WO2013010294A1 - 重力发电设备 - Google Patents

重力发电设备 Download PDF

Info

Publication number
WO2013010294A1
WO2013010294A1 PCT/CN2011/001270 CN2011001270W WO2013010294A1 WO 2013010294 A1 WO2013010294 A1 WO 2013010294A1 CN 2011001270 W CN2011001270 W CN 2011001270W WO 2013010294 A1 WO2013010294 A1 WO 2013010294A1
Authority
WO
WIPO (PCT)
Prior art keywords
gravity
magnetic
generator
objects
conveyor belt
Prior art date
Application number
PCT/CN2011/001270
Other languages
English (en)
French (fr)
Inventor
叶宏贤
Original Assignee
Yeh Hung-Hseen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yeh Hung-Hseen filed Critical Yeh Hung-Hseen
Publication of WO2013010294A1 publication Critical patent/WO2013010294A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors

Definitions

  • the invention relates to a gravity power plant. Background technique
  • Electricity is an indispensable source of energy in human life, and the booming development of various industries depends on electricity supply.
  • the operation principle of the generator is to place the wire wound around the coil in a magnetic field composed of an electromagnet or a permanent magnet, and the rotation of the wire is rotated in the magnetic field by the rotating shaft, and the magnetic field is cut by the area around the wire.
  • the electromotive force is induced and an induced current is generated in the wire.
  • a permanent magnet or an electromagnet 60 1 1 is disposed in a conventional power plant, and is surrounded by an annular core 602 which is a wound wire of a stator, and is used when the rotating shaft drives the rotor 60 1 to rotate.
  • An induced current can be generated in the wound wire of the stator 602.
  • various energies are used as kinetic energy to drive the shaft to generate electric energy through the generator.
  • thermal power generation consumes a lot of oil or coal as fuel, and fuel costs not only High, and the handling of fuel emissions and combustion emissions is a major problem.
  • Oil or coal may also be depleted due to over-exploitation.
  • the source of energy for hydroelectric power comes from the high and low level of water flow and the amount of water, but the amount of water is naturally uncontrollable (for example, the amount of water in winter is small and small, and the amount of water in summer is more due to rainfall).
  • Ample electricity can be supplied at peak times.
  • Nuclear power generation has the risk of radiation leakage, and uranium sources are scarce.
  • Wind power can only be used in areas with strong winds or seasons, and there is a specific range of operable wind speeds. If the blower wind speed is outside this specific range, the wind turbine cannot be operated to avoid damage to the blades of the wind turbine.
  • the power generation methods that are gradually emerging but not yet popular are solar power generation, tidal power generation, ocean temperature difference power generation, geothermal power generation, biomass power generation, etc., although they are directly utilizing the forces of the natural environment and are less likely to The environment produces pollution, and there is no need to worry about the lack of energy source of the generator.
  • the energy source of the generator is limited to a specific geographical area or environmental conditions, it cannot be widely used everywhere, and it is difficult to control the peaks by artificial control. The amount of power generated during the peak time is sometimes insufficient, and the amount of power generation is too large. It is not an ideal power generation method for industries that require stable power supply. Moreover, such special power plants have high cost and do not meet the economic benefits of the industry.
  • the present invention converts the bit energy reduced by the weight from the height to kinetic energy to drive the generator, generates electric energy, and generates an induced current by electromagnetic effect in the process of falling at a high place, as a transporting weight.
  • the power generated by the invention is low in cost, easy to maintain, and free to adjust the weight, thereby adjusting the amount of power generation.
  • the power generation method of the present invention does not cause pollution to the environment at all, and can be applied to various geographical environments. For areas lacking natural resources for power generation, it is very helpful in industrial development. Summary of the invention
  • a gravity power generating apparatus comprising: a plurality of gravity objects as a group, wherein each of the gravity objects has magnetic properties; and a generator that causes the plurality of gravity as a group by gravity The object rotates the rotor of the generator through a gravity track to generate electricity; a conveyor belt is used to transport each of the gravity objects from a lowest point to a highest point such that each gravity object passes the gravity by gravity a track; a conveyor power supply mechanism for supplying power to the conveyor belt; and a plurality of magnetic elements surrounding the gravity track, having a coil wound around each of the magnetic elements for passing each of the gravity objects In the case of gravity orbit, the plurality of magnetic elements generate a change in magnetic flux such that a line pattern of the respective magnetic elements generates an induced current to form electromagnetic effect power and is supplied to the conveyor power supply mechanism,
  • the gravity track has a gravity transmission mechanism, and each gravity object is moved downward by hooking the gravity transmission mechanism from a height to pull the gravity transmission mechanism, and the pulled gravity transmission mechanism pulls the generator The rotor.
  • a gravity power generating apparatus includes a plurality of gravity objects, a generator, a conveyor belt, and a conveyor power supply mechanism, wherein each of the gravity objects has magnetic properties; the generator makes the a plurality of gravity objects of the group rotate the rotor of the generator to generate electric power through a gravity track; the conveyor belt is used to transport each gravity object of the plurality of gravity objects of the group from a lowest point to a highest point, Passing each of the gravity objects through the gravity track by gravity; a conveyor power supply mechanism for supplying power to the conveyor belt; wherein the gravity track has a gravity transmission mechanism, and each gravity object is self-height by gravity The gravity transmission mechanism is moved down to pull the gravity transmission mechanism, and the pulled gravity transmission mechanism pulls the rotor of the generator.
  • a plurality of sets of a plurality of gravity objects are arranged side by side, and a plurality of gravity tracks, a plurality of gravity objects of a group correspond to one gravity track, and the generator has a plurality of sets of transmission gears, The plurality of sets of gravity drive mechanisms are pulled to maintain the generator at a normal operating speed.
  • corresponding to the plurality of gravity objects of each group set in parallel Do not have their own conveyor belt, and gravity transmission mechanism.
  • the generator may be a plurality of, corresponding to the corresponding gravity track, the conveyor belt, the conveyor power supply mechanism, and the plurality of magnetic components to provide more power.
  • the insufficient power generated by the plurality of magnetic elements is insufficient to propel the conveyor belt
  • the insufficient power is provided by the generator.
  • the power generation amount of the generator may be changed by adjusting the weight of the gravity object, the length of the conveyor belt, and the height of the highest point, and by shortening the plurality of magnetic components The distance from the gravity object or the increase in the magnetic magnitude between the plurality of magnetic elements and the gravity object increases the electromagnetic effect power generated on the coil.
  • the magnetic component is a magnetic column
  • the wires are connected in series to be electrically connected as a set of conveyor belts, and one side is disposed on each side of each of the two sides of the gravity track.
  • the conveyor belt is electrically wired.
  • each of the gravity objects is transported to the highest point by a translational shift from a drop point to the highest point, and each of the gravity objects has a hooking element. To hook the conveyor belt.
  • the hooking member is a concave body for hooking the crossbar disposed on the conveyor belt to be driven by the conveyor belt
