WO2013011555A1 - Apparatus and method for carbonizing organic material - Google Patents

Apparatus and method for carbonizing organic material Download PDF

Info

Publication number
WO2013011555A1
WO2013011555A1 PCT/JP2011/066333 JP2011066333W WO2013011555A1 WO 2013011555 A1 WO2013011555 A1 WO 2013011555A1 JP 2011066333 W JP2011066333 W JP 2011066333W WO 2013011555 A1 WO2013011555 A1 WO 2013011555A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonization
organic
carbonization furnace
superheated steam
container
Prior art date
Application number
PCT/JP2011/066333
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 智章
Original Assignee
株式会社ワンワールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ワンワールド filed Critical 株式会社ワンワールド
Priority to PCT/JP2011/066333 priority Critical patent/WO2013011555A1/en
Priority to JP2013524539A priority patent/JP5778771B2/en
Priority to CN201180072196.XA priority patent/CN103703104A/en
Publication of WO2013011555A1 publication Critical patent/WO2013011555A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B7/00Coke ovens with mechanical conveying means for the raw material inside the oven
    • C10B7/14Coke ovens with mechanical conveying means for the raw material inside the oven with trucks, containers, or trays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to an organic carbonization apparatus and a carbonization method that are suitably used for carbonizing food waste such as garbage and food scraps.
  • Carbonization equipment for this purpose includes a water tank that contains water, a boiler that vaporizes water transferred from the water tank, and steam that is transferred from the boiler is heated to generate atmospheric superheated steam. And a carbonization furnace for performing carbonization treatment by supplying superheated steam generated from the heat generation element to an organic substance, and circulatingly connected to the carbonization furnace via a pipe line, as the carbonization treatment proceeds.
  • a pyrolysis device for continuously pyrolyzing the odor gas generated from the organic matter, and a surplus generated in the carbonization furnace as the carbonization process proceeds connected to the carbonization furnace and the water tank via a pipe line
  • the water vapor is cooled, the surplus water obtained is deodorized, the filtered water generated thereby is accommodated, and the surplus water vapor that transfers a predetermined amount of filtered water to the water tank when a predetermined amount of the filtered water is accommodated
  • Processing means and Carbonizing apparatus comprising is known (see Patent Document 1).
  • the organic substance is charged from the inlet of the carbonization furnace, the carbonization furnace is sealed, and the carbonization of the organic substance is performed with superheated steam, and then the operation of the carbonization apparatus is temporarily stopped to perform the carbonization furnace.
  • the efficiency of the carbonization treatment is poor because the carbide is collected from the discharge port and the above-described series of operations are sequentially repeated in the same manner for the new organic matter to be treated.
  • the present invention has been made in view of such a technical background, and provides an organic matter carbonization treatment apparatus and an organic matter carbonization treatment method capable of improving the efficiency of carbonization treatment of organic matter such as food waste. For the purpose.
  • the present invention provides the following means.
  • a storage container for storing organic matter for storing organic matter;
  • a carbonization furnace comprising a tubular body having openings at both ends in the length direction;
  • End shutters that are openable and closable are provided at opening portions at both ends of the carbonization furnace, and a partition shutter that partitions an internal space is provided in an intermediate area in the longitudinal direction of the carbonization furnace so as to be openable and closable. 3.
  • the organic carbonization apparatus according to any one of items 1 to 8, further comprising a heating device that heats an intermediate position of the supply pipe section outside the carbonization furnace.
  • a condenser [10] a condenser; A recovery pipe having one end connected to the carbonization furnace and the other end connected to the condenser; The organic carbonization apparatus according to any one of the preceding items 1 to 9, further comprising a recovery container that recovers the condensate condensed by the condenser.
  • the organic carbonization apparatus according to the item 10, which includes a catalytic reactor disposed in the middle of the recovery pipe.
  • the organic substance is an organic substance containing a metal
  • As the storage container using a storage container in which a plurality of small holes are formed in a part of the bottom surface, 13.
  • end shutters that are openable and closable are provided at openings at both ends of the carbonization furnace, and a partition shutter that partitions the internal space is openable and closable in an intermediate region in the longitudinal direction of the carbonization furnace. Since it is provided, the internal space of the carbonization furnace can be made into at least two independent sealed spaces. Therefore, carbonization with superheated steam at at least two stages with different temperatures for each independent sealed space (the temperature in each independent sealed space can be controlled by varying the temperature of superheated steam supplied to each independent sealed space). Processing is possible.
  • a plurality of partition shutters are provided, and these partition shutters are spaced apart from each other in the length direction of the carbonization furnace, so that at least three independent spaces in the carbonization furnace are provided. It can be a sealed space. Therefore, carbonization by superheated steam is performed at a temperature of at least three stages by making the temperature different for each independent sealed space (the temperature in each independent sealed space can be controlled by varying the temperature of superheated steam supplied to each independent sealed space). Processing is possible.
  • the temperature of the superheated steam supplied from the supply pipe portion to each of the plurality of independent internal spaces formed by closing the end shutter and the partition shutter in the carbonization furnace is determined by the independent internal spaces. Since it is controlled so as to be different from each other and is controlled so that the downstream side in the transfer direction of the container is higher, the organic matter by superheated steam is at least two stages of temperature that increase in order toward the downstream side. Carbonization is possible.
  • the transfer conveyor has a configuration composed of a pair of transfer conveyors spaced apart in the width direction of the carbonization furnace (a configuration having a gap between the pair of transfer conveyors).
  • the bottom surface of the container is formed with a plurality of small holes in at least part of the region corresponding to the lower part of the gap between the pair of transfer conveyors at the time of transfer.
  • the superheated steam supplied from the part can contact not only the opening at the top of the storage container but also the plurality of small holes on the bottom surface of the storage container and contact the organic substance in the storage container. More fully carbonized.
  • the metal recovery container for recovering the metal falling through the small hole in the bottom surface of the storage container is further provided at a position below the gap between the pair of transfer conveyors, the carbonization is performed.
  • the metal component can be separated and recovered in this metal recovery container.
  • Carbide (carbide obtained by carbonizing organic matter) and metal are mixed in the container by the carbonization treatment, but the metal which is liquid by melting and has a high specific gravity passes through the small holes.
  • carbides tend to agglomerate and have a relatively low specific gravity, so they float on the molten metal and remain in the storage container. To do. In this way, carbide and metal can be separated.
  • a condenser In the invention of [10], a condenser, a recovery pipe having one end connected to the carbonization furnace and the other end connected to the condenser, and a recovery container for recovering the condensate condensed by the condenser are further provided.
  • Evaporation component steam, pyrolysis component from organic matter, light oil, heavy oil, kerosene, etc.
  • the carbonization furnace is collected in the condenser via the recovery pipe and condensed in the condenser for recovery. Since it can be collected in a container, the environmental load can be reduced.
  • a containment vessel containing an organic substance is arranged inside a carbonization treatment furnace comprising a tubular body having openings at both ends in the length direction, and superheated steam is placed inside the carbonization treatment furnace in this state. Therefore, even when both ends of the carbonization furnace are open, external air does not enter the furnace when the organic matter is treated with superheated steam (in an oxygen-free state or near oxygen-free state) Therefore, the organic matter can be sufficiently carbonized. Moreover, since the storage container which accommodated organic substance is transferred with a transfer conveyor, organic substance can be continuously carbonized efficiently.
  • the molten metal that falls through the small hole in the bottom surface of the container in the carbonization process is recovered in the metal recovery container. Can be separated and recovered in a metal recovery container. Therefore, the carbide (charcoal) obtained by the invention [13] (carbonization method) contains no or hardly any metal component and can be effectively used for various applications.
  • FIG. 2 is a front view of the carbonization apparatus of FIG. 1 (however, the superheated steam generator, boiler, and supply pipe section are not shown).
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along line BB in FIG. 1.
  • It is a figure which shows an example of a storage container, Comprising: (a) is a perspective view which shows a mounting board and a storage container in the separation state, (b) is a bottom view of a storage container. It is a perspective view which isolate
  • FIG. 8 is a sectional view taken along line CC in FIG. 7.
  • FIG. 8 is a cross-sectional view taken along the line DD in FIG.
  • FIG. 1 to 4 show an embodiment of an organic carbonization apparatus according to the present invention.
  • This carbonization apparatus is suitably used for carbonizing food waste (food waste, food scraps, etc.).
  • the carbonization apparatus 1 includes a container 2, transfer conveyors 31, 32, 33, 34, a carbonization furnace 3, a superheated steam generator 4, a supply pipe unit 5, and a boiler 6.
  • the carbonization furnace 3 is formed of a tubular body having openings 3a and 3b at both ends in the length direction.
  • One opening 3 a is an inlet for supplying the storage container 2 to the inside of the furnace 3, and the other opening 3 b is an outlet for discharging the storage container 2 to the outside of the furnace 3.
  • the carbonization furnace 3 has a substantially rectangular cross section as shown in FIGS.
  • the carbonization furnace 3 has a bottom wall formed of a floor surface, and a long body having a substantially U-shaped cross section is placed on the floor surface in a sealed state.
  • An openable / closable end shutter 40 is attached to an opening 3 a at one end of the carbonization furnace 3.
  • a shutter opening / closing cylinder 16A is attached to the upper position of one end of the carbonization furnace 3, and the end shutter 40 can be moved up and down by driving the opening / closing cylinder 16A.
  • the opening 3a at one end of the carbonization furnace 3 can be closed by moving the end shutter 40 downward, while the opening at one end of the carbonization furnace 3 can be closed by moving the end shutter 40 upward. Part 3a can be opened.
  • An openable / closable end shutter 44 is attached to the opening 3 b at the other end of the carbonization furnace 3.
  • a shutter opening / closing cylinder 16E is attached to the upper position of the other end of the carbonization furnace 3, and the end shutter 44 can be moved up and down by driving the opening / closing cylinder 16E.
  • the opening 3b at the other end of the carbonizing furnace 3 can be closed by moving the end shutter 44 downward, while the other end of the carbonizing furnace 3 can be closed by moving the end shutter 44 upward.
  • the opening 3b can be opened.
  • partition shutters 41, 42, 43 for partitioning the internal space are provided so as to be openable and closable.
  • an end shutter 40, a first partition shutter 41, a second partition shutter 42, a third partition shutter 43, and an end shutter 44 are arranged in this order, and these adjacent shutters are carbonized together.
  • the internal space of the carbonization furnace 3 Are, in order from the one opening (inlet) 3a side to the other opening (outlet) 3b side, the first independent internal space 51, the second independent internal space 52, the third independent internal space 53, and the fourth independent Four independent internal spaces (independent sealed spaces) of the internal space 54 are formed (see FIGS. 1 and 2).
  • a shutter opening / closing cylinder 16B is mounted on the upper surface wall of the carbonization furnace 3 at a position corresponding to the position where the first partition shutter 41 is mounted, and the first partition shutter 41 is driven by the opening / closing cylinder 16B. Can be moved up and down.
  • a shutter opening / closing cylinder 16C is attached to a position corresponding to a position where the second partition shutter 42 is attached on the upper surface wall of the carbonization furnace 3, and the second partition shutter 42 is driven by driving the opening / closing cylinder 16C. Can be moved up and down.
  • a shutter opening / closing cylinder 16D is mounted on the upper surface wall of the carbonization furnace 3 at a position corresponding to the position where the third partition shutter 43 is mounted, and the third partition shutter 43 is driven by driving the opening / closing cylinder 16D. Can be moved up and down.
  • Openable and closable exhaust ports 11 are provided in a first region (region in which the first independent internal space 51 is formed) W on the upper surface wall of the carbonization furnace 3.
  • An exhaust port 11 that can be opened and closed is provided in a second region X (region in which the second independent internal space 52 is formed) in the upper surface wall of the carbonization furnace 3.
  • An exhaust port 11 that can be freely opened and closed is provided in a third region (region in which the third independent internal space 53 is formed) Y on the upper surface wall of the carbonization furnace 3.
  • the fourth region (region in which the fourth independent internal space 54 is formed) Z on the upper wall of the carbonization furnace 3 two openable / closable vents 19 are provided. Furthermore, one end of the exhaust duct 12 is connected to the fourth region Z on the upper surface wall of the carbonization furnace 3, and the exhaust fan 13 is attached to the other end of the exhaust duct 12 (see FIG. 4). Exhaust from the exhaust fan 13 is performed through an exhaust chimney pipe 18 whose upper end is opened (see FIG. 4). That is, by driving the exhaust fan 13 with the vent 19 open, the gas in the fourth independent internal space 54 can be exhausted through the exhaust duct 12 and the exhaust chimney pipe 18. The independent internal space 54 can be air-cooled.
  • An inspection window 15 that can be freely opened and closed is provided on the side wall of the carbonization furnace 3.
  • the inspection window 15 is made of a transparent material such as glass. Through this inspection window 15, the inside of the carbonization furnace 3 during the carbonization process can be observed and inspected.
  • the transfer conveyors 31, 32, 33, and 34 are installed in the internal space of the carbonization furnace 3 (see FIGS. 1 and 2). That is, the first transfer conveyor 31, the second transfer conveyor 32, the third transfer conveyor 33, and the fourth transfer conveyor 34 are sequentially arranged from one opening (entrance) 3a side to the other opening (exit) 3b side. Has been placed.
  • the first transfer conveyor includes a pair of transfer conveyors 31 and 31 spaced in the width direction of the carbonization furnace 3.
  • the second transfer conveyor includes a pair of transfer conveyors 32 and 32 that are separated in the width direction of the carbonization furnace 3.
  • the third transfer conveyor includes a pair of transfer conveyors 33 and 33 spaced in the width direction of the carbonization furnace 3.
  • the fourth transfer conveyor is composed of a pair of transfer conveyors 34 and 34 arranged at close positions without being separated in the width direction of the carbonization furnace 3.
  • the first transfer conveyor 31 can be driven (reciprocated) independently by the conveyor driving device 14A (different from other transfer conveyors).
  • the second transfer conveyor 32 can be driven (reciprocated) independently by the conveyor driving device 14B (different from other transfer conveyors).
  • the third transfer conveyor 33 can be driven (reciprocated) independently by the conveyor driving device 14C (different from other transfer conveyors).
  • the fourth transfer conveyor 34 can be driven (reciprocated) independently by the conveyor driving device 14D (different from other transfer conveyors).
  • the firewood supply conveyor is composed of a pair of transfer conveyors 30, 30 spaced in the width direction of the carbonization furnace 3.
  • the discharge conveyor includes a pair of discharge conveyors 35 and 35 that are separated in the width direction of the carbonization furnace 3.
  • the supply conveyor 30 can be driven (reciprocating drive) independently by a conveyor drive device 14X (different from other transfer conveyors), and the discharge conveyor 35 can be driven by a conveyor drive device 14Y (what other transfer conveyors are). ) It can be driven independently (reciprocating drive).
  • the pair of supply conveyors 30, transfer conveyors 31, 32, 33, 34, and discharge conveyors 35 can support the container 2 from below and sequentially transfer from the inlet 3a side to the outlet 3b side.
  • the storage container 2 is a container for storing organic substances such as food waste.
  • the storage container 2 only needs to have an opening in at least a part (preferably an upper position) of the container.
  • the storage container 2 is a substantially rectangular parallelepiped container having an open upper surface.
  • a plurality of small holes 2a are formed in a part of the bottom surface of the container 2 (horizontal plane portion 2C in the center of the bottom surface) (see FIG. 5). That is, a plurality of small holes 2a are formed in the bottom surface of the container 2 in at least a part of a region corresponding to the gap 36 between the pair of transfer conveyors during transfer (see FIGS. 3 and 5). ).
  • the bottom surface of the container 2 is composed of a central horizontal surface portion 2C and a pair of left and right inclined surface portions 2B and 2B that are inclined outward from both ends of the horizontal surface portion 2C (see FIGS. 3 and 5). ). Accordingly, the molten metal (metal component mixed in the organic substance) generated in the container 2 by the carbonization treatment with superheated steam flows toward the central horizontal surface portion 2C due to the inclination of the inclined surface portion 2B. It passes through the small hole 2a of the horizontal surface portion 2C, falls downward, and is recovered in the metal recovery container 8 (see FIG. 3).
  • the size of the small hole 2a is not particularly limited, but the long diameter (diameter in the case of a circle and diagonal length in the case of a square) is preferably set to 0.1 mm to 10 mm. In particular, the long diameter of the small hole 2a is particularly preferably set to 2 mm to 5 mm.
  • a mounting plate 9 is mounted in the internal space of the container 2 (see FIGS. 3 and 5).
  • the mounting plate 9 has a plurality of holes 9a (see FIG. 5).
  • a plurality of holes 9a are formed over the entire surface of the mounting plate 9 (see FIG. 5).
  • the size of the hole 9a is not particularly limited, but the long diameter (diameter in the case of a circle and diagonal length in the case of a square) is preferably set to 7 mm to 15 mm.
  • the boiler 6 is a device that generates water vapor from water.
  • the steam generated by the boiler 6 is transferred to the superheated steam generator 4 through the communication pipe 17. That is, the boiler 6 and the superheated steam generator 4 are connected by the communication pipe 17 (see FIG. 1).
  • the said boiler 6 For example, a once-through steam boiler etc. are mentioned.
  • the superheated steam generator 4 is a device that generates superheated steam from steam. That is, the superheated steam generator 4 generates superheated steam from the steam transferred from the boiler 6.
  • one superheated steam generator 4 connected in the first independent internal space 51, one superheated steam generator 4 connected in the second independent internal space 52, the third A total of three superheated steam generators 4 connected in the independent internal space 53 are provided.
  • the boiler 6 is also divided into one boiler 6 connected to the first independent internal space 51, one boiler 6 connected to the second independent internal space 52, and the third independent internal space 53. A total of three boilers 6 are connected.
  • the superheated steam generator 4 is not particularly limited, and examples thereof include an induction superheated steam generator. Examples of the temperature of the superheated steam generated by the superheated steam generator 4 include 700 ° C., but are not particularly limited to such conditions. In order to sufficiently carbonize the organic matter, it is preferable that the superheated steam generator 4 generates superheated steam at 150 ° C. or higher. In particular, it is particularly preferable to generate the superheated steam at 160 ° C. to 1000 ° C. with the superheated steam generator 4 in order to sufficiently perform the carbonization treatment of the organic substance while suppressing the energy cost.
  • One end of the supply pipe section 5 is connected to the superheated steam generator 4, and the other end is opened in the internal space of the carbonization furnace 3. That is, the front end opening 5 a of the supply pipe unit 5 is disposed at a position below the transfer conveyor in the carbonization furnace 3. Thus, the supply pipe unit 5 supplies the superheated steam generated by the superheated steam generator 4 into the carbonization furnace 3.
  • a heating device 7 is further provided for heating a midway position of the supply pipe section 5 outside the carbonization furnace 3 (see FIGS. 1 to 3).
  • a heating burner is used as the heating device 7.
  • a metal recovery container 8 is disposed below the gap 36 between the pair of third transfer conveyors 33, 33 (see FIG. 3). Further, a metal recovery container 8 is disposed at a position below the gap 36 between the pair of second transfer conveyors 32, 32. Further, a metal recovery container 8 is disposed at a position below the gap 36 between the pair of first transfer conveyors 31, 31.
  • the metal recovery container 8 is a container having an open upper surface (see FIG. 6).
  • the metal recovery container 8 is a container for recovering metal that passes through the small hole 2a on the bottom surface of the storage container 2 (and further passes through the gap 36).
  • Each of the metal recovery containers 8 is set to a size that can cover a region corresponding to one end side from the other end side in the length direction of the gap 36 of each transfer conveyor so that the falling metal can be recovered without leakage. ing.
  • the metal recovery container 8 includes a recess 8A for forming an ingot at the center in the lengthwise direction, and a pair of front and rear inclined surfaces connected to the upper edge of the recess 8A so that molten metal flows toward the recess 8A for forming the ingot 8c and 8c are provided (see FIG. 6).
  • the molten metal that has flowed into the metal recovery container 8 flows on the inclined surfaces 8c and 8c toward the ingot-forming recess 8A and is stored in the ingot-forming recess 8A.
  • the bottom plate 8b of the ingot-forming recess 8A is removable, and the metal ingot solidified through cooling (usually stopping the operation of the apparatus 1 to cool down) in the ingot-forming recess 8A By removing the bottom plate 8b, the bottom plate 8b is pulled down and collected.
  • the temperature of the superheated steam supplied from the supply pipe part 5 into the first independent internal space 51 is controlled to be 500 ° C.
  • the temperature of the superheated steam supplied from the supply pipe part 5 in the second independent internal space 52 is controlled to be 900 ° C.
  • the temperature of the superheated steam supplied from the supply pipe part 5 into the third independent internal space 53 is controlled to be 1200 ° C.
  • the temperature of the superheated steam supplied into each of the independent internal spaces is merely an example, and is not particularly limited to such conditions.
  • the exhaust fan 13 is driven and exhaust is performed through the exhaust duct 12 and the exhaust chimney pipe 18, whereby the fourth independent internal space 54 is cooled by air. (See FIG. 4). That is, in the fourth independent internal space 54, air is cooled by newly taking in external air from the vent hole 19 with the exhaust.
  • the organic matter to be carbonized is not particularly limited.
  • food waste food waste, food scraps, etc.
  • wood including railway sleepers
  • plastic plastic
  • fishing nets substrates (ICs) Substrate etc.), tires and the like.
  • the exhaust port 11 of the carbonization treatment furnace 3 is opened, and the vent hole 19 of the carbonization treatment furnace 3 is also opened.
  • the four storage containers 2 storing the organic substances to be processed are placed on the supply conveyor 30 and transferred, and then transferred to the first transfer conveyor 31 and further transferred, so that the storage containers 2 of the carbonization furnace 3 are transferred. It is arranged in one area W.
  • Carbonization of the organic matter in the container 2 is advanced by supplying superheated steam at 500 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the first independent internal space 51.
  • a predetermined time for example, 14 minutes
  • metals such as tin, lead, lithium, magnesium, zirconium, gold, silver, copper, and neodymium are mixed in the organic matter, tin, lead, lithium, etc. are melted by superheated steam at 500 ° C. Then, it passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the first independent internal space 51.
  • the end shutter 40 and the first partition shutter 41 are opened, and the container 2 in the first independent internal space 51 is transferred by the first transfer conveyor 31, then transferred to the next second transfer conveyor 32 and further transferred.
  • these four storage containers 2 are arranged in the second region X of the carbonization furnace 3.
  • four new containers 2 containing the organic substances to be processed are placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer.
  • a suitable container 2 is placed in the first region W of the carbonization furnace 3.
  • the end shutter 40, the first partition shutter 41, and the second partition shutter 42 are closed to form the first independent internal space 51 and the second independent internal space 52.
  • the carbonization of the organic matter in the container 2 is advanced.
  • carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52. The process proceeds further.
  • the second independent internal space 52 among metals mixed in organic matter (for example, magnesium, zirconium, gold, silver, copper, neodymium, etc.), magnesium, zirconium, etc. are melted by superheated steam at 900 ° C., It passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the second independent internal space 52.
  • the first independent internal space 51 among the metals mixed in the organic matter, tin, lead, lithium, and the like are melted by superheated steam at 500 ° C., and the bottom surface of the container 2 is small. It falls through the hole 2 a and is recovered in the metal recovery container 8 in the first independent internal space 51.
  • the end shutter 40, the first partition shutter 41, and the second partition shutter 42 are opened, and the container 2 in the second independent internal space 52 is transferred by the second transfer conveyor 32, and the next third transfer conveyor
  • These four containers 2 are placed in the third region Y of the carbonization furnace 3 by moving to 33 and further transferring.
  • the storage containers 2 in the first independent internal space 51 are transferred by the first transfer conveyor 31, transferred to the next second transfer conveyor 32, and further transferred, so that these four storage containers 2 is placed in the second region X of the carbonization furnace 3.
  • a new container 2 containing the organic matter to be treated is placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer.
  • the container 2 is placed in the first region W of the carbonization furnace 3.
  • the end shutter 40, the first partition shutter 41, the second partition shutter 42, and the third partition shutter 43 are closed, and the first independent internal space 51, the second independent internal space 52, and the third independent internal space 53 are formed. Let it form.
  • the carbonization of the organic matter in the container 2 is advanced.
  • carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52. The process proceeds further.
  • magnesium, zirconium, etc. are overheated at 900 ° C. While being melted by water vapor and passing through the small hole 2a on the bottom surface of the storage container 2, it falls and is recovered in the metal recovery container 8 in the second independent internal space 52, while in the first independent internal space 51, Similarly to the above, among metals (eg, tin, lead, lithium, magnesium, zirconium, gold, silver, copper, neodymium, etc.) mixed in organic matter, tin, lead, lithium, etc. are melted by superheated steam at 500 ° C. Then, it passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the first independent internal space 51.
  • metals eg, magnesium, zirconium, gold, silver, copper, neodymium, etc.
  • the end shutter 40, the first partition shutter 41, the second partition shutter 42, and the third partition shutter 43 are opened, and the container 2 in the third independent internal space 53 is transferred by the third transfer conveyor 33,
  • These four containers 2 are placed in the fourth region Z of the carbonization furnace 3 by being transferred to the next fourth transfer conveyor 34 and further transferred.
  • the storage containers 2 in the second independent internal space 52 are transferred by the second transfer conveyor 32, transferred to the next third transfer conveyor 33, and further transferred. 2 is placed in the third region Y of the carbonization furnace 3.
  • the storage containers 2 in the first independent internal space 51 are transferred by the first transfer conveyor 31, transferred to the next second transfer conveyor 32, and further transferred, so that these four storage containers 2 is placed in the second region X of the carbonization furnace 3.
  • four new containers 2 containing organic substances to be processed are placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer, A new container 2 is placed in the first region W of the carbonization furnace 3.
  • the end shutter 40, the first partition shutter 41, the second partition shutter 42, the third partition shutter 43, and the end shutter 44 are closed, and the first independent internal space 51, the second independent internal space 52, the third An independent internal space 53 and a fourth independent internal space 54 are formed.
  • the carbonization of the organic matter in the container 2 is advanced.
  • carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52.
  • the process proceeds further.
  • the carbonization treatment of is further advanced.
  • the exhaust fan 13 is driven in the fourth independent internal space 54 to discharge the gas in the internal space 54 to the outside through the exhaust duct 12 and the exhaust chimney pipe 18.
  • external air is newly taken into the fourth independent internal space 54 through the vent 19 and the atmosphere, carbides, etc. in the fourth independent internal space 54 are air-cooled.
  • the end shutter 40, the first partition shutter 41, the second partition shutter 42, the third partition shutter 43, and the end shutter 44 are opened, and the container 2 in the fourth independent internal space 54 is transferred to the fourth transfer conveyor. 34, it moves to the following discharge conveyor 35, and the carbonization process of the organic substance in this container 2 is complete
  • Carbide (charcoal) obtained by carbonization is present in the container 2 discharged to the discharge conveyor 35.
  • the melting point of iron is as high as 1535 ° C., so that iron is not collected in the metal collection container 8 and is contained in the container 2 discharged to the discharge conveyor 35. Recovered together with carbides (charcoal). Further, even when nickel, chromium, cobalt, and manganese are mixed in the organic matter, these metal components are not collected in the metal collection container 8 but are contained in the container 2 discharged to the discharge conveyor 35. Recovered together with carbides (charcoal).
  • the organic matter in the multiple storage containers 2 can be continuously carbonized, and tin, lead, in the metal recovery container 8 in the first independent internal space 51 can be obtained.
  • Lithium or the like can be recovered, magnesium, zirconium, or the like can be recovered in the metal recovery container 8 in the second independent internal space 52, gold in the metal recovery container 8 in the third independent internal space 53, Silver, copper, neodymium, etc. can be recovered.
  • the organic substance can be efficiently carbonized, and the metal present in the organic substance can be separated and recovered from the organic substance (carbide).
  • the metal in the organic matter can be separated into two or more groups and recovered.
  • the temperature of the superheated steam to be diffused from the tip opening 5a of the supply pipe part 5 is 150 ° C. or higher.
  • the temperature of the superheated steam to be diffused from the tip opening 5a of the supply pipe 5 is particularly preferably 160 ° C. to 1000 ° C. In this case, the energy cost can be suppressed and the organic matter can be sufficiently carbonized. .
  • organic carbonization method is merely an example, and is not particularly limited to such an embodiment.
  • FIGS. 1 to 4 Another embodiment of the organic carbonization apparatus according to the present invention is shown in FIGS.
  • the condenser 61 one end connected to the carbonization furnace 3, the other end connected to the condenser 61, and the condensate condensed in the condenser 61 are recovered.
  • the configuration further differs from the configuration of the embodiment (FIGS. 1 to 4) in that it further includes a recovery container 63. There are other differences, which will be described in the following order. Note that the same components as those in the above embodiment (FIGS. 1 to 4) are denoted by the same reference numerals, and the description thereof is omitted.
  • One end of the recovery pipe 62 is connected to the exhaust port 11 of the carbonization furnace 3 (see FIGS. 7 and 9). Further, a catalytic reactor 64 is provided in the middle of the recovery pipe 62 (see FIGS. 7 and 9).
  • the condenser 61 is a device that condenses the vaporized component into a liquid.
  • a water-cooling apparatus is employed.
  • the condenser 61 condenses the vaporized components (water vapor, pyrolysis components from organic substances, light oil components, heavy oil components, kerosene components, etc.) transferred from the carbonization furnace 3 through the recovery pipe 62 to form a liquid ( Condensate).
  • the recovery container 63 is disposed below the condenser 61 and recovers the liquid (condensate) falling from the condenser 61 (see FIG. 9).
  • the catalyst component used in the catalyst reactor 64 is not particularly limited, and examples thereof include iron oxide and sodium hydroxide.
  • the superheated steam generated by the superheated steam generator 4 is supplied into the carbonization furnace 3 via the supply pipe part 5, but the supply pipe part 5 is outside the carbonization process furnace 3.
  • the upper supply pipe 5X branches into an upper supply pipe 5X and a lower supply pipe 5Y, and the upper supply pipe 5X extends from one end side to the other end side in the width direction at the upper position of the internal space of the carbonization furnace 3, while The supply pipe 5Y extends from one end side to the other end side in the width direction at a lower position of the internal space of the carbonization furnace 3 (see FIG. 9).
  • the upper supply pipe 5X is provided with eight superheated steam injection nozzles 20 spaced apart from each other in the width direction
  • the lower supply pipe 5Y is provided with nine superheated steam injection nozzles 21 in the width direction. They are spaced apart (see FIG. 9).
  • the superheated steam generated by the superheated steam generator 4 is dissipated from the superheated steam injection nozzles 20 and 21 through the supply pipe portion 5, whereby the inside of the carbonization furnace 3 is superheated steam. It is filled and the carbonization process of the organic substance in the storage container 2 is performed.
  • the fifth independent internal space 75 can be formed on the downstream side. That is, in FIGS. 7 and 8, 45 is a fourth partition shutter, 37 is a fifth transfer conveyor, and V is a fifth region.
  • the temperature of the superheated steam supplied from the supply pipe portion 5 into the first independent internal space 71 is controlled to be 150 ° C. to 500 ° C. (for example, 500 ° C.).
  • the temperature of the superheated steam supplied from the supply pipe unit 5 in the second independent internal space 72 is controlled to be 300 ° C. to 900 ° C. (for example, 900 ° C.).
  • the temperature of the superheated steam supplied from the supply pipe portion 5 in the third independent internal space 73 is controlled to be 500 ° C. to 1200 ° C. (for example, 1200 ° C.).
  • the temperature of the superheated steam supplied from the supply pipe portion 5 into the fourth independent internal space 74 is controlled to be 100 ° C. to 150 ° C. (for example, 110 ° C.).
  • the temperature of the superheated steam supplied into each of the independent internal spaces is merely an example, and is not particularly limited to such conditions.
  • the exhaust fan 13 is driven to exhaust air through the exhaust duct 12, whereby the inside of the fifth independent internal space 75 is cooled by air (FIG. 7, 10). That is, in the fifth independent internal space 75, the outside air is newly taken in from the vent hole 19 along with the exhaust, whereby air cooling is performed (see FIGS. 7 and 10).
  • the organic carbonization apparatus according to the present invention is suitably used for carbonizing food waste such as garbage and food scraps, but is not particularly limited to such applications.
  • wood can also be used for carbonizing plastics (including railroad sleepers), plastics, fishing nets, substrates (IC substrates, etc.) and tires.

