WO2013008852A1 - Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2013008852A1
WO2013008852A1 PCT/JP2012/067721 JP2012067721W WO2013008852A1 WO 2013008852 A1 WO2013008852 A1 WO 2013008852A1 JP 2012067721 W JP2012067721 W JP 2012067721W WO 2013008852 A1 WO2013008852 A1 WO 2013008852A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
polyimide
formula
Prior art date
Application number
PCT/JP2012/067721
Other languages
French (fr)
Japanese (ja)
Inventor
徳俊( 三木
耕平 後藤
雅章 片山
奈穂 菊池
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201280044162.4A priority Critical patent/CN103827211B/en
Priority to KR1020147003452A priority patent/KR20140045556A/en
Priority to KR1020187014933A priority patent/KR102026039B1/en
Priority to JP2013523965A priority patent/JP6079627B2/en
Publication of WO2013008852A1 publication Critical patent/WO2013008852A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a composition used for forming a film, in particular, a liquid crystal alignment treatment agent used for forming a liquid crystal alignment film, a liquid crystal alignment film to be obtained, and a liquid crystal display element using the liquid crystal alignment film.
  • a film made of an organic material such as a polymer material has been widely used as an interlayer insulating film, a protective film, and the like in electronic devices because of its ease of formation and insulation performance.
  • an organic film made of an organic material is used as a liquid crystal alignment film.
  • the liquid crystal alignment film is a constituent member of a liquid crystal display element that is widely used as a display device.
  • the liquid crystal alignment film is formed on the surface of a substrate that sandwiches the liquid crystal and plays a role of aligning the liquid crystal in a certain direction. Further, the liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal.
  • liquid crystal display elements have become highly functional, and the range of use has been expanded.
  • the liquid crystal alignment film has performance and reliability for suppressing display defects of the liquid crystal display elements and realizing high display quality. It has been demanded.
  • the liquid crystal alignment film made of this polyimide organic film is formed from a liquid crystal alignment treatment agent that is a composition containing a polyimide precursor polyamic acid (polyamic acid) and / or a polyimide solution imidized with polyamic acid. . That is, the polyimide-based liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent composed of a polyimide solution or a polyamic acid solution that is a polyimide precursor to a substrate and firing at a temperature of about 250 ° C. (For example, refer to Patent Document 1).
  • the polyimide-based liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent comprising a polyimide solution or a polyamic acid solution of a polyimide precursor to a substrate, and then baking the coating film.
  • a liquid crystal alignment treatment agent comprising a polyimide solution or a polyamic acid solution of a polyimide precursor
  • By improving the wetting and spreading property defects such as repellency and pinholes during printing application can be suppressed in the application process in the process of forming the liquid crystal alignment film.
  • Polyimide-based organic films are widely used for interlayer insulating films and protective films in electronic devices, and can be formed from a composition containing a polyimide precursor, a polyamic acid or a polyimide solution, and a liquid crystal As in the case of the alignment film, improvement in applicability is required. The improvement in coating properties is effective for suppressing defects during printing coating.
  • the present invention provides a composition capable of forming a polyimide-based organic film having improved coatability and high wettability to a substrate, particularly a liquid crystal capable of forming a liquid crystal alignment film in which defects such as repelling and pinholes are suppressed.
  • An object is to provide an alignment treatment agent, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display device including the liquid crystal alignment film.
  • the present invention has the following gist.
  • a composition comprising: (In the formula [1], R 1 is an alkyl group having 1 to 4 carbon atoms.)
  • the composition according to (1), wherein the compound represented by the formula [1] is a compound represented by the following formula [2] or the following formula [3].
  • X represents a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and a hydrocarbon group having 1 to 6 carbon atoms.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15)
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or OCO—
  • Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (on these cyclic groups)
  • the optional hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon atom, which may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • composition according to any one of (1) to (6), wherein the tetracarboxylic dianhydride is a compound represented by the following formula [7].
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.
  • Z 1 is a structure represented by the following formulas [7a] to [7j].
  • Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different.
  • Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  • a liquid crystal aligning agent comprising the composition according to any one of (1) to (8).
  • (10) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to (9).
  • (11) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to (9).
  • (12) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates.
  • a liquid crystal display device having the liquid crystal alignment film according to (10) or (11).
  • a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film, and polymerized by at least one of active energy rays and heat between the pair of substrates.
  • paintability is provided.
  • a liquid crystal aligning agent that can form a liquid crystal alignment film excellent in applicability and having suppressed defects such as repellency and pinholes.
  • a liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent of the present invention can be formed without defects, and a liquid crystal display element having such a liquid crystal alignment film has high characteristics and reliability.
  • a polyimide film particularly a polyimide liquid crystal alignment film is formed by using a polyimide solution obtained by dissolving polyimide or a polyimide precursor in a solvent, or a polyimide precursor solution. Then, it is applied to the substrate and is usually performed by baking at a temperature of about 200 to 300 ° C.
  • polyamic acid which is a polyimide precursor
  • dehydration ring closure reaction thermal imidization
  • the main purpose of the firing step is to remove the solvent from the coating film.
  • the heating temperature in the case of using a polyimide solution is influenced by the boiling point of the solvent to be used, it can usually be made lower than in the case of using polyamic acid.
  • an appropriate solvent When preparing a polyimide solution in order to form a polyimide-based liquid crystal alignment film, it is necessary to dissolve a polyimide that is normally difficult to dissolve, and therefore, an appropriate solvent must be used.
  • a highly polar solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as NMP) is selected and used.
  • NMP N-methyl-2-pyrrolidone
  • a highly polar solvent has a high surface tension as a characteristic, and NMP also has a high surface tension characteristic.
  • the polyimide solution can be prepared using a solvent having a lower surface tension, the coating property of the polyimide solution to the substrate will be good, and the occurrence of defects during printing application such as repellency and pinholes can be suppressed. it can. That is, if a solvent having a lower surface tension characteristic is selected, and a polyimide solution can be prepared by dissolving polyimide, good coating characteristics can be realized. Such an improvement in coatability is also required in the formation of polyimide films such as insulating films and protective films for electronic devices. Improvement in applicability enables formation of a more uniform polyimide film with fewer defects such as repellency and pinholes that occur during printing application.
  • the present inventor can obtain a polyimide precursor having a specific structure.
  • a polyimide having improved solubility can be obtained. I found it.
  • a low surface tension compound also referred to as a solvent
  • the liquid-crystal aligning agent obtained from the obtained composition is excellent in applicability
  • the obtained liquid crystal alignment film is suitable for providing a highly reliable liquid crystal display element.
  • the composition of the present invention contains a polyimide obtained by dehydrating and ring-closing a polyimide precursor.
  • This composition can particularly constitute a liquid crystal alignment treatment agent.
  • the composition of the present invention includes a polyimide precursor obtained by (polycondensation) reaction of a diamine component containing a carboxyl group-containing diamine compound and a tetracarboxylic acid component, and / or a polyimide obtained by imidizing the polyimide precursor, And a compound represented by the following formula [1].
  • R 1 is an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the above formula [1] is preferably a compound represented by the following formula [2] or the following formula [3].
  • the compound represented by the formula [1] is preferably contained as a solvent in the composition.
  • the diamine component which forms a polyimide precursor contains the diamine compound which has a carboxyl group of following formula [4].
  • a second diamine compound As the second diamine compound, a diamine compound having a structure represented by the following formula [5] is preferable.
  • a represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • X represents a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and a hydrocarbon group having 1 to 6 carbon atoms.
  • a substituted di-substituted amino group or a group represented by the following formula [6] and n represents an integer of 0 to 4.
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15).
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms)
  • Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms) Or a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
  • n represents an integer of 0 to 4.
