WO2013010805A2 - Dc-ladestation zum aufladen mehrerer energiespeichereinrichtungen - Google Patents

Dc-ladestation zum aufladen mehrerer energiespeichereinrichtungen Download PDF

Info

Publication number
WO2013010805A2
WO2013010805A2 PCT/EP2012/063099 EP2012063099W WO2013010805A2 WO 2013010805 A2 WO2013010805 A2 WO 2013010805A2 EP 2012063099 W EP2012063099 W EP 2012063099W WO 2013010805 A2 WO2013010805 A2 WO 2013010805A2
Authority
WO
WIPO (PCT)
Prior art keywords
charging
energy storage
voltage
source
station according
Prior art date
Application number
PCT/EP2012/063099
Other languages
English (en)
French (fr)
Other versions
WO2013010805A3 (de
Inventor
Roland Brill
Markus BÖHM
Gerd Griepentrog
Johannes Reinschke
Reinhard Maier
Mahmut Halil SÜER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013010805A2 publication Critical patent/WO2013010805A2/de
Publication of WO2013010805A3 publication Critical patent/WO2013010805A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Definitions

  • the invention relates to a DC charging station for charging energy storage devices, in particular those of electric vehicles, wherein a focus is placed on the fact that possibly several different types of energy storage devices can be charged simultaneously.
  • rechargeable energy storage devices electrical consumers such as battery-powered electric vehicles in particular DC charging stations as the DC charging station described in DE 10 2010 062 362 AI are known, which are tuned to the charging behavior and the capacity of the charged energy storage. Since different voltage levels are required for certain types of electric vehicles such as eBikes, eBusse, and electric cars, DC charging stations with different voltage levels must be provided for the different types.
  • DC charging stations have been proposed having a plurality of charging terminals for simultaneously charging a plurality of energy storage devices, for example.
  • the "TERRA" system is a more modular approach with a central inverter unit and multiple DC charging points.
  • the converter unit contains a DC source and power converter for the DC charging points, which in turn are connected in a star shape to the converter unit.
  • This architecture requires a considerable amount of cabling. Furthermore, it has a negative effect that exact charging of a specific charging current is required for DC charging, possibly including the maintenance of a specific time behavior of the charging current. This is currently only possible with the above mentioned he ⁇ Total units from a DC source and a single DC charging point. It is therefore an object of the present invention to provide a way of simultaneously charging several under defenceli ⁇ cher electrical consumers.
  • the solution according to the invention is based on the approach of connecting a plurality of individually controllable DC charging points of a DC charging station for the energy storage devices of electrical consumers, in particular of electric vehicles, by means of a common bus-type DC intermediate voltage level to at least one DC source.
  • the DC charging station according to the invention is designed for the simultaneous charging of a plurality of energy storage devices. It has at least one DC source for generating a DC
  • the DC charging station also comprises at least one distribution system, in particular in the manner of a bus system, which is expedient for providing a
  • the distribution system is powered by the DC source and / or is powered by the DC source.
  • the DC charging station comprises a plurality of DC charging points, each of which can be connected and / or connected on the input side to the distribution system such that the DC charging points are supplied with the DC voltage fed from the DC source into the distribution system.
  • Each output side of the DC charging points can be connected to a rechargeable energy storage device.
  • the DC charging points are adapted to generate a form suitable for the respectively Schlos ⁇ sene energy storage device charging voltage.
  • the DC charging points are also directed a ⁇ to the charging voltage by means of appropriate control variables to regulate.
  • the DC charging points have a DC / DC controller for converting the DC voltage generated by the DC source into the individual / suitable DC charging voltage.
  • the DC charging station In the case of the DC charging station according to the invention, a separation of the DC source for the common intermediate voltage level and the DC charging points is carried out, wherein the DC charging points have DC / DC regulators which jointly, in particular by a central control as described below, coordinates become.
  • the DC / DC controller can access the intermediate voltage on the distribution system, which is advantageously designed as a common bus, in particular as a slide ⁇ busbar system,,.
  • the DC charging station according to the invention provides at least one DC source for a plurality of DC charging points also results in higher efficiency and better coordination than in DC charging stations in which separate DC charging points each have their own DC Source are available.
  • the individual DC charging voltages of some or all of the different DC / DC regulators of the different DC charging points are preferably at least partially different
  • Output voltage ranges For the purposes of this invention, partially different output voltage ranges also include those output voltage ranges which overlap but are not identical in terms of their limits.
  • the DC charging voltages and / or the maximum charging currents of the various DC / DC controllers are adjustable.
  • a control device for controlling the respective DC / DC controller is provided per DC charging point, with which the DC charging voltages and / or the maximum charging currents of the DC
  • different DC / DC controllers are adjustable.
  • the battery voltage can be measured in particular before and / or during a charging process of the energy storage device.
  • the DC control device is set up in the DC charging station in order to control the DC / DC regulators as a function of the measured battery voltage.
  • the DC control device is set up in such a way for controlling the DC / DC regulators that the charging current and / or the charging current during one charging process of one or more energy storage devices
  • Charging voltage of one or more energy storage devices is adapted to a predetermined value and / or timing.
  • at least one of the DC charging points, in particular one of the DC / DC regulators is preferably bidirectional. In this way, you can temporarily power from one to this DC charging point connected energy storage device to a connected to another DC charging point
  • the DC / DC controllers are expediently designed to be electrically isolated in the case of the DC charging station according to the invention.
  • parasitic capacitive currents to the ground connection and / or via any existing chassis of the DC charging points are avoided.
  • the central AC / DC converter can be constructed without electrical isolation, making it possible at an AC mains voltage of, for example. 400V, a DC voltage on the distribution system in the order of, for example. 700V to 820V in the rail system or in the Feeding distribution system.
  • the DC source is constructed without electrical isolation.
  • the DC source can be connected to an AC source and has an AC / DC converter, to whose input the AC source
  • the AC source is connectable to and is the input of the AC / DC converter
  • the AC / DC converter of the DC source is an uncontrolled B6 diode converter or an IQ thyristor converter.
  • the AC / DC converter of the DC source is or is particularly preferably one of the following components: uncontrolled B6 diode converter, converter MOSFET, IQ thyristor converter, AC / DC converter with AFE converter (Active Front End ), Converters with wide-bandgap semiconductors such as silicon carbide in particular.
  • a central controller is provided, which is set up to coordinate the control devices of the DC charging points and thus to control a power distribution between the DC charging points. In this way, an optimized Leis ⁇ con- sumption of the entire DC charging station can be reached.
  • the central controller is set up such that a total power consumption of the DC charging station and / or the DC source is less than / equal to a predetermined threshold value or equal to a predetermined time profile.
  • the time-varying power requirements of the DC charging points allow the total power of the DC source to be distributed across multiple DC charging points. So every DC
  • the central controller for controlling the DC charging points is designed such that a total power of the DC charging station and / or the DC source is never exceeded, wherein preferably each DC charging point is optimally supplied with power.
  • the DC charging points are controlled by the central control so that a maximum allowable Leis ⁇ processing is not exceeded in the AC / DC converter.
  • a stationary energy store can be connected or connected to the distribution system.
  • the erfindungsge ⁇ Permitted DC charging station on such a stationary energy storage is provided with a large capacity and in particular formed with one or more NaS batteries. In this way, peak load fluctuations can be achieved by using the stationary energy store
  • the distribution system is constructed like a bus and in particular ⁇ special formed with a rail system.
  • the distribution system as an intermediate voltage level.
  • the DC source and DC charging points are spatially separated.
  • the DC source is expediently arranged in a preferably closed space, in particular a control cabinet space, the DC charging points being located outside this space.
  • At least one DC charging point has a DC / DC controller and is / are one or more further DC / DC controllers that can be connected to the one or more DC charging points for this one or more DC charging points are, connectable.
  • the plurality of DC / DC controllers that can be connected to the DC charging point in total are designed on the output side for identical or at least overlapping voltage ranges.
  • the multiple DC / DC controllers are connected in parallel to increase the charging current.
  • the DC source is preferably spatially separated from the DC charging points, in particular in a central and / or isti ⁇ cherten space, while the DC charging points, for example in the form of La ⁇ deklalen, to designated parking spaces for the charged energy storage devices, especially vehicles , are arranged.
  • FIG. 1 shows a DC charging station according to the invention
  • FIG. 2 shows another DC charging station according to the invention.
  • FIG. 1 shows a schematic representation of a DC charging station 1 with a DC source 100 and a plurality of specific, modular combinable DC charging points 210, 220, 230.
  • the DC charging points 210, 220, 230 are via an electrically lei ⁇ tendes rail system 300 connected to the DC source 100.
  • only three DC charging points 210, 220, 230 are shown in FIG.
  • By piecemeal dotted Dar ⁇ position of the rail system 300 is intended to indicated the ⁇ that the rail system 300 may extend over the displayed measure addition, while also addressing the connection of further DC charging points would be possible.
  • the DC source 100 has a three-phase AC input terminal 101 which, for example, is connected to the public power grid 2 and via which the supply base voltage is made available or the power supply of the DC charging station 1 is ensured.
  • This AC mains voltage for supply can be, for example, 400V.
  • the AC terminal 101 is connected to the input 111 of an AC / DC converter 110 of the DC source 100, in which the incoming AC supply voltage is converted into a DC voltage.
  • the output 112 of the AC / DC converter 110 is connected to the rail system 300 via the output 102 of the DC source 100. so that the DC voltage generated in the AC / DC converter 110 can be fed to the rail system 300.