  • the outer surface of the gravity object has a plurality of convex bodies for When each of the gravity objects is at the highest point, the hooking element of each gravity object will be disengaged from the conveyor belt and the plurality of protrusions are hooked to the gravity transmission mechanism by gravity downward movement and The gravity transmission mechanism moves in the direction of gravity to rotate the rotor of the generator.
  • each of the gravity objects is disposed at equal intervals, and the position of the gravity track is constant through the cycle of the gravity track.
  • the gravity object and the detachment of the hooking element from the conveyor belt are fixed by the gravity object by the wall surface, and the conveyor belt continues to move to make the hooking element and the crossbar Get rid of.
  • the center of gravity of each gravity object is at the lower bottom, and the bottom layer is composed of a heavy layer, a lightweight layer, and a concave layer provided with a hooking member.
  • Figure 1 is a side elevational view of an embodiment of a set of rotors in a generator of a gravity power plant in accordance with the present invention.
  • Fig. 2 is a side view showing an embodiment of five sets of rotors in a generator of a gravity power generating apparatus according to the present invention.
  • Figure 3 is a side elevational view of an embodiment of a set of rotors in a generator of a gravity power plant in accordance with the present invention.
  • FIG. 4a is a perspective view of a conveyor belt of a gravity power plant in accordance with an embodiment of the present invention.
  • Fig. 4b is a partial view of the upper half showing an embodiment of the gravity power generating apparatus according to the present invention.
  • Figure 4c is a side elevational view of the relative relationship of a gravity object to a magnetic column in accordance with the present invention.
  • Figure 4d is a top view of the relative relationship of a gravity object to a magnetic column in accordance with the present invention.
  • Figure 5 is a perspective view showing the relationship between the gravity object and the magnetic column according to the present invention.
  • Figure 6 is a structural view of a generator in a conventional power plant.
  • FIG. 1 there is shown a side view of an embodiment of a set of rotors in a generator of a gravity power plant 1 in accordance with the present invention.
  • the gravity power generating apparatus 1 of the present invention is housed in a compartment 10 to protect the gravity power generating apparatus 1 from pollution and external disturbances.
  • FIG. 1 shows a side view of a side of the removal compartment 10 for viewing the internal structural elements of the gravity power plant 1.
  • a gravity power generating apparatus 1 includes a plurality of gravity objects 102 as a group, wherein each of the gravity objects 102 has a plurality of sets of magnetic laminated gravity members 1028; a generator 106, which is made by gravity The plurality of gravity objects 102 of the group rotate the transmission gear 109 of the generator 106 through a gravity track 1021 to generate electric power; a conveyor belt 101 for conveying each of the gravity objects 102 from a lowest point (A) to a a highest point (B) such that each of the gravity objects passes gravity through the gravity track 1021 from the highest point (B); a conveyor belt power supply mechanism 103 (in the preferred embodiment, a conveyor belt motor), The power for supplying the conveyor belt 101; and a plurality of magnetic elements (here, magnetic cylinders, but also magnetic rectangular parallelepipeds) 104, disposed around the gravity rail 1021, having a coil
  • the upper end portion of the gravity object 102 has a concave body 120 (shown in FIGS. 3 and 4(a)) for engaging a crossbar 108 on the conveyor belt 101 to be fixed to the conveyor belt 101 by the conveyor belt 101.
  • each gravity transmission mechanism 1023 corresponds to a transmission gear 109 of the generator 106 by a gravity transmission mechanism 1023.
  • the transmission gear 109 is driven to rotate the generator 106.
  • Gravity conveyor Structure 1023 is a chain in a preferred embodiment.
  • the number of gravity objects 102 is 14, and the weight of each gravity object 102 is 0.3 metric tons, two in the same group.
  • the spacing between the gravity objects 102 is approximately 1 meter.
  • a plurality of gravity objects 102 of each group operate in conjunction with respective gravity tracks 1021, respective conveyor belts 101, and respective gravity transmission mechanisms 1023.
  • Parallel setting of 5 sets of gravity objects] 02 can drive 1 generator 106 to operate at its rated power ( 3.85 MW ).
  • Each set of gravity objects 102 alternately pulls the rotor with an adjacent set of gravity objects 102 such that the rotor is operated by the generator 106 by a uniform force.
  • no error occurs, that is, the gravity object 102 is set to fall in the order of arrangement so that the rotor maintains the same direction of rotation.
  • FIG. 3 there is shown a side view of an embodiment of a set of rotors in a generator of a gravity power plant 1 in accordance with the present invention.
  • the gravity object 102 falls to the lowest point (A) and is pulled to the highest point (B) after being translated by a distance, the gravity object 102 is engaged with the gravity by the convex body 1024 of the outer surface thereof.
  • the recess 1025 of the transmission mechanism 1023 moves downward through the gravity track 1021, thus driving the transmission gear 109 of the generator 106.
  • the gravity transmission mechanism 1023 When the gravity object 102 descends to the lowermost portion (lowest point A) of the gravity transmission mechanism 1023, the gravity transmission mechanism 1023 is detached and moved onto the conveyor belt 101, and is again retracted from the lowest point by the conveyor belt 101 (A ) After translation, it is transported obliquely to the highest point (B) to start another cycle.
  • the conveyor belt 101 is composed of two parallel chains 1011.
  • a crossbar 108 is disposed between the flange supports 1013 disposed on the two chains 1011.
  • the two ends of the crossbar 108 are disposed on the Palin 1012, and the position of the crossbar 108 is aligned with the gravity object 102.
  • the recess 120 is such that the crossbar 108 can be engaged with the gravity object 102 so that the gravity object 102 can be fixed on the conveyor belt 101 to be transported.
  • the crossbar 108 is engaged with the concave body 120 of the gravity object 102, and the gravity object 102 is fixed by the Palin W12 while being moved at the horizontal portion and the inclined portion of the conveyor belt 101 without being arbitrarily turned over.
  • FIG. 4b there is shown a partial view of the upper half of the gravity power plant 1 in accordance with an embodiment of the present invention.
  • the conveyor belt 101 sends the gravity object 102 to the highest starting point (C)
  • the gravity object 102 continues to move horizontally until it is occupied by the wall 1074 disposed within the vertical side of the conveyor belt 101.
  • the conveyor belt 101, the flange support 1013 and the crossbar 108 continue to move horizontally.
  • the gravity object 102 is disengaged from the crossbar 108 and is disposed by the gravity
  • the convex body 1024 of the outer surface of the object 102 is engaged with the gravity transmission mechanism 1023 and moves in the direction of gravity (moving downward), that is, the transmission gear 109 that drives the generator 106 is rotated.
  • the vertical space between the gravity transmission mechanism 1023 and the wall 107 is the gravity track 1021.
  • the downward movement of the gravity object 102 along the gravity drive mechanism 1023 causes the gravity drive mechanism 1023 to rotate to drive the transmission gear 109 of the generator 106.
  • the plurality of gravity objects 102 are equally spaced and that the generator 106 is maintained at a constant speed. And by the cycle of the gravity track, the position of the gravity object 102 does not change.
  • FIG. 4c and FIG. 4d how the relative movements of the plurality of gravity objects 102 and the plurality of magnetic columns 104 generate an induced current supplied to the conveyor power supply mechanism 103, and a plurality of magnetic columns 104 disposed on the gravity track 1021 are disposed.
  • a wire pattern 105 is wound around the surface of each of the magnetic columns 104 to form a winding coil, and each of the winding coils on each side is connected by a wire as a set of conveyor power wirings 1026.