  • the diamine compound having a carboxyl group for obtaining the polyimide precursor of the present invention is a diamine compound having — (CH 2 ) a —COOH group (a is an integer of 0 to 4) in the molecule.
  • a is an integer of 0 to 4
  • the diamine compound of the structure shown by following formula [4] can be mentioned.
  • a represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • diamine compounds having a carboxyl group in the molecule represented by the following formulas [4-1] to [4-4] can be exemplified.
  • a 4 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 )-or N (CH 3 ) CO-, m 2 and m 3 are each an integer of 0 to 4, and m 2 + m 3 is an integer of 1 to 4.
  • m 4 and m 5 are each an integer of 1 to 5.
  • a 5 is a linear or branched alkyl group having 1 to 5 carbon atoms
  • m 6 is an integer of 1 to 5.
  • a 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
  • the amount of the diamine compound having a carboxyl group is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, based on the total diamine component.
  • the diamine compound having the above carboxyl group is soluble in a solvent when used as a composition, coating properties, liquid crystal orientation in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc.
  • One type or a mixture of two or more types can also be used.
  • the method to manufacture the diamine compound shown by Formula [4] is not specifically limited, What is shown below is mentioned as a preferable method.
  • the diamine compound represented by the formula [4] can be obtained by synthesizing a dinitro compound represented by the following formula [4A], further reducing the nitro group and converting it to an amino group.
  • a represents an integer of 0 to 4
  • n represents an integer of 1 to 4.
  • the method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
  • the diamine component contained in the composition of the present invention can contain a diamine compound represented by the following formula [5] as the second diamine compound.
  • X is a substituent.
  • n represents an integer of 0 to 4.
  • X is a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and 1 to 6 carbon atoms. Or a group represented by the following formula [6].
  • Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or COO— is from the viewpoint of facilitating the synthesis of the side chain structure.
  • a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO— is more preferable.
  • Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
  • Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
  • a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— facilitates the synthesis of the side chain structure. From the standpoint of the above, a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO— is more preferred.
  • Y 4 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms).
  • a divalent cyclic group selected from the group consisting of a benzene ring and a cyclohexane ring or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton is preferable.
  • Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to It may be substituted with a 3 alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
  • n is an integer of 0 to 4.
  • it is an integer of 0-2.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. .
  • an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [6] constituting the substituent X of the formula [5] International Publication No. WO2011-132751 (2011 The same combinations as those described in (2-1) to (2-629) listed in Tables 6 to 47 on pages 13 to 34 of.
  • Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
  • diamine compounds having structures represented by the following formulas [5-1] to [5-41] can be given.
  • a 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—
  • R 2 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.
  • R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2.
  • R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or O—
  • R 6 is a fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.
  • R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .
  • B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
  • B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • B 2 is an oxygen atom or COO- * (where a bond marked with "*" is bonded to B 3 )
  • B 1 is an oxygen atom or COO- * (where "*" is The bond attached is bonded to (CH 2 ) a 2 ).
  • a 1 is an integer of 0 or 1
  • a 2 is an integer of 2 to 10
  • a 3 is an integer of 0 or 1.
  • the second diamine compound has one kind according to the characteristics such as solubility in a solvent and coating property when it is made into a composition, liquid crystal orientation when it is made into a liquid crystal alignment film, voltage holding ratio, accumulated charge and the like. Alternatively, two or more types can be mixed and used.
  • the diamine compound represented by the formula [5] can be obtained by synthesizing a dinitro compound represented by the following formula [5A], further reducing the nitro group and converting it to an amino group.
  • the method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
  • X and n in Formula [5A] are the same meaning as the definition in Formula [5] in the above-mentioned 2nd diamine compound.
  • ⁇ Other diamine compounds> As long as the effects of the present invention are not impaired, a diamine compound having a carboxyl group in the molecule or a diamine compound having another structure (other diamine compounds) in addition to the second diamine compound having the structure represented by the formula [5] Can also be used. It is good also as a liquid-crystal aligning agent by preparing the composition containing the polyimide obtained after using together these to obtain a polyimide precursor, and making the obtained polyimide.
  • diamine compounds examples include p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 3,3′-dimethoxy-4,4′-diamino.
  • diamine compounds examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. it can.
  • diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
  • a 2 is -COO -, - OCO -, - CONH -, - NHCO -, - CH 2 -, - O -, - CO- or a NH-
  • a 3 Represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • diamine compounds represented by the following formulas [DA8] to [DA13] can also be used.
  • n is an integer of 1 to 5.
  • diamine compounds represented by the following formula [DA14] and formula [DA15] can also be used.
  • the above-mentioned other diamine compounds are important in the liquid crystal alignment film, such as the solubility and coating properties in the solvent when the composition is formed, the alignment of the liquid crystal when the liquid crystal alignment film is formed, the voltage holding ratio, and the accumulated charge.
  • the solubility and coating properties in the solvent when the composition is formed the alignment of the liquid crystal when the liquid crystal alignment film is formed, the voltage holding ratio, and the accumulated charge.
  • one kind or a mixture of two or more kinds may be used.
  • a tetracarboxylic dianhydride having an alicyclic structure represented by the following formula [7] (also referred to as a specific tetracarboxylic dianhydride) is part of the tetracarboxylic acid component. It is preferable to use as.
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms. Specifically, groups represented by the following formulas [7a] to [7j] are preferable.
  • Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
  • a preferable group of Z 1 is preferably represented by the formula [7a], the formula [7c], the formula [7d], the formula [7e], the formula [7f] or the formula [7] because of polymerization reactivity and ease of synthesis. 7g].
  • a group represented by the formula [7a], the formula [7e], the formula [7f] or the formula [7g] is preferable, and the formula [7e] or the formula [7f] is most preferable.
  • the tetracarboxylic dianhydride having the structure of the formula [7f] is used, the desired effect can be obtained by setting it to 20% by mass or more of the total components of the tetracarboxylic dianhydride. More preferably, it is 30 mass% or more. All of the tetracarboxylic acid components used for the polyimide synthesis may be tetracarboxylic dianhydrides having the structure of the formula [7f].
  • tetracarboxylic acid components other than the specific tetracarboxylic dianhydride can be used.
  • Other tetracarboxylic acid components include tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic dianhydride, esterified product obtained by dialkyl esterifying the carboxylic acid group of tetracarboxylic acid, and dialkyl carboxylic acid group of tetracarboxylic acid dihalide. Examples include esterified esterified products.
  • Specific examples thereof include, for example, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid.
  • the above-mentioned other tetracarboxylic acid components can be used by selecting one type or two or more types in consideration of characteristics such as liquid crystal alignment properties, voltage holding characteristics and accumulated charges of the liquid crystal alignment film to be formed.
  • the specific polymer of the present invention refers to a polyimide precursor (polyamide acid) obtained by reacting a diamine component containing a carboxyl group-containing diamine compound and a tetracarboxylic acid component and / or dehydrating and ring-closing the polyimide precursor. It is a polymer made of the resulting polyimide.
  • the polyimide precursor of the present invention has a structure represented by the following formula [A].
  • R 1 is a tetravalent organic group
  • R 2 is a divalent organic group
  • a 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different
  • n represents a positive integer
  • the method for synthesizing the specific polymer is not particularly limited, it is usually obtained by reacting a diamine component and a tetracarboxylic acid component as described above. Therefore, the polyimide obtained from a polyimide precursor is prepared from the polyimide precursor obtained by making a diamine component and a tetracarboxylic acid component react. Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid.
  • a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide
  • a method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
  • Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component.
  • a method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
  • a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
  • the specific polymer of the present invention is obtained by reacting a diamine component containing a diamine compound having a carboxyl group in the molecule with a tetracarboxylic acid component having the above alicyclic structure, and further, the obtained polyimide precursor It is obtained by imidizing the body.