  • the rail system 300 has the function of a DC distribution system with which the DC voltage generated in the DC source 100 is distributed to the DC charging points 210, 220, 230, and operates as an intermediate voltage level in the manner of a bus ⁇ system, ie as DC distribution bus.
  • the DC charging points 210, 220, 230 are connected to the rail system 300, so that the DC charging points 210, 220, 230 is the fed from the DC source 100 in the rail system 300 ⁇ fed DC voltage available.
  • connection 211, 221, 231 can be designed, for example, as sockets which can be connected to a plug of a charging cable of the electric vehicle.
  • an electric vehicle 500 (not to scale) with an energy storage device 510 to be charged is shown for the first DC charging point 210.
  • the energy store cher worn 510 is connected via a charging cable 520 with entspre ⁇ chendem plug 530 to the output terminal 211 of the first DC charging point 210th
  • DC charging points 210, 220, 230 depending ⁇ wells a DC / DC regulator 212, 222, 232, with the appropriate for the type of vehicle charging voltage can be generated and individu ⁇ ell regulated.
  • control means 213, 223, 233 are provided for controlling the DC / DC controllers 212, 222, 232.
  • the controllers 213, 223, 233 influence the DC / DC Controller 212, 222, 232 with respect to the charging voltages and / or charging currents provided by these depending on the connected vehicle type or of the respective energy storage device 510 to be charged.
  • the DC / DC controllers 212, 222, 232 are designed to be electrically isolated, in order to avoid parasitic, ka ⁇ pacitive currents against the ground terminal (PE) or via the chassis of the DC charging points.
  • the central AC / DC converter 110 can be constructed without electrical isolation, which makes it possible, with an AC mains voltage of, for example, 400 V, a DC voltage on the rail system 300 in the order of 700 V to 820 V, for example Feeding rail system 300.
  • the AC / DC converter 110 is formed as a boost converter.
  • the AC / DC converter is or comprises a power converter MOSFET, an AC / DC converter with AFE converter (Active Front End) or a power converter with the wide-bandgap semiconductor silicon carbide.
  • the potential separation in the DC / DC actuators has an advantageous effect compared to a potential separation in the AC / DC converter 110 of the DC source 100, as provided, for example, in the TERRA system from Epyon, in that there is an interception the potential separation in the respective DC / DC controller 212, 222, 232 and the short-circuit end point 211, 221, 231 is a comparatively short line length, resulting in an improved effect of the potential separation.
  • the DC / DC regulators 212, 222, 232 of the different DC charging points 210, 220, 230 preferably designed differently so that they generate 510 DC charging voltages in optimized areas depending on the open circuit voltage of the energy storage device to be charged.
  • DC charging voltages ranging from 50V to 100V, 80V to 160V, 150V to 300V, 250V to 500V and / or 400V to 800V can be selected.
  • the different charging voltage ranges are also assigned different maximum charging currents.
  • the various DC / DC controllers 212, 222, 232 are therefore adapted not only to the aforementioned charging voltage ranges, but also to the associated maximum charging current.
  • Equip DC / DC controllers with wide-range outputs that provide DC charging voltages in ranges of, for example, 50V to 800V. However, this would be accompanied by losses in efficiency and possibly in certain operating areas, including losses in EMC behavior ("electromagnetic compatibility").
  • each DC charging point 210, 220, 230 measures the battery voltage of the respectively charged energy storage device 510 before and during the charging process, for example by measuring the voltage at the plug 530, in particular after pre-selection of the suitable for the energy storage device 510 DC charging voltage or DC charging voltage range.
  • the charging process could be briefly interrupted in order to measure the battery voltage.
  • the respective DC / DC controllers 212, 222, 232 then begin current-controlled as a function of the measured battery voltage with the charging process.
  • the measurement of the battery voltage and the regulation / control of the respective DC / DC controller 212, 222, 232 takes place with the help of the respective During the charging process, the charging voltage or the charging current is adjusted as a function of the measured battery voltage.
  • the DC / DC controllers 212, 222, 232 can optionally also be of bidirectional design, in order, if appropriate, for the purpose of optimal energy management of the DC charging station 1 to temporarily supply power from the energy storage device 510 of an electric vehicle that is connected to one of the DC charging points 210 , is integrally joined ⁇ 220, 230, to be transferred to one or more other Energyspei ⁇ cher wornen other electric vehicles, which are connected to one or more of the remaining DC charging points.
  • a central controller 120 is provided which, for example, can be accommodated in the housing of the DC source 100 or at another suitable, central location.
  • the central controller 120 is designed as a higher-level controller, which influences the power distribution between the individual DC charging points 210, 220, 230, in order to achieve optimized power consumption of the entire DC charging station 1. If, for example, an electric vehicle is not connected to all DC charging points 210, 220, 230, but, for example, as indicated in the figure only to the first DC charging point 210, this DC charging point 210 can be used with the full available and be supplied with the charged energy storage device compatible performance. If multiple or in extreme cases, all DC charging points are claimed, the power consumption is divided accordingly.
  • the central controller 120 is connected to the control devices 213, 223, 233 via the network 400 in a communication connection.
  • the network 400 can be operated, for example, by wire or wirelessly by radio.
  • a stationary energy storage 310 may be provided, which is connected to the rail system 300 is to compensate for any peak load fluctuations. This intervention would also be controlled by the central controller 120.
  • the energy storage 310 may be a large capacity battery, for example, of the order of 100kWh to lMWh.
  • one or more NaS accumulators are suitable for this purpose.
  • FIG. 2 shows a development of the invention, which basically is similar to the embodiment according to FIG. Fig. 1 is constructed.
  • This has a further AC / DC converter 110 ', which is analogously to the AC / DC converter 110 of the first DC source 100 of Figure 1 with, for example, connected to the public power grid 2.
  • a DC voltage (DC2) is generated from the AC mains voltage, which, however, lies in a different voltage range than the DC voltage (DC1) generated in the first AC / DC converter 110.
  • DC1 500V
  • additional rail system 300 ' is provided.
  • This additional rail system 300 ' works as a DC distribution bus.
  • the DC voltage DC1 of the first DC source 100 is fed to the first rail system 300, while the DC voltage DC2 of the second DC source 100 'is input to the second rail system 300'.
  • the DC charging points 210 ', 220' of FIG. 2 like the DC charging points 210, 220, 230 shown in FIG. 1, respectively a DC / DC controller 212 ', 222' and a respective control device 213 ', 223'.
  • a switching device 214, 224 is provided per DC charging point 210 ', 220'.
  • the DC charging points 210 ', 220' in contrast to the embodiment according to FIG. 1, can optionally be connected to the first rail system 300 or to the second rail system 300 ', so that optionally different DC voltages are available.
  • the DC / DC controller 212', 222 'are thus connected can be with one and the same DC / DC controller 212', 222 'generate different voltages, which finally for charging a connected energy storage device can be used.
  • a switching device 214, 224 is provided for each DC charging point 210 ', 220', which are constructed in the illustrated embodiment of contactors or load rungs.
  • the switching devices 214, 224 can also be of any other design.
  • FIG. 2 shows that the first DC charging point 210 'is connected to the first rail system 300 by a corresponding switch position, so that a DC voltage DC1 is available.
  • the second DC charging point 220 ' is connected to the second rail system 300' and therefore has the DC voltage DC2.
  • the actuation of the switching devices 214, 224 and thus the selection of the DC voltage range for charging is carried out by a switching control device (not specifically shown), wel ⁇ che controls the switching position of the switching devices 214, 224 in response to the energy storage device to be charged.
  • a switching control device not specifically shown
  • wel ⁇ che controls the switching position of the switching devices 214, 224 in response to the energy storage device to be charged.
  • the user of the electric vehicle before the start of the charging process by pressing a button or voice input o.ä. indicate at the charging station, what kind is the charging electric vehicle or its energy storage device to be charged, so that by means of the switching devices 214, 224 and the switch control means may select the rail system 300, 300 'which provides a DC voltage in a suitable voltage range.
  • the switching devices 214, 224 in particular example.
  • Known motors and / or actuators which in this example constructed as a contactor or switch disconnectors switching devices 214, 224 are in the illustrated embodiment so angesteu ⁇ ert that a maximum of one of the two contactors and / or Lasttren - can be closed. This means that the affected DC charging point can only be connected to one of the rail systems 300, 300 'or to any rail system.
  • the DC / DC regulators 212 ', 222' are configured to generate an output side voltage, which is on the order of 50-100% of the input side voltage, from the input side DC voltage available from the connected rail system.
  • an output side voltage which is on the order of 50-100% of the input side voltage, from the input side DC voltage available from the connected rail system.
  • a DC voltage in a range between 250V and 500V can be applied to the first DC charging point 210 and a DC voltage in the range between 100V and 200V at the second DC charging point 220 Tobe offered.
  • the described in connection with the 2 execution ⁇ form provides the advantage that charging chip ⁇ voltages are available at each DC charging point in different voltage ranges.
  • a single DC source 100 is required in FIG.
  • a single DC / DC controller 212, 222, 232 with a DC charging point is not only charged at a specific time. but it is the outputs of two or more DC / DC controller, which provide a same output voltage, connected in parallel and connected to the energy storage.
  • the DC / DC controllers are powered either by a single DC source such as the AC / DC converter or by several DC sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die DC-Ladestation zum gleichzeitigen Aufladen mehrerer Energiespeichereinrichtungen (510) weist zumindest eine DC-Quelle (100, 100') zur Erzeugung einer DC-Spannung auf. Die DC-Quelle (100, 100') speist ein Verteilsystem (300, 300'). An dieses Verteilsystem (300, 300') sind mehrere DC-Ladepunkte (210, 210', 220, 220', 230) angeschlosssen. An die DC-Ladepunkte (210, 210', 220, 220', 230) sind aufzuladende Energiespeichereinrichtungen (150) anbindbar. Die DC-Ladepunkte (210, 210', 220, 220', 230) können eine für jede angebundene Energiespeichereinrichtung (510) eine geeignete Ladespannung bereitstellen. Die DC-Ladepunkte (210, 210', 220, 220', 230) weisen dazu einen DC/DC-Steller auf, der die von der DC-Quelle (100, 100') erzeugte DC-Spannung in die von der Energiespeichereinrichtung (510) benötigte DC-Ladespannung wandelt.