Abstract

Provided is an apparatus for carbonizing organic materials, which is capable of improving the carbonization efficiency of organic materials such as food waste. An apparatus for carbonizing organic materials, which is provided with: a container (2) for containing an organic material; a transfer conveyor (31) that transfers the container; a carbonization furnace (3) that is composed of a tubular body which has opening portions (3a, 3b) at the both ends in the longitudinal direction; a superheated steam generator (4); and a supply pipe (5) that supplies the superheated steam generated by the superheated steam generator (4) to the inside of the carbonization furnace (3). The apparatus for carbonizing organic materials has a configuration wherein the transfer conveyor (31) is arranged within the carbonization furnace (3).

Description

有機物の炭化処理装置及び炭化処理方法Carbonizing apparatus and method for carbonizing organic matter
 本発明は、生ゴミ、食品端材等の食品廃棄物を炭化処理するのに好適に用いられる、有機物の炭化処理装置及び炭化処理方法に関する。 The present invention relates to an organic carbonization apparatus and a carbonization method that are suitably used for carbonizing food waste such as garbage and food scraps.
 生ゴミ、食品端材等の食品廃棄物などに代表される有機物系廃棄物の処理方法としては、有機物系廃棄物に無酸素状態で過熱水蒸気を接触せしめて炭化処理する方法が知られている。このための炭化処理装置としては、水を収容する水タンクと、前記水タンクから移送された水を蒸気化するボイラーと、前記ボイラーから移送された水蒸気を加熱して常圧の過熱水蒸気を発生させる発熱体を内部に備え、該発熱体から発生した過熱水蒸気を有機物に供給して炭化処理を行なう炭化炉と、前記炭化炉と管路を介して循環接続され、炭化処理の進行に伴ない前記有機物から発生した臭気ガスを連続して熱分解する熱分解装置と、前記炭化炉と前記水タンクに管路を介して接続され、炭化処理の進行に伴ない前記炭化炉内に発生した余剰水蒸気を冷却し、得られた余剰水を脱臭し、これにより生成したろ過水を収容するとともに、該ろ過水が所定量収容されたとき、所定量のろ過水を前記水タンクに移送する余剰水蒸気処理手段とを具備する炭化処理装置が公知である(特許文献1参照)。 As a method for treating organic waste represented by food waste such as raw garbage and food scraps, a method of carbonizing by bringing superheated steam into contact with organic waste in an oxygen-free state is known. . Carbonization equipment for this purpose includes a water tank that contains water, a boiler that vaporizes water transferred from the water tank, and steam that is transferred from the boiler is heated to generate atmospheric superheated steam. And a carbonization furnace for performing carbonization treatment by supplying superheated steam generated from the heat generation element to an organic substance, and circulatingly connected to the carbonization furnace via a pipe line, as the carbonization treatment proceeds. A pyrolysis device for continuously pyrolyzing the odor gas generated from the organic matter, and a surplus generated in the carbonization furnace as the carbonization process proceeds, connected to the carbonization furnace and the water tank via a pipe line The water vapor is cooled, the surplus water obtained is deodorized, the filtered water generated thereby is accommodated, and the surplus water vapor that transfers a predetermined amount of filtered water to the water tank when a predetermined amount of the filtered water is accommodated Processing means and Carbonizing apparatus comprising is known (see Patent Document 1).
特開2005-139303号公報JP 2005-139303 A
 しかしながら、上記従来の炭化処理装置は、炭化炉の投入口から有機物を投入して炭化炉を密閉し過熱水蒸気により有機物の炭化処理を行った後、炭化処理装置の運転を一旦停止して炭化炉の排出口から炭化物を回収し、このような一連の操作を新たな処理対象の有機物についても順次同様に繰り返して行うものであるから、炭化処理の効率が悪いという問題があった。 However, in the conventional carbonization apparatus, the organic substance is charged from the inlet of the carbonization furnace, the carbonization furnace is sealed, and the carbonization of the organic substance is performed with superheated steam, and then the operation of the carbonization apparatus is temporarily stopped to perform the carbonization furnace. There is a problem that the efficiency of the carbonization treatment is poor because the carbide is collected from the discharge port and the above-described series of operations are sequentially repeated in the same manner for the new organic matter to be treated.
  本発明は、かかる技術的背景に鑑みてなされたものであって、食品廃棄物等の有機物の炭化処理の効率を向上させることができる、有機物の炭化処理装置及び有機物の炭化処理方法を提供することを目的とする。 The present invention has been made in view of such a technical background, and provides an organic matter carbonization treatment apparatus and an organic matter carbonization treatment method capable of improving the efficiency of carbonization treatment of organic matter such as food waste. For the purpose.
  前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.
 [1]有機物を収容するための収容容器と、
  前記収容容器を移送する移送コンベアと、
  長さ方向の両端に開口部を有する管状体からなる炭化処理炉と、
  過熱水蒸気発生装置と、
 前記過熱水蒸気発生装置で発生する過熱水蒸気を前記炭化処理炉の内部に供給する供給管部と、を備え、
 前記炭化処理炉の内部に前記移送コンベアが設置されていることを特徴とする有機物の炭化処理装置。
[1] A storage container for storing organic matter;
A transfer conveyor for transferring the container;
A carbonization furnace comprising a tubular body having openings at both ends in the length direction;
A superheated steam generator;
A supply pipe for supplying superheated steam generated by the superheated steam generator to the inside of the carbonization furnace,
An organic carbonization apparatus, wherein the transfer conveyor is installed inside the carbonization furnace.
 [2]前記供給管部の先端開口部は、前記炭化処理炉の内部における前記移送コンベアの下方に配置されている前項1に記載の有機物の炭化処理装置。 [2] The carbonization treatment apparatus for organic matter according to item 1 above, wherein a tip opening of the supply pipe is disposed below the transfer conveyor inside the carbonization furnace.
 [3]前記炭化処理炉の両端の開口部に開閉自在となされた端部シャッターが設けられ、前記炭化処理炉の長さ方向の中間領域に、内部空間を仕切る仕切シャッターが開閉自在に設けられている前項1または2に記載の有機物の炭化処理装置。 [3] End shutters that are openable and closable are provided at opening portions at both ends of the carbonization furnace, and a partition shutter that partitions an internal space is provided in an intermediate area in the longitudinal direction of the carbonization furnace so as to be openable and closable. 3. The organic carbonization apparatus according to 1 or 2 above.
 [4]前記仕切シャッターが複数個設けられ、これら仕切シャッターは相互に炭化処理炉の長さ方向に離間して配置されている前項3に記載の有機物の炭化処理装置。 [4] The organic carbonization apparatus according to item 3 above, wherein a plurality of the partition shutters are provided, and the partition shutters are spaced apart from each other in the length direction of the carbonization furnace.
 [5]前記炭化処理炉において前記端部シャッター及び前記仕切シャッターが閉じられて形成される複数個の独立内部空間のそれぞれに前記供給管部から過熱水蒸気が供給されるものとなされ、前記供給管部から各独立内部空間に供給される過熱水蒸気の温度は、各独立内部空間毎に相違するように制御され、かつ前記収容容器の移送方向の下流側の方が高くなるように制御される前項3または4に記載の有機物の炭化処理装置。 [5] In the carbonization furnace, superheated steam is supplied from the supply pipe section to each of a plurality of independent internal spaces formed by closing the end shutter and the partition shutter, and the supply pipe The temperature of the superheated steam supplied from the section to each independent internal space is controlled to be different for each independent internal space, and is controlled so as to be higher on the downstream side in the transfer direction of the container. The organic carbonization apparatus according to 3 or 4.
 [6]前記移送コンベアは、前記炭化処理炉の幅方向に離間した一対の移送コンベアからなる前項1~5のいずれか1項に記載の有機物の炭化処理装置。 [6] The organic carbonization apparatus according to any one of items 1 to 5, wherein the transfer conveyor includes a pair of transfer conveyors separated in a width direction of the carbonization furnace.
 [7]前記収容容器の底面には、移送時における前記一対の移送コンベアの間の隙間に対応する領域の少なくとも一部に複数個の小孔が形成されている前項6に記載の有機物の炭化処理装置。 [7] The carbonization of organic matter according to the above item 6, wherein a plurality of small holes are formed in at least a part of a region corresponding to a gap between the pair of transfer conveyors at the time of transfer on the bottom surface of the storage container. Processing equipment.
 [8]前記一対の移送コンベアの間の隙間の下方位置に、前記収容容器の底面の小孔を通過して落下する金属を回収する金属回収容器を備える前項7に記載の有機物の炭化処理装置。 [8] The carbonization apparatus for organic matter according to item 7 above, further comprising a metal recovery container that recovers metal falling through a small hole in the bottom surface of the storage container at a position below the gap between the pair of transfer conveyors. .
 [9]前記供給管部における前記炭化処理炉の外部での途中位置を加熱する加熱装置を備える前項1~8のいずれか1項に記載の有機物の炭化処理装置。 [9] The organic carbonization apparatus according to any one of items 1 to 8, further comprising a heating device that heats an intermediate position of the supply pipe section outside the carbonization furnace.
 [10]凝縮器と、
 一端が前記炭化処理炉に接続され、他端が前記凝縮器に接続された回収管と、
  前記凝縮器で凝縮せしめた凝縮液を回収する回収容器と、を備える前項1~9のいずれか1項に記載の有機物の炭化処理装置。
[10] a condenser;
A recovery pipe having one end connected to the carbonization furnace and the other end connected to the condenser;
The organic carbonization apparatus according to any one of the preceding items 1 to 9, further comprising a recovery container that recovers the condensate condensed by the condenser.
 [11]前記回収管の途中に配置された触媒反応器を備える前項10に記載の有機物の炭化処理装置。 [11] The organic carbonization apparatus according to the item 10, which includes a catalytic reactor disposed in the middle of the recovery pipe.
 [12]有機物を収容した収容容器をコンベアで、長さ方向の両端に開口部を有する管状体からなる炭化処理炉の内部空間内に移送する工程と、
 前記移送後に過熱水蒸気を前記炭化処理炉の内部に供給することによって前記有機物を炭化処理する工程と、
 前記炭化処理後に前記収容容器をコンベアで前記炭化処理炉の外に排出する工程とを含むことを特徴とする有機物の炭化処理方法。
[12] A step of transferring the storage container containing the organic matter into the internal space of the carbonization furnace made of a tubular body having openings at both ends in the length direction by a conveyor;
Carbonizing the organic matter by supplying superheated steam into the carbonization furnace after the transfer; and
And a step of discharging the storage container to the outside of the carbonization furnace by a conveyor after the carbonization process.
 [13]前記有機物は、金属を含有する有機物であり、
 前記収容容器として、底面の一部に複数個の小孔が形成された収容容器を用い、
  前記炭化処理工程において、前記収容容器の底面の小孔を通過して落下する溶融金属を金属回収容器に回収することを特徴とする前項12に記載の有機物の炭化処理方法。
[13] The organic substance is an organic substance containing a metal,
As the storage container, using a storage container in which a plurality of small holes are formed in a part of the bottom surface,
13. The method for carbonizing an organic substance according to item 12, wherein in the carbonizing step, molten metal that passes through a small hole on the bottom surface of the storage container and falls is collected in a metal recovery container.
 [14]前記過熱水蒸気の温度が150℃以上である前項12または13に記載の有機物の炭化処理方法。 [14] The method for carbonizing an organic substance according to item 12 or 13, wherein the temperature of the superheated steam is 150 ° C. or higher.
 [15]前記有機物が食品廃棄物である前項12~14のいずれか1項に記載の有機物の炭化処理方法。 [15] The method for carbonizing an organic material according to any one of items 12 to 14, wherein the organic material is food waste.
 [1]の発明では、長さ方向の両端に開口部を有する管状体からなる炭化処理炉の内部に過熱水蒸気を連続して供給できるので、両端が開口している状態であっても、有機物を過熱水蒸気で処理する際に外部の空気が入らず(無酸素状態に又は無酸素に近い状態にすることができる)、従って有機物を十分に炭化させることができる。また、有機物を収容した収容容器を移送コンベアで移送できるので、有機物を連続的に効率良く炭化処理できる。 In the invention of [1], since superheated steam can be continuously supplied into the inside of a carbonization furnace comprising a tubular body having openings at both ends in the length direction, the organic matter can be used even when both ends are open. During the treatment with superheated steam, external air does not enter (can be made oxygen-free or close to oxygen-free), and the organic matter can be sufficiently carbonized. Moreover, since the storage container which accommodated organic substance can be transferred with a transfer conveyor, organic substance can be continuously carbonized efficiently.
 [2]の発明では、供給管部の先端開口部は、移送コンベアの下方に配置されているから、炭化処理炉の内部空間において過熱水蒸気が十分に行き渡り、有機物を十分に炭化させることができる。 In the invention of [2], since the tip opening of the supply pipe is disposed below the transfer conveyor, the superheated steam is sufficiently distributed in the internal space of the carbonization furnace, and the organic matter can be sufficiently carbonized. .
 [3]の発明では、炭化処理炉の両端の開口部に開閉自在となされた端部シャッターが設けられ、炭化処理炉の長さ方向の中間領域に、内部空間を仕切る仕切シャッターが開閉自在に設けられているから、炭化処理炉の内部空間を少なくとも2つの独立した密閉空間とすることができる。従って、各独立密閉空間毎に異なる温度(各独立密閉空間に供給する過熱水蒸気の温度を異ならしめることで各独立密閉空間内の温度を制御できる)にして少なくとも2段階の温度で過熱水蒸気による炭化処理が可能である。 In the invention of [3], end shutters that are openable and closable are provided at openings at both ends of the carbonization furnace, and a partition shutter that partitions the internal space is openable and closable in an intermediate region in the longitudinal direction of the carbonization furnace. Since it is provided, the internal space of the carbonization furnace can be made into at least two independent sealed spaces. Therefore, carbonization with superheated steam at at least two stages with different temperatures for each independent sealed space (the temperature in each independent sealed space can be controlled by varying the temperature of superheated steam supplied to each independent sealed space). Processing is possible.
 [4]の発明では、仕切シャッターが複数個設けられ、これら仕切シャッターは相互に炭化処理炉の長さ方向に離間して配置されているから、炭化処理炉の内部空間を少なくとも3つの独立した密閉空間とすることができる。従って、各独立密閉空間毎に異なる温度(各独立密閉空間に供給する過熱水蒸気の温度を異ならしめることで各独立密閉空間内の温度を制御できる)にして少なくとも3段階の温度で過熱水蒸気による炭化処理が可能である。 In the invention of [4], a plurality of partition shutters are provided, and these partition shutters are spaced apart from each other in the length direction of the carbonization furnace, so that at least three independent spaces in the carbonization furnace are provided. It can be a sealed space. Therefore, carbonization by superheated steam is performed at a temperature of at least three stages by making the temperature different for each independent sealed space (the temperature in each independent sealed space can be controlled by varying the temperature of superheated steam supplied to each independent sealed space). Processing is possible.
 [5]の発明では、炭化処理炉において端部シャッター及び仕切シャッターが閉じられて形成される複数個の独立内部空間のそれぞれに供給管部から供給される過熱水蒸気の温度は、各独立内部空間毎に相違するように制御され、かつ前記収容容器の移送方向の下流側の方が高くなるように制御されるから、下流側に向けて順に高くなる少なくとも2段階の温度で過熱水蒸気による有機物の炭化処理が可能である。 In the invention of [5], the temperature of the superheated steam supplied from the supply pipe portion to each of the plurality of independent internal spaces formed by closing the end shutter and the partition shutter in the carbonization furnace is determined by the independent internal spaces. Since it is controlled so as to be different from each other and is controlled so that the downstream side in the transfer direction of the container is higher, the organic matter by superheated steam is at least two stages of temperature that increase in order toward the downstream side. Carbonization is possible.