  • each magnetic member in each set of magnetic laminated gravity members 1028 In order to have different magnetic poles, in FIG. 4c, the left side is the N pole and the right side is the S pole. Therefore, when the magnetic column 104 passes through the passage space 1029, the left side of the magnetic column 104 induces an N pole and the right side induces Since an S pole is emitted, the magnetic flux of each magnetic column 104 changes due to the induction of the magnetic field, so an induced electromotive force is generated on the coil 105, and the magnitude of the induced electromotive force is divided by the resistance of the coil 105 to obtain the inductance on the coil 105. The size of the current. Moreover, a conveyor power connection 1026 disposed on both sides of the gravity track 1021 of the plurality of gravity objects 102 is connected to the conveyor power supply mechanism 103 to supply the induced current generated on the winding 105 to the conveyor power supply mechanism. 103
  • B is the magnitude of the magnetic field generated between the magnetic pole of the magnetic column 104 and the magnetic pole of the gravity object 102
  • A is the area of the coil 105
  • is the angle between the coil 105 and the magnetic field
  • is the angular velocity at which the coil 105 rotates.
  • the induced electromotive force is divided by the resistance value of the coil 105 to obtain the induced current on the coil 105.
  • This induced current can be supplied to the conveyor power supply mechanism 103 via the conveyor power wiring 1026 to supply power to the conveyor belt 101 or to send excess power to the generator 106 for storage.
  • the length of the magnetic column 104 and the gravity object 102 may be shortened or the magnetic property between the plurality of magnetic columns 104 and the gravity object 102 may be increased to increase the size generated on the wire 105. Electromagnetic effect electricity.
  • the power required by the belt power supply mechanism 103 is supplied from the generator 106.
  • a plurality of sets of the gravity objects 102 may be arranged in parallel, and each of the plurality of gravity objects 102 is matched with a respective gravity track 1021, a respective conveyor belt 101, and The respective gravity drive mechanisms 1023 operate.
  • the respective gravity tracks 1021 have respective plurality of magnetic columns 104.
  • the generator 106 can have a plurality of sets of transmission gears (109, 1091, 1092, 1093, 1094), and the plurality of sets of gravity transmission mechanisms 1023 can pull the plurality of sets of transmission gears (109, 1091, 1092, 1093, 1094), The generator 106 is thereby pulled to maintain the generator 106 at a normal operating speed.
  • the plurality of generators 106 may be further configured to cooperate with the corresponding plurality of gravity objects 102, the conveyor belt 101, the conveyor belt power supply mechanism 103, and the plurality of magnetic columns. 104, to provide more power.
  • a micro-motion sensing device is additionally provided which is coupled to the plurality of generators 106; and one or two sets of backup generators connected to the micro-motion sensing device.
  • the backup generator does not normally function unless the multiple generator 106 fails (ie, stops rotating) and the micro-motion sensing device is triggered, then the device can be started in a very short time (about 1 to 2 seconds). The backup generator will not interrupt the power supply.
  • the gravity object 102 is a multi-layered structure having a concave body 120 and a convex body 1024, and the three-layer structure shown in Fig. 5 is merely illustrative and not restrictive. And the layers of the multilayer structure Each of the left and right has an N pole and an S pole. In FIG. 5, the left side of the three-layer structure is N pole, and the right side is S pole, but may be of opposite polarity (ie, S pole on the left side and N pole on the right side).
  • the distance between the magnetic column 104 and the gravity object 102 is inversely proportional to the magnitude of the magnetic field between the magnetic column 104 and the gravity object 102. That is, from the above-described induced electromotive force formula, it is understood that the magnitude of the distance between the control magnetic column 104 and the gravity object 102 can control the magnitude of the induced electromotive force generated in the coil 105.
  • the weight of the gravity object 102 is gradually increased from the top to the bottom, so that the center of gravity of the gravity object 102 is located below, and the vertical position is maintained from the gravity transmission mechanism 1023 to the conveyor belt 101 to maintain the original up and down position.
  • the crossbar 108 is engaged and does not flip.
  • the structure of the gravity object 102 shown here is from bottom to top: a heavy layer, a lightweight layer, and a concave layer provided with the concave body 120.
  • the point at which the gravity object 102 moves vertically downward from the gravity drive mechanism 1023 onto the conveyor belt 101 is referred to as the drop location.
  • the heavy layer and the lightweight layer of the gravity object 102 are magnetic materials stacked as a magnetic laminated gravity member, a concave layer and a magnetic laminated gravity member.
  • the connection is fixed by a connecting body 1027 (for example, a rivet).
  • the concave layer is not magnetic
  • the magnetic laminated gravity member is symmetrical to the lower sides of the concave layer, and the layers are connected by a substance (e.g., rubber) which is not magnetic.
  • the two ends of each layer of the magnetic laminated gravity member 1028 are N and S poles, respectively, as shown in the figure.
  • the magnetic column 104 can have a rectangular parallelepiped shape.
  • the magnetic flux is induced at both ends of the magnetic column 104, and
  • the magnetic flux changes to generate an induced electromotive force, since the coil on the magnetic column 104 is wound counterclockwise to the left side, according to the right hand of Ampere.
  • the magnetic field is left to right (thumb), so the current direction is from the upper end to the paper surface and at the lower end to the paper surface, so the current is from right to left.
  • the gravity power generating apparatus of the present invention can be adjusted by adjusting the weight of the gravity object 102, the length of the conveyor belt 101, or the height of the highest point (B) of the conveyor belt 101.
  • a plurality of generators 106 can be disposed to cooperate with the corresponding plurality of sets of the plurality of gravity objects 102, the conveyor belt 101, the conveyor belt power supply mechanism 103, and the magnetic column 104 wound with the coil 105 to provide more power.
  • the plurality of gravity objects 102 of each group arranged side by side have respective conveyor belts 101, and a gravity transmission mechanism 1023.
  • four generators 106 can be configured, each having a rated power of 3.85 MW.
  • 22 sets of gravity objects 102 are arranged side by side, and 14 of the group of gravity objects 102 are each, and the weight of each gravity object 102 is 0.3 metric. ⁇ , the distance between two gravity objects 102 in the same group is 1 meter.
  • the plurality of sets of the plurality of gravity objects 102 are staggered so that the gravity object 102 is staggered by the gravity track 1021 to pull the gravity transmission mechanism 1023 to drive the transmission gear 109 of the generator 106, and the transmission gear 109 of the generator 106 is driven to be staggered. .
  • the conveyor belt 101 has a vertical maximum height of 6 meters, the conveyor belt 101 has a horizontal length of 3 meters, and the conveyor belt 101 has a slope length of 7 meters.
  • the gravity power generation device has no shortage of energy source, easy maintenance and repair, short maintenance and repair time, simple assembly and low cost (only need to replace the part of the gravity power generation equipment that is faulty or damaged, and does not need to be completely updated),
  • the advantages of relying on a specific natural environment and not polluting the natural environment have a dual effect on the sustainable protection of the natural environment and industrial development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种重力发电设备,包括作为一组的多个重力物体(102),其中每个重力物体具有磁性;一发电机(106),藉由重力使该作为一组的多个重力物体通过一重力轨道(1021)而转动该发电机的转子以产生电力;一输送带(101),用于将每个重力物体自一最低点(A)输送至一最高点(B)以使每个重力物体藉由重力通过该重力轨道;一输送带动力供应机构(103),用于供应该输送带的动力;以及多个磁性元件(104),设置于重力轨道周围,具有一线圈(105)缠绕于其表面。该重力轨道具有一重力传动机构(1023),藉由重力使每个重力物体自高处钩住该重力传动机构而下移以拉动该重力传动机构,被拉动的重力传动机构将拉动该发电机的转子。

