WO2013010304A1 - 燃烧喷嘴和煤气化炉 - Google Patents

燃烧喷嘴和煤气化炉 Download PDF

Info

Publication number
WO2013010304A1
WO2013010304A1 PCT/CN2011/077187 CN2011077187W WO2013010304A1 WO 2013010304 A1 WO2013010304 A1 WO 2013010304A1 CN 2011077187 W CN2011077187 W CN 2011077187W WO 2013010304 A1 WO2013010304 A1 WO 2013010304A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
spiral
passage
combustion
combustion nozzle
Prior art date
Application number
PCT/CN2011/077187
Other languages
English (en)
French (fr)
Inventor
武桢
Original Assignee
马鞍山科达洁能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马鞍山科达洁能股份有限公司 filed Critical 马鞍山科达洁能股份有限公司
Priority to PCT/CN2011/077187 priority Critical patent/WO2013010304A1/zh
Priority to AU2011373507A priority patent/AU2011373507B2/en
Priority to RU2014105562/06A priority patent/RU2573072C2/ru
Publication of WO2013010304A1 publication Critical patent/WO2013010304A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling

Definitions

  • the present invention relates to the structure of combustion equipment, and more particularly to a combustion nozzle and a coal gasifier. Background technique
  • Combustion nozzles are general-purpose combustion components that are widely used in various combustion equipment such as engines, boilers, coal gasifiers, and the like.
  • FIG. 1 A typical structure of a combustion nozzle is shown in FIG. 1.
  • the combustion nozzle has a substantially cylindrical casing 10, and a fuel passage 20 and a combustion gas passage 30 are provided in the casing 10, and a fuel and a combustion-supporting passage through which the fuel passage 20 is introduced
  • the 30-pass gas is mixed at the end of the nozzle and ignited to form a flame.
  • the combustion nozzle can be divided into air-assisted combustion mode, oxygen-enriched combustion-supporting type and pure oxygen combustion-supporting type according to the different components of the gas-assisted gas.
  • the oxygen content of the combustion gas in the oxygen-enriched combustion-supporting nozzle is more than 20%, and the pure oxygen combustion-supporting nozzle uses the combustion gas with an oxygen content of 99% or more.
  • the fuel and the combustion gas in the nozzle are simultaneously ejected, and ignited to form a flame.
  • the flame has a distance D from the front end of the nozzle.
  • the higher the oxygen content in the combustion gas the smaller the value of the distance D.
  • the higher the pressure in the furnace the smaller the value of the spacing D. Due to the high temperature of the flame (the temperature at the flame center exceeds 2000 °C:). Even at a flame temperature of 1500 °C, the surface of the front end of the nozzle reaches an unacceptably high temperature. This has an impact on the life of the nozzle and the reliability of the work.
  • the wall of the rib and the cooling cavity is connected by an angled type. Whether it is integrated or welded, the angled structure has a problem that the corner joint is different from the temperature at other positions, and the stress is uneven. Therefore, it is easy to crack and break. Once the cooling cavity of the rib structure is damaged, it is difficult to maintain and the nozzle end needs to be replaced as a whole.
  • the cooling structure of the rib structure has poor working sealing performance and low reliability. After the rib cracking and breakage occurs, the flow of the coolant will not be guided, and even the coolant will flow out of the nozzle to affect the combustion. Summary of the invention
  • the present invention provides a combustion nozzle and a coal gasifier to optimize the structure of the cooling chamber and reduce damage caused by uneven stress.
  • An embodiment of the present invention provides a combustion nozzle including a nozzle housing, wherein the nozzle housing is provided with a fuel passage, a combustion gas passage and a cooling passage, and a front end of the nozzle housing is provided with a cooling chamber, wherein: the cooling chamber is embedded A spiral conduit is provided in communication with the cooling passage to form a spiral cooling runner.
  • the spiral conduit has a circular or elliptical cross-sectional shape.
  • the cooling chamber is formed by welding the front end wall surface of the nozzle casing and the cover.
  • the combustion nozzle has a groove formed on one or both end faces of the cooling chamber, the groove having a shape matching the shape of the spiral pipe, and the spiral pipe The road fastening is fixed in the cooling cavity.
  • a plurality of pins are formed on one or both end faces of the cooling chamber, and the spiral pipe is wound between the pins for fixing.
  • the combustion nozzle has a plurality of pins formed on an end surface of the cooling chamber toward the outside of the combustion nozzle, and a spiral tube is wound between the pins for fixing; the cooling chamber faces an end surface of the inside of the combustion nozzle A groove is formed on the groove, and the shape of the groove matches the shape of the spiral pipe, and the spiral pipe is fastened and fixed in the cooling cavity.
  • a guide pipe is formed in the cooling passage, and the draft pipe is butted against the spiral pipe.
  • the cooling passage has a ring shape in a cross section, and the draft tube is spirally wound in the cooling passage.
  • the spirally wound draft tube is disposed in a portion of the passage in which the cooling passage supplies the coolant.
  • the cooling passage communicates with the spiral duct and the cooling chamber other than the spiral duct.
  • the number of the cooling passages is at least two, wherein at least one cooling passage is in communication with the spiral conduit, and at least another cooling passage is outside the spiral conduit.
  • the cooling chamber is connected.
  • the spiral pipe is a copper pipe, a carbon steel pipe or a stainless steel pipe.
  • the fuel passage is disposed along a longitudinal central axis of the nozzle housing, the combustion assist passage surrounds an outer side of the fuel passage, and the cooling passage surrounds the assist The outside of the gas passage.
  • the combustion nozzle as described above preferably has: cooling passages for supplying the cooling liquid and for returning the cooling liquid are disposed on the same side of the casing.
  • the present invention also provides a coal gasifier comprising the combustion nozzle provided by the present invention.
  • the combustion nozzle and the coal gasification furnace provided by the invention form a spiral cooling flow passage by embedding a spiral pipeline in the cooling chamber, so that the spiral cooling flow passage is an independent pipeline, and does not have to be with the wall surface of the nozzle housing.