Description

Beschreibung / Description
DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen
DC-Ladestation geeignet zum gleichzeitigen Aufladen mehrerer Energiespeichereinrichtungen
Die Erfindung betrifft eine DC-Ladestation zum Aufladen von Energiespeichereinrichtungen, insbesondere solchen von Elektrofahrzeugen, wobei ein Fokus darauf gelegt wird, dass ggf. mehrere unterschiedlich geartete Energiespeichereinrichtungen gleichzeitig aufgeladen werden können. Zum Aufladen von wieder aufladbaren Energiespeichereinrichtungen elektrischer Verbraucher wie insbesondere batteriebetriebenen Elektrofahrzeugen sind DC-Ladestationen wie die in DE 10 2010 062 362 AI beschriebene DC-Ladestation bekannt, die auf das Ladeverhalten und die Kapazität des aufzuladenden Energiespeichers abgestimmt sind. Da für bestimmte Typen von Elektrofahrzeugen wie bspw. eBikes, eBusse, und Elektroautos unterschiedliche Spannungsebenen benötigt werden, müssen für die unterschiedlichen Typen DC-Ladestationen mit unterschiedlichen Spannungsebenen bereit gestellt werden.
Während bspw. für eBikes eine Ladespannung in einem Bereich unterhalb von 60V benötigt wird, liegen Ladespannungen für Elektroautos bspw. auf dem chinesischen Markt in einem Bereich 150V bis 350V, für Busse mit elektrischem Antrieb eben- falls in China bei 460V bis 700V und für elektrische Autos global gesehen zwischen 50V und 500V. Für die Zukunft ist damit zu rechnen, dass Ladespannungen über 700V verwendet werden . Um den zukünftig wachsenden Bedarf an Elektrofahrzeugen bedienen zu können, sind demnach flexible DC-Ladestationen nötig, die zum einen unterschiedliche Spannungsbereiche anbie¬ ten und die zum anderen in der Lage sind, mehrere auch unter- schiedlich geartete Energiespeichereinrichtungen gleichzeitig zu laden.
Um mit Hilfe klassischer Systeme, bei denen eine DC-Quelle und ein DC-Ladepunkt als Gesamteinheit realisiert sind, zu ermöglichen, dass mehrere, ggf. unterschiedliche, elektrische Energiespeichereinrichtungen gleichzeitig geladen werden können, müssen mehrere derartige Gesamteinheiten vorgesehen werden. Dies ist jedoch eine unverhältnismäßig teure und unfle- xible Lösung.
Sollen nun mit einer einzigen DC-Ladestation, d.h. unter Verwendung einer einzelnen DC-Quelle, mehrere unterschiedliche Energiespeichereinrichtungen elektrischer Verbraucher gleich- zeitig aufgeladen werden, ist zu beachten, dass in der Regel unterschiedliche Spannungsebenen der Ladespannung benötigt werden .
Hierzu sind DC-Ladestationen mit mehreren Ladeanschlüssen zum gleichzeitigen Aufladen mehrerer Energiespeichereinrichtungen vorgeschlagen worden, bspw. das "TERRA"-System der Firma Epy- on, bei denen den unterschiedlichen Ladeanschlüssen ein gemeinsames, maximales Leistungsbudget von einer Spannungsquel¬ le zur Verfügung gestellt wird, welches unter den mehreren Ladeanschlüssen aufgeteilt werden muss.
Das "TERRA"-System ist ein modularerer Ansatz mit einer zentralen Umrichtereinheit und mehreren DC-Ladepunkten . In der Umrichtereinheit befinden sich eine DC-Quelle und Leistungs- Umsetzer für die DC-Ladepunkte, welche ihrerseits sternförmig an die Umrichtereinheit angeschlossen sind. Diese Architektur erfordert einen erheblichen Verkabelungsaufwand. Weiterhin wirkt sich negativ aus, dass für das DC-Laden die exakte Einhaltung eines bestimmten Ladestromes erforderlich ist, ggf. einschließlich der Einhaltung eines bestimmten Zeitverhaltens des Ladestromes. Dies ist derzeit jedoch nur mit den oben er¬ wähnten Gesamteinheiten aus einer DC-Quelle und einem einzelnen DC-Ladepunkt möglich. Es ist daher Aufgabe der vorliegenden Erfindung, eine Möglichkeit des gleichzeitigen Aufladens mehrerer unterschiedli¬ cher elektrischer Verbraucher anzugeben.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebene Erfindung gelöst. Vorteilhafte Ausgestaltungen er¬ geben sich aus den abhängigen Ansprüchen, der nachfolgenden Beschreibung und der Zeichnung.
Die erfindungsgemäße Lösung basiert auf dem Ansatz, mehrere individuell regelbare DC-Ladepunkte einer DC-Ladestation für die Energiespeichereinrichtungen elektrischer Verbraucher, insbesondere von Elektrofahrzeugen, durch eine gemeinsame busartige DC-Zwischenspannungsebene mit zumindest einer DC- Quelle zu verbinden und so zu versorgen.
Die erfindungsgemäße DC-Ladestation ist zum gleichzeitigen Aufladen mehrerer Energiespeichereinrichtungen ausgebildet. Sie weist zumindest eine DC-Quelle zur Erzeugung einer DC-
Spannung auf. Die DC-Ladestation umfasst zudem zumindest ein Verteilsystem, insbesondere in der Art eines Bussystems, welches zweckmäßig zur Bereitstellung einer
Zwischenspannungsebene ausgebildet ist. Das Verteilsystem wird von der DC-Quelle gespeist und/oder ist von der DC- Quelle speisbar.
Ferner umfasst die erfindungsgemäßen DC-Ladestation mehrere DC-Ladepunkte, von denen jeder derart eingangsseitig an das Verteilsystem anschließbar und/oder angeschlossen ist, dass den DC-Ladepunkten die von der DC-Quelle in das Verteilsystem eingespeiste DC-Spannung zur Verfügung steht. Von den DC- Ladepunkten ist jeder ausgangsseitig mit einer aufzuladenden Energiespeichereinrichtungen verbindbar. Dabei sind die DC- Ladepunkte eingerichtet, um eine für die jeweils angeschlos¬ sene Energiespeichereinrichtung geeignete Ladespannung zu erzeugen. Vorzugsweise sind die DC-Ladepunkte dabei zudem ein¬ gerichtet, um die Ladespannung anhand geeigneter Regelgrößen zu regeln. Erfindungsgemäß weisen die DC-Ladepunkte einen DC/DC-Steller zum Wandeln der von der DC-Quelle erzeugten DC- Spannung in die individuelle/geeignete DC-Ladespannung auf. Die erfindungsgemäße Lösung bietet u.a. den Vorteil, dass durch die Nutzung einer gemeinsamen DC-Quelle für mehrere DC- Ladepunkte eine erhebliche Kosten- und Platzersparnis gegen¬ über den einleitend erwähnten Gesamteinheiten erreichbar ist. Auch können die einzelnen DC-Ladepunkte wesentlich kleiner und preiswerter gebaut werden, als die Gesamteinheiten.
Es wird bei der erfindungsgemäßen DC-Ladestation eine Trennung der DC-Quelle für die gemeinsame Zwischenspannungsebene und der DC-Ladepunkte vorgenommen, wobei die DC-Ladepunkte DC/DC-Steller aufweisen, welche gemeinsam, insb. durch eine Zentralsteuerung wie nachfolgend beschrieben, koordiniert werden. Die DC/DC-Steller können über das Verteilsystem, welches vorteilhaft als gemeinsamer Bus, insbesondere als Schie¬ nensystem, ausgelegt ist, auf die Zwischenspannung zugreifen.
Dadurch, dass bei der erfindungsgemäßen DC-Ladestation zumindest eine DC-Quelle für mehrere DC-Ladepunkte vorgesehen ist, ergibt sich ferner eine höhere Effizienz und eine bessere Ko¬ ordinierung als bei DC-Ladestationen, bei denen separate DC- Ladepunkte mit jeweils eigener DC-Quelle vorhanden sind.
Bevorzugt liegen bei der erfindungsgemäßen DC-Ladestation die individuellen DC-Ladespannungen einiger der oder sämtlicher verschiedenen DC/DC-Steller der verschiedenen DC-Ladepunkte in zumindest teilweise verschiedenen
Ausgangsspannungsbereichen. Dabei sind unter teilweise verschiedenen Ausgangsspannungsbereichen im Sinne dieser Erfindung auch solche Ausgangsspannungsbereiche zu verstehen, welche sich überlappen, aber hinsichtlich ihrer Grenzen nicht identisch sind. Bei einer bevorzugten Weiterbildung der erfindungsgemäßen DC- Ladestation sind die DC-Ladespannungen und/oder die maximalen Ladeströme der verschiedenen DC/DC-Steller einstellbar. Vorteilhaft ist bei der DC-Ladestation gemäß der Erfindung je DC-Ladepunkt eine Steuerungseinrichtung zur Steuerung des jeweiligen DC/DC-Stellers vorgesehen, mit der die DC- Ladespannungen und/oder die maximalen Ladeströme der