  • the specific polymer obtained from the diamine component and the tetracarboxylic acid component has improved solubility in a solvent. Furthermore, the applicability
  • a diamine compound having the structure represented by the above formula [4] it is preferable to use a diamine compound having the structure represented by the above formula [4], and the amount used is 10 to 100 of the total diamine component used in the reaction for obtaining polyimide.
  • the mol% is preferable, and more preferably 20 to 100 mol%.
  • the amount used is 90 of the total diamine component used for the reaction for obtaining the specific polymer. It is preferably at most mol%, more preferably at most 80 mol%. In that case, it is preferable to set it as 20 mol% or more from the relationship with the preferable usage-amount of the diamine compound which has a carboxyl group in a molecule
  • a polyamic acid can be obtained by a reaction of a diamine component and a tetracarboxylic acid component using a known synthesis method, and then a polyimide can be obtained.
  • a method for obtaining the polyamic acid for example, a method of reacting a diamine component and a tetracarboxylic acid component in an organic solvent is possible. This method is preferable in that the reaction proceeds relatively efficiently in an organic solvent and generation of by-products is small.
  • the polyimide After synthesizing a polyimide precursor in an appropriate organic solvent to be described later and performing a dehydration ring-closing reaction to obtain a polyimide, the polyimide is separated, and at least one selected from the group consisting of compounds represented by the above formula [1]
  • the composition of the present invention can be obtained by dissolving in a solvent containing a seed compound.
  • the organic solvent used for the reaction between the diamine component and the tetracarboxylic acid component is not particularly limited as long as the generated polyimide precursor is soluble.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclohexane
  • Examples include pentanone and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
  • the diamine component or tetracarboxylic acid component when the diamine component or tetracarboxylic acid component is composed of a plurality of types of compounds, they may be reacted in a premixed state, individually reacted sequentially, and further mixed individually with low molecular weight substances. It is good also as a high molecular weight body by making it react.
  • the temperature at which the diamine component and the tetracarboxylic acid component are reacted can be arbitrarily selected within the range of ⁇ 20 to 150 ° C., but in view of the reaction efficiency, it may be set within the range of ⁇ 5 to 100 ° C. preferable.
  • reaction can be performed by arbitrary density
  • the ratio between the total number of moles of the diamine component and the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced. Therefore, it is possible to determine the total molar ratio by appropriately selecting depending on the case.
  • the polyimide of the present invention is obtained by dehydrating and ring-closing a polyimide precursor.
  • This polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the polyimide precursor is not necessarily 100%, and is, for example, in the range of 35 to 95%, more preferably 45, depending on the application and purpose. It can be adjusted within a range of ⁇ 80%.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C.
  • the imidization of the polyimide precursor is preferably performed while removing water generated by the imidization reaction from the reaction system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable in that it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, acetic anhydride is preferred because it allows easy purification after completion of the reaction.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a precipitation solvent and precipitated.
  • the precipitation solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer that has been introduced into the precipitation solvent and precipitated can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the precipitation solvent at this time include the above-described precipitation solvents, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the molecular weight of the specific polymer contained in the composition of the present invention is GPC (Gel Permeation Chromatography) in consideration of the strength of the coating film obtained by using this, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, which is composed of the above-described composition, and is a solution obtained by dissolving a polymer component for forming a polymer film in a solvent. Composition.
  • the polymer component contains at least one polymer selected from the above-described specific polymer of the present invention.
  • the content of the polymer component in the liquid crystal aligning agent is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass.
  • all of the polymer components contained in the liquid crystal aligning agent may be the specific polymer of the present invention.
  • polymers other than the specific polymer of this invention may be mixed.
  • the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
  • polymers include polyimide precursors other than a specific polymer obtained by reacting a diamine component containing a diamine compound having a carboxyl group in the molecule and a tetracarboxylic acid component having an alicyclic structure, and / or Or the polyimide which imidized the polyimide precursor is mentioned.
  • polymers other than polyimide specifically, acrylic polymer, methacrylic polymer, polystyrene, polyamide and the like can be mentioned.
  • the said specific polymer is contained in the state melt
  • R 1 is an alkyl group having 1 to 4 carbon atoms.
  • the compound represented by the above formula [1] is preferably a compound represented by the following formula [2] or the following formula [3].
  • the compound represented by the above formula [1] may be one kind or a mixture of two or more kinds.
  • the compound represented by the formula [1] as a solvent, it is possible to provide a liquid crystal aligning agent having excellent coatability.
  • the content of the solvent is preferably 70 to 99% by mass from the viewpoint of forming a uniform film by coating. Content can be suitably changed with the film thickness of the target liquid crystal aligning film.
  • the solvent any one of the compounds represented by the formula [1] or a mixture of a plurality of compounds represented by the compound represented by the formula [1] is used.
  • other organic solvents other than the compound shown by said Formula [1] can be mixed and contained in the range which does not interfere with an applicability
  • organic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone.
  • the content thereof is 50% by mass or less, preferably 40% by mass or less, based on the total solvent. More preferably, it is 30 mass% or less.
  • the liquid crystal alignment treatment agent of the present invention is for the purpose of further improving the film thickness uniformity and surface smoothness of the film when the liquid crystal alignment treatment agent is applied, as long as the effects of the present invention are not impaired.
  • the poor solvent can be contained.
  • the poor solvent include the following.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanedi
  • the content of the compound represented by the above formula [1] is 90% by mass or less, preferably 70% by mass or less in the total solvent. More preferably, it is 40 mass% or less.
  • the liquid crystal aligning agent of the present invention is a compound, liquid crystal aligning film and substrate for improving the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired.
  • a compound that improves the adhesion to the substrate can be used.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the addition amount thereof is 0.1 to 30 mass with respect to 100 mass parts of the resin component contained in the liquid crystal aligning agent, that is, the specific polymer. Parts, and more preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group unless the effects of the present invention are impaired.
  • a crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond can be contained.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, Liglycidyl-p-a
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [9].
  • n is an integer of 1 to 5
  • n is an integer of 1 to 5
  • n is 1 to 100
  • n is an integer of 1 to 10.
  • polysiloxanes having at least one structure represented by the following formulas [9-38] to [9-40] can also be mentioned.
  • R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [9], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, at least one of which is a structure represented by the formula [9]).
  • each R 6 independently represents a structure represented by the formula [9], a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic group.
  • Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine resin, a urea resin, a guanamine resin, and a glycoluril such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group and / or an alkoxymethyl group can be used.
  • Melamine derivatives and benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per tria
  • Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring.
  • glycoluril examples include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
  • benzene or phenolic compound having a hydroxyl group or an alkoxyl group examples include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol digly
  • E 1 is a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring, and E 2 Is a group selected from the following formula [11a] and formula [11b], and n is an integer of 1 to 4.
  • the said compound is an example of a crosslinkable compound, It is not limited to these.
  • the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer component.
  • the amount is more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer component, and 1 to 50 parts by weight. Most preferred.
  • the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of improving the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
  • a compound that promotes charge transfer in a liquid crystal alignment film formed using a liquid crystal alignment treatment agent and promotes charge removal of a liquid crystal cell using the liquid crystal alignment film International Publication No. WO2011-132751 (2011.10. 27), nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] described on pages 69 to 73 can also be added.
  • amine compounds may be added directly to the solution of the composition, but it is preferable to add them after making a solution with a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent.
  • the solvent is not particularly limited as long as it is an organic solvent capable of dissolving polyamic acid and polyimide in addition to the compound of the above formula [1].
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Further, in the case of vertical alignment use, a liquid crystal alignment film can be formed without alignment treatment.