  • the angle-type connection is formed between each other, so that the cracking of the cooling cavity due to the large temperature difference at the corners, uneven stress, and thermal fatigue can be eliminated.
  • the technical scheme of the invention optimizes the structure of the combustion nozzle cooling chamber, reduces the possibility of metal fatigue damage, and improves the life and reliability of the combustion nozzle operation.
  • FIG. 1 is a schematic structural view of a conventional typical combustion nozzle
  • 2A is a schematic structural view of a combustion nozzle according to Embodiment 1 of the present invention
  • 2B is a cross-sectional structural view taken along line AA of FIG. 2A;
  • FIG. 3A is a schematic structural view of a combustion nozzle according to Embodiment 2 of the present invention.
  • Figure 3B is a cross-sectional structural view taken along line B-B of Figure 3A;
  • 3C is a cross-sectional structural view taken along line C-C of FIG. 3A;
  • FIG. 4 is a partial structural schematic view of a combustion nozzle according to a third embodiment of the present invention.
  • FIG. 5 is a partial structural schematic view of a combustion nozzle according to Embodiment 4 of the present invention.
  • FIG. 6 is a partial structural schematic view of a combustion nozzle according to Embodiment 5 of the present invention.
  • FIG. 7 is a cross-sectional structural view of a combustion nozzle according to Embodiment 6 of the present invention.
  • Embodiment 8 is a cross-sectional structural view of a combustion nozzle according to Embodiment 7 of the present invention.
  • FIG. 2A is a schematic structural view of a combustion nozzle according to Embodiment 1 of the present invention
  • FIG. 2B is a cross-sectional structural view along line AA of FIG. 2A
  • the combustion nozzle includes a nozzle housing 10, and a fuel passage 20 is disposed in the nozzle housing 10.
  • the gas passage 30 and the cooling passage 40 are provided with a cooling chamber 50 at the front end of the nozzle housing 10, wherein a spiral duct 60 communicating with the cooling passage 40 is embedded in the cooling chamber 50 to form a spiral cooling passage.
  • This embodiment is a preferred configuration of the combustion nozzle.
  • the fuel passage 20 is disposed along the longitudinal center axis of the nozzle housing 10, and the combustion gas passage 30 surrounds the outside of the fuel passage 20, and the cooling passage 40 may be disposed outside the combustion gas passage 30. .
  • the cooling passages 40 for supplying the cooling liquid and for the refluxing cooling liquid may be disposed on the same side of the casing 10, and the inlet and outlet of the spiral conduit 60 Do not connect, as shown in Figures 2A and 2B, Figure 2B shows the location of the coolant inlet and outlet of the helical conduit 60.
  • the middle of the spiral conduit 60 may leave the outlet of the fuel passage 20 and the combustion gas passage 30.
  • the fuel passage 20 and the cooling passage 40 are substantially cylindrical, and the cross section of the combustion gas passage 30 is substantially annular.
  • each passage can guide the corresponding fluid flow.
  • the combustion nozzle provided in this embodiment forms a spiral cooling flow passage by embedding a spiral pipeline in the cooling chamber, so that the spiral cooling flow passage is an independent pipeline, and does not need to form a chamfer with the wall surface of the nozzle housing.
  • the type of connection can eliminate the cracking of the cooling cavity caused by the large temperature difference at the corner and the uneven stress.
  • the technical solution optimizes the structure of the combustion nozzle cooling chamber, reduces the possibility of damage, and improves the reliability of the combustion nozzle operation.
  • This embodiment is preferably a housing cavity in which two cooling liquids are respectively formed inside and outside the spiral conduit.
  • the cooling passage can communicate with the cooling ducts outside the spiral duct and the spiral duct, and the coolant flows in the inner and outer accommodating cavities.
  • the advantage of this design is that the spiral cooling cooling channel ensures the uniform flow of the coolant at the front end of the nozzle, and achieves a good cooling effect, and provides a guarantee for the reliable operation of the nozzle through the two-layer accommodating cavity, both internal and external.
  • the accommodating cavity realizes heat exchange through the spiral pipe, and the temperature is substantially the same. Even if the spiral pipe is damaged, the coolant is not leaked outside the nozzle to affect the combustion.
  • the cooling chamber outside the spiral transfer line constitutes an out-of-pipe cooling system, which is equivalent to the heat-resistant protection of the surface of the nozzle cover.
  • the manner in which the spiral conduit 60 is fixed in the cooling chamber 50 can be various.
  • the cooling chamber 50 is fastened by the front wall surface of the nozzle housing 10 and the cover 70, and can be fastened by welding.
  • the spiral duct 60 is fastened and fixed in the cooling chamber 50 by a cover 70.
  • the spiral conduit can be welded to the wall of the end of the nozzle housing.
  • the spiral pipe is an independent pipe body, it is possible to avoid the angled connection with the wall surface of the casing, thereby eliminating the problem of uneven stress.
  • the cross-sectional shape of the spiral conduit is preferably circular or elliptical, and the substantially cylindrical conduit is more effectively wall-folded.
  • the technical solution of the embodiment also has the advantages of low production cost and low maintenance cost. Embedded in cooling
  • the independent spiral tube in the chamber can be directly disassembled and replaced without having to modify the entire combustion nozzle, so it is not necessary to stop the use of the combustion nozzle for a long time.
  • FIG. 3A is a schematic structural view of a combustion nozzle according to Embodiment 2 of the present invention
  • FIG. 3B is a cross-sectional structural view taken along line B-B of FIG. 3A
  • FIG. 3C is a cross-sectional structural view taken along line C-C of FIG. 3A.
  • the difference between this embodiment and the first embodiment is that the number of the cooling passages 40 provided in the casing 10 is two, one is in communication with the spiral conduit 60, and the other cooling passage 40 is outside the spiral conduit 60.
  • the cooling chambers 50 are in communication, and the inlets and outlets of the two cooling passages 40 are provided as shown in Figs. 3A, 3B and 3C, respectively.
  • Cooling passages 40 each including a supply and a return passage are provided on both sides of the casing 10, respectively.
