WO2013011727A1 - プラズマ発生装置及びこれを用いた洗浄浄化装置 - Google Patents
プラズマ発生装置及びこれを用いた洗浄浄化装置 Download PDFInfo
- Publication number
- WO2013011727A1 WO2013011727A1 PCT/JP2012/060702 JP2012060702W WO2013011727A1 WO 2013011727 A1 WO2013011727 A1 WO 2013011727A1 JP 2012060702 W JP2012060702 W JP 2012060702W WO 2013011727 A1 WO2013011727 A1 WO 2013011727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- liquid
- electrode
- plasma
- gas passage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/48—Generating plasma using an arc
-
- A—HUMAN NECESSITIES
- A45—HAND OR TRAVELLING ARTICLES
- A45D—HAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
- A45D27/00—Shaving accessories
- A45D27/46—Devices specially adapted for cleaning or disinfecting shavers or razors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/20—Electrodes used for obtaining electrical discharge
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2245/00—Applications of plasma devices
- H05H2245/10—Treatment of gases
- H05H2245/15—Ambient air; Ozonisers
Definitions
- the present invention relates to a plasma generator and a cleaning and purifying apparatus using the same.
- an underwater discharge device in which radicals are generated in bubbles by performing discharge in a liquid containing bubbles to modify the liquid (see, for example, Patent Document 1).
- this underwater discharge device since it is necessary to introduce a gas into the liquid in the discharge vessel, a small hole is formed in the vessel, and the hole serves as a gas passage.
- the electrical resistance value of the liquid varies greatly depending on the components of impurities such as calcium contained in the liquid. Due to this variation, even when a predetermined voltage is applied between the electrodes (between the first electrode and the second electrode), the occurrence of discharge varies, making it difficult to obtain a stable discharge.
- an object of the present invention is to provide a plasma generator capable of preventing clogging of a gas passage after the end of discharge generation and also preventing unstable discharge, and a cleaning and purifying apparatus using the same.
- 1st aspect of this invention is a plasma generator, Comprising: The liquid accommodating part which accommodates the liquid containing water, The gas accommodating part which accommodates gas, The gas which guides the gas of the said gas accommodating part to the said liquid accommodating part A partition having a passage, separating the liquid container from the gas container, a first electrode disposed in the gas container, and disposed in contact with the liquid in the liquid container.
- a gas supply unit that supplies a gas containing oxygen to the gas storage unit in a mode in which the gas in the gas storage unit is pumped to the liquid storage unit via the gas passage, and the first electrode; By applying a predetermined voltage between the second electrode and generating a discharge between the first electrode and the second electrode, the gas pumped into the liquid in the liquid container is turned into plasma.
- the plasma power supply unit and the deposits in the gas passage are physically removed. And summarized in that and a deposit removal means for.
- the deposit removing means may be disposed in the gas storage unit.
- the deposit removing means may block the gas passage at all times and open the gas passage only when the gas is turned into plasma by the plasma power supply unit.
- the plasma generator may further include an adhering matter detection means for detecting the amount of adhering matter in the gas passage.
- the deposit removing means may be the partition wall, and deposits in the gas passage may be physically removed by changing the partition wall.
- a second aspect of the present invention is a cleaning and purifying apparatus, and the gist thereof is provided with the plasma generating apparatus.
- the plasma generator of the present invention is provided with a deposit removing means for physically removing deposits adhering to the gas passage.
- the deposit removing means contacts the vicinity of the gas passage or in the gas passage, and removes the deposit attached to the gas passage. Thereby, it can avoid reliably that a deposit
- FIG. 1A is an overall cross-sectional view schematically showing a plasma generator 1 according to the first embodiment
- FIGS. 1B and 1C are gas passages 5a according to the first embodiment. It is an enlarged view which shows the vicinity.
- FIG. 2 is a partial enlarged cross-sectional view schematically showing one state for explaining the operation of the plasma generator 1 according to the first embodiment.
- FIG. 3 is an overall cross-sectional view schematically showing a plasma generating apparatus 1A according to the second embodiment.
- FIG. 4 is an overall cross-sectional view schematically showing a plasma generator 1B according to the third embodiment.
- FIG. 5 is an overall cross-sectional view schematically showing a plasma generating apparatus 1C according to the fourth embodiment.
- FIG. 6 is an overall cross-sectional view schematically showing a plasma generator 1D according to the fifth embodiment.
- FIG. 7A is an overall cross-sectional view schematically showing a plasma generator 1E according to the sixth embodiment
- FIG. 7B is an enlarged view showing the vicinity of the gas passage 5a according to the sixth embodiment.
- FIG. 7C is an enlarged view showing the vicinity of the gas passage 5a according to the sixth embodiment (during removal of the deposit A).
- FIG. 8 is a perspective view showing a cleaning and purifying apparatus 40 according to the seventh embodiment.
- FIG. 9 is a cross-sectional view of the cleaning and purifying apparatus 40 according to the seventh embodiment.
- 10 is a cross-sectional view taken along the line AA in FIG.
- FIG. 1A is an overall cross-sectional view schematically showing a plasma generator 1 according to the first embodiment
- FIGS. 1B and 1C are gas passages 5a according to the first embodiment. It is an enlarged view which shows the vicinity.
- the plasma generator 1 includes a case member 2.
- the shape of the case member 2 is, for example, a cylindrical shape or a rectangular tube shape, but is not limited to this shape.
- a partition wall portion 5 that separates the liquid storage portion 3 and the gas storage portion 4 is provided inside the case member 2.
- the internal space is divided into upper and lower portions by the partition wall portion 5, and the upper space in FIG. 1A is the liquid storage portion 3 and the lower space is the gas storage portion 4.
- the liquid storage unit 3 stores a liquid 6 containing water. A gas containing oxygen is accommodated in the gas accommodating portion 4.
- the partition wall portion 5 is formed of, for example, a ceramic member and has a gas passage 5 a that guides the gas in the gas storage portion 4 to the liquid storage portion 3.
- the gas passage 5 a has such a size that gas can be sent from the gas container 4 to the liquid container 3. For this reason, the gas passage 5a should be as large as possible. However, if the hole of the gas passage 5 a is too large, the liquid 6 stored in the liquid storage unit 3 flows into the gas storage unit 4. Therefore, it is desirable to form the gas passage 5a in a size that can prevent the introduction of the gas into the liquid storage unit 3 and the inflow of the liquid 6 from the liquid storage unit 3 to the gas storage unit 4.
- the hole diameter of the gas passage 5a is set to about 1 ⁇ m to 10 ⁇ m so that the liquid 6 stored in the liquid storage portion 3 does not leak from the gas passage 5a to the gas storage portion 4.
- the side wall 2a of the case member 2 is provided with a gas introduction port 7 that communicates between the gas storage portion 4 and the outside.
- a pipe 8 gas introduction path
- the gas accommodating part 4 is connected with the gas supply part 9 provided in the exterior of the case member 2 via the piping 8.
- FIG. 1 a gas containing at least oxygen (O 2 ) is supplied from the gas supply unit 9 into the gas storage unit 4.
- the gas supplied from the gas supply unit 9 is pumped into the liquid 6 of the liquid storage unit 3 from the gas passage 5a.
- the first electrode 10 is disposed in the gas storage unit 4.
- the second electrode 11 is disposed in the liquid storage unit 3 so as to be in contact with the liquid 6.
- the first electrode 10 and the second electrode 11 are arranged in the gas storage unit 4 and the liquid storage unit 3 with the partition wall 5 interposed therebetween.
- the first electrode 10 and the second electrode 11 are both arranged in a non-contact state with the partition wall 5 and the case member 2.
- the first electrode 10 and the second electrode 11 are both substantially spherical.
- the second electrode 11 is disposed so as to be in contact with the liquid 6 and is grounded to the ground.
- the shape of the 1st electrode 10 and the 2nd electrode 11 is not limited to a substantially spherical body.
- the first electrode 10 and the second electrode 11 are electrically connected to the plasma power supply unit 13 via the lead wires 12, respectively.
- the plasma power supply unit 13 applies a predetermined voltage between the first electrode 10 and the second electrode 11. By this voltage application, a discharge is generated between the first electrode 10 and the second electrode 11. And the gas pumped in the liquid 6 of the liquid storage part 3 from the gas passage 5a by this discharge is made into plasma.
- Such a plasma generator 1 further includes a deposit removing means 100 for physically removing the deposit A attached to the gas passage 5a by depositing impurities (contaminants) such as calcium by evaporation of moisture. Yes.
- the deposit removing means 100 is disposed in the liquid storage unit 3.
- the deposit removal means 100 includes a support member 110, a drive member 120, and a removal member 130.
- the support member 110 is fixed to the partition wall 5 and supports the drive member 120.
- the drive member 120 supports the removal member 130 so as to be movable in the vertical direction, and is configured by, for example, a cylinder.
- the removal member 130 has a sharp tip (needle shape) at the tip. As shown in FIG. 1B, the removal member 130 moves in the vertical direction by driving the drive member 120. That is, the removal member 130 moves from the upper side to the lower side to enter the gas passage 5a and contact the gas passage 5a. Thereby, the removal member 130 can remove the deposit A attached to the gas passage 5a and prevent the gas passage 5a from being clogged.
- the removing member 130 is not necessarily moved in the vertical direction.
- the removing member 130 is configured to slide on the partition wall portion 5 in the vicinity of the gas passage 5a (for example, an elastic body). Or a wiper or brush made of Thereby, the removal member 130 removes the deposit A attached in the vicinity of the gas passage 5a, and clogging of the gas passage 5a is less likely to occur.