verschiedenen DC/DC-Steller einstellbar sind. Insbesondere ist die Steuereinrichtung zur Einstellung der DC- Ladespannungen und/oder die maximalen Ladeströme der
verschiedenen DC/DC-Steller in Abhängigkeit von Parametern der jeweils aufzuladenden Energiespeichereinrichtung, insbesondere eines angeschlossenen Fahrzeugs und/oder des ange- schlossenen Fahrzeugtyps, ausgebildet.
Bei der erfindungsgemäßen DC-Ladestation sind zweckmäßig einige oder sämtliche DC-Ladepunkte eingerichtet, um die Batte¬ riespannung der jeweils angeschlossenen
Energiespeichereinrichtungen zu messen. Auf diese Weise kann die Batteriespannung insbesondere vor und/oder während eines Ladevorgangs der Energiespeichereinrichtung gemessen werden.
Bei einer vorteilhaften Weiterbildung der Erfindung ist bei der DC-Ladestation die DC-Steuereinrichtung eingerichtet, um die DC/DC-Steller in Abhängigkeit von der gemessenen Batteriespannung zu steuern. Insbesondere ist die DC- Steuereinrichtung derart zur Steuerung der DC/DC-Steller eingerichtet, dass während eines Ladevorgangs einer oder mehre- rer Energiespeichereinrichtungen der Ladestrom und/oder die
Ladespannung einer oder mehrerer Energiespeichereinrichtungen an einen vorgegebenen Wert und/oder zeitlichen Verlauf ange- passt wird/werden. Bevorzugt ist bei der DC-Ladestation gemäß der Erfindung zumindest einer der DC-Ladepunkte, insbesondere einer der DC/DC-Steller, bidirektional ausgebildet. Auf diese Weise kann kurzzeitig Leistung von einer an diesen DC-Ladepunkt angeschlossenen Energiespeichereinrichtung an eine an einen anderen DC-Ladepunkt angeschlossene
Energiespeichereinrichtung übertragen werden. Zweckmäßig sind bei der erfindungsgemäßen DC-Ladestation die DC/DC-Steller potentialtrennend ausgebildet. In dieser Wei¬ terbildung der Erfindung werden parasitäre, kapazitive Ströme gegen den Erdanschluss und/oder über die ggf. vorhandenen Chassis der DC-Ladepunkte vermieden. Damit kann der zentrale AC/DC-Wandler ohne Potentialtrennung aufgebaut sein, womit es möglich wird, bei einer AC-Netzspannung von bspw. 400V eine DC-Spannung auf dem Verteilsystem in einer Größenordnung von bspw. 700V bis 820V in das Schienensystem oder in das Verteilsystem einzuspeisen.
In einer zur vorgenannten Weiterbildung der Erfindung alternativen Weiterbildung der Erfindung ist die DC-Quelle ohne Potentialtrennung aufgebaut. Vorteilhaft ist bei der erfindungsgemäßen DC-Ladestation die DC-Quelle mit einer AC-Quelle verbindbar und weist einen AC/DC-Wandler auf, an dessen Eingang die AC-Quelle
anschließbar ist und dessen Ausgang mit dem Verteilsystem verbindbar ist. Geeigneterweise ist an den Eingang des AC/DC- Wandlers die AC-Quelle derart anschließbar und ist dessen
Ausgang mit dem Verteilsystem derart verbindbar, dass die im AC/DC-Wandler aus der AC-Spannung erzeugte DC-Spannung in das Verteilsystem einspeisbar ist. In einer zweckmäßigen Weiterbildung der Erfindung ist der AC/DC-Wandler der DC-Quelle ein ungesteuerter B6-Dioden- Stromrichter oder ein lQ-Thyristor-Stromrichter .
Besonders bevorzugt ist oder umfasst der AC/DC-Wandler der DC-Quelle eine der nachfolgenden Komponenten: ungesteuerter B6-Dioden-Stromrichter, Stromrichter-MOSFET, lQ-Thyristor- Stromrichter, AC/DC-Wandler mit AFE-Umrichter (Active Front End) , Stromrichter mit Wide-Bandgap-Halbleitern wie insbesondere Siliziumcarbid. Geeigneterweise ist bei der erfindungsgemäßen DC-Ladestation eine Zentralsteuerung vorgesehen, die eingerichtet ist, um die Steuerungseinrichtungen der DC-Ladepunkte zu koordinieren und so eine Leistungsverteilung zwischen den DC-Ladepunkten zu steuern. Auf diese Weise lässt sich eine optimierte Leis¬ tungsaufnahme der gesamten DC-Ladestation erreichen. Insbesondere ist die Zentralsteuerung derart eingerichtet, dass eine Gesamtleistungsaufnahme der DC-Ladestation und/oder der DC-Quelle kleiner/gleich einem vorbestimmten Schwellwert ist oder gleich einem vorgegebenen zeitlichen Verlauf ist.
Der über die Zeit veränderliche Leistungsbedarf der DC- Ladepunkte ermöglicht eine Verteilung der Gesamtleistung der DC-Quelle auf mehrere DC-Ladepunkte. So hat jeder DC-
Ladepunkt regelmäßig seinen eigenen zeitlichen Verlauf des Leistungsbedarfs. Insbesondere ist die Zentralsteuerung zur Ansteuerung der DC-Ladepunkte derart ausgebildet, dass eine Gesamtleistung der DC-Ladestation und/oder der DC-Quelle zu keiner Zeit überschritten wird, wobei vorzugsweise jeder DC- Ladepunkt optimal mit Leistung beliefert wird. Insbesondere werden die DC-Ladepunkte über die Zentralsteuerung derart angesteuert, dass im AC/DC-Wandler eine maximal zulässige Leis¬ tung nicht überschritten wird.
Zweckmäßig ist bei der DC-Ladestation gemäß der Erfindung an das Verteilsystem ein stationärer Energiespeicher anschließbar oder angeschlossen. Insbesondere weist die erfindungsge¬ mäße DC-Ladestation einen solchen stationären Energiespeicher auf. Bevorzugt ist der Energiespeicher mit einer großen Kapazität versehen und insbesondere mit einer oder mehreren NaS- Batterien gebildet. Auf diese Weise können mithilfe des stationären Energiespeichers Spitzenlastschwankungen
ausgeglichen werden.
Bevorzugt ist das Verteilsystem busartig aufgebaut und insbe¬ sondere mit einem Schienensystem gebildet. Insbesondere ar¬ beitet das Verteilsystem als Zwischenspannungsebene. Geeigneterweise sind die DC-Quelle und die DC-Ladepunkte räumlich voneinander getrennt. Zweckmäßig ist die DC-Quelle in einem, vorzugsweise geschlossenen, Raum, insbesondere einem Schaltschrankraum angeordnet, wobei sich die DC- Ladepunkte außerhalb dieses Raums befinden.
In einer bevorzugten Weiterbildung der Erfindung weist zumindest ein DC-Ladepunkt einen DC/DC-Steller auf und ist/sind zu diesem einen oder mehreren DC-Ladepunkten ein oder mehrere weitere DC/DC-Steller, die an das oder eines der mehreren Verteilsystem anschließbar sind, anschließbar.
Insbesondere sind dabei die mehreren der so insgesamt an den DC-Ladepunkt anschließbaren DC/DC-Steller ausgangsseitig auf identische oder zumindest überlappende Spannungsbereiche ausgelegt. Auf diese Weise können an einen DC-Ladepunkt im Bedarfsfalle die mehreren DC/DC-Steller zur Erhöhung des Ladestroms parallel geschaltet werden. Die DC-Quelle ist bevorzugt von den DC-Ladepunkten räumlich getrennt, insbesondere in einem zentralen und/oder abgesi¬ cherten Raum, während die DC-Ladepunkte, etwa in Form von La¬ desäulen, an vorgesehenen Stellflächen für die aufzuladenden Energiespeichereinrichtungen, insbesondere Fahrzeuge, ange- ordnet sind.
Da zum Laden der Elektrofahrzeuge unterschiedlichste Spannun¬ gen und Leistungen generiert werden können, ergibt sich eine hohe Flexibilität des Gesamtsystems.
Gegenüber der klassisch verwendeten Sternstruktur zwischen Leistungswandlung und Ladeanschlüssen entsteht durch den Einsatz des busartigen Systems ein deutlich reduzierter Material- und Installationsaufwand.
Desweiteren können auch für unterschiedliche Elektrofahrzeu¬ ge, bspw. eBike und eBus, trotz der unterschiedlichen Anfor- derungen an den Ladevorgang einheitlich gestaltete DC- Ladepunkte verwendet werden.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung er- geben sich aus den im Folgenden beschriebenen Ausführungsbeispielen sowie anhand der Zeichnung.
Es zeigen: Figur 1 eine erfindungsgemäße DC-Ladestation und
Figur 2 eine weitere erfindungsgemäße DC-Ladestation.