  • the cooling chamber is separated into two spiral cooling passages by a spiral duct, and each of them is independently supplied with a cooling liquid by a cooling passage, which further enhances the cooling effect.
  • the number of cooling channels is not limited to two, and the number of cooling channels may be at least two, wherein at least one cooling channel is in communication with the spiral pipe, and at least the other cooling channel is outside the spiral pipe.
  • the cooling chamber is connected.
  • One or more sets of coolant inlets and outlets may be provided on the spiral conduit and on the cooling chamber for connection to the corresponding cooling passages.
  • the number of spiral conduits is not limited to one, and may be a plurality of spiral conduits, connected to one cooling passage, or each of which is connected to a plurality of cooling passages.
  • FIG. 4 is a schematic partial structural view of a combustion nozzle according to Embodiment 3 of the present invention.
  • a groove 51 is formed on one or both end faces of the cooling cavity 50, which is usually formed in the embodiment.
  • the shape of the recess 51 matches the shape of the spiral duct, and the spiral duct is fastened and fixed in the cooling chamber 50.
  • the method for fixing the spiral pipeline provided in this embodiment can further reduce the point-like or linear connection between the spiral pipeline and the wall surface of the casing, and increase the contact area between the spiral pipeline and the casing, thereby improving heat conduction cooling.
  • the performance can avoid breakage of the rigid joint due to uneven stress.
  • cooling passages are formed by separate pipes, two accommodating cavities for cooling liquid are actually formed inside and outside the spiral duct.
  • the spiral conduit is preferably a copper tube, a carbon steel tube, or a stainless steel tube.
  • the piping, or other materials with good thermal conductivity, can be used to enhance the heat transfer between the coolant inside and outside the spiral piping.
  • FIG. 5 is a schematic partial structural view of a combustion nozzle according to Embodiment 4 of the present invention.
  • This embodiment can provide another solution for fixing the spiral conduit 60 based on the above technical solutions.
  • a plurality of pins 52 are formed on one or both end faces of the cooling chamber 50.
  • the pins 52 are disposed toward the inner side of the cooling chamber 50, and may be substantially perpendicular to the end wall surface of the casing 10.
  • the spiral conduit 60 is wound around the pin. Fixed between 52.
  • the technical solution of the embodiment also avoids the direct rigid connection between the spiral pipe and the wall surface of the casing, thereby reducing the possibility of damage and facilitating installation and disassembly.
  • FIG. 6 is a partial structural view of a combustion nozzle according to Embodiment 5 of the present invention, and more preferably, in combination with the technical means of Embodiment 3 and Embodiment 4, a plurality of pins are formed on an end surface of the cooling chamber 50 facing the outside of the combustion nozzle. 52, the pin 52 is disposed toward the inner side of the cooling chamber 50, and the pin 52 is generally formed on the cover 70, and the spiral tube is wound between the pins 52 for fixing.
  • a groove 51 is formed in an end surface of the cooling chamber 50 toward the inside of the combustion nozzle, and is generally formed on the front end wall surface of the nozzle housing 10. The shape of the groove 51 matches the shape of the spiral tube, and the spiral tube is engaged. It is fixed in the cooling chamber 50.
  • the burner nozzle cover can still be designed as a flat plate, and the pin can be welded inward.
  • FIG. 7 is a cross-sectional structural view of a combustion nozzle according to Embodiment 6 of the present invention.
  • the present embodiment can further optimize the structure of the cooling passage 40 based on the above various technical solutions.
  • a guide tube 80 is formed in the cooling passage 40, and the draft tube 80 is in abutment with the spiral conduit 60, that is, the guide tube 80 is in closed communication with the nozzle of the spiral transfer line 60, and the guide tube 80 is It is not in communication with the cooling chamber 50 outside the spiral transfer line 60.
  • the technical solution of the embodiment provides an independent draft tube for the spiral pipeline, and the guide tube directly supplies the coolant to the spiral pipeline.
  • the cooling channel outside the draft tube may or may not have a coolant, that is, it may or may not be provided with a coolant for the outside of the spiral tube.
  • Embodiment 8 is a cross-sectional structural view of a combustion nozzle according to Embodiment 7 of the present invention.
  • the embodiment can be based on the above-mentioned Embodiment 6, the cross-sectional shape of the cooling passage 40 is a ring shape, and the draft tube 80 is spirally wound around the cooling passage 40. in. It is preferably disposed only in a portion of the passage in which the cooling passage 40 supplies the coolant.
  • the draft tube 80 abuts the inlet of the spiral line 60, that is, the draft tube 80 is in closed communication with the inlet of the spiral line 60, and the outlet of the spiral line 60 communicates with the other cooling passage 40.
  • the cooling passage may be tubular, disposed only on one side of the casing, or the cooling passage may be a cross-sectional annular passage that surrounds the outside of the combustion gas passage.
  • the cooling passage is specifically a passage having a circular cross-sectional shape, which surrounds the outside of the combustion-supporting passage, and the guide tube surrounds the cooling passage, and can fully exchange heat between the cooling liquid inside and outside the cooling chamber.
  • Embodiments of the present invention also provide a coal gasifier comprising a combustion nozzle provided by any of the embodiments of the present invention.
  • the coal gasification furnace forms a spiral cooling flow passage by embedding a spiral pipeline in the cooling chamber, so that the spiral cooling flow passage is an independent pipeline, and does not need to form an angled connection with the wall surface of the nozzle housing, so It can eliminate the cracking of the cooling cavity caused by large temperature difference and uneven stress at the corner.
  • the technical solution of the invention optimizes the structure of the cooling cavity of the combustion nozzle, reduces the possibility of damage, and improves the reliability of the operation of the combustion nozzle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