Description

重力发电设备 技术领域
本发明涉及一种重力发电设备。 背景技术
电力在人类的日常生活中已是不可或缺的能量来源, 各种产业的蓬 勃发展亦有赖于电力供应。
一般发电机的操作原理, 是将绕成线圈的导线放在由电磁铁或是永 久磁铁构成的磁场中, 藉由转轴推动线图在磁场中转动, 由于该线圏围 绕的面积切割磁场而产生感应电动势, 而在导线中产生感应电流。
相对于前述一般发电机, 对于发电厂中的发电机, 由于其所产生的 感应电流非常大, 因此结构有所不同。 参照图 6 , 其为现有的发电厂内 设置有永久磁铁或电磁铁 60 1 1 , 而在外围由作为定子的缠绕导线的环状 磁心 602所环绕, 用以当转轴带动转子 60 1旋转时, 可在定子 602的缠 绕导线中产生感应电流。 实际应用上, 是将各种不同能量作为推动转轴 的动能, 以经过该发电机而产生电能。
但现今的主要发电方式产生下列问题: ( 1 ) 能量来源可能在短时间 内枯竭或是取得成本高昂, 例如火力发电, (2 ) 对自然环境造成无可弥 补的污染, 例如核能发电, ( 3 ) 需仰赖特殊的环境条件, 不易以人为方 式控制发电量, 例如水力发电或风力发电, (4 ) 自然灾害时的风险以及 发电管理的困难, 例如核能灾害以及核废料处理。
例如, 火力发电要消耗大量石油或是燃煤作为燃料, 燃料不但成本 高昂, 且燃料的运送及燃烧所排放的废气的处理都是一大问题。 石油或 是燃煤亦有可能因为开发过度而消耗殆尽。 又例如水力发电的能量来源 来自水流的高低位差及水量大小, 但水量的大小为自然不可控因素 (例 如冬季水量因千燥而较小, 夏季水量因降雨而较多 ), 不能确保用电高 峰时能供应充足的电量。 核能发电有辐射外泄的危险, 且铀矿来源稀少。 风力发电只能在风力强劲的地区或季节使用, 且可操作的风速有特定范 围, 若吹风风速超出此特定范围之外, 则无法操作风力发电机, 以免使 风力发电机的叶片损坏。
基于环保及永续发展的理念, 逐渐兴起但尚未普及的发电方式还有 太阳能发电、 潮汐发电、 海洋温差发电、 地热发电、 生质能发电等, 虽 然是直接利用 自然环境力量而较不会对环境产生污染, 也较不用担心发 电机的能量来源匮乏, 但因为发电机的能量来源均受限于特定的地理区 域或是环境条件, 无法在各地广泛使用, 亦难以人为控制的方式控制尖 峰、 离峰时间的发电量, 有时发电量不足, 有时发电量太多, 对于需要 稳定供电的产业来说, 并不是理想的发电方式。 且此种特殊的发电厂造 价较高, 不符产业经济效益。
因此, 如何发展出能量来源稳定, 不会对环境造成污染, 合乎产业 经济效益, 且能适用于各种不同地理环境条件的发电方式, 成为现今产 业发展的重大课题。 因此, 本发明乃利用重物自高处落下所减少的位能 转换成动能以推动发电机, 而产生电能, 并在高处落下的过程中藉由电 磁效应另产生感应电流, 以作为输送重物的能量。 本发明所产生的电力 成本低廉, 维护容易, 且能自由调整重量大小, 从而调整发电量多寡。 此外, 本发明的发电方式对环境完全不造成污染, 且又能适用于各种不 同地理环境区域, 对于缺乏用以发电的天然资源的地区, 在产业发展上 十分有助益。 发明内容
在本发明的一实施例, 提供一种重力发电设备, 包含作为一组的多 个重力物体, 其中每个该重力物体具有磁性; 一发电机, 藉由重力使该 作为一组的多个重力物体通过一重力轨道而转动该发电机的转子以产 生电力; 一输送带, 用于将每个该重力物体自一最低点输送至一最高点 以使每个该重力物体藉由重力通过该重力轨道; 一输送带动力供应机 构, 用于供应该输送带的动力; 及多个磁性元件, 环绕该重力轨道的周 围, 具有线圈缠绕于每个磁性元件, 用以当每个该重力物体通过该重力 轨道时, 该多个磁性元件产生磁通量变化而使该各个磁性元件的线图产 生感应电流而形成电磁效应电力而供应至该输送带动力供应机构,
其中, 该重力轨道具有一重力传动机构, 藉由重力使每个该重力物 体自高处钩住该重力传动机构而下移以拉动该重力传动机构, 被拉动的 重力传动机构将拉动该发电机的该转子。
换言之, 一种重力发电设备, 包含一组的多个重力物体、 一发电机、 一输送带以及一输送带动力供应机构, 其中每个该重力物体具有磁性; 发电机藉由重力使该作为一组的多个重力物体通过一重力轨道而转动 该发电机的转子以产生电力; 输送带用于将该组的多个重力物体的每个 该重力物体自一最低点输送至一最高点, 以使每个该重力物体藉由重力 通过该重力轨道; 输送带动力供应机构用于供应该输送带的动力; 其中, 该重力轨道具有一重力传动机构, 藉由重力使每个该重力物体自高处结 合该重力传动机构而下移以拉动该重力传动机构, 被拉动的重力传动机 构将拉动该发电机的该转子。
在本发明的一实施例, 其中, 并列设置多组的多个重力物体, 以及 多个重力轨道, 一组的多个重力物体对应于一个重力轨道, 且该发电机 具有多组传动齿轮, 以供该多组的重力传动机构拉动, 以使该发电机保 持正常运转速度。 其中, 对应于该并列设置的每组的多个重力物体, 分 别具有各自的输送带、 以及重力传动机构。
在本发明的一实施例, 其中, 该发电机可为多个, 配合对应的该重 力轨道、 该输送带、 该输送带动力供应机构、 及该多个磁性元件, 以提 供更多电力。
在.本发明的一实施例, 其中, 当该多个磁性元件产生的电磁效应电 力不足以推动该输送带时, 该不足的电力由该发电机提供。
在本发明的一实施例, 其中, 可藉由调整该重力物体的重量、 该输 送带的长度、 该最高点的高度、 而改变该发电机的发电量, 且藉由缩短 该多个磁性元件与该重力物体之间的距离或是增加该多个磁性元件与 该重力物体之间的磁性大小可增加在该线圈上所产生的电磁效应电力。
在本发明的一实施例中, 该磁性元件为一磁柱, 且该接线以串联的 方式连接而作为一组输送带电力接线, 且在每个该重力轨道的二侧的每 一侧设置一组该输送带电力接线。