Die Figur 1 zeigt eine schematische Darstellung einer DC- Ladestation 1 mit einer DC-Quelle 100 und mehreren spezifischen, modular kombinierbaren DC-Ladepunkten 210, 220, 230. Die DC-Ladepunkte 210, 220, 230 sind über ein elektrisch lei¬ tendes Schienensystem 300 mit der DC-Quelle 100 verbunden. Im Detail sind in der Figur 1 lediglich drei DC-Ladepunkte 210, 220, 230 dargestellt. Durch die stückweise punktierte Dar¬ stellung des Schienensystems 300 soll jedoch angedeutet wer¬ den, dass sich das Schienensystem 300 über das dargestellte Maß hinaus erstrecken kann, womit auch der Anschluss weiterer DC-Ladepunkte ermöglicht würde.
Die DC-Quelle 100 verfügt über einen dreiphasigen AC- Eingangsanschluss 101, der bspw. mit dem öffentlichen Stromnetz 2 verbunden ist und über den die Versorgungsgrundspannung zur Verfügung gestellt bzw. die Energieversorgung der DC-Ladestation 1 sichergestellt wird. Diese AC-Netzspannung zur Versorgung kann bspw. bei 400V liegen.
Der AC-Anschluss 101 ist mit dem Eingang 111 eines AC/DC- Wandlers 110 der DC-Quelle 100 verbunden, in dem die einge- hende AC-Versorgungsspannung in eine DC-Spannung gewandelt wird. Der Ausgang 112 der AC/DC-Wandlers 110 ist über den Ausgang 102 der DC-Quelle 100 mit dem Schienensystem 300 ver- bunden, so dass die in dem AC/DC-Wandler 110 erzeugte DC- Spannung in das Schienensystem 300 eingespeist werden kann.
Das Schienensystem 300 hat die Funktion eines DC- Verteilsystems , mit dem die in der DC-Quelle 100 erzeugte DC- Spannung an die DC-Ladepunkte 210, 220, 230 verteilt wird, und arbeitet als Zwischenspannungsebene nach Art eines Bus¬ systems, d.h. als DC-Verteilbus . Die DC-Ladepunkte 210, 220, 230 sind an das Schienensystem 300 angeschlossen, so dass den DC-Ladepunkten 210, 220, 230 die von der DC-Quelle 100 in das Schienensystem 300 einge¬ speiste DC-Spannung zur Verfügung steht. Ausgangsseitig ver¬ fügen die DC-Ladepunkte 210, 220, 230 über Anschlüsse 211, 221, 231, an denen jeweils ein aufzuladendes Elektrofahrzeug 500 bzw. dessen elektrische Energiespeichereinrichtung 510 angeschlossen werden kann. Die Anschlüsse 211, 221, 231 können bspw. als Buchsen ausgebildet sein, die mit einem Stecker eines Ladekabels des Elektrofahrzeugs verbunden werden kön- nen.
Exemplarisch ist für den ersten DC-Ladepunkt 210 ein Elektro- fahrzeug 500 (nicht maßstabsgetreu) mit einer aufzuladenden Energiespeichereinrichtung 510 dargestellt. Die Energiespei- chereinrichtung 510 ist über ein Ladekabel 520 mit entspre¬ chendem Stecker 530 mit dem Ausgangsanschluss 211 des ersten DC-Ladepunkts 210 verbunden.
Um die zum Aufladen von Energiespeichereinrichtungen unter- schiedlicher Elektrofahrzeugtypen benötigte DC-Ladespannung bereitzustellen, weisen die DC-Ladepunkte 210, 220, 230 je¬ weils einen DC/DC-Steller 212, 222, 232 auf, mit dem die für den Fahrzeugtyp geeignete Ladespannung erzeugt und individu¬ ell geregelt werden kann.
Zur Regelung/Steuerung der DC/DC-Steller 212, 222, 232 sind Steuerungseinrichtungen 213, 223, 233 vorgesehen. Die Steuerungseinrichtungen 213, 223, 233 beeinflussen die DC/DC- Steller 212, 222, 232 hinsichtlich der von diesen zur Verfügung gestellten Ladespannungen und/oder Ladeströme in Abhängigkeit vom angeschlossenen Fahrzeugtyp bzw. von der jeweils aufzuladenden Energiespeichereinrichtung 510.
In einer Ausführungsform der Erfindung sind die DC/DC-Steller 212, 222, 232 potentialtrennend aufgebaut, um parasitäre, ka¬ pazitive Ströme gegen den Erdanschluss (PE) bzw. über die Chassis der DC-Ladepunkte zu vermeiden. Damit kann der zent- rale AC/DC-Wandler 110 ohne Potentialtrennung aufgebaut sein, womit es möglich wird, bei einer AC-Netzspannung von bspw. 400V eine DC-Spannung auf dem Schienensystem 300 in einer Größenordnung von bspw. 700V bis 820V in das Schienensystem 300 einzuspeisen. In diesem Fall ist der AC/DC-Wandler 110 als Hochsetzsteller ausgebildet. Genügt dagegen, bspw. bei 400V dreiphasiger Netzspannung, eine DC-Spannung von 540V oder sogar weniger auf dem Schienensystem 300, so kann als AC/DC-Wandler 110 auch ein ungesteuerter B6-Dioden- Stromrichter oder ein lQ-Thyristor-Stromrichter verwendet werden. In weiteren, nicht eigens dargestellten Ausführungsbeispielen ist oder umfasst der AC/DC-Wandler einen Strom- richter-MOSFET, einen AC/DC-Wandler mit AFE-Umrichter (Active Front End) oder einen Stromrichter mit dem Wide-Bandgap- Halbleiter Siliziumcarbid.
Die Potentialtrennung in den DC/DC-Stellern wirkt sich gegenüber einer Potentialtrennung im AC/DC-Wandler 110 der DC- Quelle 100, wie sie bspw. beim TERRA-System der Firma Epyon vorgesehen ist, dahingehend vorteilhaft aus, dass sich zwi- sehen der Potentialtrennung im jeweiligen DC/DC-Steller 212, 222, 232 und dem kurzschlussgefährdeten Anschlusspunkt 211, 221, 231 eine vergleichsweise geringe Leitungslänge befindet, wodurch sich eine verbesserte Wirkung der Potentialtrennung ergibt .
Zusätzlich oder alternativ zur potentialtrennenden/potentialgetrennten Ausführung sind die DC/DC-Steller 212, 222, 232 der unterschiedlichen DC-Ladepunkte 210, 220, 230 vorzugsweise dahingehend unterschiedlich ausgebildet, dass sie je nach LeerlaufSpannung der aufzuladenden Energiespeichereinrichtung 510 DC-Ladespannungen in optimierten Bereichen erzeugen. Um also verschiedene Elektrofahrzeuge mit ggf- sehr unterschiedlichen Spannungsebenen anschließen zu können, aber dennoch einen hohen Wirkungsgrad des DC/DC- Stellers sicherzustellen, existieren verschiedene DC/DC- Steller mit unterschiedlichen Ausgangsspannungsbereichen. Bspw. können DC-Ladespannungen in Bereichen 50V bis 100V, 80V bis 160V, 150V bis 300V, 250V bis 500V und/oder 400V bis 800V gewählt sein.
Typischerweise sind den unterschiedlichen Ladespannungsberei¬ chen auch unterschiedliche maximale Ladeströme zugeordnet. Die verschiedenen DC/DC-Steller 212, 222, 232 sind deshalb nicht nur an die vorgenannten Ladespannungsbereiche, sondern auch an den zugehörigen maximalen Ladestrom angepasst.
Es ist natürlich alternativ auch möglich, die einzelnen
DC/DC-Steller mit Weitbereichs-Ausgängen auszustatten, die DC-Ladespannungen in Bereichen von bspw. 50V bis 800V zur Verfügung stellen. Dies würde jedoch einhergehen mit Einbußen bei der Effizienz und ggf. in bestimmten Betriebsbereichen auch mit Einbußen beim EMV-Verhalten ("Elektromagnetische Verträglichkeit").
Vorteilhafterweise misst jeder DC-Ladepunkt 210, 220, 230 vor und während des Ladevorgangs die Batteriespannung der jeweils aufzuladenden Energiespeichereinrichtung 510 bspw. durch Mes- sung der Spannung am Stecker 530, insbesondere nach Vorauswahl der für die Energiespeichereinrichtung 510 geeigneten DC-Ladespannung bzw. des DC-Ladespannungsbereiches . Hierzu könnte bspw. der Ladevorgang kurz unterbrochen werden, um die Batteriespannung zu messen. Die jeweiligen DC/DC-Steller 212, 222, 232 beginnen dann stromgeregelt in Abhängigkeit von der gemessenen Batteriespannung mit dem Ladevorgang. Die Messung der Batteriespannung und die Regelung/Steuerung des jeweiligen DC/DC-Stellers 212, 222, 232 erfolgt mit Hilfe der jewei- ligen Steuerungseinrichtung 213, 223, 233 des betroffenen DC- Ladepunktes 210, 220, 230. Während des Ladevorganges wird die Ladespannung bzw. der Ladestrom in Abhängigkeit von der gemessenen Batteriespannung angepasst.
Die DC/DC-Steller 212, 222, 232 können optional auch bidirektional ausgebildet sein, um ggf. im Sinne eines optimalen Energiemanagements der DC-Ladestation 1 kurzzeitig Leistung von der Energiespeichereinrichtung 510 eines Elektrofahr- zeugs, das an einem der DC-Ladepunkte 210, 220, 230 ange¬ schlossen ist, auf eine oder mehrere andere Energiespei¬ chereinrichtungen weiterer Elektrofahrzeuge zu übertragen, die an einem oder mehreren der übrigen DC-Ladepunkte angeschlossen sind.