- FIG. 2 is a partial enlarged cross-sectional view schematically showing one state for explaining the operation of the plasma generator 1 according to the first embodiment.
- a gas containing oxygen is supplied to the gas storage unit 4 in a mode in which the gas in the gas storage unit 4 is pumped to the liquid storage unit 3 through the gas passage 5a (step of supplying a gas).
- a gas containing oxygen based on air (flow rate: about 0.01 L / min to 1.0 L / min (10 cc / min to 1000 cc / min)) is supplied from the gas supply unit 9 through the pipe 8. It is fed into the gas storage unit 4. At this time, the pressure for feeding the gas is set to about 0.0098 MPa to about 0.05 MPa.
- the gas supply unit 9 has a function of supplying gas (air) in the atmosphere.
- the gas supply flow rate is controlled by a flow rate control unit (not shown) provided in the gas supply unit 9.
- the gas supply unit 9 may have a function of supplying not only the gas in the atmosphere but also other types of gases (for example, gases having different oxygen concentrations).
- a gas type control unit may be provided in the gas supply unit 9 so that one type or a plurality of types of gas can be selectively supplied from various types of gases.
- the pressure of the gas storage part 4 will be about 0.11MPa-0.05MPa, when this pressure is added to atmospheric pressure, and it will be in a positive pressure state. In this way, by setting the gas storage unit 4 to a positive pressure, a gas flow from the gas storage unit 4 to the liquid storage unit 3 through the gas passage 5a is formed.
- the micro bubble 16 containing oxygen grows in the liquid accommodating part 3 side of the gas channel
- a predetermined voltage is applied between the first electrode 10 and the second electrode 11 by the plasma power supply unit 13.
- the voltage to be applied is preferably a voltage (power: about 10 W to 100 W) that enables glow discharge under atmospheric pressure.
- plasma is generated by generating a potential difference in the gas in the bubble 16 (the gas in the vicinity of the gas-liquid interface in the liquid 6 of the liquid container 3).
- a potential difference in the vicinity of the gas-liquid boundary surface where hydroxy radicals are easily generated more ozone, hydroxy radicals, and the like can be generated.
- ozone, hydroxy radicals, and the like can be generated not only in the bubbles 16 on the liquid 6 side of the gas passage 5 a but also in the bubbles 16 sent out to the liquid storage unit 3.
- the bubbles 16 containing hydroxy radicals or the like are sheared from the partition wall 5 and released into the liquid 6 by the flow of the liquid 6 in the liquid storage unit 3 (bubble releasing step).
- the flow of the liquid 6 (see the arrow 17 in FIG. 2) is generated by the introduction of the liquid 6.
- the flow of the liquid 6 acts on the bubble 16 as a shearing force, and the bubble 16 is released into the liquid 6 from the gas passage 5a. .
- the bubbles 16 released in the liquid 6 are fine bubbles, they are diffused to every corner of the liquid 6 without being immediately released into the atmosphere. A part of the diffused fine bubbles 16 is dissolved in the liquid 6. At this time, ozone and the like contained in the bubbles 16 are dissolved in the liquid 6, so that the ozone concentration of the liquid 6 increases at a stretch.
- the deposit removal means 100 removes the deposit A attached to the gas passage 5a.
- the removal member 130 contacts the vicinity of the gas passage or in the gas passage, and physically removes the deposit A attached to the gas passage 5a or the vicinity of the gas passage 5a.
- the deposit attachment A clogs the gas passage 5a.
- clogging of the gas passage 5a can be prevented and an unstable discharge phenomenon can also be prevented. Therefore, a stable discharge can be obtained, the gas can be surely turned into plasma, a large amount of ozone, radicals, etc. can be generated more stably, and the cleaning and purifying action can be enhanced.
- the first electrode 10 is disposed in the gas storage unit 4, and the second electrode 11 is disposed in contact with the liquid 6 in the liquid storage unit 3.
- a discharge is generated between the first electrode 10 and the second electrode 11.
- plasma is generated in the gas region in the liquid 6 of the liquid container 3, and hydroxy radicals are generated from water contained in the liquid 6 and oxygen contained in the gas.
- a discharge can be generated between the first electrode 10 and the second electrode 11 without being significantly affected by the electric resistance of the liquid 6.
- the gas can be turned into plasma more reliably, and ozone and radicals can be generated in large quantities more stably.
- the plasma generator 1 is used as a cleaning and purifying device, since the liquid 6 contains impurities and the like, the electrical resistance value of the liquid 6 varies greatly.
- the influence of the electric resistance value of the liquid 6 is not so much affected for the above-described reason, so that variation in discharge can be suppressed and plasma can be generated stably. This makes it possible to obtain radicals and the like stably.
- the gas containing part 4 is made into a positive pressure by introduce
- ozone, hydroxy radicals, and the like are generated in the gas in the bubbles 16 (the gas in the vicinity of the gas-liquid interface in the liquid 6 of the liquid storage unit 3).
- a gas containing ozone, hydroxy radicals, or the like is diffused into the liquid 6 as fine bubbles 16.
- the fine bubbles 16 containing ozone and various radicals diffuse into the liquid 6, so that the ozone concentration of the liquid 6 is increased, and the bubbles 16 are adsorbed to the organic matter contained in the liquid 6. Thereby, organic matter, bacteria, and the like can be efficiently decomposed by ozone dissolved in the liquid 6 and various radicals contained in the adsorbed bubbles 16.
- a voltage is applied between the first electrode 10 and the second electrode 11 with the second electrode 11 grounded. Therefore, even if a user accidentally touches the liquid 6 or the second electrode 11, an electric shock of the user of the plasma generator 1 can be prevented.
- the plasma power supply unit 13 includes a voltage control unit that controls a voltage applied between the first electrode 10 and the second electrode 11, it is possible to stably generate a discharge. . That is, even if the electric resistance of the liquid 6 fluctuates, a stable discharge can be obtained by changing the voltage accordingly.
- the gas supply unit 9 has a gas type control unit that controls the type of gas, it is possible to adjust the amount of generation of ozone, hydroxy radicals, and the like. Moreover, if the gas supply part 9 has the function to supply the air in air
- FIG. 3 is an overall cross-sectional view schematically showing a plasma generating apparatus 1A according to the second embodiment.
- symbol is attached
- the deposit removing means 100A according to the second embodiment is different from the configuration of the deposit removing means 100 according to the first embodiment. Specifically, as shown in FIG. 3, the deposit removal means 100 ⁇ / b> A includes a support member 110 and a removal member 130, and does not include a drive member 120.
- the removal member 130 is supported by a support member 110 made of an elastic material.
- the removing member 130 is vibrated by the bubble 16 that has passed through the gas passage 5a while riding the gas flow, and removes the deposit A attached to the gas passage 5a by contacting the gas passage 5a.
- FIG. 4 is an overall cross-sectional view schematically showing a plasma generator 1B according to the third embodiment.
- symbol is attached
- the deposit removing means 100B according to the third embodiment is different from the deposit removing means 100 according to the first embodiment in the arrangement location. Specifically, as shown in FIG. 4, the deposit removing means 100 ⁇ / b> B is disposed in the gas storage unit 4.
- the deposit removing means 100 may include the support member 110, the drive member 120, and the removal member 130 as in the first embodiment, as in the second embodiment.
- the support member 110 and the removal member 130 may be provided.
- the clogging of the gas passage 5a can be prevented and an unstable discharge phenomenon can be prevented in the same manner as the operations and effects of the first and second embodiments.
- the space in the liquid accommodating portion 3 can be compared with the case where the deposit removing means 100B is disposed in the liquid accommodating portion 3. Will increase. For this reason, the cleaning space for the cleaning object (for example, shaver) in the liquid container 3 is increased, and the cleaning and purifying action can be further enhanced.
- the cleaning space for the cleaning object for example, shaver
- FIG. 5 is an overall cross-sectional view schematically showing a plasma generating apparatus 1C according to the fourth embodiment.
- symbol is attached
- the deposit removing means 100C according to the fourth embodiment is different in the configuration and arrangement of the deposit removing means 100 according to the first embodiment. Specifically, as shown in FIG. 5, the deposit removing means 100 ⁇ / b> C is disposed in the gas storage unit 4.
- This deposit removal means 100C includes a support member 110 and a removal member 130, and does not include a drive member 120.
- the support member 110 is made of an elastic material.
- the support member 110 includes a lower rotation part 111, a removal member placement part 112, and an upper pressing part 113.
- the lower rotating portion 111 is attached to the bottom surface 2b of the case member 2 so as to be rotatable.
- the removal member placement part 112 is connected to the lower rotation part 111, and the removal member 130 is placed (fixed).
- the upper pressing portion 113 is connected to the removal member placing portion 112 and is in contact with an elastic partition wall portion 5 b having a switch function that is elastically deformable provided in a part of the partition wall portion 5.
- the first electrode 10 is disposed in contact with the partition wall 5 in the gas storage unit 4.
- Such a deposit removing means 100C (removing member 130) always closes the gas passage 5a, and opens the gas passage 5a only when the plasma is converted into plasma by the plasma power supply unit 13.
- the removing member 130 always blocks the gas passage 5a.
- the elastic partition wall part 5b is pushed down by the contact of the cleaning object. Accordingly, the upper pressing portion 113 is pushed down, and the lower rotating portion 111 and the removing member placing portion 112 are rotated. And the removal member 130 mounted in the removal member mounting part 112 remove
- the plasma power supply unit 13 converts the gas into plasma, and the cleaning object is cleaned in the liquid storage unit 3.