 [6]の発明では、移送コンベアは、炭化処理炉の幅方向に離間した一対の移送コンベアからなる構成(一対の移送コンベア間に隙間がある構成)であるから、例えば、収容容器の底面に設けた小孔およびコンベア間の隙間を順に通過して落下する金属を回収する金属回収容器を設けることにより、炭化処理対象の有機物中に金属分が混在している場合には該金属分をこの金属回収容器に分離回収できる。 In the invention of [6], the transfer conveyor has a configuration composed of a pair of transfer conveyors spaced apart in the width direction of the carbonization furnace (a configuration having a gap between the pair of transfer conveyors). By providing a metal recovery container that recovers the falling metal through the small holes and the gap between the conveyors in order, if the metal is mixed in the organic matter to be carbonized, the metal is It can be separated and recovered in a metal recovery container.
 [7]の発明では、収容容器の底面には、移送時における一対の移送コンベアの間の隙間の下方に対応する領域の少なくとも一部に複数個の小孔が形成されているから、供給管部から供給される過熱水蒸気は、収容容器の上部の開口部のみならず、収容容器の底面の複数個の小孔を通過して収容容器内の有機物に接触できて、収容容器内の有機物をより十分に炭化させることができる。 In the invention of [7], the bottom surface of the container is formed with a plurality of small holes in at least part of the region corresponding to the lower part of the gap between the pair of transfer conveyors at the time of transfer. The superheated steam supplied from the part can contact not only the opening at the top of the storage container but also the plurality of small holes on the bottom surface of the storage container and contact the organic substance in the storage container. More fully carbonized.
 [8]の発明では、一対の移送コンベアの間の隙間の下方位置に、収容容器の底面の小孔を通過して落下する金属を回収する金属回収容器を更に備えた構成であるから、炭化処理対象の有機物中に金属分が混在している場合には該金属分をこの金属回収容器に分離回収することができる。炭化処理により収容容器内では炭化物(有機物が炭化されて得られる炭化物)と金属とが混在することになるが、溶融により液状となっている上に比重が重い金属は、小孔を通過して下方に落下して金属回収容器に回収される一方、炭化物は、凝集しやすい傾向にある上に相対的に比重が軽いので、溶融金属の上に浮遊する状態になってそのまま収容容器内に残留する。こうして炭化物と金属を分離することができる。 In the invention of [8], since the metal recovery container for recovering the metal falling through the small hole in the bottom surface of the storage container is further provided at a position below the gap between the pair of transfer conveyors, the carbonization is performed. When a metal component is mixed in the organic matter to be treated, the metal component can be separated and recovered in this metal recovery container. Carbide (carbide obtained by carbonizing organic matter) and metal are mixed in the container by the carbonization treatment, but the metal which is liquid by melting and has a high specific gravity passes through the small holes. While falling down and recovered in a metal recovery container, carbides tend to agglomerate and have a relatively low specific gravity, so they float on the molten metal and remain in the storage container. To do. In this way, carbide and metal can be separated.
 [9]の発明では、供給管部における、炭化処理炉の外部での途中位置を加熱する加熱装置を更に備えるから、より高い温度の過熱水蒸気を有機物に接触させることができ、収容容器内の有機物をより効率良く炭化させることができる。 In the invention of [9], since it further includes a heating device that heats a midway position outside the carbonization furnace in the supply pipe section, higher temperature superheated steam can be brought into contact with the organic matter, Organic substances can be carbonized more efficiently.
 [10]の発明では、凝縮器と、一端が炭化処理炉に接続され、他端が凝縮器に接続された回収管と、凝縮器で凝縮せしめた凝縮液を回収する回収容器と、を更に備えており、炭化処理炉内における気化成分(水蒸気、有機物からの熱分解成分、軽油分、重油分、灯油分等)を回収管を介して凝縮器に集めて該凝縮器で凝縮せしめて回収容器に回収できるので、環境負荷を低減できる。 In the invention of [10], a condenser, a recovery pipe having one end connected to the carbonization furnace and the other end connected to the condenser, and a recovery container for recovering the condensate condensed by the condenser are further provided. Evaporation component (steam, pyrolysis component from organic matter, light oil, heavy oil, kerosene, etc.) in the carbonization furnace is collected in the condenser via the recovery pipe and condensed in the condenser for recovery. Since it can be collected in a container, the environmental load can be reduced.
 [11]の発明では、回収管の途中に触媒反応器が配置されているから、この触媒反応器で塩素、酸などを除去することができて、回収容器に回収された凝縮液(回収液)を利用しやすくできる利点がある。 In the invention of [11], since the catalytic reactor is arranged in the middle of the recovery pipe, chlorine, acid, etc. can be removed by this catalytic reactor, and the condensate (recovered liquid recovered in the recovery container) ) Is easy to use.
 [12]の発明では、長さ方向の両端に開口部を有する管状体からなる炭化処理炉の内部に、有機物を収容した収容容器を配置して、この状態で炭化処理炉の内部に過熱水蒸気を供給するので、炭化処理炉の両端が開口している状態であっても、有機物を過熱水蒸気で処理する際に外部の空気が炉内に入らず(無酸素状態に又は無酸素に近い状態にすることができる)、従って有機物を十分に炭化させることができる。また、有機物を収容した収容容器を移送コンベアで移送するので、有機物を連続的に効率良く炭化処理することができる。 [12] In the invention of [12], a containment vessel containing an organic substance is arranged inside a carbonization treatment furnace comprising a tubular body having openings at both ends in the length direction, and superheated steam is placed inside the carbonization treatment furnace in this state. Therefore, even when both ends of the carbonization furnace are open, external air does not enter the furnace when the organic matter is treated with superheated steam (in an oxygen-free state or near oxygen-free state) Therefore, the organic matter can be sufficiently carbonized. Moreover, since the storage container which accommodated organic substance is transferred with a transfer conveyor, organic substance can be continuously carbonized efficiently.
 [13]の発明では、炭化処理工程において収容容器の底面の小孔を通過して落下する溶融金属を金属回収容器に回収するので、炭化処理対象の有機物中に混在している金属分を炭化物とは分離して金属回収容器に回収できる。従って、[13]の発明(炭化処理方法)によって得られる炭化物(炭)は、金属分を含有しない又は殆ど含有しないので、様々な用途に有効利用できる。 In the invention of [13], the molten metal that falls through the small hole in the bottom surface of the container in the carbonization process is recovered in the metal recovery container. Can be separated and recovered in a metal recovery container. Therefore, the carbide (charcoal) obtained by the invention [13] (carbonization method) contains no or hardly any metal component and can be effectively used for various applications.
 [14]の発明では、炭化処理炉の内部に供給する過熱水蒸気の温度が150℃以上であるから、収容容器内の有機物をより十分に炭化させることができる。 [14] In the invention of [14], since the temperature of the superheated steam supplied to the inside of the carbonization furnace is 150 ° C. or higher, the organic matter in the container can be more sufficiently carbonized.
 [15]の発明では、生ゴミ等の食品廃棄物を連続的に効率良く炭化処理できる。 [15] In the invention of [15], food waste such as raw garbage can be continuously and efficiently carbonized.
本発明に係る有機物の炭化処理装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the carbonization processing apparatus of the organic substance which concerns on this invention. 図1の炭化処理装置の正面図である(但し、過熱水蒸気発生装置、ボイラー及び供給管部は、省略して記載していない)。FIG. 2 is a front view of the carbonization apparatus of FIG. 1 (however, the superheated steam generator, boiler, and supply pipe section are not shown). 図1におけるA-A線の断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 図1におけるB-B線の断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 1. 収容容器の一例を示す図であって、(a)は載置板と収容容器とを離間状態で示す斜視図であり、(b)は収容容器の底面図である。It is a figure which shows an example of a storage container, Comprising: (a) is a perspective view which shows a mounting board and a storage container in the separation state, (b) is a bottom view of a storage container. 金属回収容器を分離して示す斜視図である。It is a perspective view which isolate | separates and shows a metal recovery container. 本発明に係る有機物の炭化処理装置の他の実施形態を示す平面図である。It is a top view which shows other embodiment of the carbonization processing apparatus of the organic substance which concerns on this invention. 図7の炭化処理装置の正面図である。It is a front view of the carbonization processing apparatus of FIG. 図7におけるC-C線の断面図である。FIG. 8 is a sectional view taken along line CC in FIG. 7. 図7におけるD-D線の断面図である。FIG. 8 is a cross-sectional view taken along the line DD in FIG.
 本発明に係る有機物の炭化処理装置の一実施形態を図1~4に示す。この炭化処理装置は、食品廃棄物(生ゴミ、食品端材等)を炭化処理するのに好適に用いられる。 1 to 4 show an embodiment of an organic carbonization apparatus according to the present invention. This carbonization apparatus is suitably used for carbonizing food waste (food waste, food scraps, etc.).
 前記炭化処理装置1は、収容容器2と、移送コンベア31、32、33、34と、炭化処理炉3と、過熱水蒸気発生装置4と、供給管部5と、ボイラー6と、を備える。 The carbonization apparatus 1 includes a container 2, transfer conveyors 31, 32, 33, 34, a carbonization furnace 3, a superheated steam generator 4, a supply pipe unit 5, and a boiler 6.
 前記炭化処理炉3は、長さ方向の両端に開口部3a、3bを有する管状体からなる。一方の開口部3aは、前記収容容器2を炉3の内部に供給するための入口であり、他方の開口部3bは、前記収容容器2を炉3の外部に排出するための出口である。 The carbonization furnace 3 is formed of a tubular body having openings 3a and 3b at both ends in the length direction. One opening 3 a is an inlet for supplying the storage container 2 to the inside of the furnace 3, and the other opening 3 b is an outlet for discharging the storage container 2 to the outside of the furnace 3.
 前記炭化処理炉3は、図3、4に示すように、横断面形状が略矩形状である。前記炭化処理炉3は、底面壁が床面で形成され、該床面の上に断面形状が略コの字状の長尺体が密閉状態に載置されてなる。 The carbonization furnace 3 has a substantially rectangular cross section as shown in FIGS. The carbonization furnace 3 has a bottom wall formed of a floor surface, and a long body having a substantially U-shaped cross section is placed on the floor surface in a sealed state.
 前記炭化処理炉3の一端の開口部3aに、開閉自在な端部シャッター40が取り付けられている。前記炭化処理炉3の一端部の上部位置にシャッター開閉用シリンダ16Aが取り付けられ、この開閉用シリンダ16Aの駆動により前記端部シャッター40を上下移動させることができる。前記端部シャッター40を下降移動させることによって前記炭化処理炉3の一端の開口部3aを閉鎖することができる一方、前記端部シャッター40を上昇移動させることによって前記炭化処理炉3の一端の開口部3aを開くことができる。 An openable / closable end shutter 40 is attached to an opening 3 a at one end of the carbonization furnace 3. A shutter opening / closing cylinder 16A is attached to the upper position of one end of the carbonization furnace 3, and the end shutter 40 can be moved up and down by driving the opening / closing cylinder 16A. The opening 3a at one end of the carbonization furnace 3 can be closed by moving the end shutter 40 downward, while the opening at one end of the carbonization furnace 3 can be closed by moving the end shutter 40 upward. Part 3a can be opened.
 前記炭化処理炉3の他端の開口部3bに、開閉自在な端部シャッター44が取り付けられている。前記炭化処理炉3の他端部の上部位置にシャッター開閉用シリンダ16Eが取り付けられ、この開閉用シリンダ16Eの駆動により前記端部シャッター44を上下移動させることができる。前記端部シャッター44を下降移動させることによって前記炭化処理炉3の他端の開口部3bを閉鎖することができる一方、前記端部シャッター44を上昇移動させることによって前記炭化処理炉3の他端の開口部3bを開くことができる。 An openable / closable end shutter 44 is attached to the opening 3 b at the other end of the carbonization furnace 3. A shutter opening / closing cylinder 16E is attached to the upper position of the other end of the carbonization furnace 3, and the end shutter 44 can be moved up and down by driving the opening / closing cylinder 16E. The opening 3b at the other end of the carbonizing furnace 3 can be closed by moving the end shutter 44 downward, while the other end of the carbonizing furnace 3 can be closed by moving the end shutter 44 upward. The opening 3b can be opened.
 前記炭化処理炉3の長さ方向の中間領域に、内部空間を仕切る仕切シャッター41、42、43が開閉自在に設けられている。 In the middle region of the carbonization furnace 3 in the length direction, partition shutters 41, 42, 43 for partitioning the internal space are provided so as to be openable and closable.
 前記炭化処理炉3において、端部シャッター40、第1仕切シャッター41、第2仕切シャッター42、第3仕切シャッター43、端部シャッター44がこの順に配置されて、これら隣り合うシャッターが相互に炭化処理炉3の長さ方向に等間隔で離間して配置されることによって、5個のシャッター40、41、42、43、44が閉鎖した(下降移動した)時に、前記炭化処理炉3の内部空間が、一方の開口部(入口)3a側から他方の開口部(出口)3b側に向けて順に、第1独立内部空間51、第2独立内部空間52、第3独立内部空間53、第4独立内部空間54の4つの独立内部空間(独立密閉空間)が形成されるものとなされている(図1、2参照)。 In the carbonization furnace 3, an end shutter 40, a first partition shutter 41, a second partition shutter 42, a third partition shutter 43, and an end shutter 44 are arranged in this order, and these adjacent shutters are carbonized together. When the five shutters 40, 41, 42, 43, 44 are closed (moved downward) by being spaced apart at equal intervals in the length direction of the furnace 3, the internal space of the carbonization furnace 3 Are, in order from the one opening (inlet) 3a side to the other opening (outlet) 3b side, the first independent internal space 51, the second independent internal space 52, the third independent internal space 53, and the fourth independent Four independent internal spaces (independent sealed spaces) of the internal space 54 are formed (see FIGS. 1 and 2).
 前記炭化処理炉3の上面壁における、前記第1仕切シャッター41が取り付けられた位置に対応する位置に、シャッター開閉用シリンダ16Bが取り付けられ、この開閉用シリンダ16Bの駆動により前記第1仕切シャッター41を上下移動させることができる。 A shutter opening / closing cylinder 16B is mounted on the upper surface wall of the carbonization furnace 3 at a position corresponding to the position where the first partition shutter 41 is mounted, and the first partition shutter 41 is driven by the opening / closing cylinder 16B. Can be moved up and down.
 前記炭化処理炉3の上面壁における、前記第2仕切シャッター42が取り付けられた位置に対応する位置に、シャッター開閉用シリンダ16Cが取り付けられ、この開閉用シリンダ16Cの駆動により前記第2仕切シャッター42を上下移動させることができる。 A shutter opening / closing cylinder 16C is attached to a position corresponding to a position where the second partition shutter 42 is attached on the upper surface wall of the carbonization furnace 3, and the second partition shutter 42 is driven by driving the opening / closing cylinder 16C. Can be moved up and down.
 前記炭化処理炉3の上面壁における、前記第3仕切シャッター43が取り付けられた位置に対応する位置に、シャッター開閉用シリンダ16Dが取り付けられ、この開閉用シリンダ16Dの駆動により前記第3仕切シャッター43を上下移動させることができる。 A shutter opening / closing cylinder 16D is mounted on the upper surface wall of the carbonization furnace 3 at a position corresponding to the position where the third partition shutter 43 is mounted, and the third partition shutter 43 is driven by driving the opening / closing cylinder 16D. Can be moved up and down.
  前記炭化処理炉3の上面壁における第1領域(第1独立内部空間51が形成される領域)Wに、開閉自在な排気口11が設けられている。前記炭化処理炉3の上面壁における第2領域(第2独立内部空間52が形成される領域)Xに、開閉自在な排気口11が設けられている。前記炭化処理炉3の上面壁における第3領域(第3独立内部空間53が形成される領域)Yに、開閉自在な排気口11が設けられている。 排 気 Openable and closable exhaust ports 11 are provided in a first region (region in which the first independent internal space 51 is formed) W on the upper surface wall of the carbonization furnace 3. An exhaust port 11 that can be opened and closed is provided in a second region X (region in which the second independent internal space 52 is formed) in the upper surface wall of the carbonization furnace 3. An exhaust port 11 that can be freely opened and closed is provided in a third region (region in which the third independent internal space 53 is formed) Y on the upper surface wall of the carbonization furnace 3.