  • the substrate is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet methods are generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose. Even if the orientation processing agent of this invention is a case where the above application
  • liquid crystal aligning agent After the liquid crystal aligning agent is applied on the substrate, when polyimide is mainly contained as the specific polymer, it is preferably 50 to 300 ° C. by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, etc. Can be formed into a coating film by evaporating the solvent at 80 to 250 ° C.
  • a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, etc.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • the liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • liquid crystal display device manufactured through a process of polymerizing a polymerizable compound by arranging at least one of active energy rays and heating while applying a voltage between electrodes.
  • ultraviolet rays are suitable as the active energy ray.
  • the above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method.
  • a PSA method a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound.
  • the pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the PSA method is suitable for forming a vertical alignment type liquid crystal layer that does not require a rubbing process and it is difficult to control the pretilt by the rubbing process.
  • a liquid crystal cell is prepared, and a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating. By doing so, the orientation of the liquid crystal molecules can be controlled.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed.
  • the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule.
  • the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
  • the polymerizable compound is polymerized by applying heat or ultraviolet light while applying an alternating current or direct current voltage to the liquid crystal cell.
  • the alignment of the liquid crystal molecules can be controlled.
  • the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates.
  • positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably.
  • ultraviolet rays are suitable as the active energy ray.
  • liquid crystal alignment film containing a polymerizable group that is polymerized from at least one of active energy rays and heat
  • a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, a polymer containing a polymerizable group examples include methods using components. Since the liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by irradiation with heat or ultraviolet rays, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
  • liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is bonded and liquid crystal is injected under reduced pressure to seal, and a method in which the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed.
  • the liquid crystal display element of the present invention is obtained through the above steps. Since these liquid crystal display elements have the liquid crystal alignment film of the present invention, the manufacturing process becomes lower temperature, excellent in reliability, and can be suitably used for large-screen high-definition liquid crystal televisions. It is.
  • the composition of the present invention can be used for forming a polyimide film in applications other than the liquid crystal alignment treatment agent used for forming the liquid crystal alignment film.
  • it can be used to form an interlayer insulating film and a protective film.
  • various components can be added to the composition of the present invention depending on the application.
  • ⁇ Tetracarboxylic dianhydride> M1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride M2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride M3: 3,4-di Carboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride M4: 2,3,5-tricarboxycyclopentyl acetic acid dianhydride
  • the physical properties such as molecular weight and imidization rate of polyamide acid and polyimide were evaluated as follows.
  • the molecular weights of the polyamic acid and the polyimide are as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as described above.
  • GPC gel permeation chromatography
  • the imidation ratio of polyimide in the synthesis example was measured as follows. Polyimide powder (20 mg) was put into an NMR sample tube (NMR sampling tube standard ⁇ 5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) ( 0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
  • JNW-ECA500 an NMR measuring instrument
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide (D) was 49%, the number average molecular weight was 15,700, and the weight average molecular weight was 47,000.
  • This deposit was wash
  • the imidation ratio of this polyimide (E) was 49%, the number average molecular weight was 14,800, and the weight average molecular weight was 42,200.
  • This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide (H) was 55%, the number average molecular weight was 21,600, and the weight average molecular weight was 61,400.
  • This deposit was wash
  • the imidation ratio of this polyimide (N) was 69%, the number average molecular weight was 10,900, and the weight average molecular weight was 24,400.
  • This deposit was wash
  • the imidation ratio of this polyimide (O) was 49%, the number average molecular weight was 15,800, and the weight average molecular weight was 36,500.
  • This deposit was wash
  • the imidation ratio of this polyimide (P) was 77%, the number average molecular weight was 14,600, and the weight average molecular weight was 32,200.
  • This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide (Q) was 79%, the number average molecular weight was 15,000, and the weight average molecular weight was 45,700.
  • This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide (T) was 51%, the number average molecular weight was 15,300, and the weight average molecular weight was 68,800.
  • This polyimide does not use a diamine compound having a carboxyl group in the molecule as a diamine component.
  • This reaction solution was poured into methanol (380 ml), and the resulting precipitate was filtered off. This deposit was wash
  • the imidation ratio of this polyimide (U) was 50%, the number average molecular weight was 17,600, and the weight average molecular weight was 52,000.
  • This polyimide does not use a diamine compound having a carboxyl group in the molecule as a diamine component.
  • Table 1 summarizes the compositions and imidization ratios of the polyimides obtained in Synthesis Examples 1 to 21.
  • the test method is as follows. That is, DEME (15.7 g) was added to each of the polyimide powders (A) to (S) (1.0 g), stirred at 25 ° C. for 24 hours, and visually checked for the presence or absence of turbidity or precipitation. The sex was confirmed. Furthermore, using DEEE, a test was performed in the same manner as described above, and the solubility was confirmed by visually confirming the presence or absence of turbidity or precipitation. At that time, turbidity and precipitation did not occur, and a uniform solution was dissolved, and turbidity and precipitation were insoluble. Table 2 summarizes the results of the solubility tests of Examples 1 to 19, Comparative Example 1 and Comparative Example 2.
  • a liquid crystal alignment film was prepared using the liquid crystal aligning agents (1) to (28) obtained in Examples 20 to 47, and a liquid crystal surface element having the liquid crystal alignment film was manufactured.
  • a vertically aligned liquid crystal cell was manufactured in accordance with the characteristics of the liquid crystal alignment film.
  • the liquid crystal alignment treatment agents (1) to (28) are spin-coated on a glass substrate with an ITO electrode (thickness 0.7 mm, width 30 mm, length 40 mm) on a hot plate at 80 ° C. After drying for 5 minutes, it baked at 220 degreeC, the liquid crystal aligning film was formed as a coating film with a film thickness of 100 nm, and the board
  • the alignment state of the liquid crystal was observed with a polarizing microscope, and it was confirmed that uniform vertical alignment of the liquid crystal without defects was formed.
  • Table 5 summarizes the results of the alignment state of the liquid crystal of the liquid crystal display element.
  • Printing was performed using the liquid crystal alignment treatment agents obtained in Example 20, Example 28, Example 36, Example 40, Example 44, and Comparative Example 3. Printing is performed using a simple printing machine (S15 type, manufactured by Nissha Printing Co., Ltd.) as a printing machine, on a cleaned chromium vapor deposition substrate, with a printing area of 8 cm ⁇ 8 cm, a printing pressure of 0.2 mm, five discarded substrates, and temporary printing. The drying time was 90 seconds, the temporary drying temperature was 70 ° C., and the temporary drying time was 5 minutes.
  • S15 type manufactured by Nissha Printing Co., Ltd.
  • the pinhole was confirmed by visual observation under a sodium lamp. Specifically, the entire coating film was visually observed under a sodium lamp, and the number of pinholes existing on the coating film surface was counted. Confirmation of film thickness unevenness was performed using an optical microscope. Specifically, the coating film surface is observed with an optical microscope, the coating film surface has no film thickness unevenness A, the coating film surface has a partially uneven film thickness B, the entire coating film surface In the case where the film thickness unevenness was observed, C was determined.
  • the present invention is made from a composition containing a polyimide precursor obtained by using a diamine component containing a diamine compound having a specific structure having a carboxyl group and / or a polyimide obtained by imidizing a polyimide precursor and a compound (solvent). It was found that the liquid crystal aligning agent can be obtained, and the liquid crystal aligning agent is excellent in coatability. Furthermore, it was found that the liquid crystal alignment film that can be obtained using the liquid crystal alignment treatment agent of the present invention can provide a highly reliable liquid crystal display element with few defects.
  • the composition of the present invention can be widely used for the formation of films such as interlayer insulation films and protective films in electronic devices, etc. Especially as a liquid crystal alignment treatment agent, it has excellent coating properties and suppresses defects such as repellency and pinholes. Used for forming a highly reliable liquid crystal alignment film.