- the clogging of the gas passage 5a can be prevented and an unstable discharge phenomenon can be prevented as in the operations and effects of the first to third embodiments.
- the deposit removing means 100C always closes the gas passage 5a and opens the gas passage 5a only when the gas is converted into plasma by the plasma power supply unit 13, thereby cleaning the cleaning material in the liquid storage unit 3.
- the deposit A attached to the gas passage 5a is always removed. For this reason, the amount of the deposit A attached to the gas passage 5a can always be kept small.
- FIG. 6 is an overall cross-sectional view schematically showing a plasma generator 1D according to the fifth embodiment.
- symbol is attached
- the deposit removing means 100D according to the fifth embodiment is different in the configuration and arrangement of the deposit removing means 100 according to the first embodiment. Specifically, as shown in FIG. 6, the deposit removal means 100 ⁇ / b> D is disposed in the gas storage unit 4. In addition to the support member 110 and the removal member 130, the attached matter removing unit 100D further includes a sensor 140 (attached matter detecting unit) that detects the amount of the attached matter A in the gas passage 5a.
- a sensor 140 attached matter detecting unit
- the sensor 140 is attached to the support member 110. This sensor 140 detects the pressure in the gas storage part 4, and when it detects that it is a predetermined pressure, operates the deposit removing means 100D (removing member 130) to deposit the deposit A attached to the gas passage 5a. To remove.
- the sensor 140 does not necessarily need to be attached to the support member 110, and may be provided in the gas storage unit 4 or the liquid storage unit 3.
- the sensor 140 may be provided in the gas storage unit 4, and the support member 110 and the removal member 130 may be provided in the liquid storage unit 3. Further, all of the support member 110, the removal member 130, and the sensor 140 may be provided in the liquid storage unit 3.
- the sensor 140 does not necessarily need to detect the pressure in the gas storage unit 4.
- a cleaning object for example, a shaver
- the removal member 130 may be operated by detecting that the plasma is converted into plasma.
- the gas passage 5a can be prevented from being clogged and an unstable discharge phenomenon can be prevented as in the case of the operations and effects of the first to fourth embodiments.
- the deposit removing means 100D (plasma generator 1D) further includes the sensor 140, so that the removing member 130 does not operate wastefully and adheres to the gas passage 5a only when the gas passage 5a is clogged. The attached deposit A can be removed.
- the deposit removing means 100D has been described as including the support member 110, the removing member 130, and the sensor 140.
- the present invention is not limited to this, and the first embodiment is not limited thereto.
- the driving member 120 may be further provided as in the embodiment.
- FIG. 7A is an overall cross-sectional view schematically showing a plasma generator 1E according to the sixth embodiment
- FIG. 7B is an enlarged view showing the vicinity of the gas passage 5a according to the sixth embodiment
- FIG. 7C is an enlarged view showing the vicinity of the gas passage 5a according to the sixth embodiment (during removal of the deposit A).
- symbol is attached
- the deposit removal means according to the sixth embodiment is different in the configuration and arrangement of the deposit removal means 100 according to the first embodiment.
- the deposit removing means is a partition wall 5 itself formed by an elastic body. Due to the change (for example, vibration or contraction) of the partition wall 5, the deposit A in the gas passage 5a is removed.
- the partition wall portion 5 when clogging occurs in the gas passage 5a (see FIG. 7B), the partition wall portion 5 is elastically deformed as the pressure in the gas storage portion 4 increases. As the partition wall portion 5 is elastically deformed, the deposit A attached to the gas passage 5a is removed (see FIG. 7C).
- the gas passage 5a can be prevented from being clogged and an unstable discharge phenomenon can be prevented as in the operations and effects of the first to fifth embodiments.
- the deposit removing means is the partition wall 5 itself formed by an elastic body, and the deposit A in the gas passage 5a is removed by the change (for example, vibration or contraction) of the partition wall 5, thereby removing the deposit.
- the means for example, vibration or contraction
- FIG. 8 is a perspective view showing a cleaning and purifying apparatus 40 according to the seventh embodiment
- FIG. 9 is a sectional view of the cleaning and purifying apparatus 40 according to the seventh embodiment
- FIG. It is A sectional drawing.
- the small electric device is an electric razor (small hair removal device), a washing and purifying device for washing a head portion of a so-called shaver.
- the cleaning and purifying device 40 cleans a head portion (a portion to be cleaned) 51 of an electric shaver 50 which is a kind of hair removal device.
- the cleaning and purifying device 40 includes a housing 41 having an opening 41a for inserting an electric shaver 50 with the head portion 51 facing downward, and a head portion 51 inserted into the housing 41 through the opening 41a. And a receiving tray 42 for receiving.
- the cleaning and purifying device 40 also includes a tank 43 that stores the liquid 6, an overflow portion 44 that communicates with the receiving tray 42, and a pump 45 that circulates and supplies the liquid 6 in the tank 43 to the liquid inlet. . Furthermore, a cartridge 46 having a filter 46 a for filtering the liquid, an on-off valve 47 for controlling the airtight state in the tank 43, and a circulation path for circulating the liquid 6 are provided.
- the circulation path has a pipe 30 (liquid introduction path) for introducing the liquid 6 stored in the tank 43 into the tray 42 and a path 31 (discharge path) for guiding the liquid discharged from the tray 42 to the cartridge 46.
- the circulation path includes a path 32 that guides the liquid 6 discharged from the overflow portion 44 to the cartridge 46, and a path 33 that guides the liquid 6 discharged from the cartridge 46 to the pump 45. Further, the circulation path includes a path 34 that guides the liquid 6 delivered from the pump 45 to the tank 43.
- an on-off valve 47 is connected to the tank 43 via an airtight path 35.
- the housing 41 has a stand portion 41b that comes into contact with the grip 52 of the electric razor 50 at the rear, and holds the electric razor 50 inserted from the opening 41a in the receiving tray 42.
- a contact member 41c for detecting that the electric razor 50 is attached to the cleaning and purifying device 40 is provided on the front surface of the stand portion 41b.
- the contact member 41 c detects attachment of the electric razor 50 by contact with a terminal 52 a provided on the back surface of the grip portion 52.
- the electric razor 50 is provided with a function of outputting various control signals and driving power.
- a fan 48 for drying the head part 51 after cleaning is accommodated above the front part of the housing 41.
- a fan ventilation window 41d On the front surface of the housing 41, a fan ventilation window 41d, an operation button 41e for executing a cleaning operation, a lamp 41f for displaying an operation state, and the like are provided.
- the rear surface side of the housing 41 is a mounting portion for mounting the tank 43, and has connection ports 41 g, 41 h, 41 i connected to the ports 43 a, 43 b, 43 c of the tank 43.
- the connection port 41g is connected to the piping 30, the connection port 41h is connected to the path 34, and the connection port 41i is connected to the airtight path 35.
- the tray 42 has a concave shape that follows the shape of the head portion 51, and a through hole 42b is formed in the bottom wall portion. And the plasma generator 1 is provided in the back side of the bottom wall part of the saucer 42 so that the liquid storage part 3 may connect with the internal space of the saucer 42 through this through-hole 42b.
- the plasma generator 1 is provided so that the liquid storage unit 3 communicates with the internal space of the tray 42, and the internal space of the tray 42 also functions as the liquid storage unit 3 of the plasma generator 1.
- the liquid 6 in the liquid storage unit 3 can be more smoothly discharged from the path 31 (discharge path) by forming a drainage groove or the like in the tray 42, for example.
- a heater 49 is provided on the back side of the bottom wall of the tray 42 (see FIG. 10). The heater 49 dries the head unit 51 in conjunction with the fan 48.
- An overflow part 44 is provided in front of the tray 42.
- the tray 42 and the overflow part 44 are integrally formed.
- the inlet of the overflow part 44 is connected to the tray 42 and the outlet is connected to the path 32.
- the path 32 reaches from the outlet of the overflow portion 44 to the cartridge 46 via a relay port 42a provided at the rear portion of the tray 42.
- the tank 43 has a discharge port 43a, an inflow port 43b, and a vent port 43c for opening an airtight state on the front surface, and liquid discharge from the discharge port 43a is controlled by opening and closing the vent port 43c. .
- the tank 43 is detachably attached to the rear surface side of the housing 41. When the tank 43 is attached to the housing 41, the discharge port 43 a is connected to the connection port 41 g, and the liquid stored in the tank 43 can be introduced from the pipe (liquid introduction path) 30 to the tray 42. ing.
- the inlet 43b is connected to the connection port 41h and is connected to the delivery port 45a of the pump 45 by the path 34
- the ventilation port 43c is connected to the connection port 41i and is connected to the on-off valve 47 by the airtight path 35.
- the cartridge 46 is a substantially box-shaped body in which the filter 46a is accommodated, and has an inlet 46b at the top and an outlet 46c at the front.
- the cartridge 46 is detachably provided on the lower rear side of the housing 41, and in the mounting body attached to the housing 41, the inflow port 46b is connected to the discharge port 41k by the path 31 (discharge path).
- the inflow port 46 b is connected to the outlet of the overflow portion 44 through the path 32.
- the outflow port 46 c is connected to the suction port 45 b of the pump 45 through the path 33.
- the liquid 6 is introduced from the tank 43 through the pipe (liquid introduction path) 30 into the receiving tray 42 and the liquid storage unit 3 of the plasma generator 1.
- the control unit 14 controls the gas supply unit 9 to make the pressure of the gas passage 5 a higher than the pressure of the liquid storage unit 3.