 前記炭化処理炉3の上面壁における第4領域(第4独立内部空間54が形成される領域)Zに、開閉自在な通気口19が2個設けられている。更に、前記炭化処理炉3の上面壁における第4領域Zには、排気ダクト12の一端が接続され、該排気ダクト12の他端に排気ファン13が取り付けられている(図4参照)。前記排気ファン13からの排気は、上端が開口されている排気煙突管18を介して行われる(図4参照)。即ち、前記通気口19を開いた状態で排気ファン13を駆動させることによって、第4独立内部空間54の気体を排気ダクト12、排気煙突管18を介して排気することができ、これにより第4独立内部空間54を空冷することができる。 In the fourth region (region in which the fourth independent internal space 54 is formed) Z on the upper wall of the carbonization furnace 3, two openable / closable vents 19 are provided. Furthermore, one end of the exhaust duct 12 is connected to the fourth region Z on the upper surface wall of the carbonization furnace 3, and the exhaust fan 13 is attached to the other end of the exhaust duct 12 (see FIG. 4). Exhaust from the exhaust fan 13 is performed through an exhaust chimney pipe 18 whose upper end is opened (see FIG. 4). That is, by driving the exhaust fan 13 with the vent 19 open, the gas in the fourth independent internal space 54 can be exhausted through the exhaust duct 12 and the exhaust chimney pipe 18. The independent internal space 54 can be air-cooled.
 前記炭化処理炉3の側壁には、開閉自在な点検用窓15が設けられている。前記点検用窓15は、ガラス等の透明材料で形成されている。この点検用窓15を介して炭化処理中の炭化処理炉3の内部を観察、点検等することができる。 An inspection window 15 that can be freely opened and closed is provided on the side wall of the carbonization furnace 3. The inspection window 15 is made of a transparent material such as glass. Through this inspection window 15, the inside of the carbonization furnace 3 during the carbonization process can be observed and inspected.
 前記炭化処理炉3の内部空間に前記移送コンベア31、32、33、34が設置されている(図1、2参照)。即ち、一方の開口部(入口)3a側から他方の開口部(出口)3b側に向けて順に、第1移送コンベア31、第2移送コンベア32、第3移送コンベア33、第4移送コンベア34が配置されている。 The transfer conveyors 31, 32, 33, and 34 are installed in the internal space of the carbonization furnace 3 (see FIGS. 1 and 2). That is, the first transfer conveyor 31, the second transfer conveyor 32, the third transfer conveyor 33, and the fourth transfer conveyor 34 are sequentially arranged from one opening (entrance) 3a side to the other opening (exit) 3b side. Has been placed.
 前記第1移送コンベアは、前記炭化処理炉3の幅方向に離間した一対の移送コンベア31、31からなる。前記第2移送コンベアは、前記炭化処理炉3の幅方向に離間した一対の移送コンベア32、32からなる。前記第3移送コンベアは、前記炭化処理炉3の幅方向に離間した一対の移送コンベア33、33からなる。一方、前記第4移送コンベアは、前記炭化処理炉3の幅方向に離間することなく近接位置で配置された一対の移送コンベア34、34からなる。 The first transfer conveyor includes a pair of transfer conveyors 31 and 31 spaced in the width direction of the carbonization furnace 3. The second transfer conveyor includes a pair of transfer conveyors 32 and 32 that are separated in the width direction of the carbonization furnace 3. The third transfer conveyor includes a pair of transfer conveyors 33 and 33 spaced in the width direction of the carbonization furnace 3. On the other hand, the fourth transfer conveyor is composed of a pair of transfer conveyors 34 and 34 arranged at close positions without being separated in the width direction of the carbonization furnace 3.
 前記第1移送コンベア31は、コンベア駆動装置14Aにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされている。前記第2移送コンベア32は、コンベア駆動装置14Bにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされている。前記第3移送コンベア33は、コンベア駆動装置14Cにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされている。前記第4移送コンベア34は、コンベア駆動装置14Dにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされている。 The first transfer conveyor 31 can be driven (reciprocated) independently by the conveyor driving device 14A (different from other transfer conveyors). The second transfer conveyor 32 can be driven (reciprocated) independently by the conveyor driving device 14B (different from other transfer conveyors). The third transfer conveyor 33 can be driven (reciprocated) independently by the conveyor driving device 14C (different from other transfer conveyors). The fourth transfer conveyor 34 can be driven (reciprocated) independently by the conveyor driving device 14D (different from other transfer conveyors).
  供給コンベアは、前記炭化処理炉3の幅方向に離間した一対の移送コンベア30、30からなる。また、排出コンベアは、前記炭化処理炉3の幅方向に離間した一対の排出コンベア35、35からなる。 The firewood supply conveyor is composed of a pair of transfer conveyors 30, 30 spaced in the width direction of the carbonization furnace 3. The discharge conveyor includes a pair of discharge conveyors 35 and 35 that are separated in the width direction of the carbonization furnace 3.
 前記供給コンベア30は、コンベア駆動装置14Xにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされ、前記排出コンベア35は、コンベア駆動装置14Yにより(他の移送コンベアとは)独立して駆動(往復駆動)できるものとなされている。 The supply conveyor 30 can be driven (reciprocating drive) independently by a conveyor drive device 14X (different from other transfer conveyors), and the discharge conveyor 35 can be driven by a conveyor drive device 14Y (what other transfer conveyors are). ) It can be driven independently (reciprocating drive).
 これら各一対の供給コンベア30、移送コンベア31、32、33、34、排出コンベア35は、前記収容容器2を下から支持して入口3a側から出口3b側に向けて順次移送することができる。 The pair of supply conveyors 30, transfer conveyors 31, 32, 33, 34, and discharge conveyors 35 can support the container 2 from below and sequentially transfer from the inlet 3a side to the outlet 3b side.
  前記収容容器2は、食品廃棄物等の有機物を中に収容するための容器である。前記収容容器2は、容器の少なくとも一部(好ましくは上部位置)に開放口を有するものであればよい。本実施形態では、前記収容容器2は、上面が開放された略直方体形状の容器からなる。前記収容容器2の底面の一部(底面の中央の水平面部2C)に複数個の小孔2aが形成されている(図5参照)。即ち、前記収容容器2の底面には、移送時における前記一対の移送コンベアの間の隙間36に対応する領域の少なくとも一部に複数個の小孔2aが形成されている(図3、5参照)。前記収容容器2の素材としては、特に限定されるものではないが、例えば、金属(鉄、ステンレス等)、セラミックなどが挙げられる。前記収容容器2の底面は、中央の水平面部2Cと、該水平面部2Cの両端から外方に向けて下から上に傾斜する左右一対の傾斜面部2B、2Bとからなる(図3、5参照)。しかして、過熱水蒸気による炭化処理により収容容器2内に生じた溶融金属(有機物中に混在していた金属分)は、傾斜面部2Bの傾斜により中央の水平面部2Cに向けて流動していき該水平面部2Cの小孔2aを通過して下方に落下して金属回収容器8内に回収される(図3参照)。 収容 The storage container 2 is a container for storing organic substances such as food waste. The storage container 2 only needs to have an opening in at least a part (preferably an upper position) of the container. In the present embodiment, the storage container 2 is a substantially rectangular parallelepiped container having an open upper surface. A plurality of small holes 2a are formed in a part of the bottom surface of the container 2 (horizontal plane portion 2C in the center of the bottom surface) (see FIG. 5). That is, a plurality of small holes 2a are formed in the bottom surface of the container 2 in at least a part of a region corresponding to the gap 36 between the pair of transfer conveyors during transfer (see FIGS. 3 and 5). ). Although it does not specifically limit as a raw material of the said container 2, For example, a metal (iron, stainless steel, etc.), a ceramic, etc. are mentioned. The bottom surface of the container 2 is composed of a central horizontal surface portion 2C and a pair of left and right inclined surface portions 2B and 2B that are inclined outward from both ends of the horizontal surface portion 2C (see FIGS. 3 and 5). ). Accordingly, the molten metal (metal component mixed in the organic substance) generated in the container 2 by the carbonization treatment with superheated steam flows toward the central horizontal surface portion 2C due to the inclination of the inclined surface portion 2B. It passes through the small hole 2a of the horizontal surface portion 2C, falls downward, and is recovered in the metal recovery container 8 (see FIG. 3).
 前記小孔2aの大きさは、特に限定されるものではないが、長径(円形状の場合には直径、正方形の場合には対角線長さ)が0.1mm~10mmに設定されるのが好ましく、中でも小孔2aの長径は2mm~5mmに設定されるのが特に好ましい。 The size of the small hole 2a is not particularly limited, but the long diameter (diameter in the case of a circle and diagonal length in the case of a square) is preferably set to 0.1 mm to 10 mm. In particular, the long diameter of the small hole 2a is particularly preferably set to 2 mm to 5 mm.
 また、前記収容容器2の内部空間内に載置板9が載置されている(図3、5参照)。前記載置板9には複数個の孔9aが形成されている(図5参照)。本実施形態では、前記載置板9の全面にわたって複数個の孔9aが形成されている(図5参照)。前記孔9aの大きさは、特に限定されるものではないが、長径(円形状の場合には直径、正方形の場合には対角線長さ)が7mm~15mmに設定されるのが好ましい。このような載置板9を収容容器2の内部空間内に載置することにより、有機物に混在する少し大きい異物等を載置板9から下方に移行するのを阻止できる。なお、収容容器2の底面には傾斜面部2Bが存在するので、載置板9を収容容器2の内部空間内に載置しても、該載置板9と収容容器2の底面の水平面部2Cとの間に空間が確保される(図3、5参照)。 Further, a mounting plate 9 is mounted in the internal space of the container 2 (see FIGS. 3 and 5). The mounting plate 9 has a plurality of holes 9a (see FIG. 5). In the present embodiment, a plurality of holes 9a are formed over the entire surface of the mounting plate 9 (see FIG. 5). The size of the hole 9a is not particularly limited, but the long diameter (diameter in the case of a circle and diagonal length in the case of a square) is preferably set to 7 mm to 15 mm. By placing such a placement plate 9 in the internal space of the container 2, it is possible to prevent a slightly large foreign substance or the like mixed in the organic matter from moving downward from the placement plate 9. In addition, since the inclined surface portion 2B exists on the bottom surface of the storage container 2, even when the mounting plate 9 is placed in the internal space of the storage container 2, the horizontal surface portion of the mounting plate 9 and the bottom surface of the storage container 2 A space is secured between 2C (see FIGS. 3 and 5).
  前記ボイラー6は、水から水蒸気を生成する装置である。このボイラー6で生成させた水蒸気は、連通管17を介して前記過熱水蒸気発生装置4に移送される。即ち、前記ボイラー6と前記過熱水蒸気発生装置4は連通管17で接続されている(図1参照)。前記ボイラー6としては、特に限定されるものではないが、例えば貫流蒸気ボイラー等が挙げられる。 The boiler 6 is a device that generates water vapor from water. The steam generated by the boiler 6 is transferred to the superheated steam generator 4 through the communication pipe 17. That is, the boiler 6 and the superheated steam generator 4 are connected by the communication pipe 17 (see FIG. 1). Although it does not specifically limit as the said boiler 6, For example, a once-through steam boiler etc. are mentioned.
 前記過熱水蒸気発生装置4は、水蒸気から過熱水蒸気を発生させる装置である。即ち、過熱水蒸気発生装置4は、前記ボイラー6から移送されてくる水蒸気から過熱水蒸気を発生させる。本実施形態では、前記第1独立内部空間51内に接続される1台の過熱水蒸気発生装置4、前記第2独立内部空間52内に接続される1台の過熱水蒸気発生装置4、前記第3独立内部空間53内に接続される1台の過熱水蒸気発生装置4、の合計3台を備えている。従って、前記ボイラー6についても、前記第1独立内部空間51に接続される1台のボイラー6、前記第2独立内部空間52に接続される1台のボイラー6、前記第3独立内部空間53に接続される1台のボイラー6、の合計3台を備えている。 The superheated steam generator 4 is a device that generates superheated steam from steam. That is, the superheated steam generator 4 generates superheated steam from the steam transferred from the boiler 6. In this embodiment, one superheated steam generator 4 connected in the first independent internal space 51, one superheated steam generator 4 connected in the second independent internal space 52, the third A total of three superheated steam generators 4 connected in the independent internal space 53 are provided. Accordingly, the boiler 6 is also divided into one boiler 6 connected to the first independent internal space 51, one boiler 6 connected to the second independent internal space 52, and the third independent internal space 53. A total of three boilers 6 are connected.
 前記過熱水蒸気発生装置4としては、特に限定されるものではないが、例えば誘導過熱式の過熱水蒸気発生装置などが挙げられる。前記過熱水蒸気発生装置4で発生させる過熱水蒸気の温度としては、例えば700℃などを例示できるが、特にこのような条件に限定されない。有機物を十分に炭化させるには前記過熱水蒸気発生装置4で150℃以上の過熱水蒸気を発生させるのが好ましい。中でも、エネルギーコストを抑制しつつ有機物の炭化処理を十分に行わせるには、前記過熱水蒸気発生装置4で160℃~1000℃の過熱水蒸気を発生させるのが特に好ましい。 The superheated steam generator 4 is not particularly limited, and examples thereof include an induction superheated steam generator. Examples of the temperature of the superheated steam generated by the superheated steam generator 4 include 700 ° C., but are not particularly limited to such conditions. In order to sufficiently carbonize the organic matter, it is preferable that the superheated steam generator 4 generates superheated steam at 150 ° C. or higher. In particular, it is particularly preferable to generate the superheated steam at 160 ° C. to 1000 ° C. with the superheated steam generator 4 in order to sufficiently perform the carbonization treatment of the organic substance while suppressing the energy cost.
  前記供給管部5は、一端が前記過熱水蒸気発生装置4に接続され、他端が前記炭化処理炉3の内部空間で開口している。即ち、前記供給管部5の先端開口部5aは、前記炭化処理炉3内における移送コンベアの下方位置に配置されている。しかして、前記供給管部5は、前記過熱水蒸気発生装置4で発生する過熱水蒸気を前記炭化処理炉3の内部に供給する。 一端 One end of the supply pipe section 5 is connected to the superheated steam generator 4, and the other end is opened in the internal space of the carbonization furnace 3. That is, the front end opening 5 a of the supply pipe unit 5 is disposed at a position below the transfer conveyor in the carbonization furnace 3. Thus, the supply pipe unit 5 supplies the superheated steam generated by the superheated steam generator 4 into the carbonization furnace 3.
  前記供給管部5における前記炭化処理炉3の外部での途中位置を加熱する加熱装置7がさらに設けられている(図1~3参照)。本実施形態では、前記加熱装置7として加熱バーナーが用いられている。 加熱 A heating device 7 is further provided for heating a midway position of the supply pipe section 5 outside the carbonization furnace 3 (see FIGS. 1 to 3). In the present embodiment, a heating burner is used as the heating device 7.
  前記一対の第3移送コンベア33、33の間の隙間36の下方位置に金属回収容器8が配置されている(図3参照)。また、前記一対の第2移送コンベア32、32の間の隙間36の下方位置に金属回収容器8が配置されている。また、前記一対の第1移送コンベア31、31の間の隙間36の下方位置に金属回収容器8が配置されている。前記金属回収容器8は、上面が開放された容器からなる(図6参照)。前記金属回収容器8は、前記収容容器2の底面の小孔2aを通過して(更に前記隙間36を通って)落下する金属を回収するための容器である。落下する金属を漏れなく回収できるように、前記金属回収容器8は、いずれも、各移送コンベアの隙間36の長さ方向の一端側から他端側に対応する領域をカバーできる大きさに設定されている。前記金属回収容器8は、長さ方向の中央部にインゴット形成用凹部8Aを備え、該インゴット形成用凹部8Aに向けて溶融金属が流れるように該凹部8Aの上縁に連なる前後一対の傾斜面部8c、8cが設けられている(図6参照)。しかして、前記金属回収容器8内に流れ込んだ溶融金属は、傾斜面部8c、8c上をインゴット形成用凹部8Aに向けて流れて該インゴット形成用凹部8A内に貯留される。なお、前記インゴット形成用凹部8Aの底板8bは、取り外し可能となされており、該インゴット形成用凹部8A内で冷却(通常は装置1の運転を停止して冷却する)を経て固化した金属インゴットは、底板8bを取り外すことにより下方に抜けて回収される。 金属 A metal recovery container 8 is disposed below the gap 36 between the pair of third transfer conveyors 33, 33 (see FIG. 3). Further, a metal recovery container 8 is disposed at a position below the gap 36 between the pair of second transfer conveyors 32, 32. Further, a metal recovery container 8 is disposed at a position below the gap 36 between the pair of first transfer conveyors 31, 31. The metal recovery container 8 is a container having an open upper surface (see FIG. 6). The metal recovery container 8 is a container for recovering metal that passes through the small hole 2a on the bottom surface of the storage container 2 (and further passes through the gap 36). Each of the metal recovery containers 8 is set to a size that can cover a region corresponding to one end side from the other end side in the length direction of the gap 36 of each transfer conveyor so that the falling metal can be recovered without leakage. ing. The metal recovery container 8 includes a recess 8A for forming an ingot at the center in the lengthwise direction, and a pair of front and rear inclined surfaces connected to the upper edge of the recess 8A so that molten metal flows toward the recess 8A for forming the ingot 8c and 8c are provided (see FIG. 6). Thus, the molten metal that has flowed into the metal recovery container 8 flows on the inclined surfaces 8c and 8c toward the ingot-forming recess 8A and is stored in the ingot-forming recess 8A. The bottom plate 8b of the ingot-forming recess 8A is removable, and the metal ingot solidified through cooling (usually stopping the operation of the apparatus 1 to cool down) in the ingot-forming recess 8A By removing the bottom plate 8b, the bottom plate 8b is pulled down and collected.