一种燃烧喷嘴和煤气化炉,其中的燃烧喷嘴包括喷嘴壳体(10)。喷嘴壳体(10)中设置有燃料通道(20)、助燃气体通道(30)和冷却通道(40),喷嘴壳体(10)前端设置有冷却腔(50),冷却腔(50)中嵌设有与冷却通道(40)连通的螺旋状管路(60),以形成螺旋状冷却流道。通过在冷却腔(50)中嵌设螺旋状管路(60)形成的螺旋状冷却流道作为独立的管路,不必与喷嘴壳体(10)的壁面之间形成折角型连接,能够消除因折角处温差大、应力不均和热疲劳而导致的冷却腔开裂现象,提高了燃烧喷嘴工作的寿命和可靠性。

Description

燃烧喷嘴和煤气化炉 技术领域
本发明涉及燃烧设备结构技术, 尤其涉及一种燃烧喷嘴和煤气化炉。 背景技术
燃烧喷嘴为通用的燃烧部件, 其广泛应用于各种燃烧设备中, 如发动机、 锅炉、 煤气化炉等。
燃烧喷嘴的典型结构如图 1所示,燃烧喷嘴具有大体为圓筒状的壳体 10 , 壳体 10内设置有燃料通道 20和助燃气通道 30 , 燃料通道 20通入的燃料和 助燃气通道 30通入的助燃气在喷嘴端部混合, 经点燃形成火焰。 燃烧喷嘴按 照助燃气气体成份的不同可分为空气助燃式、富氧助燃式和纯氧助燃式三类。 富氧助燃式喷嘴中的助燃气中氧气含量达到 20%以上, 纯氧助燃式喷嘴则釆 用氧气含量 99%以上的助燃气。
对于上述结构的燃烧喷嘴, 喷嘴中的燃料和助燃气同时喷出, 点燃形成 火焰。 火焰距离喷嘴的前端有一间距 D, 通常, 助燃气中的氧气含量越高间 距 D的数值越小; 炉膛内的压力越高, 间距 D的数值越小。 由于火焰的温度 较高 (焰心处温度超过 2000 °C:)。 即使按照焰心温度 1500 °C计算, 也会使喷 嘴前端的表面达到难以承受的高温。 这对喷嘴的使用寿命和工作可靠性都有 影响。
现有技术为解决这一问题提出 了一些解决方案, 如申请号为 200620045550. 6及 88108098. 5 的中国专利申请中提出的技术方案。 在该技 术方案中, 喷嘴端部的冷却腔通过设置螺旋状翼筋而构成。 但是, 该技术存 在如下缺陷:
翼筋与冷却腔的壁面为折角型连接, 无论是一体成型还是焊接固定, 折 角结构都存在折角连接处与其他位置的温度不同, 承受应力不均匀的问题, 因此易于开裂破损。 翼筋结构的冷却腔一旦损坏, 其维修困难, 需要对喷嘴 端部进行整体更换。 翼筋结构冷却腔的工作密封性差、 可靠性低, 发生翼筋 开裂破损之后, 将无法导引冷却剂的流动, 甚至会使冷却剂流出喷嘴外部, 影响燃烧。 发明内容
本发明提供一种燃烧喷嘴和煤气化炉, 以优化冷却腔的结构, 减少因应 力不均匀而导致的破损现象。
本发明实施例提供一种燃烧喷嘴, 包括喷嘴壳体, 所述喷嘴壳体中设置 有燃料通道、 助燃气通道和冷却通道, 喷嘴壳体前端设置有冷却腔, 其中: 所述冷却腔中嵌设有与冷却通道连通的螺旋状管路,以形成螺旋状冷却流道。
如上所述的燃烧喷嘴, 优选的是: 所述螺旋状管路的横截面形状为圓形 或椭圓形。
如上所述的燃烧喷嘴, 优选的是: 所述冷却腔由喷嘴壳体前端壁面和罩 盖扣合焊接而成。
如上所述的燃烧喷嘴, 优选的是: 所述冷却腔的一个或两个端面上形成 有凹槽, 所述凹槽的形状与所述螺旋状管路的形状匹配, 将所述螺旋状管路 扣合固定在冷却腔中。
如上所述的燃烧喷嘴, 优选的是: 所述冷却腔的一个或两个端面上形成 有多个销钉, 所述螺旋状管路缠绕在销钉之间进行固定。
如上所述的燃烧喷嘴, 优选的是: 所述冷却腔朝向燃烧喷嘴外侧的端面 上形成有多个销钉, 螺旋状管路缠绕在销钉之间进行固定; 所述冷却腔朝向 燃烧喷嘴内侧的端面上形成凹槽, 所述凹槽的形状与所述螺旋状管路的形状 匹配, 将所述螺旋状管路扣合固定在冷却腔中。
如上所述的燃烧喷嘴, 优选的是: 所述冷却通道中形成有导流管, 所述 导流管与所述螺旋状管路对接。 如上所述的燃烧喷嘴, 优选的是: 所述冷却通道的横截面形状为环形, 所述导流管螺旋缠绕在所述冷却通道中。
如上所述的燃烧喷嘴, 优选的是: 螺旋缠绕的所述导流管设置在所述冷 却通道供给冷却液的部分通道中。
如上所述的燃烧喷嘴, 优选的是: 所述冷却通道与所述螺旋状管路和螺 旋状管路之外的冷却腔分别连通。
如上所述的燃烧喷嘴, 优选的是: 所述冷却通道的数量为至少两条, 其 中至少一条冷却通道与所述螺旋状管路连通, 至少另一条冷却通道与所述螺 旋状管路之外的冷却腔连通。
如上所述的燃烧喷嘴, 优选的是: 所述螺旋状管路为铜管、 碳钢管或不 锈钢管。
如上所述的燃烧喷嘴, 优选的是: 所述燃料通道沿所述喷嘴壳体的纵向 中心轴线设置, 所述助燃气通道环绕在所述燃料通道的外侧, 所述冷却通道 环绕在所述助燃气通道的外侧。