Abstract

Provided are: a composition for use in the formation of a film, particularly a liquid crystal alignment treatment agent for use in the formation of a liquid crystal alignment film; a liquid crystal alignment film produced using the composition or the liquid crystal alignment treatment agent; and a liquid crystal display element. A composition comprising: a polyimide precursor that is produced by reacting a diamine component comprising a diamine compound having a carboxyl group with a tetracarboxylic acid component and/or a polyimide that is produced by imidizing the polyimide precursor; and a compound represented by formula [1] (wherein R1 represents an alkyl group having 1 to 4 carbon atoms).

Description

組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、膜の形成に用いられる組成物、特に、液晶配向膜の形成に用いられる液晶配向処理剤、得られる液晶配向膜、及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a composition used for forming a film, in particular, a liquid crystal alignment treatment agent used for forming a liquid crystal alignment film, a liquid crystal alignment film to be obtained, and a liquid crystal display element using the liquid crystal alignment film.
 高分子材料などの有機材料からなる膜は、形成の容易さや絶縁性能などが着目され、電子デバイスにおいて、層間絶縁膜や保護膜等として広く用いられている。表示デバイスとして良く知られた液晶表示素子では、有機材料からなる有機膜が液晶配向膜として使用されている。 A film made of an organic material such as a polymer material has been widely used as an interlayer insulating film, a protective film, and the like in electronic devices because of its ease of formation and insulation performance. In a liquid crystal display element well known as a display device, an organic film made of an organic material is used as a liquid crystal alignment film.
 液晶配向膜は、表示デバイスとして広く使用されている液晶表示素子の構成部材であり、液晶を挟持する基板表面に形成され、液晶を一定の方向に配向させるという役割を担っている。さらに、液晶配向膜には、液晶を配向させるという役割以外にも、液晶のプレチルト角を制御するという役割がある。
 また、近年、液晶表示素子が高機能化し、その使用範囲が拡大する中で、液晶配向膜には、液晶表示素子の表示不良を抑制して高い表示品位を実現するための性能や信頼性が求められている。
The liquid crystal alignment film is a constituent member of a liquid crystal display element that is widely used as a display device. The liquid crystal alignment film is formed on the surface of a substrate that sandwiches the liquid crystal and plays a role of aligning the liquid crystal in a certain direction. Further, the liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal.
In recent years, liquid crystal display elements have become highly functional, and the range of use has been expanded. The liquid crystal alignment film has performance and reliability for suppressing display defects of the liquid crystal display elements and realizing high display quality. It has been demanded.
 現在、工業的に利用されている主な液晶配向膜は、耐久性に優れ、液晶のプレチルト角の制御に好適なポリイミド系の有機膜が広く用いられている。このポリイミド系の有機膜からなる液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸)及び/又はポリアミド酸をイミド化したポリイミドの溶液を含む組成物である液晶配向処理剤から形成される。すなわち、ポリイミド系の液晶配向膜は、ポリイミドの溶液又はポリイミド前駆体であるポリアミド酸の溶液からなる液晶配向処理剤を基板に塗布し、通常、250℃程度の温度で焼成することにより形成されている(例えば、特許文献1参照)。 Currently, as a main liquid crystal alignment film used industrially, a polyimide organic film which is excellent in durability and suitable for controlling the pretilt angle of liquid crystal is widely used. The liquid crystal alignment film made of this polyimide organic film is formed from a liquid crystal alignment treatment agent that is a composition containing a polyimide precursor polyamic acid (polyamic acid) and / or a polyimide solution imidized with polyamic acid. . That is, the polyimide-based liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent composed of a polyimide solution or a polyamic acid solution that is a polyimide precursor to a substrate and firing at a temperature of about 250 ° C. (For example, refer to Patent Document 1).
日本特開平09-278724号公報Japanese Unexamined Patent Publication No. 09-278724
 ポリイミド系の液晶配向膜は、ポリイミドの溶液又はポリイミド前駆体であるポリアミド酸の溶液からなる液晶配向処理剤を基板に塗布し、次いで、塗膜を焼成することにより形成されるが、塗布に際し、塗布性の向上、特に、基板への濡れ広がり性の向上が求められている。濡れ広がり性の向上により、液晶配向膜形成の工程中の塗布工程において、印刷塗布時のはじきやピンホールなどの欠陥を抑制することができる。 The polyimide-based liquid crystal alignment film is formed by applying a liquid crystal alignment treatment agent comprising a polyimide solution or a polyamic acid solution of a polyimide precursor to a substrate, and then baking the coating film. There is a demand for improvement in coating properties, in particular, improvement in wettability and spreadability to a substrate. By improving the wetting and spreading property, defects such as repellency and pinholes during printing application can be suppressed in the application process in the process of forming the liquid crystal alignment film.
 ポリイミド系の有機膜は、電子デバイスにおける層間絶縁膜や保護膜などにも広く用いられており、ポリイミド前駆体であるポリアミド酸又はポリイミドの溶液を含む組成物から形成することが可能であり、液晶配向膜の場合と同様に、塗布性の向上が求められている。塗布性の向上は、印刷塗布時の欠陥の抑制に有効となる。 Polyimide-based organic films are widely used for interlayer insulating films and protective films in electronic devices, and can be formed from a composition containing a polyimide precursor, a polyamic acid or a polyimide solution, and a liquid crystal As in the case of the alignment film, improvement in applicability is required. The improvement in coating properties is effective for suppressing defects during printing coating.
 そこで、本発明は、塗布性の向上した、基板への濡れ広がり性の高いポリイミド系の有機膜を形成できる組成物、特にはじきやピンホールなどの欠陥が抑制された液晶配向膜を形成できる液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜、及びこの液晶配向膜を備えた液晶表示素子を提供することを目的とする。 Accordingly, the present invention provides a composition capable of forming a polyimide-based organic film having improved coatability and high wettability to a substrate, particularly a liquid crystal capable of forming a liquid crystal alignment film in which defects such as repelling and pinholes are suppressed. An object is to provide an alignment treatment agent, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display device including the liquid crystal alignment film.
 本発明は、以下の要旨を有するものである。
(1)カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及び/又はポリイミド前駆体をイミド化したポリイミドと、下記式[1]で示される化合物と、を含有することを特徴とする組成物。
Figure JPOXMLDOC01-appb-C000009
(式[1]中、Rは、炭素数1~4のアルキル基である。)
(2)上記式[1]で示される化合物が、下記式[2]又は下記式[3]で示される化合物である前記(1)に記載の組成物。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(3)前記カルボキシル基を有するジアミン化合物は、-(CH-COOH基(aは0~4の整数である)を有するジアミン化合物である前記(1)又は(2)に記載の組成物。
(4)前記カルボキシル基を有するジアミン化合物は、下記式[4]で示される構造のジアミン化合物である前記(1)~(3)のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000012
(式[4]中、aは0~4の整数を表し、nは1~4の整数を表す。)
(5)前記ジアミン化合物の含有量は、前記ジアミン成分中の20~100モル%である前記(1)~(4)のいずれかに記載の組成物。
The present invention has the following gist.
(1) A polyimide obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic acid component and / or a polyimide obtained by imidizing the polyimide precursor, and a compound represented by the following formula [1] And a composition comprising:
Figure JPOXMLDOC01-appb-C000009
(In the formula [1], R 1 is an alkyl group having 1 to 4 carbon atoms.)
(2) The composition according to (1), wherein the compound represented by the formula [1] is a compound represented by the following formula [2] or the following formula [3].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(3) The composition according to (1) or (2), wherein the diamine compound having a carboxyl group is a diamine compound having a — (CH 2 ) a —COOH group (a is an integer of 0 to 4). object.