在本发明的一实施例, 其中, 每个该重力物体藉由一输送带而自一 落地点经平移而斜向上移而被输送至该最高点, 且每个该重力物体具有 一钩持元件以钩住该输送带。
在上述实施例中, 该钩持元件为一凹体, 用以钩住设置于该输送带 上的横杆而为输送带所带动, 且该重力物体的外表面具有多个凸体, 用 以当每个该重力物体于该最高点时, 每个该重力物体的该钩持元件将与 该输送带脱离并藉由重力下移时使该多个凸体钩住该重力传动机构并 使该重力传动机构沿重力方向运动而转动该发电机的转子。
在本发明的一实施例, 每个该重力物体为等间隔设置, 且通过该重 力轨道的循环周期, 其位置不变。
在本发明的一实施例, 该重力物体及该钩持元件与输送带的脱离是 藉由该重力物体由壁面抵住固定, 而该输送带续为移动而使该钩持元件 与该横杆脱离。 在本发明的一实施例, 每个重力物体的重心在下底部, 自下而上分 别由重质层、 轻质层以及设置有钩持元件的凹体层所构成。 附图说明
图 1 为根据本发明的重力发电设备的发电机中为一组转子的实施例 的侧视图。
图 2为根据本发明的重力发电设备的发电机中为 5组转子的一实施 例的侧视图。
图 3为根据本发明的重力发电设备的发电机中为一组转子的实施例 的侧视图。
图 4a为根据本发明的一实施例的重力发电设备的输送带立体图。 图 4b 为显示根据本发明的重力发电设备的一实施例的上半部局部 图。
图 4c为根据本发明的重力物体与磁柱的相对关系的侧视图。
图 4d为根据本发明的重力物体与磁柱的相对关系的上视图。
图 5为根据本发明的重力物体与磁柱之间运动关系的立体图。
图 6为现有的发电厂内发电机的结构图。
附图标记:
1: 重力发电设备
10: 隔室
11: 斜板
101: 输送带
101 1 : 链条
1012: 培林
102: 重力物体
1021: 重力轨道 1023: 重力传动机构
1024: 凸体
1025: 凹孔
1026: 输送带接线组
1027: 连接体
1028: 磁性叠层重力件
1029: 通过空间
103: 输送带动力供应机构
104: 磁柱
105: 线圈
106: 发电机
107: 壁面
108: 橫杆
109: 传动齿轮
120: 体
130: 磁性元件通过空间
601: 转子
6011 : 电磁铁
602: 定子 具体实施方式
以下将根据附图来说明本发明的较佳实施例。 所属领域的普通技术 人员可知, 在不脱离本发明的精神范围内, 仍能实现其他改型、 替换、 等效物。 且该等改型、 替换、 等效物全部落在本发明的申请专利范围中。 以下为了清楚说明而预先设定许多细节, 但本发明并不限于所述的细 参照图 1 , 其为根据本发明的重力发电设备 1 的发电机中为一组转 子的一实施例的侧视图。 本发明的重力发电设备 1 容置于一隔室 10之 内, 以保护该重力发电设备 1免于污染及外界千扰。 图 1 所示为去除隔 室 10的一侧面的侧视图, 以供观视该重力发电设备 1的内部构造元件。 根据本发明的重力发电设备 1 , 包含作为一组的多个重力物体 102, 其 中每个该重力物体 102为具有多组磁性叠层重力件 1028;—发电机 106, 藉由重力使该作为一组的多个重力物体 102通过一重力轨道 1021 而转 动该发电机 106的传动齿轮 109以产生电力; 一输送带 101 , 用于将每 个该重力物体 102 自一最低点 (A ) 输送至一最高点 (B ), 以使每个该 重力物体自该最高点 (B ) 藉由重力通过该重力轨道 1021; —输送带动 力供应机构 103 (在一较佳实施例中为输送带马达), 用于供应该输送带 101 的动力; 及多个磁性元件(在此为磁柱, 但亦可为磁性长方体) 104, 设置于该重力轨道 1021 的周围,具有一线圈 105缠绕于该磁性元件 104 的表面, 用以当每个该重力物体 102通过该重力轨道 1021 时使该多个 磁性元件 104产生磁通量变化而使该线圈 105产生感应电流而形成电磁 效应电力提供至该输送带动力供应机构 103。 其中, 该重力物体 102落 入最低点 ( A )之后平移一距离后而抵靠于一斜板 11 的上表面, 因该上 表面为平滑可减少拉升重力物体 102的摩擦阻力, 因此可减低拉升该重 力物体 102所需的力。 该重力物体 102的上端部具有一凹体 120 (如图 3及图 4 ( a ) 所示) 以供卡合输送带 101上的一横杆 108以固定于该输 送带 101 而由输送带 101所平移或上拉, 且该重力物体 102的外表面具 有多个凸体 1024以供该重力物体于该最高点 (B ) 处开始卡合于该重力 轨道 1021 的重力传动机构 1023, 以藉由重力使每个该重力物体 102钩 住该重力传动机构 1023 而下移以拉动该重力传动机构 1023, 每一个重 力传动机构 1023对应于该发电机 106的一个传动齿轮 109, 藉由重力传 动机构 1023 带动该传动齿轮 109而使发电机 106转动。 该重力传动机 构 1023在一较佳实施例为链条。
在图 2所示的重力发电设备的一例示性实施例的侧视图中, 一组重 力物体 102的个数为 14个, 每个重力物体 102的重量为 0.3公吨, 在同 一组中的两个重力物体 102之间的间距约为 1公尺。 每组的多个重力物 体 102配合各自的重力轨道 1021、 各自的输送带 101、 以及各自的重力 传动机构 1023运作。 并列设置 5组重力物体】 02可带动 1 个发电机 106 以其额定功率 ( 3.85 MW ) 运转。 每组的重力物体 102与相邻组的重力 物体 102 交错拉动该转子, 以使该转子受一均勾的力而运转该发电机 106。 且多组重力物体 102 交错拉动该转子时不会发生错误, 亦即, 重 力物体 102—定是按照排列顺序落下而使转子维持相同方向转动。