Optional ist im Rahmen einer Weiterbildung der Erfindung eine Zentralsteuerung 120 vorgesehen, die bspw. im Gehäuse der DC- Quelle 100 oder an einer anderen geeigneten, zentralen Stelle untergebracht sein kann. Die Zentralsteuerung 120 ist als übergeordnete Steuerung ausgebildet, die Einfluss auf die Leistungsverteilung zwischen den einzelnen DC-Ladepunkten 210, 220, 230 nimmt, um eine optimierte Leistungsaufnahme der gesamten DC-Ladestation 1 zu erreichen. Falls bspw. nicht an sämtliche DC-Ladepunkte 210, 220, 230 ein Elektrofahrzeug an- geschlossen ist, sondern bspw. wie in der Figur angedeutet nur an den ersten DC-Ladepunkt 210, kann dieser DC-Ladepunkt 210 mit der vollen zur Verfügung stehenden und mit der aufzuladenden Energiespeichereinrichtung verträglichen Leistung versorgt werden. Wenn mehrere oder im Extremfall sämtliche DC-Ladepunkte beansprucht werden, wird die Leistungsaufnahme entsprechend aufgeteilt. Hierzu steht die Zentralsteuerung 120 mit den Steuerungseinrichtungen 213, 223, 233 über das Netzwerk 400 in einer Kommunikationsverbindung. Das Netzwerk 400 kann bspw. drahtgebunden oder kabellos per Funk betrieben werden.
Weiterhin kann optional ein stationärer Energiespeicher 310 vorgesehen sein, der mit dem Schienensystem 300 verbunden ist, um ggf. Spitzenlastschwankungen auszugleichen. Dieses Eingreifen würde ebenfalls von der Zentralsteuerung 120 gesteuert. Der Energiespeicher 310 kann eine Batterie großer Kapazität sein, bspw. in einer Größenordnung von 100kWh bis lMWh. Zu diesem Zweck eigenen sich beispielsweise ein oder mehrere NaS-Akkumulatoren .
Die Figur 2 zeigt eine Weiterbildung der Erfindung, die grundsätzlich gleichartig dem Ausführungsbeispiel gem. Fig. 1 aufgebaut ist. Bei der in Fig. 2 dargestellten Weiterbildung der Erfindung ist jedoch eine weitere DC-Quelle 100' vorgese¬ hen. Diese weist einen weiteren AC/DC-Wandler 110' auf, der analog zum AC/DC-Wandler 110 der ersten DC-Quelle 100 der Figur 1 mit bspw. mit dem öffentlichen Stromnetz 2 verbunden ist. Im AC/DC-Wandler 110' wird aus der AC-Netzspannung eine DC-Spannung (DC2) erzeugt, die jedoch in einem anderen Spannungsbereich liegt, als die im ersten AC/DC-Wandler 110 erzeugte DC-Spannung (DC1) . Bspw. kann in der ersten DC-Quelle 100 eine DC-Spannung in einer Größenordnung von DC1=500V er- zeugt werden, während die zweite DC-Quelle 100' eine DC- Spannung DC2=200V erzeugt.
Weiterhin ist ein zum oben beschriebenen ersten Schienensystem 300 analog aufgebautes, zusätzliches Schienensystem 300' vorgesehen. Auch dieses zusätzliche Schienensystem 300' arbeitet als DC-Verteilbus . Die DC-Spannung DC1 der ersten DC- Quelle 100 wird in das erste Schienensystem 300 eingespeist, während die DC-Spannung DC2 der zweiten DC-Quelle 100' in das zweite Schienensystem 300' eingespeist wird.
Der Übersichtlichkeit wegen sind in der Figur 2 lediglich zwei DC-Ladepunkte 210', 220' dargestellt. Weiterhin wurde auf die Darstellung des Elektrofahrzeugs 500 und des Netz¬ werks 400 verzichtet. Natürlich kann ein solches Netzwerk auch hier Verwendung finden.
Die DC-Ladepunkte 210', 220' der Figur 2 weisen wie die in der Figur 1 dargestellten DC-Ladepunkte 210, 220, 230 jeweils einen DC/DC-Steller 212', 222' und je eine Steuerungseinrichtung 213', 223' auf.
Zusätzlich ist je DC-Ladepunkt 210', 220' eine Schaltvorrich- tung 214, 224 vorgesehen. Hiermit können die DC-Ladepunkte 210', 220' im Unterschied zur Ausbildung gemäß Figur 1 wahlweise mit dem ersten Schienensystem 300 oder mit dem zweiten Schienensystem 300' verbunden werden, so dass wahlweise verschiedene DC-Spannungen zur Verfügung stehen. Je nachdem, mit welchem Schienensystem 300, 300' die DC/DC-Steller 212', 222' also verbunden sind, lassen sich mit ein und demselben DC/DC- Steller 212', 222' verschiedene Spannungen erzeugen, die schließlich zum Aufladen einer angeschlossenen Energiespeichereinrichtung verwendet werden können.
Um die wahlweise Verbindung mit dem einen oder mit dem anderen Verteilbus zu ermöglichen, ist für jeden DC-Ladepunkt 210', 220' eine Schaltvorrichtung 214, 224 vorgesehen, die im dargestellten Ausführungsbeispiel aus Schützen oder Lasttren- nern aufgebaut sind. Grundsätzlich können die Schaltvorrichtungen 214, 224 aber auch beliebig sonst ausgebildet sein. In der Figur 2 ist dargestellt, dass der erste DC-Ladepunkt 210' durch entsprechende Schalterstellung mit dem ersten Schienensystem 300 verbunden ist, so dass eine DC-Spannung DC1 zur Verfügung steht. Der zweite DC-Ladepunkt 220' ist dagegen mit dem zweiten Schienensystem 300' verbunden und verfügt demnach über die DC-Spannung DC2.
Die Betätigung der Schaltvorrichtungen 214, 224 und damit die Auswahl des DC-Spannungsbereiches zum Aufladen erfolgt durch eine Schaltsteuereinrichtung (nicht eigens dargestellt) , wel¬ che die Schaltstellung der Schaltvorrichtungen 214, 224 in Abhängigkeit von der aufzuladenden Energiespeichereinrichtung steuert. Bspw. kann der Benutzer des Elektrofahrzeugs vor dem Start des Ladevorgangs per Knopfdruck oder Spracheingabe o.ä. an der Ladesäule angeben, welcher Art das aufzuladende Elekt- rofahrzeug oder dessen aufzuladende Energiespeichereinrichtung ist, so dass mit Hilfe der Schaltvorrichtungen 214, 224 und der Schaltsteuereinrichtung dasjenige Schienensystem 300, 300' gewählt werden kann, das eine DC-Spannung in einem geeigneten Spannungsbereich zur Verfügung stellt. Die Schaltvorrichtungen 214, 224, insbesondere bspw. vorhandene Motoren und/oder Antriebe der in diesem Beispiel als S- chütze oder Lasttrenner aufgebauten Schaltvorrichtungen 214, 224, werden im dargestellten Ausführungsbeispiel so angesteu¬ ert, dass maximal einer der beiden Schütze und/oder Lasttren- ner geschlossen sein kann. D.h. der betroffene DC-Ladepunkt kann nur mit einem der Schienensysteme 300, 300' oder mit keinem Schienensystem verbunden sein.
Typischerweise sind die DC/DC-Steller 212', 222' ausgelegt, um anhand der eingangsseitigen, vom verbundenen Schienensystem zur Verfügung stehenden DC-Spannung eine ausgangsseitige Spannung zu erzeugen, die in einer Größenordnung von 50-100% der eingangsseitigen Spannung liegt. Bspw. kann also bei der in der Figur 2 dargestellten Schalterstellung der Schaltvor- richtung 214 am ersten DC-Ladepunkt 210 eine DC-Spannung in einem Bereich zwischen 250V und 500V und am zweiten DC- Ladepunkt 220 eine DC-Spannung in einem Bereich zwischen 100V und 200V angeboten werden. Die im Zusammenhang mit der Figur 2 erläuterte Ausführungs¬ form bietet den Vorteil, dass an jedem DC-Ladepunkt Ladespan¬ nungen in verschiedenen Spannungsbereichen verfügbar sind. Während also in der Figur 1 nur eine einzige DC-Quelle 100 benötigt wird, um verschiedene DC-Ladepunkte zu speisen, die verschiedene Ladespannungen bereit stellen, ist es mit der Anordnung gemäß Figur 2 möglich, mit Hilfe mehrerer DC- Quellen 100, 100' an jedem der DC-Ladepunkte mehrere ver¬ schiedene Ladespannungen anzubieten. In einem weiteren, nicht eigens in den Figuren dargestellten Ausführungsbeispiel wird beim Laden einer Energiespeichereinrichtung nicht lediglich zu einer bestimmten Zeit ein einziger DC/DC-Steller 212, 222, 232 mit einem DC-Ladepunkt ver- bunden, sondern es werden die Ausgänge zweier oder mehrerer DC/DC-Steller, welche eine gleiche Ausgangsspannung liefern, miteinander parallel geschaltet und mit dem Energiespeicher verbunden. Dabei sind die DC/DC-Steller entweder von einer einzigen DC-Quelle wie dem AC/DC-Wandler gespeist oder aber von mehreren DC-Quellen.