(4) The composition according to any one of (1) to (3), wherein the diamine compound having a carboxyl group is a diamine compound having a structure represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000012
(In the formula [4], a represents an integer of 0 to 4, and n represents an integer of 1 to 4.)
(5) The composition according to any one of (1) to (4), wherein the content of the diamine compound is 20 to 100 mol% in the diamine component.
(6)前記ジアミン成分は、下記式[5]で示される構造の第2のジアミン化合物を含む前記(1)~(5)のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000013
(式[5]中、Xは、-(CH-OH基(bは0~4の整数である)、炭素数1~22の炭化水素基、炭素数1~6の炭化水素基で置換されたジ置換アミノ基又は下記式[6]で表される基であり、nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000014
(式[6]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yはベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい)、又はステロイド骨格を有する炭素数12~25の2価の有機基である。Yはベンゼン環、シクロへキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Yは水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数を表す。)
(6) The composition according to any one of (1) to (5), wherein the diamine component includes a second diamine compound having a structure represented by the following formula [5].
Figure JPOXMLDOC01-appb-C000013
(In the formula [5], X represents a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and a hydrocarbon group having 1 to 6 carbon atoms. And a di-substituted amino group substituted by or a group represented by the following formula [6], and n represents an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000014
(In formula [6], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15) Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or OCO— Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (on these cyclic groups) The optional hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. it may be substituted), or a divalent organic group having a carbon number of 12 to 25 having a steroid skeleton .Y 5 A divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon atom, which may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. A fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, n represents an integer of 0 to 4.)
(7)前記テトラカルボン酸二無水物が、下記式[7]で表される化合物である前記(1)~(6)のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000015
(式[7]中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有する。)
(8)Zが、下記式[7a]~[7j]で表される構造である前記(7)に記載の組成物。
Figure JPOXMLDOC01-appb-C000016
(式[7a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよく、式[7g]中、Z及びZは水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい。)
(7) The composition according to any one of (1) to (6), wherein the tetracarboxylic dianhydride is a compound represented by the following formula [7].
Figure JPOXMLDOC01-appb-C000015
(In Formula [7], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.)
(8) The composition according to (7), wherein Z 1 is a structure represented by the following formulas [7a] to [7j].
Figure JPOXMLDOC01-appb-C000016
(In the formula [7a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different. In the formula [7g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
(9)前記(1)~(8)のいずれかに記載の組成物を含む液晶配向処理剤。
(10)前記(9)に記載の液晶配向処理剤から得られる液晶配向膜。
(11)前記(9)に記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。
(12)電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする前記(10)又は(11)に記載の液晶配向膜。
(13)前記(10)又は(11)に記載の液晶配向膜を有する液晶表示素子。
(14)電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造されることを特徴とする前記(13)に記載の液晶表示素子。
(9) A liquid crystal aligning agent comprising the composition according to any one of (1) to (8).
(10) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to (9).
(11) A liquid crystal alignment film obtained by an ink jet method using the liquid crystal alignment treatment agent according to (9).
(12) A liquid crystal composition having a liquid crystal layer between a pair of substrates provided with electrodes and including a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates. The liquid crystal alignment film according to (10) or (11), wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
(13) A liquid crystal display device having the liquid crystal alignment film according to (10) or (11).
(14) A polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film, and polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element according to (13), wherein the liquid crystal display element is manufactured through a process of disposing a liquid crystal composition and polymerizing the polymerizable compound while applying a voltage between the electrodes.
 本発明によれば、塗布性に優れたポリイミド系の膜の形成が可能な組成物が提供される。特に、塗布性に優れ、はじきやピンホールなどの欠陥が抑制された液晶配向膜を形成できる液晶配向処理剤が提供される。
 本発明の液晶配向処理剤を用いて得られる液晶配向膜は、欠陥の無い膜形成が可能であり、このような液晶配向膜を有する液晶表示素子は高い特性と信頼性を有する。
ADVANTAGE OF THE INVENTION According to this invention, the composition which can form the polyimide-type film | membrane excellent in applicability | paintability is provided. In particular, there is provided a liquid crystal aligning agent that can form a liquid crystal alignment film excellent in applicability and having suppressed defects such as repellency and pinholes.
A liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent of the present invention can be formed without defects, and a liquid crystal display element having such a liquid crystal alignment film has high characteristics and reliability.
 ポリイミド系の膜、特にポリイミド系の液晶配向膜の形成は、上述のように、ポリイミド又はポリイミド前駆体を溶媒に溶かして得たポリイミドの溶液、又はポリイミド前駆体の溶液を用いて組成物を構成して基板に塗布し、通常、200~300℃程度の温度で焼成することにより行なわれる。
 ポリイミド系液晶配向膜の形成に、ポリイミド前駆体であるポリアミド酸を用いる場合は、加熱によりポリアミド酸の脱水閉環反応(熱イミド化)が行なわれる。
 一方、ポリイミドの溶液を用いてポリイミド系液晶配向膜を形成する場合、焼成工程の主な目的は、塗膜から溶媒を除去することとなる。
As described above, a polyimide film, particularly a polyimide liquid crystal alignment film is formed by using a polyimide solution obtained by dissolving polyimide or a polyimide precursor in a solvent, or a polyimide precursor solution. Then, it is applied to the substrate and is usually performed by baking at a temperature of about 200 to 300 ° C.
When polyamic acid, which is a polyimide precursor, is used for forming the polyimide liquid crystal alignment film, dehydration ring closure reaction (thermal imidization) of the polyamic acid is performed by heating.
On the other hand, when a polyimide-based liquid crystal alignment film is formed using a polyimide solution, the main purpose of the firing step is to remove the solvent from the coating film.
 そのため、ポリイミド溶液を用いる場合の加熱温度は、使用する溶媒の沸点の影響を受けるものの、通常は、ポリアミド酸を用いる場合に比べて低くすることができる。
 ポリイミド系液晶配向膜の形成を行うためにポリイミドの溶液を調製する場合、通常では溶けにくいポリイミドを溶解することが必要となるため、適切な溶媒の使用が必要とされる。従来のポリイミドに対しては、N-メチル-2-ピロリドン(以下、NMPと称する。)などの高極性溶媒が選択され、使用されている。高極性の溶媒は、特性として高い表面張力を有しており、NMPにおいても、高い表面張力特性を有している。したがって、NMPを溶媒とするポリイミド溶液を用い、基板への塗布がなされた場合、基板上での濡れ広がり特性は良好ではない。その結果、塗膜において、はじきやピンホール等の印刷塗布時の欠陥が発生し、均一な特性の高品質な液晶配向膜の形成が困難となる場合があった。
Therefore, although the heating temperature in the case of using a polyimide solution is influenced by the boiling point of the solvent to be used, it can usually be made lower than in the case of using polyamic acid.
When preparing a polyimide solution in order to form a polyimide-based liquid crystal alignment film, it is necessary to dissolve a polyimide that is normally difficult to dissolve, and therefore, an appropriate solvent must be used. For conventional polyimide, a highly polar solvent such as N-methyl-2-pyrrolidone (hereinafter referred to as NMP) is selected and used. A highly polar solvent has a high surface tension as a characteristic, and NMP also has a high surface tension characteristic. Therefore, when a polyimide solution using NMP as a solvent is used and applied to a substrate, the wetting and spreading characteristics on the substrate are not good. As a result, defects in printing and coating such as repellency and pinholes occur in the coating film, and it may be difficult to form a high-quality liquid crystal alignment film with uniform characteristics.