 本実施形態では、前記第1独立内部空間51内に前記供給管部5から供給される過熱水蒸気の温度は、500℃になるように制御される。前記第2独立内部空間52内に前記供給管部5から供給される過熱水蒸気の温度は、900℃になるように制御される。また、前記第3独立内部空間53内に前記供給管部5から供給される過熱水蒸気の温度は、1200℃になるように制御される。前記各独立内部空間内に供給される過熱水蒸気の温度は、その一例を示したものに過ぎず、特にこのような条件に限定されるものではない。 In the present embodiment, the temperature of the superheated steam supplied from the supply pipe part 5 into the first independent internal space 51 is controlled to be 500 ° C. The temperature of the superheated steam supplied from the supply pipe part 5 in the second independent internal space 52 is controlled to be 900 ° C. Further, the temperature of the superheated steam supplied from the supply pipe part 5 into the third independent internal space 53 is controlled to be 1200 ° C. The temperature of the superheated steam supplied into each of the independent internal spaces is merely an example, and is not particularly limited to such conditions.
 なお、前記第4独立内部空間54では、排気ファン13を駆動させて排気ダクト12、排気煙突管18を介しての排気がなされることにより、第4独立内部空間54内は空冷されるものとなされている(図4参照)。即ち、前記第4独立内部空間54では、前記排気に伴って前記通気口19から外部空気が新たに取り込まれることによって、空冷が行われる。 In the fourth independent internal space 54, the exhaust fan 13 is driven and exhaust is performed through the exhaust duct 12 and the exhaust chimney pipe 18, whereby the fourth independent internal space 54 is cooled by air. (See FIG. 4). That is, in the fourth independent internal space 54, air is cooled by newly taking in external air from the vent hole 19 with the exhaust.
  次に、本発明の炭化処理装置1を用いて有機物を炭化処理する方法の一例について説明する。 Next, an example of a method for carbonizing an organic substance using the carbonization apparatus 1 of the present invention will be described.
 炭化処理の対象となる有機物としては、特に限定されるものではないが、例えば、食品廃棄物(生ゴミ、食品端材等)、木材(鉄道の枕木も含む)、プラスチック、漁網、基板(IC基板等)、タイヤ等が挙げられる。 The organic matter to be carbonized is not particularly limited. For example, food waste (food waste, food scraps, etc.), wood (including railway sleepers), plastic, fishing nets, substrates (ICs) Substrate etc.), tires and the like.
 まず、炭化処理中は、炭化処理炉3の排気口11は開放し、炭化処理炉3の通気口19も開放しておく。 First, during the carbonization treatment, the exhaust port 11 of the carbonization treatment furnace 3 is opened, and the vent hole 19 of the carbonization treatment furnace 3 is also opened.
 処理対象の有機物を収容した4個の収容容器2を供給コンベア30に載せて移送し、次の第1移送コンベア31に移して更に移送することによって、これら収容容器2を炭化処理炉3の第1領域Wに配置せしめる。 The four storage containers 2 storing the organic substances to be processed are placed on the supply conveyor 30 and transferred, and then transferred to the first transfer conveyor 31 and further transferred, so that the storage containers 2 of the carbonization furnace 3 are transferred. It is arranged in one area W.
 しかる後、端部シャッター40及び第1仕切シャッター41を閉じて第1独立内部空間51を形成せしめる。この第1独立内部空間51内に供給管部5の先端開口部5aから500℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理を進行させる。この時、有機物に、錫、鉛、リチウム、マグネシウム、ジルコニウム、金、銀、銅、ネオジウム等の金属が混在していると、錫、鉛、リチウム等は、500℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第1独立内部空間51内の金属回収容器8内に回収される。 Thereafter, the end shutter 40 and the first partition shutter 41 are closed to form the first independent internal space 51. Carbonization of the organic matter in the container 2 is advanced by supplying superheated steam at 500 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the first independent internal space 51. At this time, if metals such as tin, lead, lithium, magnesium, zirconium, gold, silver, copper, and neodymium are mixed in the organic matter, tin, lead, lithium, etc. are melted by superheated steam at 500 ° C. Then, it passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the first independent internal space 51.
 次に、端部シャッター40及び第1仕切シャッター41を開いて、第1独立内部空間51内の収容容器2を第1移送コンベア31で移送し、次の第2移送コンベア32に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第2領域Xに配置せしめる。これと同時並行して、処理対象の有機物を収容した新たな4個の収容容器2を供給コンベア30に載せて移送し、次の第1移送コンベア31に移して更に移送することによって、これら新たな収容容器2を炭化処理炉3の第1領域Wに配置せしめる。 Next, the end shutter 40 and the first partition shutter 41 are opened, and the container 2 in the first independent internal space 51 is transferred by the first transfer conveyor 31, then transferred to the next second transfer conveyor 32 and further transferred. By doing so, these four storage containers 2 are arranged in the second region X of the carbonization furnace 3. At the same time, four new containers 2 containing the organic substances to be processed are placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer. A suitable container 2 is placed in the first region W of the carbonization furnace 3.
 しかる後、端部シャッター40、第1仕切シャッター41及び第2仕切シャッター42を閉じて第1独立内部空間51と第2独立内部空間52を形成せしめる。第1独立内部空間51内に供給管部5の先端開口部5aから500℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理を進行させる。これと同時並行して、第2独立内部空間52内に供給管部5の先端開口部5aから900℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理をさらに進行させる。第2独立内部空間52内では、有機物に混在している金属(例えばマグネシウム、ジルコニウム、金、銀、銅、ネオジウム等)のうち、マグネシウム、ジルコニウム等は、900℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第2独立内部空間52内の金属回収容器8内に回収される。なお、第1独立内部空間51内では、前記同様に、有機物に混在している金属のうち、錫、鉛、リチウム等は、500℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第1独立内部空間51内の金属回収容器8内に回収される。 Thereafter, the end shutter 40, the first partition shutter 41, and the second partition shutter 42 are closed to form the first independent internal space 51 and the second independent internal space 52. By supplying superheated steam at 500 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the first independent internal space 51, the carbonization of the organic matter in the container 2 is advanced. In parallel with this, carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52. The process proceeds further. In the second independent internal space 52, among metals mixed in organic matter (for example, magnesium, zirconium, gold, silver, copper, neodymium, etc.), magnesium, zirconium, etc. are melted by superheated steam at 900 ° C., It passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the second independent internal space 52. In the first independent internal space 51, among the metals mixed in the organic matter, tin, lead, lithium, and the like are melted by superheated steam at 500 ° C., and the bottom surface of the container 2 is small. It falls through the hole 2 a and is recovered in the metal recovery container 8 in the first independent internal space 51.
 次に、端部シャッター40、第1仕切シャッター41及び第2仕切シャッター42を開いて、第2独立内部空間52内の収容容器2を第2移送コンベア32で移送し、次の第3移送コンベア33に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第3領域Yに配置せしめる。これと同時並行して、第1独立内部空間51内の収容容器2を第1移送コンベア31で移送し、次の第2移送コンベア32に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第2領域Xに配置せしめる。また、これらと同時並行して、処理対象の有機物を収容した新たな収容容器2を供給コンベア30に載せて移送し、次の第1移送コンベア31に移して更に移送することによって、新たな収容容器2を炭化処理炉3の第1領域Wに配置せしめる。 Next, the end shutter 40, the first partition shutter 41, and the second partition shutter 42 are opened, and the container 2 in the second independent internal space 52 is transferred by the second transfer conveyor 32, and the next third transfer conveyor These four containers 2 are placed in the third region Y of the carbonization furnace 3 by moving to 33 and further transferring. At the same time, the storage containers 2 in the first independent internal space 51 are transferred by the first transfer conveyor 31, transferred to the next second transfer conveyor 32, and further transferred, so that these four storage containers 2 is placed in the second region X of the carbonization furnace 3. At the same time, a new container 2 containing the organic matter to be treated is placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer. The container 2 is placed in the first region W of the carbonization furnace 3.
 しかる後、端部シャッター40、第1仕切シャッター41、第2仕切シャッター42及び第3仕切シャッター43を閉じて、第1独立内部空間51、第2独立内部空間52及び第3独立内部空間53を形成せしめる。第1独立内部空間51内に供給管部5の先端開口部5aから500℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理を進行させる。これと同時並行して、第2独立内部空間52内に供給管部5の先端開口部5aから900℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理をさらに進行させる。また、これらと同時並行して、第3独立内部空間53内に供給管部5の先端開口部5aから1200℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理をさらに進行させる。第3独立内部空間53内では、有機物に金、銀、銅、ネオジウム等が混在していると、これら金、銀、銅、ネオジウム等は、1200℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第3独立内部空間53内の金属回収容器8内に回収される。なお、第2独立内部空間52内では、前記同様に、有機物に混在している金属(例えばマグネシウム、ジルコニウム、金、銀、銅、ネオジウム等)のうち、マグネシウム、ジルコニウム等は、900℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第2独立内部空間52内の金属回収容器8内に回収される一方、第1独立内部空間51内では、前記同様に、有機物に混在している金属(例えば錫、鉛、リチウム、マグネシウム、ジルコニウム、金、銀、銅、ネオジウム等)のうち、錫、鉛、リチウム等は、500℃の過熱水蒸気により溶融して、収容容器2の底面の小孔2aを通過して落下し、第1独立内部空間51内の金属回収容器8内に回収される。 Thereafter, the end shutter 40, the first partition shutter 41, the second partition shutter 42, and the third partition shutter 43 are closed, and the first independent internal space 51, the second independent internal space 52, and the third independent internal space 53 are formed. Let it form. By supplying superheated steam at 500 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the first independent internal space 51, the carbonization of the organic matter in the container 2 is advanced. In parallel with this, carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52. The process proceeds further. In parallel with these, by supplying superheated steam at 1200 ° C. for a predetermined time (for example, 14 minutes) from the front end opening 5 a of the supply pipe portion 5 into the third independent internal space 53, the organic matter in the container 2. The carbonization treatment of is further advanced. In the third independent internal space 53, when gold, silver, copper, neodymium, etc. are mixed in the organic matter, these gold, silver, copper, neodymium, etc. are melted by superheated steam at 1200 ° C. It passes through the small hole 2 a on the bottom surface of the metal and drops and is recovered in the metal recovery container 8 in the third independent internal space 53. In the second independent internal space 52, as described above, among metals (eg, magnesium, zirconium, gold, silver, copper, neodymium, etc.) mixed in organic matter, magnesium, zirconium, etc. are overheated at 900 ° C. While being melted by water vapor and passing through the small hole 2a on the bottom surface of the storage container 2, it falls and is recovered in the metal recovery container 8 in the second independent internal space 52, while in the first independent internal space 51, Similarly to the above, among metals (eg, tin, lead, lithium, magnesium, zirconium, gold, silver, copper, neodymium, etc.) mixed in organic matter, tin, lead, lithium, etc. are melted by superheated steam at 500 ° C. Then, it passes through the small hole 2 a on the bottom surface of the storage container 2 and falls and is recovered in the metal recovery container 8 in the first independent internal space 51.
 次に、端部シャッター40、第1仕切シャッター41、第2仕切シャッター42及び第3仕切シャッター43を開いて、第3独立内部空間53内の収容容器2を第3移送コンベア33で移送し、次の第4移送コンベア34に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第4領域Zに配置せしめる。これと同時並行して、第2独立内部空間52内の収容容器2を第2移送コンベア32で移送し、次の第3移送コンベア33に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第3領域Yに配置せしめる。これと同時並行して、第1独立内部空間51内の収容容器2を第1移送コンベア31で移送し、次の第2移送コンベア32に移して更に移送することによって、これら4個の収容容器2を炭化処理炉3の第2領域Xに配置せしめる。また、これらと同時並行して、処理対象の有機物を収容した新たな4個の収容容器2を供給コンベア30に載せて移送し、次の第1移送コンベア31に移して更に移送することによって、新たな収容容器2を炭化処理炉3の第1領域Wに配置せしめる。 Next, the end shutter 40, the first partition shutter 41, the second partition shutter 42, and the third partition shutter 43 are opened, and the container 2 in the third independent internal space 53 is transferred by the third transfer conveyor 33, These four containers 2 are placed in the fourth region Z of the carbonization furnace 3 by being transferred to the next fourth transfer conveyor 34 and further transferred. At the same time, the storage containers 2 in the second independent internal space 52 are transferred by the second transfer conveyor 32, transferred to the next third transfer conveyor 33, and further transferred. 2 is placed in the third region Y of the carbonization furnace 3. At the same time, the storage containers 2 in the first independent internal space 51 are transferred by the first transfer conveyor 31, transferred to the next second transfer conveyor 32, and further transferred, so that these four storage containers 2 is placed in the second region X of the carbonization furnace 3. In parallel with these, four new containers 2 containing organic substances to be processed are placed on the supply conveyor 30 and transferred to the next first transfer conveyor 31 for further transfer, A new container 2 is placed in the first region W of the carbonization furnace 3.