如上所述的燃烧喷嘴, 优选的是: 用于供给冷却液和用于回流冷却液的 冷却通道均设置在所述壳体的同侧。
本发明还提供了一种煤气化炉, 包括本发明所提供的燃烧喷嘴。
本发明提供的燃烧喷嘴和煤气化炉, 通过在冷却腔中嵌设螺旋状管路来 形成螺旋状冷却流道, 使得螺旋状冷却流道为独立的管路, 不必与喷嘴壳体 的壁面之间形成折角型连接, 所以能够消除因折角处温差大、 应力不均和热 疲劳而导致的冷却腔开裂现象。 本发明的技术方案优化了燃烧喷嘴冷却腔的 结构, 降低金属疲劳损坏可能性, 提高了燃烧喷嘴工作的寿命和可靠性。 附图说明
图 1为现有典型燃烧喷嘴的结构示意图;
图 2A为本发明实施例一提供的燃烧喷嘴的结构示意图; 图 2B为图 2A中沿 A-A线的剖视结构示意图;
图 3A为本发明实施例二提供的燃烧喷嘴的结构示意图;
图 3B为图 3A中沿 B-B线的剖视结构示意图;
图 3C为图 3A中沿 C-C线的剖视结构示意图;
图 4为本发明实施例三提供的燃烧喷嘴的局部结构示意图;
图 5为本发明实施例四提供的燃烧喷嘴的局部结构示意图;
图 6为本发明实施例五提供的燃烧喷嘴的局部结构示意图;
图 7为本发明实施例六提供的燃烧喷嘴的剖视结构示意图;
图 8为本发明实施例七提供的燃烧喷嘴的剖视结构示意图。
具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一
图 2A为本发明实施例一提供的燃烧喷嘴的结构示意图, 图 2B为图 2A中沿 A-A线的剖视结构示意图, 该燃烧喷嘴包括喷嘴壳体 10 , 喷嘴壳体 10中设置有 燃料通道 20、 助燃气通道 30和冷却通道 40 , 喷嘴壳体 10前端设置有冷却腔 50 , 其中, 冷却腔 50中嵌设有与冷却通道 40连通的螺旋状管路 60 , 以形成螺旋状 冷却流道。 本实施例为燃烧喷嘴的一种优选结构, 燃料通道 20沿喷嘴壳体 10的纵向 中心轴线设置, 助燃气通道 30环绕在燃料通道 20的外侧, 冷却通道 40可以设 置在助燃气通道 30的外侧。 并且, 优选是用于供给冷却液和用于回流冷却液 的冷却通道 40可以均设置在壳体 10的同侧, 与螺旋状管路 60的进口和出口分 别连通, 如图 2A和图 2B所示, 图 2B示出了螺旋状管路 60的冷却液进口和出口 的位置。 螺旋状管路 60的中部可以留出燃料通道 20和助燃气通道 30的出口。 燃料通道 20和冷却通道 40为大致圓筒状,助燃气通道 30的横截面为大致环形。 但实际应用中燃料通道 20、 助燃气通道 30和冷却通道 40三者之间的相对位置 关系、 各通道的截面形状和纵向轴线形状并不限于图 2A和图 2B所示, 可以根 据实际需要安排各通道, 能实现导引相应的流体流动即可。
本实施例提供的燃烧喷嘴, 通过在冷却腔中嵌设螺旋状管路来形成螺旋 状冷却流道, 使得螺旋状冷却流道为独立的管路, 不必与喷嘴壳体的壁面之 间形成折角型连接, 所以能够消除因折角处温差大、 应力不均而导致的冷却 腔开裂现象。 该技术方案优化了燃烧喷嘴冷却腔的结构, 降低损坏可能性, 提高了燃烧喷嘴工作的可靠性。
本实施优选是在螺旋状管路内外分别形成两个冷却液体的容置腔体。 冷 却通道可以与螺旋状管路和螺旋状管路之外的冷却腔分别连通, 内外的容置 腔体内都有冷却液流动。 这样设计的优点在于, 既通过螺旋状冷却流道保证 了冷却液在喷嘴前端的均勾流动, 达到良好的冷却效果, 又通过两层容置腔 体为喷嘴的可靠工作提供了保障, 内外的容置腔体通过螺旋状管路实现了热 交换, 温度大致相同, 即使螺旋状管路有破损, 也不会导致冷却液外泄至喷 嘴外影响燃烧。 螺旋转管路之外的冷却腔构成管外冷却系统, 相当于形成了 喷嘴外罩表面的耐热保护。
螺旋状管路 60固定在冷却腔 50中的方式可以有多种, 例如本实施例中冷 却腔 50由喷嘴壳体 10前端壁面和罩盖 70扣合而成, 可通过焊接扣合, 则可以 用罩盖 70将螺旋状管路 60扣设固定在冷却腔 50内。 或者也可以将螺旋状管路 焊接固定在喷嘴壳体端部的壁面上。 其他固定方式将通过下面实施例详细描 述。
无论釆用何种固定方式, 由于螺旋状管路是独立的管体, 所以均能够避 免与壳体壁面的折角型连接, 消除了应力不均的问题。 螺旋状管路的横截面 形状优选为圓形或椭圓形, 大致圓筒形的管路更能有效壁面折角型连接。
本实施例的技术方案还具有生产成本和维修成本低的优点。 嵌设在冷却 腔中的独立螺旋状管路可以直接拆卸更换, 不必对整个燃烧喷嘴进行改装, 因此无需长时间停止燃烧喷嘴的使用。
实施例二