 ポリイミドの溶液の調製が、より低い表面張力を有する溶媒を用いて可能となれば、ポリイミド溶液の基板への塗布性は良好となり、はじきやピンホール等の印刷塗布時の欠陥発生を抑えることができる。
 すなわち、より低い表面張力特性の溶媒を選択し、ポリイミドを溶解してポリイミドの溶液を調製することができれば、良好な塗布特性を実現することが可能となる。こうした塗布性の向上は、電子デバイスの絶縁膜や保護膜などのポリイミド系の膜の形成においても必要となる。塗布性の向上は、はじきやピンホール等、印刷塗布時に生じる欠陥の少ない、より均一なポリイミドの膜の形成を可能とする。
If the polyimide solution can be prepared using a solvent having a lower surface tension, the coating property of the polyimide solution to the substrate will be good, and the occurrence of defects during printing application such as repellency and pinholes can be suppressed. it can.
That is, if a solvent having a lower surface tension characteristic is selected, and a polyimide solution can be prepared by dissolving polyimide, good coating characteristics can be realized. Such an improvement in coatability is also required in the formation of polyimide films such as insulating films and protective films for electronic devices. Improvement in applicability enables formation of a more uniform polyimide film with fewer defects such as repellency and pinholes that occur during printing application.
 ポリイミド系の膜、特に、ポリイミドの液晶配向膜の形成のために、ポリイミドの溶媒への溶解性を改善するとともに、溶媒の選択が必要であることがわかった。選択される溶媒は、塗布性を考慮して、より低い表面張力特性を備えたものであることが望ましい。その場合、同時に、溶媒の溶解性に対応したポリイミド構造の選択も必要となる。 It was found that, in order to form a polyimide film, particularly a polyimide liquid crystal alignment film, it is necessary to improve the solubility of polyimide in a solvent and to select a solvent. It is desirable that the selected solvent has a lower surface tension characteristic in consideration of applicability. In that case, it is also necessary to select a polyimide structure corresponding to the solubility of the solvent.
 本発明者は、特定構造のジアミン化合物を用いることにより、特定の構造を有するポリイミド前駆体が得られ、このポリイミド前駆体をイミド化することにより、溶解性の改善されたポリイミドが得られることを見出した。併せて、そのポリイミドを溶解する、低表面張力の化合物(溶媒とも称する。)を見出した。
 すなわち、本発明においては、特定構造のポリイミドを特定の溶媒に溶解した組成物を得ることができ、液晶配向処理剤を構成することができる。また、得られた組成物から得られる液晶配向処理剤は、塗布性に優れ、液晶配向膜を形成するのに好適である。得られた液晶配向膜は、高い信頼性の液晶表示素子の提供に好適である。
By using a diamine compound having a specific structure, the present inventor can obtain a polyimide precursor having a specific structure. By imidizing this polyimide precursor, a polyimide having improved solubility can be obtained. I found it. In addition, a low surface tension compound (also referred to as a solvent) that dissolves the polyimide was found.
That is, in this invention, the composition which melt | dissolved the polyimide of the specific structure in the specific solvent can be obtained, and a liquid-crystal aligning agent can be comprised. Moreover, the liquid-crystal aligning agent obtained from the obtained composition is excellent in applicability | paintability, and is suitable for forming a liquid crystal aligning film. The obtained liquid crystal alignment film is suitable for providing a highly reliable liquid crystal display element.
 本発明の組成物は、ポリイミド前駆体を脱水閉環させて得られるポリイミドを含有する。この組成物は、特に液晶配向処理剤を構成することができる。 The composition of the present invention contains a polyimide obtained by dehydrating and ring-closing a polyimide precursor. This composition can particularly constitute a liquid crystal alignment treatment agent.
 本発明の組成物は、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸成分とを(重縮合)反応して得られるポリイミド前駆体及び/又は該ポリイミド前駆体をイミド化したポリイミドと、下記式[1]で示される化合物と、を含有することを特徴とする。 The composition of the present invention includes a polyimide precursor obtained by (polycondensation) reaction of a diamine component containing a carboxyl group-containing diamine compound and a tetracarboxylic acid component, and / or a polyimide obtained by imidizing the polyimide precursor, And a compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000017
 式[1]中、Rは、炭素数1~4のアルキル基である。
Figure JPOXMLDOC01-appb-C000017
In the formula [1], R 1 is an alkyl group having 1 to 4 carbon atoms.
 上記の式[1]で示される化合物は、下記式[2]又は下記式[3]で示される化合物であるのが好ましい。式[1]で示される化合物は、好ましくは、組成物中に溶媒として含有される。 The compound represented by the above formula [1] is preferably a compound represented by the following formula [2] or the following formula [3]. The compound represented by the formula [1] is preferably contained as a solvent in the composition.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ポリイミド前駆体を形成するジアミン成分は、下記式[4]のカルボキシル基を有するジアミン化合物を含むことが好ましい。また、その他に第2のジアミン化合物を含有することが可能である。第2のジアミン化合物としては、下記式[5]で示される構造のジアミン化合物が好ましい。 It is preferable that the diamine component which forms a polyimide precursor contains the diamine compound which has a carboxyl group of following formula [4]. In addition, it is possible to contain a second diamine compound. As the second diamine compound, a diamine compound having a structure represented by the following formula [5] is preferable.
Figure JPOXMLDOC01-appb-C000020
 式[4]中、aは0~4の整数であり、nは1~4の整数を表す。
Figure JPOXMLDOC01-appb-C000020
In the formula [4], a represents an integer of 0 to 4, and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式[5]中、Xは、-(CH-OH基(bは0~4の整数である)、炭素数1~22の炭化水素基、炭素数1~6の炭化水素基で置換されたジ置換アミノ基又は下記式[6]で表される基であり、nは0~4の整数を表す。
Figure JPOXMLDOC01-appb-C000022
 式[6]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yはベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい)、又はステロイド骨格を有する炭素数12~25の2価の有機基である。Yはベンゼン環、シクロへキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Yは水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数を表す。
In the formula [5], X represents a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and a hydrocarbon group having 1 to 6 carbon atoms. A substituted di-substituted amino group or a group represented by the following formula [6], and n represents an integer of 0 to 4.
Figure JPOXMLDOC01-appb-C000022
In the formula [6], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15). Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Y 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring, and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms) An alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, which may be substituted with a fluorine atom), or a divalent group having 12 to 25 carbon atoms having a steroid skeleton Is an organic group. Y 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms) Or a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. n represents an integer of 0 to 4.
 <カルボキシル基を有するジアミン化合物>
 本発明のポリイミド前駆体を得るためのカルボキシル基を有するジアミン化合物は、分子内に、-(CH-COOH基(aは0~4の整数である)を有するジアミン化合物であるのが好ましい。
 例えば、下記式[4]で示される構造のジアミン化合物を挙げることができる。
<Diamine compound having a carboxyl group>
The diamine compound having a carboxyl group for obtaining the polyimide precursor of the present invention is a diamine compound having — (CH 2 ) a —COOH group (a is an integer of 0 to 4) in the molecule. preferable.
For example, the diamine compound of the structure shown by following formula [4] can be mentioned.
Figure JPOXMLDOC01-appb-C000023
 式[4]中、aは0~4の整数であり、nは1~4の整数を表す。
Figure JPOXMLDOC01-appb-C000023
In the formula [4], a represents an integer of 0 to 4, and n represents an integer of 1 to 4.
 さらに、下記式[4-1]~[4-4]で示される分子内にカルボキシル基を有するジアミン化合物を挙げることができる。 Furthermore, diamine compounds having a carboxyl group in the molecule represented by the following formulas [4-1] to [4-4] can be exemplified.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式[4-1]中、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、m及びmはそれぞれ0~4の整数であり、かつ、m+mは1~4の整数である。
 式[4-2]中、m及びmはそれぞれ1~5の整数である。
 式[4-3]中、Aは、炭素数1~5の直鎖状又は分岐状のアルキル基であり、mは1~5の整数である。
In the formula [4-1], A 4 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 )-or N (CH 3 ) CO-, m 2 and m 3 are each an integer of 0 to 4, and m 2 + m 3 is an integer of 1 to 4.