Claims

Patentansprüche / Patent Claims
1. DC-Ladestation zum gleichzeitigen Aufladen mehrerer
Energiespeichereinrichtungen mit
- zumindest einer DC-Quelle (100, 100') zur Erzeugung einer DC-Spannung,
zumindest einem Verteilsystem (300, 300'), das von der DC-Quelle (100, 100') gespeist wird/speisbar ist,
mehreren DC-Ladepunkten (210, 210', 220, 220', 230), von denen jeder eingangsseitig an das Verteilsystem (300, 300') anschließbar/angeschlossen ist und von denen jeder
ausgangsseitig mit einer aufzuladenden
Energiespeichereinrichtung (510) verbindbar ist,
wobei
- die DC-Ladepunkte (210, 210', 220, 220', 230) eingerich¬ tet sind, um eine für die jeweils angeschlossene/verbundene Energiespeichereinrichtung (510) geeignete Ladespannung zu erzeugen,
die DC-Ladepunkte (210, 210', 220, 220', 230) einen DC/DC-Steller (212, 212', 222, 222', 232) zum Wandeln der von der DC-Quelle (100, 110') erzeugten DC-Spannung in die individuelle/geeignete DC-Ladespannung aufweisen.
2. DC-Ladestation nach Anspruch 1, dadurch gekennzeichnet, dass die individuellen DC-Ladespannungen der verschiedenen
DC/DC-Steller (212, 212', 222, 222', 232) der verschiedenen DC-Ladepunkte (210, 210', 220, 220', 230) in zumindest teilweise verschiedenen Ausgangsspannungsbereichen liegen.
3. DC-Ladestation nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass die DC-Ladespannungen und/oder die maximalen Ladeströme der verschiedenen DC/DC-Steller (212, 212', 222, 222', 232) einstellbar sind.
4. DC-Ladestation nach Anspruch 3, dadurch gekennzeichnet, dass je DC-Ladepunkt (210, 210', 220, 220', 230) eine Steue¬ rungseinrichtung (213, 213', 223, 223', 233) zur Steuerung des jeweiligen DC/DC-Stellers (212, 212', 222, 222', 232) vorgesehen ist, mit der die DC-Ladespannungen und/oder die maximalen Ladeströme der verschiedenen DC/DC-Steller (212, 212', 222, 222', 232) einstellbar sind, insbesondere in
Abhängigkeit von der jeweils aufzuladenden Energiespei- chereinrichtung (510) .
5. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder DC-Ladepunkt (210, 210', 220, 220', 230) eingerichtet ist, um, insbesondere vor und/oder während eines Ladevorgangs die Batteriespannung der jeweils angeschlossenen Energiespeichereinrichtungen (510) zu messen .
6. DC-Ladestation nach Anspruch 4 und Anspruch 5, dadurch gekennzeichnet, dass die Steuerungseinrichtung (213, 213',
223, 223', 233) eingerichtet ist, um die oder den jeweiligen DC/DC-Steller (212, 212', 222, 222', 232) in Abhängigkeit von der gemessenen Batteriespannung zu steuern, insbesondere derart, dass während eines Ladevorgangs einer oder mehrerer Energiespeichereinrichtungen (510) der Ladestrom und/oder die Ladespannung einer oder mehrerer Energiespeichereinrichtungen (510) an einen vorgegebenen Wert und/oder zeitlichen Verlauf angepasst wird.
7. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer der DC- Ladepunkte (210, 210', 220, 220', 230), insbesondere einer der DC/DC-Steller (212, 212', 222, 222', 232), bidirektional ausgebildet ist.
8. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die DC/DC-Steller (212, 212', 222, 222', 232) potentialtrennend sind.
9. DC-Ladestation nach Anspruch 8, dadurch gekennzeichnet, dass die DC-Quelle (100, 100') ohne Potentialtrennung aufge¬ baut ist.
10. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine/zumindest eine der DC-Quellen (100, 100') mit einer AC-Quelle (2) verbindbar ist und einen AC/DC-Wandler (110, 110') aufweist, an dessen Eingang (111) die AC-Quelle (2) anschließbar ist und dessen Ausgang mit dem Verteilsystem verbindbar ist.
11. DC-Ladestation nach Anspruch 10, dadurch gekennzeichnet, dass der AC/DC-Wandler (110, 110') der DC-Quelle (100, 100') eine der nachfolgenden Komponenten ist oder umfasst: ungesteuerter B6-Dioden-Stromrichter, Stromrichter-MOSFET, 1Q- Thyristor-Stromrichter, AC/DC-Wandler (110, 110') mit AFE- Umrichter (Active Front End) , Stromrichter mit Wide-Bandgap- Halbleitern wie insbesondere Siliziumcarbid.
12. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Zentralsteuerung (120) vorgesehen ist, die eingerichtet ist, um die Steuerungsein¬ richtungen (213, 213', 223, 223', 233) der DC-Ladepunkte (210, 210', 220, 220', 230) zu koordinieren und so eine Leis¬ tungsverteilung zwischen den DC-Ladepunkten (210, 210', 220, 220', 230) zu steuern, insbesondere derart, dass eine Gesamt¬ leistungsaufnahme der DC-Ladestation und/oder der DC-Quelle (100, 100') kleiner/gleich einem vorbestimmten Schwellwert oder gleich einem vorgegebenen zeitlichen Verlauf ist.
13. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an das Verteilsystem (300, 300') ein stationärer Energiespeicher (310) angeschlossen ist.
14. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verteilsystem (300, 300') busartig aufgebaut und insbesondere mit einem Schienensystem gebildet ist.
15. DC-Ladestation nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die DC-Quelle (100, 100') und die DC-Ladepunkte (210, 210', 220, 220', 230) räumlich voneinander getrennt sind.
PCT/EP2012/063099 2011-07-19 2012-07-05 Dc-ladestation zum aufladen mehrerer energiespeichereinrichtungen WO2013010805A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011079430.1 2011-07-19
DE102011079430A DE102011079430A1 (de) 2011-07-19 2011-07-19 DC-Ladestation zum Aufladen mehrerer Energiespeichereinrichtungen

Publications (2)

Publication Number Publication Date
WO2013010805A2 true WO2013010805A2 (de) 2013-01-24
WO2013010805A3 WO2013010805A3 (de) 2014-01-16

Family

ID=46466530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/063099 WO2013010805A2 (de) 2011-07-19 2012-07-05 Dc-ladestation zum aufladen mehrerer energiespeichereinrichtungen

Country Status (2)