图 3A为本发明实施例二提供的燃烧喷嘴的结构示意图, 图 3B为图 3A中沿 B-B线的剖视结构示意图, 图 3C为图 3A中沿 C-C线的剖视结构示意图。 本实施 例与实施例一的区别在于: 在壳体 10中设置的冷却通道 40的数量为两条, 一 条与螺旋状管路 60连通, 另一条冷却通道 40与螺旋状管路 60之外的冷却腔 50 连通, 如图 3A、 3B和 3C分别设置了两条冷却通道 40的进口和出口。 各自包括 供给和回流通道的冷却通道 40分别设置在壳体 10的两侧。
在本实施例中, 冷却腔中由螺旋状管路分离成了两条螺旋状冷却流道, 且各自独立地由一条冷却通道供给冷却液, 能够进一步增强冷却效果。
具体应用中, 冷却通道的数量并不限于为两条, 冷却通道的数量可以为 至少两条, 其中至少一条冷却通道与螺旋状管路连通, 至少另一条冷却通道 与螺旋状管路之外的冷却腔连通。 螺旋状管路上以及冷却腔上均可以设置一 组或一组以上的冷却液进出口, 以便连接对应的冷却通道。 螺旋状管路的数 量也不限于为一条, 可以为多条螺旋状管路, 连接一条冷却通道, 或各自连 接多条冷却通道。
实施例三
图 4为本发明实施例三提供的燃烧喷嘴的局部结构示意图,本实施例可以 以上述各技术方案为基础, 在冷却腔 50的一个或两个端面上形成有凹槽 51 , 通常是形成在喷嘴壳体 10前端壁面和罩盖 70上, 凹槽 51的形状与螺旋状管路 的形状匹配, 将螺旋状管路扣合固定在冷却腔 50中。
本实施例提供的固定螺旋状管路的方式, 能够进一步减少螺旋状管路与 壳体壁面的点状或线状连接, 增大螺旋状管路与壳体的接触面积, 既能提高 导热冷却性能, 又能避免刚性连接处因应力不均而破损断裂。
此外, 上述各本实施由于釆用独立的管路形成冷却流道, 实际上在螺旋 状管路内外分别形成了两个冷却液体的容置腔体。
本发明的各实施例中, 螺旋状管路优选为铜管、 碳钢管、 或不锈钢管等 管路, 或者也可以用其他导热性能良好的材料制备, 以便增强螺旋状管路内 外冷却液之间的传热效果。
实施例四
图 5为本发明实施例四提供的燃烧喷嘴的局部结构示意图,本实施例可以 以上述各技术方案为基础, 提供了另一种固定螺旋状管路 60的方案。 本实施 例中, 冷却腔 50的一个或两个端面上形成有多个销钉 52 , 销钉 52朝向冷却腔 50内侧设置, 可以大致垂直于壳体 10端部壁面, 螺旋状管路 60缠绕在销钉 52 之间进行固定。
本实施例的技术方案, 同样避免了螺旋状管路与壳体壁面的直接刚性连 接, 由此能减少破损可能, 也方便了安装和拆卸。
实施例五
图 6为本发明实施例五提供的燃烧喷嘴的局部结构示意图,更为优选的是 结合实施例三和实施例四的技术手段, 在冷却腔 50朝向燃烧喷嘴外侧的端面 上形成有多个销钉 52 , 销钉 52朝向冷却腔 50内侧设置, 销钉 52—般是形成在 罩盖 70上, 螺旋状管路缠绕在销钉 52之间进行固定。 在冷却腔 50朝向燃烧喷 嘴内侧的端面上形成凹槽 51 , 通常可形成在喷嘴壳体 10的前端壁面上, 凹槽 51的形状与螺旋状管路的形状匹配, 将螺旋状管路扣合固定在冷却腔 50中。
上述技术方案更易加工制造, 燃烧喷嘴罩盖可仍设计为平板状, 向内焊 接销钉即可。
实施例六
图 7为本发明实施例六提供的燃烧喷嘴的剖视结构示意图,本实施例可以 以上述各技术方案为基础, 进一步优化了冷却通道 40的结构。 本实施例中, 冷却通道 40中形成有导流管 80 , 导流管 80与螺旋状管路 60对接, 即导流管 80 与螺旋转管路 60的管口密闭连通, 而导流管 80与螺旋转管路 60外的冷却腔 50 不连通。
本实施例的技术方案为螺旋状管路提供了独立地导流管, 导流管直接向 螺旋状管路提供冷却液。 导流管外侧的冷却通道中可以有或没有冷却液, 即 可以为螺旋状管路的外侧提供或不提供冷却液均可。 实施例七
图 8为本发明实施例七提供的燃烧喷嘴的剖视结构示意图,本实施例可以 以上述实施例六为基础, 冷却通道 40的横截面形状为环形, 导流管 80螺旋缠 绕在冷却通道 40中。且优选是仅设置在冷却通道 40供给冷却液的部分通道中。
导流管 80与螺旋状管路 60的进口对接, 即导流管 80与螺旋状管路 60的进 口密闭连通, 螺旋状管路 60的出口与另一个冷却通道 40连通。
在上述实施例六中, 冷却通道可以为管状, 仅设置在壳体的一侧, 或者 冷却通道也可以为横截面环状的通路, 环绕在助燃气通道的外侧。 本实施例 七中, 冷却通道具体是横截面形状为环状的通路, 环绕在助燃气通道的外侧, 导流管环绕在冷却通道之中, 能够对冷却腔内外的冷却液进行充分热交换。