参照图 3, 其为根据本发明的重力发电设备 1 的发电机中为一组转 子的一实施例的侧视图。由图 2中可看出,重力物体 102落至最低点( A ) 经平移一距离后被拉引到最高点 ( B ) 后, 该重力物体 102 以其外表面 的凸体 1024卡合于重力传动机构 1023的凹孔 1025并经由重力轨道 1021 向下移动, 如此则带动发电机 106的传动齿轮 109。 且在该重力物体 102 向下移动的同时, 会使磁柱 104通过该重力物体 102的两组磁性叠层重 力件 1028之间的通过空间 1029, 而使缠绕磁柱 104表面的线圈 105的 磁通量产生变化 (如图 4b、 图 4c 以及图 4d所示), 从而在该线圈 105 中产生感应电流, 该感应电流随着下端磁柱的接续通过该通过空间 1029 而使电流不断供给至该输送带动力供应机构 103。
当重力物体 102下降至重力传动机构 1023的最下方(最低点 A)时, 即脱落该重力传动机构 1023, 而移至该输送带 101之上, 重新由输送带 101将其从最低点 ( A ) 平移后斜向输送至最高点 (B ), 开始另一循环。
以下参照图 4a-4d 来说明根据该实施例的重力发电设备的详细作动 方式。
请参照图 4a的示意图,该输送带 101 由两条平行的链条 1011构成, 一横杆 108跨设于该二链条 1011之上所设的凸缘支撑件 1013之间, 橫 杆 108 的两端故设于培林 1012, 且该横杆 108 的位置对准该重力物体 102的凹体 120, 以使该橫杆 108可卡合于该重力物体 102, 使该重力物 体 102可固定于该输送带 101之上而被输送。 该橫杆 108卡入该重力物 体 102的凹体 120, 藉由培林 W12使该重力物体 102在该输送带 101 的 水平部位及斜面部位移动时皆保持固定而不会任意翻转。
请参照图 4b, 其为显示根据本发明的一实施例的重力发电设备 1 的 上半部局部图。 当输送带 101将重力物体 102送至最高开始点 (C ) 后, 重力物体 102会继续水平移动, 直到由设于该输送带 101 的垂直侧之内 的壁面 1074氏住为止。该重力物体 102被该壁面 107抵住后,输送带 101、 凸缘支撑件 1013 及该橫杆 108继续保持水平移动, 同一时间, 该重力 物体 102 脱离该横杆 108 并藉由设置于该重力物体 102 外表面的凸体 1024卡合于该重力传动机构 1023并沿重力方向移动(向下移动), 此即 带动发电机 106的传动齿轮 109为旋转。 重力传动机构 1023 与该壁面 107之间的垂直空间即为重力轨道 1021。 该重力物体 102沿着重力传动 机构 1023向下移动会带动重力传动机构 1023为旋转而带动发电机 106 的传动齿轮 109。 在此实施例中, 较佳者为该多个重力物体 102之间为 等间距, 且保持以恒定的速度带动该发电机 106。 且通过该重力轨道的 循环周期, 重力物体 102的位置不变。
以下参照图 4c以及图 4d说明该多个重力物体 102与该多个磁柱 104 的相对运动如何产生供给输送带动力供应机构 103的感应电流 多个磁 柱 104设置于该重力轨道 1021的二组磁性叠层重力件 1028之间的通过 空间 1029, 此处为设置二组磁性叠层重力件, 亦可设置二组以上, 并配 合二组以上磁柱的设置。 每个磁柱 104的表面缠绕有一线图 105而形成 一绕组线圈, 每侧的各个绕组线圈藉由接线相连而作为一组输送带电力 接线 1026。 每组磁性叠层重力件 1028 中的每个磁性构件的左右二端分 为为不同的磁极, 在图 4c中左侧为 N极而右侧为 S极, 因此当磁柱 104 通过该通过空间 1029时, 该磁柱 104的左侧感应出一 N极而右侧感应 出一 S极, 由于感应出该磁场, 因此每个磁柱 104的磁通量产生变化, 因此在线圈 105上产生感应电动势, 感应电动势的大小除以线圏 105的 电阻即可得到线圈 105上的感应电流的大小。 且, 设于一组多个重力物 体 102的重力轨道 1021 两侧的输送带电力接线 1026连接至该输送带动 力供应机构 103, 以将线圏 105上产生的感应电流供应至输送带动力供 应机构 103
在线圈 105上所产生的感应电动势的公式如下: π
dt 其中, 负号代表感应电动势的产生是为了抵抗通过线圈 105的磁通 量的变化, 且 n代表线圈 105缠绕的匝数。
且, 磁通量变化的公式如下:
^= d~BAc ^ = Aco^6^ + Bco ed^- ABs e^ dt dt dt dt
其中, B为磁柱 104的磁极与重力物体 102的磁极之间所产生的磁 场大小, A为线圈 105的面积, Θ为线圈 105与磁场之间的夹角, ω为 线圈 105旋转的角速度。在本实施例的情况中, 由于线圈面积没有变化, 且线圈 105并没有旋转 (角速度为零), 因此, 上式可改写成如下:
Figure imgf000012_0001
代入感应电动势的公式中, 则感应电动势可如下式计算 dB
ε = ~ηΑ——
"' dt 将感应电动势除以线圈 105的电阻值, 即可得出线圈 105上的感应 电流。 此感应电流可经由输送带电力接线 1026 供应至输送带动力供应 机构 103, 以供给输送带 101 动力, 或将多余的电力送至发电机 106储 存。 藉由缩短该多个磁柱 104与该重力物体 102之间的距离或是增加该 多个磁柱 104与该重力物体 102之间的磁.性大小可增加在该线圏 105上 所产生的电磁效应电力。
此外, 若所产生的感应电流不足以使输送带动力供应机构 103带动 重力物体 102沿着输送带 101运行, 则从发电机 106供应输送带动力供 应机构 103所需的动力。