Country Link
DE (1) DE102011079430A1 (de)
WO (1) WO2013010805A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113276719A (zh) * 2021-05-26 2021-08-20 北京嘀嘀无限科技发展有限公司 一种充电站及其功率分配方法和装置
US11515795B2 (en) * 2019-08-07 2022-11-29 Delta Electronics, Inc. Power apparatus applied in solid state transformer structure and three-phase power system having the same
FR3131475A1 (fr) * 2021-12-28 2023-06-30 Somfy Activites Sa Station de charge pour actionneur electromecanique
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007185A1 (de) * 2013-04-25 2014-10-30 Man Truck & Bus Ag Ladeeinrichtung und Verfahren zum Betrieb einer Ladeeinrichtung
DE102016203830A1 (de) * 2016-02-01 2017-08-03 Continental Automotive Gmbh Fahrzeug-Hochvoltbordnetz sowie stationäre Anschlussvorrichtung
DE102016123924A1 (de) * 2016-12-09 2018-06-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Modulare Leistungselektronik zum Laden eines elektrisch betriebenen Fahrzeugs
DE102017116886A1 (de) 2017-07-26 2019-01-31 Wobben Properties Gmbh Ladestation mit dynamischer Ladestromverteilung
DE102017116887A1 (de) * 2017-07-26 2019-01-31 Wobben Properties Gmbh Ladestation mit dynamischer Ladestromverteilung
DE102017120298A1 (de) * 2017-09-04 2019-03-07 Hochschule Osnabrück Ladesäule, Anordnung mit mehreren solcher Ladesäulen sowie Verfahren zum Betreiben einer solchen Ladesäule
DE102017217729B4 (de) * 2017-10-05 2020-01-23 Audi Ag Energiebereitstellungseinrichtung zum Bereitstellen elektrischer Energie für wenigstens ein Endgerät sowie Verfahren zum Betreiben einer Energiebereitstellungseinrichtung
DE102018202259A1 (de) * 2018-02-14 2019-08-14 Siemens Aktiengesellschaft Ladestation zum Laden von Elektrofahrzeugen mit verteilter Energiemessung sowie Verfahren
DE102018205040A1 (de) 2018-04-04 2019-10-10 Audi Ag Ladesystem und Verfahren zum Aufladen eines jeweiligen elektrischen Energiespeichers mehrerer Kraftfahrzeuge sowie stationäre Ladevorrichtung und Kraftfahrzeug
EP4353515A1 (de) * 2018-06-22 2024-04-17 eLoaded GmbH System mit zentraleinheit und mehreren gleichspannungsladesäulen zum laden von elektrofahrzuegen
DE102019204000A1 (de) * 2019-03-25 2020-10-01 Audi Ag Ladevorrichtung zum Laden eines jeweiligen Energiespeichers von mehreren Kraftfahrzeugen
US11485251B2 (en) 2019-07-09 2022-11-01 Mercedes-Benz Group AG Vehicle-based charging system for electric vehicles
DE102019211553A1 (de) 2019-08-01 2021-02-04 Audi Ag Bidirektionale DC-Wallbox für Elektrofahrzeuge
CN111313477B (zh) * 2020-03-02 2022-11-29 西安特来电智能充电科技有限公司 一种充电功率调节方法及系统
DE102020106347A1 (de) * 2020-03-09 2021-09-09 Audi Aktiengesellschaft Energiebereitstellungseinrichtung zum Bereitstellen elektrischer Energie für ein Kraftfahrzeug, Verfahren zum Betreiben einer Energiebereitstellungseinrichtung, Verfahren zum Herstellen von Energiebereitstellungseinrichtungen sowie Energiebereitstellungsanordnung
EP4112362A1 (de) * 2021-06-29 2023-01-04 Ekoenergetyka - Polska Sp. z o.o. Endgerät zum laden von elektrofahrzeugen mit elektrochemischer energiespeicherung
US20230011000A1 (en) * 2021-07-08 2023-01-12 Enersys Delaware Inc. Direct current fast charging systems with grid tied energy storage systems
DE102022212109A1 (de) 2022-11-15 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Aufladen von Elektrofahrzeugen
DE102022131125A1 (de) 2022-11-24 2023-11-23 Amperfied GmbH Flexibles aufteilbares DC-Ladesystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062362A1 (de) 2010-12-02 2012-06-06 Siemens Aktiengesellschaft Schnellladestation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803215A (en) * 1997-01-22 1998-09-08 Schott Power Systems Incorporated Method and apparatus for charging a plurality of electric vehicles
US7256516B2 (en) * 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
DE10151153A1 (de) * 2001-10-19 2003-04-30 Bombardier Transp Gmbh Vorrichtung zum Laden von Batterien für Elektrofahrtzeuge
US7135836B2 (en) * 2003-03-28 2006-11-14 Power Designers, Llc Modular and reconfigurable rapid battery charger
US7446503B2 (en) * 2004-08-10 2008-11-04 Illinois Tool Works Inc. Method and apparatus for charging batteries using a converter
WO2007000560A1 (en) * 2005-06-29 2007-01-04 Alan Ross Power converter with dc-bus and multiple programmable dc outputs
JP4880762B2 (ja) * 2008-09-26 2012-02-22 株式会社MERSTech 電力変換装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062362A1 (de) 2010-12-02 2012-06-06 Siemens Aktiengesellschaft Schnellladestation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515795B2 (en) * 2019-08-07 2022-11-29 Delta Electronics, Inc. Power apparatus applied in solid state transformer structure and three-phase power system having the same
US11811327B2 (en) 2019-08-07 2023-11-07 Delta Electronics, Inc. Power apparatus applied in solid state transformer structure and three-phase power system having the same
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
CN113276719A (zh) * 2021-05-26 2021-08-20 北京嘀嘀无限科技发展有限公司 一种充电站及其功率分配方法和装置
FR3131475A1 (fr) * 2021-12-28 2023-06-30 Somfy Activites Sa Station de charge pour actionneur electromecanique

Also Published As

Publication number Publication date
DE102011079430A1 (de) 2013-01-24
WO2013010805A3 (de) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2013010805A2 (de) Dc-ladestation zum aufladen mehrerer energiespeichereinrichtungen
EP3521099B1 (de) Ladesystem mit mindestens einer ladesäule für elektrofahrzeuge und verfahren zum laden eines oder mehrerer elektrofahrzeuge
DE102017207102A1 (de) Stationärspeicher zum Zwischenspeichern von elektrischer Energie in einem elektrischen Versorgungsnetz sowie Betriebsverfahren und Nachrüstmodul für den Stationärspeicher
WO2019242928A1 (de) Verfahren zur konfiguration eines ladesystems und ladesystem zum laden des elektrischen energiespeichers eines fahrzeugs
DE102017107355B4 (de) Stromrichteranordnung zur Speisung von Fahrzeugen und Anlage hiermit
DE102011007839A1 (de) Fahrzeugladevorrichtung
DE102008063465A1 (de) Betriebsanordnung für ein elektrisch betriebenes Fahrzeug
DE102010062362A1 (de) Schnellladestation
DE102016123923A1 (de) Ladevorrichtung
DE102017130474A1 (de) Transformatorvorrichtung für eine Ladestation für das elektrische Laden von Fahrzeugen mit wenigstens zwei Ladepunkten
DE102017105728A1 (de) Vorrichtung zur Energieversorgung eines elektrischen Betriebsnetzes
WO2016207026A1 (de) Verfahren zur stabilisierung eines elektrischen wechselspannungsnetzes
WO2019201688A1 (de) Ladeinfrastruktureinheit und ladeinfrastruktur mit ladeleistungsoption
DE102012008687A1 (de) Kraftwagen mit einem Hochvolt-Energieversorgungssystem
EP2777147B1 (de) Stromrichterschaltung
DE102017206497B4 (de) Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers eines Fahrzeugs, sowie Kraftfahrzeug
DE102011011347A1 (de) Laden einer Batterie eines Elektrofahrzeugs
EP2259949B1 (de) Energiespeichersystem für ein spurgeführtes fahrzeug
DE102013011104A1 (de) Elektrische Energieverteilungseinrichtung für ein elektrisch angetriebenes Fahrzeug sowie Verfahren zum Betrieb der Energieverteilungseinrichtung
DE102015211683A1 (de) Verfahren zum Laden von Zielbatterien mit einem Pufferbatteriesystem
WO2012031662A1 (de) System, insbesondere lokales energieverteilungssystem, mit einem zwischenkreis, verfahren zur regelung des energieflusses in einem system und verwendung von in verschiedenen gehäusen angeordneten stellern eines systems
DE102012218738A1 (de) Ladesystem und Verfahren zum gleichzeitigen Laden mehrerer Fahrzeugbatterien
WO2012038210A2 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
WO2014029582A1 (de) Fahrzeug für den streckennetz- und den batteriebetrieb
EP2141044B1 (de) Schienenfahrzeug und Verfahren zur Energieversorgung eines Schienenfahrzeugs

Legal Events

Date Code Title Description
122 Ep: pct application non-entry in european phase

Ref document number: 12733107

Country of ref document: EP

Kind code of ref document: A2