本发明实施例还提供了一种煤气化炉, 包括本发明任意实施例所提供的 燃烧喷嘴。 该煤气化炉通过在冷却腔中嵌设螺旋状管路来形成螺旋状冷却流 道, 使得螺旋状冷却流道为独立的管路, 不必与喷嘴壳体的壁面之间形成折 角型连接, 所以能够消除因折角处温差大、 应力不均而导致的冷却腔开裂现 象。 本发明的技术方案优化了燃烧喷嘴冷却腔的结构, 降低损坏可能性, 提 高了燃烧喷嘴工作的可靠性。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种燃烧喷嘴, 包括喷嘴壳体, 所述喷嘴壳体中设置有燃料通道、 助燃气通道和冷却通道, 喷嘴壳体前端设置有冷却腔, 其特征在于: 所述冷 却腔中嵌设有与冷却通道连通的螺旋状管路, 以形成螺旋状冷却流道。
2、 根据权利要求 1所述的燃烧喷嘴, 其特征在于: 所述螺旋状管路的 横截面形状为圓形或椭圓形。
3、 根据权利要求 1所述的燃烧喷嘴, 其特征在于: 所述冷却腔由喷嘴 壳体前端壁面和罩盖扣合焊接而成。
4、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 腔的一个或两个端面上形成有凹槽, 所述凹槽的形状与所述螺旋状管路的形 状匹配, 将所述螺旋状管路扣合固定在冷却腔中。
5、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 腔的一个或两个端面上形成有多个销钉, 所述螺旋状管路缠绕在销钉之间进 行固定。
6、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 腔朝向燃烧喷嘴外侧的端面上形成有多个销钉, 螺旋状管路缠绕在销钉之间 进行固定; 所述冷却腔朝向燃烧喷嘴内侧的端面上形成凹槽, 所述凹槽的形 状与所述螺旋状管路的形状匹配, 将所述螺旋状管路扣合固定在冷却腔中。
7、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 通道中形成有导流管, 所述导流管与所述螺旋状管路对接。
8、 根据权利要求 7所述的燃烧喷嘴, 其特征在于: 所述冷却通道的横 截面形状为环形, 所述导流管螺旋缠绕在所述冷却通道中。
9、 根据权利要求 8所述的燃烧喷嘴, 其特征在于: 螺旋缠绕的所述导 流管设置在所述冷却通道供给冷却液的部分通道中。
1 0、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 通道与所述螺旋状管路和螺旋状管路之外的冷却腔分别连通。
11、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述冷却 通道的数量为至少两条, 其中至少一条冷却通道与所述螺旋状管路连通, 至 少另一条冷却通道与所述螺旋状管路之外的冷却腔连通。
12、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述螺旋 状管路为铜管、 碳钢管或不锈钢管。
1 3、 根据权利要求 1或 2或 3所述的燃烧喷嘴, 其特征在于: 所述燃料 通道沿所述喷嘴壳体的纵向中心轴线设置, 所述助燃气通道环绕在所述燃料 通道的外侧, 所述冷却通道设置在所述助燃气通道的外侧。
14、 根据权利要求 1 3所述的燃烧喷嘴, 其特征在于: 用于供给冷却液 和用于回流冷却液的冷却通道均设置在所述壳体的同侧。
15、 一种煤气化炉, 其特征在于, 包括: 权利要求 1-14任一所述的燃 烧喷嘴。
PCT/CN2011/077187 2011-07-15 2011-07-15 燃烧喷嘴和煤气化炉 WO2013010304A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/077187 WO2013010304A1 (zh) 2011-07-15 2011-07-15 燃烧喷嘴和煤气化炉
AU2011373507A AU2011373507B2 (en) 2011-07-15 2011-07-15 Burner nozzle and coal gasifier
RU2014105562/06A RU2573072C2 (ru) 2011-07-15 2011-07-15 Сопло горелки и установка для газификации угля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077187 WO2013010304A1 (zh) 2011-07-15 2011-07-15 燃烧喷嘴和煤气化炉