- the gas storage unit 4 is brought into a positive pressure state, and a gas flow from the gas storage unit 4 to the liquid storage unit 3 through the gas passage 5a is formed.
- the generated ozone and various radicals are sent out into the liquid stored in the liquid container 3 and the receiving tray 42 together with the gas flow described above.
- the growing bubble 16 is released into the liquid from the opening end 15 as the bubble 16 refined by the miniaturization means, and the fine bubble 16 released in the liquid diffuses to every corner of the liquid. That is, the generated cleaning liquid is supplied to the head unit 51.
- the organic matter or the like attached to the head unit 51 is decomposed by ozone or radicals dissolved in the liquid 6 or ozone or radicals contained in the bubbles 16.
- the plasma generator 1 according to the first embodiment is provided, but the plasma generators 1A to 1E according to any of the second to sixth embodiments are used.
- the same effect can be obtained. That is, according to the cleaning and purifying apparatus 40 using the plasma generator 1 (1A to 1E) of the present invention, the gas passage 5a is not clogged, and a stable discharge state can be maintained and radicals can be obtained stably. And a high cleaning effect can be obtained.
- the cleaning and purifying device 40 according to the seventh embodiment is not limited to the one shown in the seventh embodiment.
- the cleaning and purifying device for the electric toothbrush, the water purifying device, and the water containing the detergent are drained before draining.
- the present invention can also be applied to a purifying apparatus.
- the embodiment of the present invention can be modified as follows.
- the plasma generator 1 may be combined with any of the first to sixth embodiments.
- the liquid storage unit 3, the gas storage unit 4, and other detailed specifications can be changed as appropriate.
- the removal member 130 has been described as a needle, a wiper, or a brush. However, the removal member 130 is not limited to this, and may be any other member that can remove the deposit A attached to the gas passage 5a. Also good.
- partition part 5 in which the gas passage 5a was formed was demonstrated as what is formed with the ceramic member etc., it is not limited to this, For example, like a glass plate etc. which partition gas and liquid A fine hole (gas passage 5a) may be formed by using a member and performing photolithography and etching on the member.
- one gas passage 5a is formed in the partition wall 5, the present invention is not limited to this, and a plurality of gas passages 5a may be formed.
- the deposit removing means physically removes the deposit adhering to the gas passage. Therefore, clogging in the gas passage due to deposits can be reliably avoided, and unstable discharge can be prevented. Further, the gas can be reliably turned into plasma, and a large amount of ozone, radicals, and the like can be generated more stably, so that the cleaning and purifying action can be enhanced.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plasma Technology (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
プラズマ発生装置(1)は、液体収容部(3)と、気体収容部(4)と、気体通路(5a)を有し、液体収容部(3)と気体収容部(4)とを隔てる隔壁部(5)と、気体収容部(4)に配設された第1電極(10)と、液体収容部(3)の液体と接触するように配設された第2電極(11)と、気体通路(5a)を介して気体収容部(4)の気体を液体収容部(3)へ圧送させる態様で、酸素を含む気体を気体収容部(4)に供給する気体供給部(9)と、第1電極(10)と第2電極(11)との間に放電を発生させることにより、液体収容部(3)の液体内に圧送された気体をプラズマ化するプラズマ電源部と、気体通路(5a)の付着物(A)を物理的に除去する付着物除去手段(100)とを備える。
Description
本発明は、プラズマ発生装置及びこれを用いた洗浄浄化装置に関する。
従来、気泡を含む液中で放電を行うことにより、気泡にラジカル等を発生させ、液体を改質するようにした水中放電装置が知られている(例えば、特許文献1参照)。この水中放電装置では、放電容器内の液体に気体を導入する必要があるため、容器に小さな孔を空け、その孔を気体通路としている。
しかしながら、上述した従来の水中放電装置では、放電発生終了後に気体通路から液体が排出し切れないままで放置されると、水分が蒸発してカルシウム等の不純物(汚染物)が析出されて気体通路或いは気体通路近傍に付着する。このため、気体通路が目詰まりを起こし、安定した放電が得られなくなる可能性があった。
さらに、従来の水中放電装置では、液体に含まれるカルシウム等の不純物の成分によって、液体の電気抵抗値が大きく変動する。この変動により、電極間(第1電極と第2電極との間)に所定の電圧を印加しても、放電発生にばらつきが生じ、安定した放電を得ることが難しかった。
そこで、本発明は、放電発生終了後の気体通路の目詰まりを防止するとともに、不安定な放電をも防止できるプラズマ発生装置及びこれを用いた洗浄浄化装置の提供を目的とする。
本発明の第1の態様はプラズマ発生装置であって、水を含む液体を収容する液体収容部と、気体を収容する気体収容部と、前記気体収容部の気体を前記液体収容部へ導く気体通路を有し、前記液体収容部と前記気体収容部とを隔てる隔壁部と、前記気体収容部に配設された第1電極と、前記液体収容部の液体と接触するように配設された第2電極と、前記気体通路を介して前記気体収容部の気体を前記液体収容部へ圧送させる態様で、酸素を含む気体を前記気体収容部に供給する気体供給部と、前記第1電極と前記第2電極との間に所定の電圧を印加して前記第1電極と前記第2電極との間に放電を発生させることにより、前記液体収容部の液体内に圧送された気体をプラズマ化するプラズマ電源部と、前記気体通路の付着物を物理的に除去する付着物除去手段とを備えることを要旨とする。
前記付着物除去手段は、前記気体収容部内に配設されてもよい。
前記付着物除去手段は、前記気体通路を常時塞ぐとともに、前記プラズマ電源部により気体がプラズマ化される際にのみ前記気体通路を開放してもよい。
前記プラズマ発生装置は、前記気体通路の付着物の量を検知する付着物検知手段をさらに備えてもよい。
前記付着物除去手段は前記隔壁部であってもよく、前記隔壁部の変化により前記気体通路の付着物が物理的に除去されてもよい。
本発明の第2の態様は洗浄浄化装置であって、上記プラズマ発生装置を備えることを要旨とする。
本発明のプラズマ発生装置は、気体通路に付着した付着物を物理的に除去する付着物除去手段を備えている。例えば、付着物除去手段は、気体通路近傍や気体通路内に接触し、気体通路に付着した付着物を除去する。これにより、付着物が気体通路5aを詰まらせてしまうことを確実に回避できる。このため、気体通路の目詰まりを防止できるとともに、不安定な放電現象をも防止できる。従って、安定した放電が得られ、気体を確実にプラズマ化することができ、より安定してオゾンやラジカル等を大量に生成することができ、洗浄浄化作用を高めることが可能となる。
次に、本発明に係るプラズマ発生装置及びこれを用いた洗浄浄化装置の実施形態について、図面を参照しながら説明する。
なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれ得る。
[第1実施形態]
(プラズマ発生装置1の構成)
まず、第1実施形態に係るプラズマ発生装置1の構成について、図面を参照しながら説明する。図1(a)は、第1実施形態に係るプラズマ発生装置1を模式的に示す全体断面図であり、図1(b)及び図1(c)は、第1実施形態に係る気体通路5a近傍を示す拡大図である。