 しかる後、端部シャッター40、第1仕切シャッター41、第2仕切シャッター42、第3仕切シャッター43及び端部シャッター44を閉じて、第1独立内部空間51、第2独立内部空間52、第3独立内部空間53及び第4独立内部空間54を形成せしめる。第1独立内部空間51内に供給管部5の先端開口部5aから500℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理を進行させる。これと同時並行して、第2独立内部空間52内に供給管部5の先端開口部5aから900℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理をさらに進行させる。また、これらと同時並行して、第3独立内部空間53内に供給管部5の先端開口部5aから1200℃の過熱水蒸気を所定時間(例えば14分間)供給することによって収容容器2内の有機物の炭化処理をさらに進行させる。更に、これらと同時並行して、第4独立内部空間54内においては排気ファン13を駆動させることにより内部空間54内の気体を排気ダクト12、排気煙突管18を介して外部に排出させることによって、通気口19を介して第4独立内部空間54内に外部空気が新たに取り込まれて第4独立内部空間54内の雰囲気や炭化物等が空冷される。 After that, the end shutter 40, the first partition shutter 41, the second partition shutter 42, the third partition shutter 43, and the end shutter 44 are closed, and the first independent internal space 51, the second independent internal space 52, the third An independent internal space 53 and a fourth independent internal space 54 are formed. By supplying superheated steam at 500 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the first independent internal space 51, the carbonization of the organic matter in the container 2 is advanced. In parallel with this, carbonization of organic matter in the container 2 is performed by supplying superheated steam at 900 ° C. for a predetermined time (for example, 14 minutes) from the tip opening 5 a of the supply pipe portion 5 into the second independent internal space 52. The process proceeds further. In parallel with these, by supplying superheated steam at 1200 ° C. for a predetermined time (for example, 14 minutes) from the front end opening 5 a of the supply pipe portion 5 into the third independent internal space 53, the organic matter in the container 2. The carbonization treatment of is further advanced. In parallel with these, the exhaust fan 13 is driven in the fourth independent internal space 54 to discharge the gas in the internal space 54 to the outside through the exhaust duct 12 and the exhaust chimney pipe 18. Then, external air is newly taken into the fourth independent internal space 54 through the vent 19 and the atmosphere, carbides, etc. in the fourth independent internal space 54 are air-cooled.
 次に、端部シャッター40、第1仕切シャッター41、第2仕切シャッター42、第3仕切シャッター43及び端部シャッター44を開いて、第4独立内部空間54内の収容容器2を第4移送コンベア34で移送し、次の排出コンベア35に移して、該収容容器2内の有機物の炭化処理を終了する。前記排出コンベア35に排出された収容容器2内には炭化処理により得られた炭化物(炭)が存在する。 Next, the end shutter 40, the first partition shutter 41, the second partition shutter 42, the third partition shutter 43, and the end shutter 44 are opened, and the container 2 in the fourth independent internal space 54 is transferred to the fourth transfer conveyor. 34, it moves to the following discharge conveyor 35, and the carbonization process of the organic substance in this container 2 is complete | finished. Carbide (charcoal) obtained by carbonization is present in the container 2 discharged to the discharge conveyor 35.
 なお、有機物に鉄が混在している場合には、鉄の融点が1535℃と高いので、鉄は前記金属回収容器8に回収されることなく、前記排出コンベア35に排出された収容容器2内に炭化物(炭)と一緒に回収される。また、有機物に、ニッケル、クロム、コバルト、マンガンが混在している場合にも、これら金属成分は、前記金属回収容器8に回収されることなく、前記排出コンベア35に排出された収容容器2内に炭化物(炭)と一緒に回収される。 In the case where iron is mixed in the organic matter, the melting point of iron is as high as 1535 ° C., so that iron is not collected in the metal collection container 8 and is contained in the container 2 discharged to the discharge conveyor 35. Recovered together with carbides (charcoal). Further, even when nickel, chromium, cobalt, and manganese are mixed in the organic matter, these metal components are not collected in the metal collection container 8 but are contained in the container 2 discharged to the discharge conveyor 35. Recovered together with carbides (charcoal).
 以下、上述した操作を順次繰り返すことによって、多数個の収容容器2内の有機物を連続的に炭化処理することができると共に、第1独立内部空間51内の金属回収容器8内に錫、鉛、リチウム等を回収することができ、第2独立内部空間52内の金属回収容器8内にマグネシウム、ジルコニウム等を回収することができ、第3独立内部空間53内の金属回収容器8内に金、銀、銅、ネオジウム等を回収することができる。このように有機物を効率良く炭化させることができると共に、有機物中に存在している金属を有機物(炭化物)とは分離して回収することができる。更に、各独立内部空間に供給する過熱水蒸気の温度を異ならしめることによって、前記有機物中の金属を2以上の複数の群に分離して回収することができる。 Hereinafter, by sequentially repeating the above-described operations, the organic matter in the multiple storage containers 2 can be continuously carbonized, and tin, lead, in the metal recovery container 8 in the first independent internal space 51 can be obtained. Lithium or the like can be recovered, magnesium, zirconium, or the like can be recovered in the metal recovery container 8 in the second independent internal space 52, gold in the metal recovery container 8 in the third independent internal space 53, Silver, copper, neodymium, etc. can be recovered. Thus, the organic substance can be efficiently carbonized, and the metal present in the organic substance can be separated and recovered from the organic substance (carbide). Furthermore, by making the temperature of the superheated steam supplied to each independent internal space different, the metal in the organic matter can be separated into two or more groups and recovered.
 前記供給管部5の先端開口部5aから放散させる過熱水蒸気の温度は150℃以上であるのが好ましい。中でも、供給管部5の先端開口部5aから放散させる過熱水蒸気の温度は160℃~1000℃であるのが特に好ましく、この場合にはエネルギーコストを抑制できると共に有機物を十分に炭化させることができる。 It is preferable that the temperature of the superheated steam to be diffused from the tip opening 5a of the supply pipe part 5 is 150 ° C. or higher. In particular, the temperature of the superheated steam to be diffused from the tip opening 5a of the supply pipe 5 is particularly preferably 160 ° C. to 1000 ° C. In this case, the energy cost can be suppressed and the organic matter can be sufficiently carbonized. .
  なお、上記有機物炭化処理方法は、その一例を示したものに過ぎず、特にこのような態様に限定されるものではない。 Note that the organic carbonization method is merely an example, and is not particularly limited to such an embodiment.
 次に、本発明に係る有機物の炭化処理装置の他の実施形態を図7~10に示す。この実施形態では、凝縮器61と、一端が前記炭化処理炉3に接続され、他端が前記凝縮器61に接続された回収管62と、前記凝縮器61で凝縮せしめた凝縮液を回収する回収容器63と、を更に備えている点で、前記実施形態(図1~4)の構成と大きく相違する。他にも相違点があるが、これらについては以下順に説明する。なお、前記実施形態(図1~4)と同一の構成部については同一の符号を付してその説明は省略する。 Next, another embodiment of the organic carbonization apparatus according to the present invention is shown in FIGS. In this embodiment, the condenser 61, one end connected to the carbonization furnace 3, the other end connected to the condenser 61, and the condensate condensed in the condenser 61 are recovered. The configuration further differs from the configuration of the embodiment (FIGS. 1 to 4) in that it further includes a recovery container 63. There are other differences, which will be described in the following order. Note that the same components as those in the above embodiment (FIGS. 1 to 4) are denoted by the same reference numerals, and the description thereof is omitted.
  前記回収管62の一端は、前記炭化処理炉3の排気口11に接続されている(図7、9参照)。また、前記回収管62の途中位置に触媒反応器64が設けられている(図7、9参照)。 一端 One end of the recovery pipe 62 is connected to the exhaust port 11 of the carbonization furnace 3 (see FIGS. 7 and 9). Further, a catalytic reactor 64 is provided in the middle of the recovery pipe 62 (see FIGS. 7 and 9).
  前記凝縮器61は、気化成分を液体に凝縮させる装置である。本実施形態では、水冷方式の装置を採用している。前記凝縮器61は、炭化処理炉3内から回収管62を介して移送されてきた気化成分(水蒸気、有機物からの熱分解成分、軽油分、重油分、灯油分等)を凝縮させて液体(凝縮液)にする。 The condenser 61 is a device that condenses the vaporized component into a liquid. In this embodiment, a water-cooling apparatus is employed. The condenser 61 condenses the vaporized components (water vapor, pyrolysis components from organic substances, light oil components, heavy oil components, kerosene components, etc.) transferred from the carbonization furnace 3 through the recovery pipe 62 to form a liquid ( Condensate).
 前記回収容器63は、前記凝縮器61の下方に配置されており、前記凝縮器61から落下する液体(凝縮液)を回収する(図9参照)。 The recovery container 63 is disposed below the condenser 61 and recovers the liquid (condensate) falling from the condenser 61 (see FIG. 9).
  前記触媒反応器64により回収管62中を流れてくる気化成分のうちの塩素、酸等を除去することができる。前記触媒反応器64で使用される触媒成分としては、特に限定されるものではないが、例えば、酸化鉄、水酸化ナトリウム等が挙げられる。 塩 素 Chlorine, acid, etc., among the vaporized components flowing through the recovery pipe 62 can be removed by the catalytic reactor 64. The catalyst component used in the catalyst reactor 64 is not particularly limited, and examples thereof include iron oxide and sodium hydroxide.
 本実施形態では、炭化処理炉3内の各種気化成分を回収容器63に回収できる(外部環境に放出せず回収できる)ので、環境負荷を低減できる。更に、触媒反応器64で塩素、酸等を除去できるから、回収容器63に回収された凝縮液(回収液)を利用しやすくできる利点がある。 In this embodiment, since various vaporized components in the carbonization furnace 3 can be collected in the collection container 63 (can be collected without being released to the external environment), the environmental load can be reduced. Furthermore, since chlorine, acid, and the like can be removed by the catalytic reactor 64, there is an advantage that the condensate (recovered liquid) recovered in the recovery container 63 can be easily used.
  本実施形態では、過熱水蒸気発生装置4で発生せしめた過熱水蒸気は、供給管部5を介して炭化処理炉3内に供給されるが、前記供給管部5は、炭化処理炉3の外部において上方供給管5Xと下方供給管5Yに分岐し、前記上方供給管5Xは、前記炭化処理炉3の内部空間の上部位置において幅方向の一端側から他端側にかけて延設される一方、前記下方供給管5Yは、前記炭化処理炉3の内部空間の下部位置において幅方向の一端側から他端側にかけて延設されている(図9参照)。前記上方供給管5Xには、8個の過熱水蒸気噴射ノズル20が相互に幅方向に離間して設けられ、前記下方供給管5Yには、9個の過熱水蒸気噴射ノズル21が相互に幅方向に離間して設けられている(図9参照)。しかして、前記過熱水蒸気発生装置4で発生せしめた過熱水蒸気は、前記供給管部5を介して前記過熱水蒸気噴射ノズル20、21から放散されることによって、前記炭化処理炉3内が過熱水蒸気で満たされ、収容容器2内の有機物の炭化処理が行われる。 In the present embodiment, the superheated steam generated by the superheated steam generator 4 is supplied into the carbonization furnace 3 via the supply pipe part 5, but the supply pipe part 5 is outside the carbonization process furnace 3. The upper supply pipe 5X branches into an upper supply pipe 5X and a lower supply pipe 5Y, and the upper supply pipe 5X extends from one end side to the other end side in the width direction at the upper position of the internal space of the carbonization furnace 3, while The supply pipe 5Y extends from one end side to the other end side in the width direction at a lower position of the internal space of the carbonization furnace 3 (see FIG. 9). The upper supply pipe 5X is provided with eight superheated steam injection nozzles 20 spaced apart from each other in the width direction, and the lower supply pipe 5Y is provided with nine superheated steam injection nozzles 21 in the width direction. They are spaced apart (see FIG. 9). Thus, the superheated steam generated by the superheated steam generator 4 is dissipated from the superheated steam injection nozzles 20 and 21 through the supply pipe portion 5, whereby the inside of the carbonization furnace 3 is superheated steam. It is filled and the carbonization process of the organic substance in the storage container 2 is performed.
  本実施形態では、第1~4独立内部空間71、72、73、74に加えて下流側に第5独立内部空間75を形成できるように構成されている。即ち、図7、8において、45は第4仕切シャッターであり、37は第5移送コンベアであり、Vは第5領域である。 In the present embodiment, in addition to the first to fourth independent internal spaces 71, 72, 73, 74, the fifth independent internal space 75 can be formed on the downstream side. That is, in FIGS. 7 and 8, 45 is a fourth partition shutter, 37 is a fifth transfer conveyor, and V is a fifth region.
 本実施形態では、前記第1独立内部空間71内に前記供給管部5から供給される過熱水蒸気の温度は、150℃~500℃(例えば500℃)になるように制御される。前記第2独立内部空間72内に前記供給管部5から供給される過熱水蒸気の温度は、300℃~900℃(例えば900℃)になるように制御される。また、前記第3独立内部空間73内に前記供給管部5から供給される過熱水蒸気の温度は、500℃~1200℃(例えば1200℃)になるように制御される。また、前記第4独立内部空間74内に前記供給管部5から供給される過熱水蒸気の温度は、100℃~150℃(例えば110℃)になるように制御される。前記各独立内部空間内に供給される過熱水蒸気の温度は、その一例を示したものに過ぎず、特にこのような条件に限定されるものではない。 In this embodiment, the temperature of the superheated steam supplied from the supply pipe portion 5 into the first independent internal space 71 is controlled to be 150 ° C. to 500 ° C. (for example, 500 ° C.). The temperature of the superheated steam supplied from the supply pipe unit 5 in the second independent internal space 72 is controlled to be 300 ° C. to 900 ° C. (for example, 900 ° C.). Further, the temperature of the superheated steam supplied from the supply pipe portion 5 in the third independent internal space 73 is controlled to be 500 ° C. to 1200 ° C. (for example, 1200 ° C.). Further, the temperature of the superheated steam supplied from the supply pipe portion 5 into the fourth independent internal space 74 is controlled to be 100 ° C. to 150 ° C. (for example, 110 ° C.). The temperature of the superheated steam supplied into each of the independent internal spaces is merely an example, and is not particularly limited to such conditions.
 なお、前記第5独立内部空間75では、排気ファン13を駆動させて排気ダクト12を介しての排気がなされることにより、第5独立内部空間75内は空冷されるものとなされている(図7、10参照)。即ち、前記第5独立内部空間75では、前記排気に伴って通気口19から外部空気が新たに取り込まれることによって、空冷が行われる(図7、10参照)。 In the fifth independent internal space 75, the exhaust fan 13 is driven to exhaust air through the exhaust duct 12, whereby the inside of the fifth independent internal space 75 is cooled by air (FIG. 7, 10). That is, in the fifth independent internal space 75, the outside air is newly taken in from the vent hole 19 along with the exhaust, whereby air cooling is performed (see FIGS. 7 and 10).
 本発明に係る有機物の炭化処理装置は、生ゴミ、食品端材等の食品廃棄物を炭化処理するのに好適に用いられるが、特にこのような用途に限定されるものではなく、例えば、木材(鉄道の枕木も含む)、プラスチック、漁網、基板(IC基板等)、タイヤ等を炭化処理するのにも使用できる。 The organic carbonization apparatus according to the present invention is suitably used for carbonizing food waste such as garbage and food scraps, but is not particularly limited to such applications. For example, wood It can also be used for carbonizing plastics (including railroad sleepers), plastics, fishing nets, substrates (IC substrates, etc.) and tires.
1…有機物の炭化処理装置
2…収容容器
2a…小孔
3…炭化処理炉
3a…開口部(入口)
3b…開口部(出口)
4…過熱水蒸気発生装置
5…供給管部
5a…先端開口部
7…加熱装置
8…金属回収容器
31…第1移送コンベア
32…第2移送コンベア
33…第3移送コンベア
34…第4移送コンベア
37…第5移送コンベア
40…端部シャッター
41…第1仕切シャッター
42…第2仕切シャッター
43…第3仕切シャッター
44…端部シャッター
45…第4仕切シャッター
51、71…第1独立内部空間
52、72…第2独立内部空間
53、73…第3独立内部空間
54、74…第4独立内部空間
75…第5独立内部空間
61…凝縮器
62…回収管
63…回収容器
64…触媒反応器
DESCRIPTION OF SYMBOLS 1 ... Organic carbonization apparatus 2 ... Container 2a ... Small hole 3 ... Carbonization furnace 3a ... Opening (inlet)
3b ... Opening (exit)
DESCRIPTION OF SYMBOLS 4 ... Superheated steam generator 5 ... Supply pipe part 5a ... Tip opening part 7 ... Heating device 8 ... Metal recovery container 31 ... 1st transfer conveyor 32 ... 2nd transfer conveyor 33 ... 3rd transfer conveyor 34 ... 4th transfer conveyor 37 ... 5th transfer conveyor 40 ... end shutter 41 ... first partition shutter 42 ... second partition shutter 43 ... third partition shutter 44 ... end shutter 45 ... fourth partition shutter 51, 71 ... first independent internal space 52, 72 ... 2nd independent internal space 53, 73 ... 3rd independent internal space 54, 74 ... 4th independent internal space 75 ... 5th independent internal space 61 ... Condenser 62 ... Recovery pipe 63 ... Recovery container 64 ... Catalytic reactor