Publications (1)

Publication Number Publication Date
WO2013010304A1 true WO2013010304A1 (zh) 2013-01-24

Family

ID=47557629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077187 WO2013010304A1 (zh) 2011-07-15 2011-07-15 燃烧喷嘴和煤气化炉

Country Status (3)

Country Link
AU (1) AU2011373507B2 (zh)
RU (1) RU2573072C2 (zh)
WO (1) WO2013010304A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179823A1 (en) * 2015-05-14 2016-11-17 Zheng Shi System and method for combustion of pulverized solid fuels in small and medium scale boilers
CN107022379A (zh) * 2017-05-09 2017-08-08 哈尔滨工业大学 一种带有水冷盘管保护的干煤粉气流床气化炉烧嘴
CN107076410A (zh) * 2014-09-11 2017-08-18 西门子股份公司 用于无液体冷却的气流床气化炉的紧凑型燃烧器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063981A1 (en) * 2015-10-12 2017-04-20 Shell Internationale Research Maatschappij B.V. Cooling device for a burner of a gasification reactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB990550A (en) * 1961-01-11 1965-04-28 Steinmueller Gmbh L & C Improvements in or relating to cooled burners
DE3806022C1 (en) * 1988-02-26 1989-02-16 Deutsche Babcock Werke Ag, 4200 Oberhausen, De Device for charging a fuel
WO1993006417A1 (en) * 1991-09-27 1993-04-01 Abb Carbon Ab Method and nozzle for supplying paste fuel to a fluidized bed
JPH07103436A (ja) * 1993-09-24 1995-04-18 Texaco Dev Corp 部分酸化用のバーナ
EP1284234A2 (de) * 2001-08-10 2003-02-19 Basf Aktiengesellschaft Vorrichtung zur Herstellung von Synthesegasen
US6755355B2 (en) * 2002-04-18 2004-06-29 Eastman Chemical Company Coal gasification feed injector shield with integral corrosion barrier
CN100470127C (zh) * 2006-09-06 2009-03-18 中国船舶重工集团公司第七一一研究所 干煤粉加压气化炉的燃烧喷嘴

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU397714A1 (ru) * 1971-03-09 1973-09-17 Горелочное устройство для получения
RU21948U1 (ru) * 2001-08-08 2002-02-27 Гулаков Антон Анатольевич Форсунка газовой горелки

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB990550A (en) * 1961-01-11 1965-04-28 Steinmueller Gmbh L & C Improvements in or relating to cooled burners
DE3806022C1 (en) * 1988-02-26 1989-02-16 Deutsche Babcock Werke Ag, 4200 Oberhausen, De Device for charging a fuel
WO1993006417A1 (en) * 1991-09-27 1993-04-01 Abb Carbon Ab Method and nozzle for supplying paste fuel to a fluidized bed
JPH07103436A (ja) * 1993-09-24 1995-04-18 Texaco Dev Corp 部分酸化用のバーナ
EP1284234A2 (de) * 2001-08-10 2003-02-19 Basf Aktiengesellschaft Vorrichtung zur Herstellung von Synthesegasen
US6755355B2 (en) * 2002-04-18 2004-06-29 Eastman Chemical Company Coal gasification feed injector shield with integral corrosion barrier
CN100470127C (zh) * 2006-09-06 2009-03-18 中国船舶重工集团公司第七一一研究所 干煤粉加压气化炉的燃烧喷嘴

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107076410A (zh) * 2014-09-11 2017-08-18 西门子股份公司 用于无液体冷却的气流床气化炉的紧凑型燃烧器
WO2016179823A1 (en) * 2015-05-14 2016-11-17 Zheng Shi System and method for combustion of pulverized solid fuels in small and medium scale boilers
CN107022379A (zh) * 2017-05-09 2017-08-08 哈尔滨工业大学 一种带有水冷盘管保护的干煤粉气流床气化炉烧嘴

Also Published As

Publication number Publication date
AU2011373507B2 (en) 2015-10-08
AU2011373507A1 (en) 2014-03-06
RU2573072C2 (ru) 2016-01-20
RU2014105562A (ru) 2015-08-27

Similar Documents

Publication Publication Date Title
US8894407B2 (en) Combustor and method for supplying fuel to a combustor
JP2003139327A (ja) 多積層燃料ストリップを有する燃料噴射器の燃料導管
WO2013010304A1 (zh) 燃烧喷嘴和煤气化炉
US9200803B2 (en) System and method for coupling coolant fluid conduit to feed injector tip
US9194297B2 (en) Multiple circuit fuel manifold
CN101749711A (zh) 燃烧低btu燃料气体的燃烧器机体及其制造和使用方法
CN113530718A (zh) 一种火箭发动机推力室热试用身部模块
KR20180101498A (ko) 연소기용 패널, 연소기, 연소 장치, 가스 터빈, 및 연소기용 패널의 냉각 방법
JP4939980B2 (ja) Egrクーラ
CN103620180A (zh) 热交换器
RU2009134317A (ru) Многоподовая печь
RU2727303C1 (ru) Рекуперативная горелка
CN102287826B (zh) 燃烧喷嘴和煤气化炉
CN105972637A (zh) 具有双壁的燃烧室
CN202166057U (zh) 燃烧喷嘴及煤气化炉
CN202182473U (zh) 燃烧喷嘴和煤气化炉
JP2008008568A (ja) 熱交換器
US20060192026A1 (en) Combustion head for use with a flame spray apparatus
US20180094857A1 (en) Lance
CN217154238U (zh) 一种超临界锅炉水冷壁
CN215342913U (zh) 一种新型耐高温波导管
CN107654998B (zh) 燃烧器和气化炉
CN217976395U (zh) 液体燃料分配槽
CN111286367A (zh) 冷却式喷嘴以及反应器
LU502720B1 (en) Gas injector for shaft injection in a blast furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014105562

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011373507

Country of ref document: AU

Date of ref document: 20110715

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11869526

Country of ref document: EP

Kind code of ref document: A1