(プラズマ発生装置1の構成)
まず、第1実施形態に係るプラズマ発生装置1の構成について、図面を参照しながら説明する。図1(a)は、第1実施形態に係るプラズマ発生装置1を模式的に示す全体断面図であり、図1(b)及び図1(c)は、第1実施形態に係る気体通路5a近傍を示す拡大図である。
図1(a)に示すように、プラズマ発生装置1は、ケース部材2を備えている。ケース部材2の形状は、例えば円筒形状または角筒形状等とされるが、その形状には限定されない。ケース部材2の内側には、液体収容部3と気体収容部4を隔てる隔壁部5が設けられている。このケース部材2は、隔壁部5によって内部空間が上下に仕切られ、図1(a)の上方空間を液体収容部3とし、下方空間を気体収容部4としている。液体収容部3には、水を含む液体6が収容される。気体収容部4には、酸素を含む気体が収容される。
隔壁部5は、例えばセラミックス部材等で形成されており、気体収容部4の気体を液体収容部3へ導く気体通路5aを有している。この気体通路5aは、気体収容部4から液体収容部3へ気体を送り込むことができる大きさとされている。このため、気体通路5aは、出来るだけ大きい方が良い。しかし、気体通路5aの孔が大き過ぎると、液体収容部3に収容された液体6が気体収容部4へと流れ込んでしまう。そこで、気体の液体収容部3への導入と液体収容部3から気体収容部4への液体6の流入を防止することのできる大きさに気体通路5aを形成することが望ましい。
本実施形態では、気体通路5aの孔径を約1μm~10μm程度として、液体収容部3に収容された液体6が気体通路5aから気体収容部4へ漏れ出ることがないようにしている。
ケース部材2の側壁2aには、気体収容部4と外部との間を連通する気体導入口7が設けられている。この気体導入口7には、配管8(気体導入路)が挿通されている。そして、気体収容部4は、配管8を介してケース部材2の外部に設けられた気体供給部9と接続されている。本実施形態では、少なくとも酸素(O2)を含む気体が、気体供給部9から気体収容部4内に供給される。気体供給部9から供給された気体は、気体通路5aから液体収容部3の液体6内へ圧送される。
気体収容部4には、第1電極10が配設されている。一方、液体収容部3には、液体6と接触するように第2電極11が配設されている。これら第1電極10及び第2電極11は、互いに隔壁部5を間に挟んで気体収容部4と液体収容部3にそれぞれ配置された構造となっている。また、これら第1電極10及び第2電極11は、何れも隔壁部5及びケース部材2と非接触状態で配置されている。また、第1電極10及び第2電極11は、何れも略球体とされている。第2電極11は、液体6と接触するように配置されると共にグランドにアースされている。なお、第1電極10及び第2電極11の形状は、略球体に限定されない。
また、第1電極10及び第2電極11は、それぞれリード線12を介してプラズマ電源部13に電気的に接続されている。プラズマ電源部13は、第1電極10と第2電極11との間に所定の電圧を印加するようになっている。この電圧印加により、第1電極10と第2電極11との間には、放電が発生する。そして、この放電によって気体通路5aより液体収容部3の液体6内に圧送された気体がプラズマ化される。
このようなプラズマ発生装置1は、水分が蒸発してカルシウム等の不純物(汚染物)が析出されて気体通路5aに付着した付着物Aを物理的に除去する付着物除去手段100をさらに備えている。付着物除去手段100は、液体収容部3内に配設されている。具体的には、付着物除去手段100は、支持部材110と、駆動部材120と、除去部材130とを備えている。
支持部材110は、隔壁部5に固定されており、駆動部材120を支持している。駆動部材120は、除去部材130を上下方向に移動可能に支持し、例えば、シリンダー等によって構成されている。除去部材130は、先端が鋭利状(針状)に形成されている。この除去部材130は、図1(b)に示すように、駆動部材120の駆動により上下方向に移動する。すなわち、除去部材130は、上方から下方に移動することによって、気体通路5a内に入り込んで気体通路5aに接触する。これにより、除去部材130は、気体通路5aに付着した付着物Aを除去し、気体通路5aの目詰まりを防止できる。
ここで、除去部材130は、必ずしも上下方向に移動するものに限らず、例えば、図1(c)に示すように、気体通路5a近傍において隔壁部5上を摺動する構成(例えば、弾性体からなるワイパーやブラシ)であってもよい。これにより、除去部材130は、気体通路5a近傍に付着した付着物Aを除去し、気体通路5aの目詰まりが生じ難くなる。
(プラズマ発生装置1の動作)
次に、上述したプラズマ発生装置1の動作(ヒドロキシラジカルの生成方法)について、図面を参照しながら説明する。図2は、第1実施形態に係るプラズマ発生装置1の動作を説明するための一状態を模式的に示す部分拡大断面図である。
次に、上述したプラズマ発生装置1の動作(ヒドロキシラジカルの生成方法)について、図面を参照しながら説明する。図2は、第1実施形態に係るプラズマ発生装置1の動作を説明するための一状態を模式的に示す部分拡大断面図である。
先ず、気体通路5aを介して気体収容部4の気体を液体収容部3へ圧送させる態様で、酸素を含む気体を気体収容部4に供給する(気体を供給する工程)。
本実施形態では、空気をベースとして酸素を含有した気体(流量約0.01L/min~1.0L/min(10cc/min~1000cc/min))が、気体供給部9から配管8を介して気体収容部4に送り込まれる。このとき、気体を送り込む圧力は、約0.0098MPa~~0.05MPa程度とされる。
このように、気体供給部9は、大気中の気体(空気)を供給する機能を備えている。なお、気体の供給流量は、気体供給部9に設けた図示せぬ流量制御部によって制御されている。また、気体供給部9に、大気中の気体だけでなく他の種類の気体(例えば、酸素濃度が異なる気体)を供給できる機能を持たせるようにしてもよい。更には、この気体供給部9に、様々な種類の気体の中から1種類もしくは複数種類の気体を選択的に供給できるように気種制御部を設けてもよい。
そして、気体が気体収容部4に供給されることで、気体収容部4の圧力は、大気圧にこの圧力が加わって約0.11MPa~0.05MPa程度となり、陽圧状態になる。このように、気体収容部4を陽圧とすることで、気体収容部4から気体通路5aを経て液体収容部3へ向う気体の流れが形成される。
そして、上述したように酸素を含有した気体を供給することで、図2に示すように、気体通路5aの液体収容部3側において酸素を含む微細な気泡16が成長する(気泡を成長させる工程)。
次に、プラズマ電源部13によって、第1電極10と第2電極11との間に所定の電圧が印加される。なお、印加する電圧としては、大気圧の下においてグロー放電を可能にする電圧(パワー:約10W~100W程度)が好ましい。このとき、プラズマ電源部13に電圧制御部を設け、第1電極10と第2電極11との間に印加する電圧を制御することが好ましい。
そして、第1電極10と第2電極11とに所定の電圧が印加されることで、第1電極10と第2電極11との間には、大気圧以上の圧力の気体雰囲気の下で放電が生じる。なお、大気圧のもとでプラズマを生成する技術については、例えば、文献A(岡崎幸子、「大気圧グロー放電プラズマとその応用」、レビュー講演:20th JSPF AnnualMeeting)に報告されている。
そして、この放電によって、液体収容部3の液体6中における気体の領域においてプラズマが生成され、液体6に含まれる水や気体に含まれる酸素によってオゾンやヒドロキシラジカル等が生成される(ヒドロキシラジカルを生成する工程)。
本実施形態では、気泡16内の気体(液体収容部3の液体6中における気液境界面近傍の気体)に電位差を生じさせてプラズマを生成している。このように、ヒドロキシラジカルが生成され易い気液境界面の近傍に電位差を生じさせることで、より多くのオゾンやヒドロキシラジカル等を生成できるようになる。なお、本実施形態では、気体通路5aの液体6側の気泡16だけでなく、液体収容部3へ送り出された気泡16内でもオゾンやヒドロキシラジカル等を生成することができる。
こうして生成されたオゾンやヒドロキシラジカル等は、上述した気泡16の流れに伴って、液体収容部3へ送り出されることになる。
本実施形態では、液体収容部3内の液体6の流れにより、ヒドロキシラジカル等を含んだ気泡16を隔壁部5からせん断して液体6中に放出させている(気泡放出工程)。
具体的には、気泡16が成長する液体収容部3では、液体6が導入されることによって液体6の流れ(図2の矢印17参照)が生じている。図2に示すように、矢印17方向に流れる液体6が、成長する気泡16に当たると、液体6の流れが気泡16にせん断力として作用し、気泡16は気体通路5aから液体6中へ解き放たれる。
液体6中に解き放たれた気泡16は、微細な気泡であるため、大気中に直ぐに放出されることなく液体6の隅々にまで拡散する。そして、拡散した微細な気泡16の一部は、液体6中に溶解する。このとき、気泡16に含まれているオゾン等が液体6中に溶解することで、液体6のオゾン濃度は一気に上昇することになる。
また、文献B(高橋正好、「マイクロバブルとナノバブルによる水環境の改善」、アクアネット、2004.6)によれば、通常、オゾンや各種のラジカルを含んだ微細な気泡16はマイナスに帯電していることが多いことが報告されている。そのため、気泡16の一部は、液体6中に含まれる有機物、油脂物、染料、たんぱく質、細菌等に吸着する。液体6中の有機物等は、液体6に溶解したオゾン或いは各種のラジカルや有機物等に吸着した気泡16に含まれるオゾンあるいは各種のラジカル等によって分解される。
例えば、ヒドロキシラジカル等は、約120kcal/mol程度の比較的大きなエネルギーを有している。このエネルギーは、窒素原子と窒素原子との二重結合(N=N)、炭素原子と炭素原子との二重結合(C=C)或いは炭素原子と窒素原子との二重結合(C=N)等の結合エネルギー(~100kcal/mol)を上回る。そのため、窒素や炭素等の結合からなる有機物等は、このヒドロキシラジカル等によって容易にその結合が切断されて分解されることになる。このような有機物等の分解に寄与するオゾンやヒドロキシラジカル等は、塩素等のような残留性がなく時間とともに消滅するため、環境に配慮した物質でもある。
(作用・効果)
以上説明した第1実施形態では、付着物除去手段100は、気体通路5aに付着した付着物Aを除去する。具体的には、除去部材130は、気体通路近傍や気体通路内に接触し、気体通路5a或いは気体通路5a近傍に付着した付着物Aを物理的に除去する。これにより、付着物Aが気体通路5aを詰まらせてしまうことを確実に回避できる。このため、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。従って、安定した放電が得られ、気体を確実にプラズマ化することができ、より安定してオゾンやラジカル等を大量に生成することができ、洗浄浄化作用を高めることが可能となる。
以上説明した第1実施形態では、付着物除去手段100は、気体通路5aに付着した付着物Aを除去する。具体的には、除去部材130は、気体通路近傍や気体通路内に接触し、気体通路5a或いは気体通路5a近傍に付着した付着物Aを物理的に除去する。これにより、付着物Aが気体通路5aを詰まらせてしまうことを確実に回避できる。このため、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。従って、安定した放電が得られ、気体を確実にプラズマ化することができ、より安定してオゾンやラジカル等を大量に生成することができ、洗浄浄化作用を高めることが可能となる。