Claims (15)

  1.  有機物を収容するための収容容器と、
      前記収容容器を移送する移送コンベアと、
      長さ方向の両端に開口部を有する管状体からなる炭化処理炉と、
      過熱水蒸気発生装置と、
     前記過熱水蒸気発生装置で発生する過熱水蒸気を前記炭化処理炉の内部に供給する供給管部と、を備え、
     前記炭化処理炉の内部に前記移送コンベアが設置されていることを特徴とする有機物の炭化処理装置。
    A storage container for storing organic matter;
    A transfer conveyor for transferring the container;
    A carbonization furnace comprising a tubular body having openings at both ends in the length direction;
    A superheated steam generator;
    A supply pipe for supplying superheated steam generated by the superheated steam generator to the inside of the carbonization furnace,
    An organic carbonization apparatus, wherein the transfer conveyor is installed inside the carbonization furnace.
  2.   前記供給管部の先端開口部は、前記炭化処理炉の内部における前記移送コンベアの下方に配置されている請求項1に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to claim 1, wherein a tip opening of the supply pipe is disposed below the transfer conveyor in the carbonization furnace.
  3.   前記炭化処理炉の両端の開口部に開閉自在となされた端部シャッターが設けられ、前記炭化処理炉の長さ方向の中間領域に、内部空間を仕切る仕切シャッターが開閉自在に設けられている請求項1または2に記載の有機物の炭化処理装置。 End shutters that are openable and closable are provided at opening portions at both ends of the carbonization furnace, and a partition shutter that partitions an internal space is provided to be openable and closable in an intermediate region in the longitudinal direction of the carbonization furnace. Item 3. The organic carbonization apparatus according to Item 1 or 2.
  4.  前記仕切シャッターが複数個設けられ、これら仕切シャッターは相互に炭化処理炉の長さ方向に離間して配置されている請求項3に記載の有機物の炭化処理装置。 4. The organic carbonization apparatus according to claim 3, wherein a plurality of the partition shutters are provided, and the partition shutters are spaced apart from each other in the length direction of the carbonization furnace.
  5.   前記炭化処理炉において前記端部シャッター及び前記仕切シャッターが閉じられて形成される複数個の独立内部空間のそれぞれに前記供給管部から過熱水蒸気が供給されるものとなされ、前記供給管部から各独立内部空間に供給される過熱水蒸気の温度は、各独立内部空間毎に相違するように制御され、かつ前記収容容器の移送方向の下流側の方が高くなるように制御される請求項3または4に記載の有機物の炭化処理装置。 In the carbonization furnace, superheated steam is supplied from the supply pipe part to each of a plurality of independent internal spaces formed by closing the end shutter and the partition shutter, The temperature of the superheated steam supplied to the independent internal space is controlled so as to be different for each independent internal space, and is controlled so as to be higher on the downstream side in the transfer direction of the container. 4. An apparatus for carbonizing organic matter according to 4.
  6.  前記移送コンベアは、前記炭化処理炉の幅方向に離間した一対の移送コンベアからなる請求項1~5のいずれか1項に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to any one of claims 1 to 5, wherein the transfer conveyor includes a pair of transfer conveyors separated in a width direction of the carbonization furnace.
  7.  前記収容容器の底面には、移送時における前記一対の移送コンベアの間の隙間に対応する領域の少なくとも一部に複数個の小孔が形成されている請求項6に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to claim 6, wherein a plurality of small holes are formed in at least a part of a region corresponding to a gap between the pair of transfer conveyors at the time of transfer on a bottom surface of the storage container. .
  8.   前記一対の移送コンベアの間の隙間の下方位置に、前記収容容器の底面の小孔を通過して落下する金属を回収する金属回収容器を備える請求項7に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to claim 7, further comprising a metal recovery container that recovers metal falling through a small hole in the bottom surface of the storage container at a position below the gap between the pair of transfer conveyors.
  9.  前記供給管部における前記炭化処理炉の外部での途中位置を加熱する加熱装置を備える請求項1~8のいずれか1項に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to any one of claims 1 to 8, further comprising a heating device that heats an intermediate position outside the carbonization furnace in the supply pipe section.
  10.  凝縮器と、
     一端が前記炭化処理炉に接続され、他端が前記凝縮器に接続された回収管と、
      前記凝縮器で凝縮せしめた凝縮液を回収する回収容器と、を備える請求項1~9のいずれか1項に記載の有機物の炭化処理装置。
    A condenser,
    A recovery pipe having one end connected to the carbonization furnace and the other end connected to the condenser;
    10. The organic carbonization apparatus according to claim 1, further comprising a recovery container that recovers the condensate condensed by the condenser.
  11.  前記回収管の途中に配置された触媒反応器を備える請求項10に記載の有機物の炭化処理装置。 The organic carbonization apparatus according to claim 10, further comprising a catalytic reactor disposed in the middle of the recovery pipe.
  12.   有機物を収容した収容容器をコンベアで、長さ方向の両端に開口部を有する管状体からなる炭化処理炉の内部空間内に移送する工程と、
     前記移送後に過熱水蒸気を前記炭化処理炉の内部に供給することによって前記有機物を炭化処理する工程と、
     前記炭化処理後に前記収容容器をコンベアで前記炭化処理炉の外に排出する工程とを含むことを特徴とする有機物の炭化処理方法。
    A step of transferring the container containing the organic matter into the internal space of the carbonization furnace made of a tubular body having openings at both ends in the length direction by a conveyor;
    Carbonizing the organic matter by supplying superheated steam into the carbonization furnace after the transfer; and
    And a step of discharging the storage container to the outside of the carbonization furnace by a conveyor after the carbonization process.
  13.  前記有機物は、金属を含有する有機物であり、
     前記収容容器として、底面の一部に複数個の小孔が形成された収容容器を用い、
      前記炭化処理工程において、前記収容容器の底面の小孔を通過して落下する溶融金属を金属回収容器に回収することを特徴とする請求項12に記載の有機物の炭化処理方法。
    The organic material is an organic material containing a metal,
    As the storage container, using a storage container in which a plurality of small holes are formed in a part of the bottom surface,
    The method for carbonizing an organic substance according to claim 12, wherein in the carbonizing step, molten metal that passes through a small hole on the bottom surface of the storage container and falls is collected in a metal recovery container.
  14.   前記過熱水蒸気の温度が150℃以上である請求項12または13に記載の有機物の炭化処理方法。 14. The method for carbonizing an organic substance according to claim 12 or 13, wherein the temperature of the superheated steam is 150 ° C or higher.
  15.   前記有機物が食品廃棄物である請求項12~14のいずれか1項に記載の有機物の炭化処理方法。 The method for carbonizing an organic substance according to any one of claims 12 to 14, wherein the organic substance is food waste.
PCT/JP2011/066333 2011-07-19 2011-07-19 Apparatus and method for carbonizing organic material WO2013011555A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/066333 WO2013011555A1 (en) 2011-07-19 2011-07-19 Apparatus and method for carbonizing organic material
JP2013524539A JP5778771B2 (en) 2011-07-19 2011-07-19 Carbonizing apparatus and method for carbonizing organic matter
CN201180072196.XA CN103703104A (en) 2011-07-19 2011-07-19 Apparatus and method for carbonizing organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066333 WO2013011555A1 (en) 2011-07-19 2011-07-19 Apparatus and method for carbonizing organic material