在本发明的另一实施例中, 如图 2所示, 可并列设置多组多个该重 力物体 102, 每组的多个重力物体 102系配合各自的重力轨道 1021、 各 自输送带 101、 以及各自重力传动机构 1023 运作。 该各自的重力轨道 1021 具有各自的多个磁柱 104。 且该发电机 106 可具有多组传动齿轮 ( 109、 1091、 1092、 1093、 1094 ), 该多组的重力传动机构 1023 可拉 动该多组传动齿轮 ( 109、 1091、 1092、 1093、 1094 ), 从而拉动该发电 机 106, 以使该发电机 106保持正常运转速度。
在本发明的又另一实施例中, 可更进一步配置多个发电机 106, 配合 对应的该多个重力物体 102、 该输送带 101、 该输送带动力供应机构 103、 及该多个磁柱 104, 以提供更多电力。 于配置多个发电机 106的情况中, 额外设置微动式感应装置, 其连接于该多个发电机 106; 及一或二组备用 发电机, 其连接于该微动式感应装置。 备用发电机平时不作用, 除非当该 多个发电机 106失效(即停止转动) 而使微动式感应装置被触发后, 则在 极短的时间内 (约 1至 2秒) 即可启动该备用发电机, 不会中断供电。
参照图 5, 其为根据本发明的重力物体 102与磁柱 104之间相对关 系的侧视图。 重力物体 102 为具有凹体 120及凸体 1024的多层结构, 图 5中所示的 3层结构仅为例示性而非限制性者。 且多层结构的各层的 左右各具有 N极及 S极。 于图 5中, 所示为 3层结构的左侧为 N极, 右 侧为 S极, 但亦可为相反极性 (即左侧为 S极、 右侧为 N极)。 又, 磁 柱 104与重力物体 102之间的距离与磁柱 104与重力物体 102之间的磁 场大小成反比。 即, 从上述的感应电动势公式可知, 控制磁柱 104与重 力物体 102之间的距离大小能够控制在线圈 105中所产生的感应电动势 的大小。 该重力物体 102由上而下的结构材料的密度逐渐增加, 以使重 力物体 102 的重心位于下方, 而在从该重力传动机构 1023 垂直移至输 送带 101上处能维持本来的上下位置以与橫杆 108卡合, 不会翻转。 例 如, 此处所示的重力物体 102的结构由下至上分别为: 重质层、 轻质层、 设有凹体 120的凹体层。 该重力物体 102从重力传动机构 1023垂直下 移至该输送带 101上的一点称为落地点。
更进一步, 参照图 5, 根据本发明的另一实施例, 重力物体 102的重 质层及轻质层为磁性物质而叠置为磁性叠层重力件, 凹体层及磁性叠层重 力件之间以连接体 1027 (例如铆钉) 固定之。 凹体层不具有磁性, 该磁性 叠层重力件为对称于凹体层的下方两侧, 且各层之间由不具有磁性的物质 (例如橡胶)相连接。 磁性叠层重力件 1028的每一层的两端分别为 N、 S 极, 如图中所示。 且该磁性叠层重力件之间具有一通过空间 1029, 以使该 磁柱 104通过, 而于该磁柱 104上的该线圈 105中产生感应电流。 且从本 实施例中可看出, 磁柱 104可为长方体形, 当重力物体 102向下移动, 使 磁柱 104通过磁性元件通过空间 130时,磁柱 104的两端会感应出磁通量, 并随该磁柱 104 离开该通过空间 1029而消失, 而此而产生磁通量变化以 产生感应电动势, 由于该磁柱 104上的线圈是以右侧观之为逆时针向左侧 方向缠绕, 根据安培右手定则, 该磁场为左到右 (拇指), 因此电流方向 为自上端跃出纸面而在下端进入纸面, 因此电流为自右到左方向。
且, 在本发明的重力发电设备中, 可藉由调整该重力物体 102的重 量、 该输送带 101 的长度或该输送带 101 的最高点 (B ) 的高度而调整 该发电机 106的发电量。 且可配置多个发电机 106, 配合对应的多组该 多个重力物体 102、 该输送帶 101、 该输送帶动力供应机构 103、 及绕有 线圈 105的该磁柱 104, 以提供更多电力。 该并列设置的每组的多个重 力物体 102具有各自的输送带 101、 以及重力传动机构 1023。
例如, 在一实施例中, 可配置 4个发电机 106, 每个发电机的额定 功率为 3.85 MW。 并列设置 22组重力物体 102, 且一组重力物体 102的 个 为 14个, 每个重力物体 102的重量为 0.3公。屯, 在同一组中的两个 重力物体 102之间的间距为 1公尺。 交错配置多组多个重力物体 102, 以使重力物体 102 经由重力轨道 1021 交错落下而拉动重力传动机构 1023而帶动发电机 106的传动齿轮 109, 经交错落下而带动发电机 106 的传动齿轮 109。 输送带 101 的垂直最高高度为 6公尺, 输送带 101 的 水平长度为 3公尺, 且输送带 101 的斜面长度为 7公尺。 全部重力物体 102的重量为 0.3 X 14 X 22=92.4公吨,且一公尺的输送带 101重量为 1.5 公斤, 因此输送带总重为 16 X 1.5 X 22=528公斤 =0.528公吨。 而输送带 动力供应机构 103将一公吨的重量拉到最高点所需的能量为 2.5马力。 又, 一马力等于 746 W (即 0.746 kW )。 因此, 全部所需的能量为 ( 92.4+0.528 ) X 2.5 X 0.746 = 173.311 kW。 但对应的 22组磁柱 104因该 22组重力物体 102的相对移动所产生的电磁感应能量为 322 kW, 足以 自给自足。 且若有不足的部分, 亦可由发电机 106补足。 即使有所不足, 与该发电机 106能产生的总能量 (总共 3.85 X 4=】5.4 MW ) 相比, 此部 分极小。 由此可知, 此重力发电设备的能量转换率极高。
根据本发明的重力发电设备, 具有能量来源不虞匮乏、 保养维修容 易、 保养维修时间短、 组装简便且成本低廉 (仅需更换重力发电设备结 构故障或有损害的部分, 不需全部更新)、 不需仰赖特定的自然环境、 且不会对自然环境产生污染的优点, 对于自然环境的永续保护及产业发 展有双重功效。