また、第1実施形態では、第1電極10が気体収容部4に配設され、第2電極11が液体収容部3中の液体6と接触するように配設される。そして、これら第1電極10と第2電極11と間に放電を発生させている。これにより、液体収容部3の液体6内における気体の領域において、プラズマが生成され、液体6に含まれる水及び気体に含まれる酸素からヒドロキシラジカルが生成される。
このような構成によれば、液体6の電気抵抗による影響をそれほど受けることなく第1電極10と第2電極11との間に放電を生じさせることができる。この結果、気体をより確実にプラズマ化することができ、より安定してオゾンやラジカル等を大量に生成することができる。このプラズマ発生装置1を洗浄浄化装置として使用した場合の液体6には、水に不純物等が含まれるため、液体6の電気抵抗値が大きく変動する。しかし、第1実施形態のプラズマ発生装置1では、上述した理由により液体6の電気抵抗値による影響をそれほど受けないため、放電のばらつきが抑えられ、安定してプラズマを発生させることができる。これにより、ラジカル等を安定的に得ることが可能となる。
また、第1実施形態では、気体収容部4に酸素を含む気体を導入することで、気体収容部4を陽圧にし、気体収容部4から気体通路5aを経て液体収容部3へ向う気体の流れを形成している。そして、この気体の流れに乗って気体通路5aの液体6に側において成長する気泡16内にオゾンやヒドロキシラジカル等が生成されるようにしている。
すなわち、第1実施形態では、気泡16内の気体(液体収容部3の液体6中における気液境界面近傍の気体)中でオゾンやヒドロキシラジカル等が生成されるようにしている。そして、オゾンやヒドロキシラジカル等を含んだ気体が微細な気泡16として液体6中に拡散されるようにしている。これにより、オゾンや各種のラジカルを発生させた後、これらが消滅する前に極めて短時間で効率的にそのオゾンや各種のラジカルを液体6中に送り込むことができるようになる。
そして、オゾンや各種のラジカルを含んだ微細な気泡16が液体6中に拡散することによって、液体6のオゾン濃度が高められ、液体6中に含まれる有機物等に気泡16が吸着する。これにより、液体6中に溶解したオゾンや吸着した気泡16に含まれる各種のラジカルによって、有機物や細菌等を効率的に分解することができる。
また、第1実施形態では、第2電極11をアースした状態で第1電極10と第2電極11と間に電圧を印加するようにしている。そのため、万一、使用者等が誤って液体6や第2電極11に触れてしまった場合でも、このプラズマ発生装置1の使用者の感電を防止することができる。
また、第1実施形態では、プラズマ電源部13が第1電極10と第2電極11と間に印加する電圧を制御する電圧制御部を備えていれば、安定して放電を発生させることができる。つまり、液体6の電気抵抗が変動してもそれに応じて電圧を変化させることで、安定した放電が得られるようになる。
また、第1実施形態では、気体供給部9が、気体の種類を制御する気種制御部を有していれば、オゾンやヒドロキシラジカル等の生成量等の調整を行うことが可能となる。また、気体供給部9が大気中の空気を供給する機能を有していれば、より簡便に気体を供給することができる。さらに、気体の供給流量を気体供給部9に設けた図示せぬ流量制御部によって制御するようにすれば、より安定的にプラズマを生成することができる。
[第2実施形態]
次に、第2実施形態に係るプラズマ発生装置1Aについて、図面を参照しながら説明する。図3は、第2実施形態に係るプラズマ発生装置1Aを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
次に、第2実施形態に係るプラズマ発生装置1Aについて、図面を参照しながら説明する。図3は、第2実施形態に係るプラズマ発生装置1Aを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
第2実施形態に係る付着物除去手段100Aは、第1実施形態に係る付着物除去手段100の構成と異なる。具体的には、図3に示すように、付着物除去手段100Aには、支持部材110と、除去部材130とを備えており、駆動部材120を備えていない。
除去部材130は、弾性材からなる支持部材110によって支持されている。この除去部材130は、気体の流れに乗って気体通路5aを通過した気泡16によって振動し、気体通路5aに接触することによって、気体通路5aに付着した付着物Aを除去する。
このような第2実施形態では、第1実施形態の作用・効果と同様に、付着物Aが気体通路5aを詰まらせてしまうことを確実に回避できる。このため、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。
[第3実施形態]
次に、第3実施形態に係るプラズマ発生装置1Bについて、図面を参照しながら説明する。図4は、第3実施形態に係るプラズマ発生装置1Bを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
次に、第3実施形態に係るプラズマ発生装置1Bについて、図面を参照しながら説明する。図4は、第3実施形態に係るプラズマ発生装置1Bを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
第3実施形態に係る付着物除去手段100Bは、第1実施形態に係る付着物除去手段100と配置箇所が異なる。具体的には、図4に示すように、付着物除去手段100Bは、気体収容部4内に配設される。
この場合であっても、付着物除去手段100は、第1実施形態のように、支持部材110と、駆動部材120と、除去部材130とを備えていてもよく、第2実施形態のように、支持部材110と、除去部材130とを備えていてもよい。
このような第3実施形態では、第1,第2実施形態の作用・効果と同様に、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。
また、付着物除去手段100Bが気体収容部4内に配設されることによって、付着物除去手段100Bが液体収容部3内に配設される場合と比較して、液体収容部3内のスペースが増大する。このため、液体収容部3内で洗浄物(例えば、シェーバー)を洗浄スペースが増大し、洗浄浄化作用をより高めることが可能となる。
[第4実施形態]
次に、第4実施形態に係るプラズマ発生装置1Cについて、図面を参照しながら説明する。図5は、第4実施形態に係るプラズマ発生装置1Cを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
次に、第4実施形態に係るプラズマ発生装置1Cについて、図面を参照しながら説明する。図5は、第4実施形態に係るプラズマ発生装置1Cを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
第4実施形態に係る付着物除去手段100Cは、第1実施形態に係る付着物除去手段100の構成及び配置箇所が異なる。具体的には、図5に示すように、付着物除去手段100Cは、気体収容部4内に配設される。この付着物除去手段100Cは、支持部材110と、除去部材130とを備えており、駆動部材120を備えていない。
支持部材110は、弾性材によって形成されている。支持部材110は、下側回動部111と、除去部材載置部112と、上側押圧部113とを備えている。下側回動部111は、ケース部材2の底面2bに回動可能に取り付けられている。除去部材載置部112は、下側回動部111に連結され、除去部材130が載置(固定)されている。上側押圧部113は、除去部材載置部112に連結され、隔壁部5の一部に設けられた弾性変形可能なスイッチ機能を有する弾性隔壁部5bに接触している。なお、第4実施形態では、第1電極10は、気体収容部4内において隔壁部5に接触した状態で配設される。
このような付着物除去手段100C(除去部材130)は、気体通路5aを常時塞ぐとともに、プラズマ電源部13により気体がプラズマ化される際にのみ気体通路5aを開放する。
具体的には、液体収容部3内に洗浄物(例えば、シェーバー)が投入されていないと、除去部材130が気体通路5aを常時塞いでいる。一方で、液体収容部3内に洗浄物が投入されると、洗浄物が当接することにより弾性隔壁部5bが押し下げられる。これに伴い、上側押圧部113が押し下げられ、下側回動部111及び除去部材載置部112が回動する。そして、除去部材載置部112に載置される除去部材130が気体通路5aから外れて、気体通路5aが開放される。この気体通路5aが開放されているときに、プラズマ電源部13により気体がプラズマ化され、液体収容部3内で洗浄物が洗浄されることとなる。
このような第4実施形態では、第1~第3実施形態の作用・効果と同様に、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。
また、付着物除去手段100Cは、気体通路5aを常時塞ぐとともに、プラズマ電源部13により気体がプラズマ化される際にのみ気体通路5aを開放することによって、液体収容部3内で洗浄物が洗浄されるときに、必ず気体通路5aに付着した付着物Aが除去される。このため、気体通路5aに付着した付着物Aの量が常に少ない状態で維持することができる。
[第5実施形態]
次に、第5実施形態に係るプラズマ発生装置1Dについて、図面を参照しながら説明する。図6は、第5実施形態に係るプラズマ発生装置1Dを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
次に、第5実施形態に係るプラズマ発生装置1Dについて、図面を参照しながら説明する。図6は、第5実施形態に係るプラズマ発生装置1Dを模式的に示す全体断面図である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
第5実施形態に係る付着物除去手段100Dは、第1実施形態に係る付着物除去手段100の構成及び配置箇所が異なる。具体的には、図6に示すように、付着物除去手段100Dは、気体収容部4内に配設される。この付着物除去手段100Dは、支持部材110と除去部材130とに加えて、気体通路5aの付着物Aの量を検知するセンサ140(付着物検知手段)をさらに備えている。
センサ140は、支持部材110に取り付けられている。このセンサ140は、気体収容部4内の圧力を検知し、所定の圧力であると検知した場合には付着物除去手段100D(除去部材130)を作動させて気体通路5aに付着した付着物Aを除去させる。
ここで、センサ140は、必ずしも支持部材110に取り付けられている必要はなく、気体収容部4内又は液体収容部3内に設けられていてればよい。例えば、センサ140のみが気体収容部4内に設けられ、支持部材110及び除去部材130が液体収容部3内に設けられていてもよい。また、支持部材110、除去部材130及びセンサ140の全てが液体収容部3内に設けられていてもよい。
また、センサ140は、必ずしも気体収容部4内の圧力を検知する必要はなく、例えば、液体収容部3内に洗浄物(例えば、シェーバー)が投入されたこと(すなわち、プラズマ電源部13により気体がプラズマ化されること)を検知して除去部材130を作動させるものであってもよい。
このような第5実施形態では、第1~第4実施形態の作用・効果と同様に、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。
また、付着物除去手段100D(プラズマ発生装置1D)は、センサ140をさらに備えていることによって、除去部材130が無駄に作動することなく、気体通路5aの目詰まり時のみ、気体通路5aに付着した付着物Aを除去することができる。
なお、第5実施形態では、付着物除去手段100Dは、支持部材110と、除去部材130と、センサ140とを備えているものとして説明したが、これに限定されるものではなく、第1実施形態のように、駆動部材120をさらに備えていてもよいことは勿論である。
