-3 및 이의 용도
KR102215798B1 (ko) 항균 펩타이드를 포함하는 보존제 및 이를 이용한 화장료 조성물
US11117931B2 (en) Antimicrobial peptide derived from Hp1404 peptide and uses thereof
KR101620148B1 (ko) 항균펩타이드 베타-디펜신 3 및 3h의 라우릭산 융합을 통한 장기지속형 유도체, 세포투과성 펩타이드 융합을 통한 피부투과형 유도체 개발과 이를 함유하는 화장료 조성물
KR101329223B1 (ko) 생체내 이용효율이 증진되고 세포독성이 감소된 항균펩타이드 및 이를 함유하는 항균용 조성물
KR101980897B1 (ko) Ll37 펩타이드로부터 유래한 신규 항균 펩타이드 및 이의 용도
KR101851134B1 (ko) 바퀴벌레에서 유래한 항균 펩타이드 페리플라네타신-6 및 그의 조성물
KR102358469B1 (ko) 물봉선 유래 항균 펩타이드 및 이를 함유하는 항균용 조성물
US20230303638A1 (en) Peptide derived from pep27 peptide and uses thereof
KR101788585B1 (ko) 항균 및 항진균 활성을 갖는 신균주 푸사리움 솔라니 js-169 및 이의 용도
KR20180022011A (ko) 바퀴벌레에서 유래한 항균 펩타이드 페리플라네타신-5 및 그의 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869591

Country of ref document: EP

Kind code of ref document: A1