Publications (1)

Publication Number Publication Date
WO2013011555A1 true WO2013011555A1 (en) 2013-01-24

Family

ID=47557762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066333 WO2013011555A1 (en) 2011-07-19 2011-07-19 Apparatus and method for carbonizing organic material

Country Status (3)

Country Link
JP (1) JP5778771B2 (en)
CN (1) CN103703104A (en)
WO (1) WO2013011555A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081849A (en) * 2017-10-31 2019-05-30 株式会社ワンワールド Carbonizing apparatus and carbonizing method
JP2019081848A (en) * 2017-10-31 2019-05-30 株式会社ワンワールド Manufacturing apparatus for carbonized material
JP2021133597A (en) * 2020-02-27 2021-09-13 株式会社セレア Separation method and separation device
US20220145185A1 (en) * 2019-02-26 2022-05-12 Ryoko ITO Carbonization/oil recovery treatment furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148372B (en) * 2014-07-25 2016-09-21 李英军 A kind of rubbish volume reduction dehumidification pretreatment unit and preprocess method
CN106001045B (en) * 2016-01-22 2019-04-09 成和环保科技股份有限公司 Organic matter carbonizing processing unit and carbonizing treatment method
CN106001050B (en) * 2016-05-17 2018-09-04 江苏亿尔等离子体科技有限公司 The device and method of carbonized by means of superheated steam organic waste heat recovery
CN105834196B (en) * 2016-05-17 2018-09-04 江苏亿尔等离子体科技有限公司 The device of the continuous anaerobic carbonization organic waste of superheated steam
CN109266365B (en) * 2018-09-05 2021-12-31 任慷平 Component separation type carbonization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265780A (en) * 1997-03-26 1998-10-06 Hiroshi Shimizu Device for continuous gasification treatment of combustible waste
JP2000063848A (en) * 1998-08-26 2000-02-29 Sanwa Life Sera Kk Carbonization furnace by heated steam
JP2001123175A (en) * 1999-10-25 2001-05-08 Toyoda Techno Kk Method for treating waste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061435A (en) * 1998-08-24 2000-02-29 Sanyo Electric Co Ltd Organic substance treatment device
JP3768407B2 (en) * 2001-02-14 2006-04-19 株式会社 東京ウエルズ Sintering equipment
CN1176013C (en) * 2001-06-13 2004-11-17 钱荣伟 Method and device for producing carbon by organics
JP4047331B2 (en) * 2002-07-25 2008-02-13 邦道 佐藤 Recycling method and system, container
CN1605797A (en) * 2003-10-08 2005-04-13 C.Y.C.株式会社 Continuous carbonization apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265780A (en) * 1997-03-26 1998-10-06 Hiroshi Shimizu Device for continuous gasification treatment of combustible waste
JP2000063848A (en) * 1998-08-26 2000-02-29 Sanwa Life Sera Kk Carbonization furnace by heated steam
JP2001123175A (en) * 1999-10-25 2001-05-08 Toyoda Techno Kk Method for treating waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019081849A (en) * 2017-10-31 2019-05-30 株式会社ワンワールド Carbonizing apparatus and carbonizing method
JP2019081848A (en) * 2017-10-31 2019-05-30 株式会社ワンワールド Manufacturing apparatus for carbonized material
JP7007158B2 (en) 2017-10-31 2022-01-24 株式会社ワンワールド Carbonization equipment and carbonization method
US20220145185A1 (en) * 2019-02-26 2022-05-12 Ryoko ITO Carbonization/oil recovery treatment furnace
JP2021133597A (en) * 2020-02-27 2021-09-13 株式会社セレア Separation method and separation device

Also Published As

Publication number Publication date
JPWO2013011555A1 (en) 2015-02-23
JP5778771B2 (en) 2015-09-16
CN103703104A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5778771B2 (en) Carbonizing apparatus and method for carbonizing organic matter
KR102159297B1 (en) A process and apparatus for quenching coke
NO337546B1 (en) Microwave Pyrolysis
KR101448868B1 (en) Pyrolyzer for Emulsification Apparatus
KR100897521B1 (en) Recycling equipment and methode of waste electric wire
KR100572241B1 (en) Resource recycling method, system and container
CN206279174U (en) Skid-mounted type greasy filth pyrolysis treatment systems
JP2007216204A (en) Pyrolysis apparatus for waste product
JP5435710B2 (en) Dry distillation equipment and dry distillation oil system
JP5640254B2 (en) Continuous heating furnace for carbonization of organic waste
JP6791577B2 (en) Carbonization equipment and carbonization method for organic matter
CN106433797A (en) Skid-mounted oil sludge pyrolysis treatment system and application thereof
JP2005139303A (en) Carbonizing treatment system for organic matter
CN211847655U (en) Intermittent pyrolysis device and oily sludge pyrolysis treatment system
JP2015112579A (en) Chicken droppings processing method and chicken droppings processing system
CN107143858A (en) The system and method for continuous processing house refuse
KR101315150B1 (en) Charcoal producing apparatus able to collect heat and alkaline water
TW201209080A (en) Waste plastic pyrolizing apparatus
KR20120091163A (en) Carbonizing device
JPH08510011A (en) Method and apparatus for continuous separation and recovery of liquid portion from solid product and pyrolysis vacuum treatment of solid product
JP2000234714A (en) Flue tube thermal cracking furnace and recycling facility for wasted rubber product
JP6196125B2 (en) Boiler device and carbonization system
JP2018099635A (en) Organic waste treatment system and organic waste treatment method
BR112017008264B1 (en) METHOD FOR REDUCTION OF CAST RAW MATERIALS, AND DEVICE TO PERFORM SUCH METHOD
RU2482392C1 (en) Mobile plant for organic waste burning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869745

Country of ref document: EP

Kind code of ref document: A1