[第6実施形態]
次に、第6実施形態に係るプラズマ発生装置1Eについて、図面を参照しながら説明する。図7(a)は、第6実施形態に係るプラズマ発生装置1Eを模式的に示す全体断面図であり、図7(b)は、第6実施形態に係る気体通路5a近傍を示す拡大図(付着物A除去前)であり、図7(c)は、第6実施形態に係る気体通路5a近傍を示す拡大図(付着物A除去中)である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
次に、第6実施形態に係るプラズマ発生装置1Eについて、図面を参照しながら説明する。図7(a)は、第6実施形態に係るプラズマ発生装置1Eを模式的に示す全体断面図であり、図7(b)は、第6実施形態に係る気体通路5a近傍を示す拡大図(付着物A除去前)であり、図7(c)は、第6実施形態に係る気体通路5a近傍を示す拡大図(付着物A除去中)である。なお、上述した第1実施形態に係るプラズマ発生装置1と同一部分には同一の符号を付して、相違する部分を主として説明する。
第6実施形態に係る付着物除去手段は、第1実施形態に係る付着物除去手段100の構成及び配置箇所が異なる。具体的には、図7に示すように、付着物除去手段は、弾性体によって形成される隔壁部5自体である。この隔壁部5の変化(例えば、振動又は収縮)により気体通路5aの付着物Aが除去される。
具体的には、気体通路5aに目詰まりが生じる(図7(b)参照)と、気体収容部4内の圧力が上昇することに伴い、隔壁部5が弾性変形する。この隔壁部5が弾性変形することに伴い、気体通路5aに付着した付着物Aが除去される(図7(c)参照)。
このような第6実施形態では、第1~第5実施形態の作用・効果と同様に、気体通路5aの目詰まりを防止できるとともに、不安定な放電現象をも防止できる。
また、付着物除去手段が弾性体によって形成される隔壁部5自体であり、隔壁部5の変化(例えば、振動又は収縮)により気体通路5aの付着物Aが除去されることによって、付着物除去手段を別部材として設ける必要がなくなる。このため、別部材として付着物除去手段を設けるスペースを確保することなく、省スペース化、軽量化及び低コスト化を実現することができる。
[第7実施形態]
次に、上述した第1実施形態に係るプラズマ発生装置1を用いた小型電機機器の一例について、図面を参照しながら説明する。図8は、第7実施形態に係る洗浄浄化装置40を示す斜視図であり、図9は、第7実施形態に係る洗浄浄化装置40の断面図であり、図10は、図9のA-A断面図である。なお、第7実施形態では、小型電機機器は、電気かみそり(小形除毛装置)、いわゆるシェーバーのヘッド部を洗浄する洗浄浄化装置である。
次に、上述した第1実施形態に係るプラズマ発生装置1を用いた小型電機機器の一例について、図面を参照しながら説明する。図8は、第7実施形態に係る洗浄浄化装置40を示す斜視図であり、図9は、第7実施形態に係る洗浄浄化装置40の断面図であり、図10は、図9のA-A断面図である。なお、第7実施形態では、小型電機機器は、電気かみそり(小形除毛装置)、いわゆるシェーバーのヘッド部を洗浄する洗浄浄化装置である。
(洗浄浄化装置40の構成)
図8~図10に示すように、洗浄浄化装置40は、除毛装置の一種である電気かみそり50のヘッド部(被洗浄処理対象部)51を洗浄するものである。具体的には、洗浄浄化装置40は、ヘッド部51を下向きにした電気かみそり50を挿入するための開口41aを有した筐体41と、開口41aを通じて筐体41内に挿入されたヘッド部51を受容する受け皿42とを備えている。
図8~図10に示すように、洗浄浄化装置40は、除毛装置の一種である電気かみそり50のヘッド部(被洗浄処理対象部)51を洗浄するものである。具体的には、洗浄浄化装置40は、ヘッド部51を下向きにした電気かみそり50を挿入するための開口41aを有した筐体41と、開口41aを通じて筐体41内に挿入されたヘッド部51を受容する受け皿42とを備えている。
また、洗浄浄化装置40は、液体6を貯留するタンク43と、受け皿42に連通されたオーバーフロー部44と、タンク43内の液体6を液体導入口に循環供給するポンプ45と、を備えている。さらに、液体を濾過するフィルタ46aを有したカートリッジ46と、タンク43内の気密状態を制御するための開閉弁47と、液体6を循環するための循環経路と、を備えている。
循環経路は、タンク43に貯留された液体6を受け皿42に導入する配管30(液体導入路)と、受け皿42から排出される液体をカートリッジ46に導く経路31(排出路)を有している。また、循環経路は、オーバーフロー部44から排出される液体6をカートリッジ46に導く経路32と、カートリッジ46から排出された液体6をポンプ45に導く経路33とを有している。更に、循環経路は、ポンプ45から送出される液体6をタンク43に導く経路34と、で構成されている。また、タンク43には、気密経路35を介して開閉弁47が接続されている。以下、各構成部品について説明する。
筐体41は、後部に電気かみそり50の把持部52と当接するスタンド部41bを有し、開口41aから挿入される電気かみそり50を受け皿42に保持する。スタンド部41bの前面には、図8に示すように、洗浄浄化装置40に電気かみそり50が装着されたことを検知する接点部材41cが設けられている。接点部材41cは、把持部52の背面に設けられた端子52aとの接触により電気かみそり50の装着を検知する。このような検知機能に併せて、電気かみそり50に、各種制御信号や駆動電力を出力する機能を持たせている。
筐体41の前部上方には、洗浄後にヘッド部51を乾燥させるためのファン48を収容している。筐体41の前面には、ファン用通気窓41dや、洗浄動作を実行するための動作ボタン41e、動作状態を表示するランプ41f等が設けられている。筐体41の後面側は、タンク43を着装する着装部となっており、タンク43の各口43a、43b、43cと連結される連結口41g、41h、41iを有している。連結口41gは、配管30と繋がっており、連結口41hは経路34と繋がっており、連結口41iは気密経路35と繋がっている。
受け皿42は、ヘッド部51の形状に沿うような凹形状とされており、底壁部には貫通孔42bが形成されている。そして、プラズマ発生装置1は、この貫通孔42bを介して液体収容部3が受け皿42の内部空間と連通するようにして、該受け皿42の底壁部背面側に設けられている。
この例では、液体収容部3が受け皿42の内部空間と連通するようにプラズマ発生装置1を設け、受け皿42の内部空間もプラズマ発生装置1の液体収容部3として機能する。なお、受け皿42に例えば排水溝等を形成することで、液体収容部3の液体6をよりスムーズに経路31(排出路)から排出できるようにするのが好ましい。
また、受け皿42の底部壁背面側には、ヒータ49が設けられている(図10参照)。このヒータ49は、ファン48と連動してヘッド部51の乾燥を行う。
受け皿42の前方には、オーバーフロー部44が設けられている。受け皿42とオーバーフロー部44は、一体形成されている。オーバーフロー部44の入口は、受け皿42と繋がっており、その出口は経路32と繋がっている。経路32は、オーバーフロー部44の出口から受け皿42の後部に設けられた中継口42aを介してカートリッジ46に至る。
タンク43は、吐出口43aおよび流入口43bと、気密状態を開放するための通気口43cとを前面に有しており、通気口43cの開閉により吐出口43aからの液体吐出が制御されている。タンク43は、筐体41の後面側に着脱自在に取り付けられている。そして、タンク43は、筐体41への装着状態では、吐出口43aが連結口41gに連結され、タンク43に貯留された液体を配管(液体導入路)30から受け皿42に導入できるようになっている。また、流入口43bが、連結口41hに連結されて経路34によりポンプ45の送出口45aと繋がり、通気口43cが、連結口41iに連結されて気密経路35により開閉弁47と繋がることとなる。
カートリッジ46は、フィルタ46aを内部に収容した略箱状体であり、上部に流入口46bを有し、前部に流出口46cを有している。このカートリッジ46は、筐体41の下部後方に着脱自在に設けられており、筐体41への装着状体では、流入口46bが、経路31(排出路)により排出口41kと繋がっている。また、流入口46bは、経路32によりオーバーフロー部44の出口と繋がっている。そして、流出口46cは、経路33によりポンプ45の吸入口45bと繋がっている。
(洗浄浄化装置40の動作)
次に、洗浄浄化装置40の動作について説明する。先ず、タンク43から配管(液体導入路)30を介して受け皿42およびプラズマ発生装置1の液体収容部3内に液体6を導入する。
次に、洗浄浄化装置40の動作について説明する。先ず、タンク43から配管(液体導入路)30を介して受け皿42およびプラズマ発生装置1の液体収容部3内に液体6を導入する。
そして、空気をベースとして酸素を含有した所定流量の気体が、気体供給部9から配管8を介して気体収容部4内に送り込まれる。第1実施形態のプラズマ発生装置1を使用した場合には、制御部14が気体供給部9を制御して、気体通路5aの圧力を液体収容部3の圧力よりも高圧にする。これらにより、気体収容部4が陽圧状態とされ、その気体収容部4から気体通路5aを経て液体収容部3へ向う気体の流れが形成される。
次に、第1電極10と第2電極11との間に所定の電圧を印加することで、第1電極10と第2電極11との間において放電が生じる。この放電によって、液体収容部3の液体6中における気体の領域においてプラズマが生成され、液体6に含まれる水や気体に含まれる酸素によってオゾンやヒドロキシラジカル等が生成される。
そして、生成されたオゾンや各種のラジカルは、上述した気体の流れと共に液体収容部3及び受け皿42内に貯留された液体中に送り出されることとなる。このとき、成長する気泡16は、微細化手段によって微細化された気泡16として開口端15から液体中へ解き放たれ、液体中に解き放たれた微細な気泡16は液体の隅々にまで拡散する。すなわち、生成された洗浄液は、ヘッド部51に供給されることとなる。そして、液体6に溶解したオゾン或いはラジカルや、気泡16に含まれるオゾンあるいはラジカル等によって、ヘッド部51に付着した有機物等が分解される。
なお、第7実施形態に係る洗浄浄化装置40では、第1実施形態に係るプラズマ発生装置1が設けられているが、第2~第6実施形態の何れに係るプラズマ発生装置1A~1Eを使用しても同様の効果を得ることができる。つまり、本発明のプラズマ発生装置1(1A~1E)を使用した洗浄浄化装置40によれば、気体通路5aに目詰まりが無く、安定した放電状態を維持してラジカルを安定して得ることができ、高い洗浄効果が得られる。
ここで、第7実施形態に係る洗浄浄化装置40は、第7実施形態で示したものに限らず、例えば、電動歯ブラシの洗浄浄化装置や浄水装置、洗剤等が含まれた水を排水前に浄化する装置等にも適用できることは勿論である。
[その他の実施形態]
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなる。
上述したように、本発明の実施形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなる。
例えば、本発明の実施形態は、次のように変更することができる。具体的には、プラズマ発生装置1は、第1~第6実施形態の何れかが組み合わされていてもよい。なお、液体収容部3や気体収容部4、その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能であることは勿論である。
また、除去部材130としては、針やワイパー、ブラシであるものとして説明したが、これに限定されるものではなく、気体通路5aに付着した付着物Aを除去できればよく、その他の部材であってもよい。