Claims

权 利 要 求 书
1、 一种重力发电设备, 包含:
一组的多个重力物体, 其中每个该重力物体具有磁性;
一发电机, 藉由重力使该作为一组的多个重力物体通过一重力轨 道而转动该发电机的转子以产生电力;
一输送带, 用于将该组的多个重力物体的每个该重力物体自一最 低点输送至一最高点, 以使每个该重力物体藉由重力通过该重力轨 道;
一输送带动力供应机构, 用于供应该输送带的动力,
其中, 该重力轨道具有一重力传动机构, 藉由重力使每个该重力 物体自高处结合该重力传动机构而下移以拉动该重力传动机构, 被拉 动的重力传动机构将拉动该发电机的该转子。
2、 根据权利要求 1的重力发电设备,其中该重力发电设备包含: 一组或多组的多个磁性元件, 该每组的多个磁性元件平行于该重力轨 道而设置, 具有线圈缠绕于每个磁性元件, 该每组的多个磁性元件的 线圏相互串联, 用以当每个该重力物体通过该重力轨道时, 使该多个 磁性元件产生磁通量变化而使该各个磁性元件的线圈产生感应电流 而形成电磁效应电力于串联的线圈, 而该串联的线圏连接至输送带动 力供应机构以供应该电磁效应电力至该输送带动力供应机构。
3、、 根据权利要求 1或 2的重力发电设备, 其中,
并列设置多组的多个重力物体以及多个重力轨道, 且一组的多个 重力物体对应于一个重力轨道, 每组的重力物体与相邻组的重力物体 之间交错拉动该转子, 以使该转子受一均匀的力而运转该发电机, 该发电机藉由一传动齿 4 而与该重力传动机构相扣以转动该发 电机的该转子,
该发电机具有多组的传动齿轮, 而一组传动齿轮对应于一组的重 力传动机构, 用以经由每个重力传动机构的转动而带动每组该传动齿 轮而使该转子转动, 且
该发电机为一个或多个。
4、 根据权利要求 3的重力发电设备, 其中,
该并列设置的每组的多个重力物体配合各自的输送带、 以及重力 传动机构运作, 且在每个该重力轨道的二侧的每一侧设置一组的多个 磁性元件。
5、 根据权利要求 3的重力发电设备, 其中,
在每个重力物体的各组磁性叠层重力件之间形成一通过空间, 用 以供每个磁性元件通过, 各组磁性叠层重力件的相邻对向侧具有相异 磁极。
6、 根据权利要求 2的重力发电设备, 其中,
可藉由调整该重力物体的重量、 该输送带的长度、 该最高点的高 度而改变该发电机的发电量, 且藉由缩短该多个磁性元件与该重力物 体之间的距离或是增加该多个磁性元件与该重力物体之间的磁性大 小可增加在该线图上所产生的电磁效应电力。
7、 根据权利要求 1 的重力发电设备, 其中,
每个该重力物体藉由该输送带而自一落地点经平移而斜向输送 至该最高点, 且每个该重力物体具有一钩持元件以钩住该输送带且该 重力传动机构为一重力轨道链条。
8、 根据权利要求 7的重力发电设备, 其中,
该钩持元件为一凹体, 用以钩住设置于该输送带上的橫杆而为该 输送带所带动, 且该重力物体的外表面具有多个凸体, 用以在每个该 重力物体与该横杆脱离而自该最高点下落时, 使该多个凸体钩住该重 力传动机构而沿重力方向运动以转动该发电机的转子。
9、 根据权利要求 1 的重力发电设备, 其中, 每个重力物体具有多组的磁性叠层重力件, 每个重力物体的重心 在下底部且自下而上分别为具有磁性的重质层、 具有磁性的轻质层以 及不具有磁性的钩持元件, 且每个重力物体的多组磁性叠层重力件之 间由凹体层所连接, 且每个该重力物体之间为等间隔设置, 且在该重 力轨道的循环周期中, 其位置不变。
1 0、 根据权利要求 9的重力发电设备, 其中,
该重力物体及该钩持元件与该输送带的脱离是藉由该重力物体 于该最高点受一壁面抵住并使该输送带续为平移而使该钩持元件与 该橫杆脱离。
1 1、 根据权利要求 1 的重力发电设备, 其中该重力发电设备包 含
一微动式感应装置, 连接于该多个发电机, 用以感应该多个发电 机是否失效; 以及
一备用发电机, 连接于该微动式感应装置;
其中, 当该多个发电机失效而使该微动式感应装置被触发后, 在 极短的时间内即可启动该备用发电机。
PCT/CN2011/001270 2011-07-15 2011-08-02 重力发电设备 WO2013010294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110198454.0 2011-07-15
CN2011101984540A CN102878031A (zh) 2011-07-15 2011-07-15 重力发电设备

Publications (1)

Publication Number Publication Date
WO2013010294A1 true WO2013010294A1 (zh) 2013-01-24

Family

ID=47479495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001270 WO2013010294A1 (zh) 2011-07-15 2011-08-02 重力发电设备

Country Status (2)

Country Link
CN (1) CN102878031A (zh)
WO (1) WO2013010294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240225A (zh) * 2015-10-30 2016-01-13 刘力楠 重力发电装置及应用其的重力发电系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105927486A (zh) * 2016-05-31 2016-09-07 杜桂生 重力实验发电装置
CN110145445A (zh) * 2019-04-03 2019-08-20 刘江 重力势能转换为机械能的动力机
ES2802822B2 (es) * 2019-07-17 2021-10-15 Fernandez Antonio Fraile Sistema de aprovechamiento gravitatorio de generacion energetica
CN113285480A (zh) * 2021-05-20 2021-08-20 中国科学院电工研究所 一种重力发电与蓄能装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732362A1 (de) * 1987-09-25 1989-04-13 Reinhold Stiebner Elektromagnetischer schwerkraftmotor
CN101135298A (zh) * 2007-09-30 2008-03-05 李胜贵 重力发电机
CN101958631A (zh) * 2010-09-17 2011-01-26 蒋中华 磁重力发电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261136A (ja) * 1995-03-23 1996-10-08 Fumihide Ito 主に重力または磁力を動力源とする動力機関
KR20080091686A (ko) * 2007-04-09 2008-10-14 엄재풍 영구자석의 힘과 중력이 작용하는 엔진

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732362A1 (de) * 1987-09-25 1989-04-13 Reinhold Stiebner Elektromagnetischer schwerkraftmotor
CN101135298A (zh) * 2007-09-30 2008-03-05 李胜贵 重力发电机
CN101958631A (zh) * 2010-09-17 2011-01-26 蒋中华 磁重力发电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240225A (zh) * 2015-10-30 2016-01-13 刘力楠 重力发电装置及应用其的重力发电系统

Also Published As

Publication number Publication date
CN102878031A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2012021521A (ja) 重力発電装置
US8338975B2 (en) Supplemental power source
WO2013010294A1 (zh) 重力发电设备
KR20230045108A (ko) 중력 전기 발전소 기술
WO2016049596A1 (en) Renewable energy generation based on water waves
CN101764491A (zh) 兆瓦级无电刷滑环双馈风力发电机/电动机及其控制方法
US8803353B2 (en) Turbine-generator driven by compressed air and magnet motor
CN108291522B (zh) 从可再生能源生成能量的设备和方法
WO2009137420A2 (en) Renewable energy generation eco system
CN102011678B (zh) 一种波浪发电方法以及实施此方法的系统
CN205142077U (zh) 一种垂直轴风光互补智能发电系统
CN102820737A (zh) 洁能发电机的风叶驱动方法及装置
CN107476934A (zh) 一种风‑波耦合发电系统
CN102437590A (zh) 一种交流励磁双馈发电机变速恒频风力发电系统
CN204179832U (zh) 一种发电装置
US20170204578A1 (en) Generator for converting tidal fluctuation to electrical energy
CN205142078U (zh) 一种集风能、太阳能为一体的发电装置
US20120091719A1 (en) Method and device for energy generation
TWM611224U (zh) 座式360度箱型扇葉發電風機倍數發電裝置
CN105099076A (zh) 一种发电装置
KR20110108522A (ko) 적층구조형 수직축 풍력발전장치
TWI634727B (zh) Green energy magnetic floating power generation device
CN114183316A (zh) 一种发电设备及发电方法
CN103939308A (zh) 立体多层轮系移动发电装置
KR20190100825A (ko) 중력과 자력, 원심력을 이용한 융합발전장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869628

Country of ref document: EP

Kind code of ref document: A1