また、気体通路5aが形成された隔壁部5は、セラミックス部材等で形成されているものとして説明したが、これに限定されるものではなく、例えば、気体と液体を隔壁するガラス板等のような部材を用い、この部材に写真製版とエッチングを施すことによって微細孔(気体通路5a)を形成したものであってもよい。
また、隔壁部5には、1つの気体通路5aが形成されているものとして説明したが、これに限定されるものではなく、複数の気体通路5aが形成されていてもよい。
特願2011-156507号(出願日:2011年7月15日)の全内容は、ここに援用される。
以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではない。本発明は種々の変形及び改良が可能であり、ここでは記載していない様々な実施の形態などを含む。本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。
本発明では、付着物除去手段が気体通路に付着した付着物を物理的に除去する。従って、付着物による気体通路内の目詰まりを確実に回避でき、不安定な放電を防止できる。さらに、気体を確実にプラズマ化することができ、より安定してオゾンやラジカル等を大量に生成することができるので、洗浄浄化作用を高めることが可能となる。
Claims (6)
- 水を含む液体を収容する液体収容部と、
気体を収容する気体収容部と、
前記気体収容部の気体を前記液体収容部へ導く気体通路を有し、前記液体収容部と前記気体収容部とを隔てる隔壁部と、
前記気体収容部に配設された第1電極と、
前記液体収容部の液体と接触するように配設された第2電極と、
前記気体通路を介して前記気体収容部の気体を前記液体収容部へ圧送させる態様で、酸素を含む気体を前記気体収容部に供給する気体供給部と、
前記第1電極と前記第2電極との間に所定の電圧を印加して前記第1電極と前記第2電極との間に放電を発生させることにより、前記液体収容部の液体内に圧送された気体をプラズマ化するプラズマ電源部と、
前記気体通路の付着物を物理的に除去する付着物除去手段と
を備えることを特徴とするプラズマ発生装置。 - 請求項1に記載のプラズマ発生装置であって、
前記付着物除去手段は、前記気体収容部内に配設されることを特徴とするプラズマ発生装置。 - 請求項1又は請求項2に記載のプラズマ発生装置であって、
前記付着物除去手段は、前記気体通路を常時塞ぐとともに、前記プラズマ電源部により気体がプラズマ化される際にのみ前記気体通路を開放することを特徴とするプラズマ発生装置。 - 請求項1乃至請求項3の何れかに記載のプラズマ発生装置であって、
前記気体通路の付着物の量を検知する付着物検知手段をさらに備えることを特徴とするプラズマ発生装置。 - 請求項1に記載のプラズマ発生装置であって、
前記付着物除去手段は、前記隔壁部であり、
前記隔壁部の変化により前記気体通路の付着物が物理的に除去されることを特徴とするプラズマ発生装置。 - 請求項1乃至請求項5の何れかに記載のプラズマ発生装置を備えることを特徴とする洗浄浄化装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-156507 | 2011-07-15 | ||
JP2011156507A JP2013025880A (ja) | 2011-07-15 | 2011-07-15 | プラズマ発生装置及びこれを用いた洗浄浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013011727A1 true WO2013011727A1 (ja) | 2013-01-24 |
Family
ID=47557920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060702 WO2013011727A1 (ja) | 2011-07-15 | 2012-04-20 | プラズマ発生装置及びこれを用いた洗浄浄化装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013025880A (ja) |
WO (1) | WO2013011727A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180247736A1 (en) * | 2015-11-10 | 2018-08-30 | Nv Bekaert Sa | Electric power transmission cables |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015181945A1 (ja) * | 2014-05-30 | 2015-12-03 | 富士機械製造株式会社 | プラズマ照射方法、およびプラズマ照射装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07980A (ja) * | 1993-06-16 | 1995-01-06 | Fuji Electric Co Ltd | 海水のオゾン処理方法と処理装置 |
JPH0748114A (ja) * | 1993-08-06 | 1995-02-21 | Kawasaki Steel Corp | シリコンの精製方法 |
JPH08185955A (ja) * | 1994-12-27 | 1996-07-16 | Takashi Kishioka | 低温プラズマ発生体 |
JP2007059317A (ja) * | 2005-08-26 | 2007-03-08 | Honda Electronic Co Ltd | プラズマ発生装置、及びプラズマ発生方法 |
JP2009106874A (ja) * | 2007-10-31 | 2009-05-21 | Hitachi Ltd | 反応槽及び散気装置 |
JP2011056451A (ja) * | 2009-09-11 | 2011-03-24 | Tokyo Institute Of Technology | 気液2相流プラズマ処理装置 |
-
2011
- 2011-07-15 JP JP2011156507A patent/JP2013025880A/ja not_active Withdrawn
-
2012
- 2012-04-20 WO PCT/JP2012/060702 patent/WO2013011727A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07980A (ja) * | 1993-06-16 | 1995-01-06 | Fuji Electric Co Ltd | 海水のオゾン処理方法と処理装置 |
JPH0748114A (ja) * | 1993-08-06 | 1995-02-21 | Kawasaki Steel Corp | シリコンの精製方法 |
JPH08185955A (ja) * | 1994-12-27 | 1996-07-16 | Takashi Kishioka | 低温プラズマ発生体 |
JP2007059317A (ja) * | 2005-08-26 | 2007-03-08 | Honda Electronic Co Ltd | プラズマ発生装置、及びプラズマ発生方法 |
JP2009106874A (ja) * | 2007-10-31 | 2009-05-21 | Hitachi Ltd | 反応槽及び散気装置 |
JP2011056451A (ja) * | 2009-09-11 | 2011-03-24 | Tokyo Institute Of Technology | 気液2相流プラズマ処理装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180247736A1 (en) * | 2015-11-10 | 2018-08-30 | Nv Bekaert Sa | Electric power transmission cables |
US10580552B2 (en) * | 2015-11-10 | 2020-03-03 | Nv Bekaert Sa | Electric power transmission cables |
Also Published As
Publication number | Publication date |
---|---|
JP2013025880A (ja) | 2013-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5870279B2 (ja) | プラズマ発生装置とラジカル生成方法、それらを用いた洗浄浄化装置および電器機器 | |
JP5793661B2 (ja) | プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および電器機器 | |
EP2693849A1 (en) | Plasma generator and cleaning/purification apparatus using same | |
JP2012204249A (ja) | プラズマ発生装置及びこれを用いた洗浄浄化装置 | |
JP4833353B2 (ja) | パルス化エアリフトポンプを備えた膜モジュール | |
US20140138029A1 (en) | Plasma generator and cleaning and purifying apparatus including the same | |
WO2012108235A1 (ja) | プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器 | |
JP2008178870A (ja) | プラズマ発生装置、ラジカル生成方法および洗浄浄化装置 | |
JP2012164560A (ja) | プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器 | |
US20140130979A1 (en) | Cleaning apparatus | |
JP2012164556A (ja) | プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器 | |
WO2013011727A1 (ja) | プラズマ発生装置及びこれを用いた洗浄浄化装置 | |
JP2012164558A (ja) | プラズマ発生装置、当該プラズマ発生装置を用いた洗浄浄化装置および小型電器機器 | |
JP6099007B2 (ja) | プラズマ発生装置およびプラズマ発生装置を用いた洗浄装置 | |
WO2013080435A1 (ja) | 洗浄装置 | |
JP6722903B2 (ja) | 空間改質装置 | |
JP2008099723A (ja) | 電気かみそりのクリーニング装置 | |
JP2006272155A (ja) | オゾン酸化脱臭装置 | |
WO2013136467A1 (ja) | オゾン液生成器、浄水器およびその洗浄方法 | |
JP2014116192A (ja) | プラズマ発生装置およびプラズマ発生装置を用いた洗浄装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12814495 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12814495 Country of ref document: EP Kind code of ref document: A1 |