In the formula [4-2], m 4 and m 5 are each an integer of 1 to 5.
In the formula [4-3], A 5 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m 6 is an integer of 1 to 5.
 式[4-4]中、Aは、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF)-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-であり、mは1~4の整数である。 In the formula [4-4], A 6 represents a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) —, — O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, —CON (CH 3 ) — or N (CH 3 ) CO—, and m 7 is an integer of 1 to 4.
 カルボキシル基を有するジアミン化合物の使用量は、全ジアミン成分中の10~100モル%であることが好ましく、さらに好ましくは、20~100モル%である。
 上記のカルボキシル基を有するジアミン化合物は、組成物とした際の溶媒への溶解性や塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
The amount of the diamine compound having a carboxyl group is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, based on the total diamine component.
The diamine compound having the above carboxyl group is soluble in a solvent when used as a composition, coating properties, liquid crystal orientation in the case of a liquid crystal alignment film, voltage holding ratio, accumulated charge, etc. One type or a mixture of two or more types can also be used.
<ジアミン化合物の合成方法>
 式[4]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、以下に示すものが挙げられる。
 例えば、式[4]で示されるジアミン化合物は、下記式[4A]で示されるジニトロ体を合成し、さらにニトロ基を還元してアミノ基に変換することで得られる。
<Synthesis Method of Diamine Compound>
Although the method to manufacture the diamine compound shown by Formula [4] is not specifically limited, What is shown below is mentioned as a preferable method.
For example, the diamine compound represented by the formula [4] can be obtained by synthesizing a dinitro compound represented by the following formula [4A], further reducing the nitro group and converting it to an amino group.
Figure JPOXMLDOC01-appb-C000025
(式[4A]中、aは0~4の整数であり、nは1~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000025
(In the formula [4A], a represents an integer of 0 to 4, and n represents an integer of 1 to 4.)
 ジニトロ基を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系溶剤などの溶媒中において、水素ガス、ヒドラジン、塩化水素などによって行う方法がある。 The method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent.
<第2のジアミン化合物>
 本発明の組成物に含有されるジアミン成分は、第2のジアミン化合物として下記式[5]で表されるジアミン化合物を含有することができる。
<Second diamine compound>
The diamine component contained in the composition of the present invention can contain a diamine compound represented by the following formula [5] as the second diamine compound.
Figure JPOXMLDOC01-appb-C000026
 式[5]中、Xは置換基である。nは0~4の整数を表す。
Figure JPOXMLDOC01-appb-C000026
In formula [5], X is a substituent. n represents an integer of 0 to 4.
 具体的には、式[5]において、Xは、-(CH-OH基(bは0~4の整数である)、炭素数1~22の炭化水素基、炭素数1~6の炭化水素基で置換されたジ置換アミノ基又は下記式[6]で表される基である。 Specifically, in the formula [5], X is a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and 1 to 6 carbon atoms. Or a group represented by the following formula [6].
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式[6]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。なかでも、単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-又はCOO-は、側鎖構造の合成を容易にする観点から好ましく、単結合、-(CH-(aは1~10の整数である)、-O-、-CHO-又はCOO-がより好ましい。 In the formula [6], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Among them, a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O— or COO— is from the viewpoint of facilitating the synthesis of the side chain structure. A single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or COO— is more preferable.
 式[6]中、Yは単結合又は(CH-(bは1~15の整数である)である。なかでも、単結合又は(CH-(bは1~10の整数である)が好ましい。
 式[6]中、Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。なかでも、単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-は、側鎖構造の合成を容易にする観点から好ましく、単結合、-(CH-(cは1~10の整数である)、-O-、-CHO-、-COO-又はOCO-がより好ましい。
In the formula [6], Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15). Among these, a single bond or (CH 2 ) b — (b is an integer of 1 to 10) is preferable.
In the formula [6], Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Among them, a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO— facilitates the synthesis of the side chain structure. From the standpoint of the above, a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O—, —COO— or OCO— is more preferred.
 式[6]中、Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)、又はステロイド骨格を有する炭素数12~25の2価の有機基である。なかでも、ベンゼン環及びシクロへキサン環よりなる群から選ばれる2価の環状基又はステロイド骨格を有する炭素数12~25の2価の有機基が好ましい。 In the formula [6], Y 4 represents a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl having 1 to 3 carbon atoms). Group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom), or a carbon having a steroid skeleton It is a divalent organic group of several 12 to 25. Of these, a divalent cyclic group selected from the group consisting of a benzene ring and a cyclohexane ring or a divalent organic group having 12 to 25 carbon atoms and having a steroid skeleton is preferable.
 式[6]中、Yはベンゼン環、シクロへキサン環及び複素環よりなる群から選ばれる2価の環状基であって、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。
 式[6]中、nは0~4の整数である。好ましくは、0~2の整数である。
In the formula [6], Y 5 is a divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring, and a heterocyclic ring, and any hydrogen atom on these cyclic groups has 1 to It may be substituted with a 3 alkyl group, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom.
In the formula [6], n is an integer of 0 to 4. Preferably, it is an integer of 0-2.
 式[6]中、Yは炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基であることが好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。さらに好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
 式[5]の置換基Xを構成する、式[6]におけるY、Y、Y、Y、Y、Y及びnの好ましい組み合わせとしては、国際公開公報WO2011/132751(2011.10.27公開)の13頁~34頁の表6~表47に掲載される(2-1)~(2-629)と同じ組み合わせが挙げられる。なお、国際公開公報の各表では、本発明におけるY~Yが、Y1~Y6として示されているが、Y1~Y6は、Y~Yと読み替えるものとする。
In the formula [6], Y 6 is an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms. . Among these, an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. More preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
As a preferred combination of Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 and n in the formula [6] constituting the substituent X of the formula [5], International Publication No. WO2011-132751 (2011 The same combinations as those described in (2-1) to (2-629) listed in Tables 6 to 47 on pages 13 to 34 of. In each table of the International Publication, Y 1 to Y 6 in the present invention are shown as Y 1 to Y 6 , but Y 1 to Y 6 are read as Y 1 to Y 6 .
 以下に、式[5]で示される構造の第2のジアミン化合物の具体例を挙げるが、これらは例に限定されるものではない。 Specific examples of the second diamine compound having the structure represented by the formula [5] are given below, but these are not limited to the examples.
 すなわち、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,6-ジアミノトルエン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノールの他、下記の式[5-1]~[5-41]で示される構造のジアミン化合物を挙げることができる。 That is, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,6-diaminotoluene, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4 In addition to -diaminobenzyl alcohol and 4,6-diaminoresorcinol, diamine compounds having structures represented by the following formulas [5-1] to [5-41] can be given.
Figure JPOXMLDOC01-appb-C000028
(式[5-1]~[5-4]中、Aは、炭素数1~22のアルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000028
(In the formulas [5-1] to [5-4], A 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式[5-29]~[5-31]中、Rは-O-、-OCH-、-CHO-、-COOCH-又はCHOCO-であり、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。) (In the formulas [5-29] to [5-31], R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—, and R 2 represents the number of carbon atoms. 1 to 22 alkyl groups, alkoxy groups, fluorine-containing alkyl groups or fluorine-containing alkoxy groups.)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式[5-32]~[5-34]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-又はCH-であり、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。) (In the formulas [5-32] to [5-34], R 3 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 — or CH 2. R 4 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
(式[5-35]及び式[5-36]中、Rは-COO-、-OCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-又はO-であり、Rはフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。) (In Formula [5-35] and Formula [5-36], R 5 represents —COO—, —OCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, — CH 2 — or O—, and R 6 is a fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式[5-37]及び式[5-38]中、Rは炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。) (In Formula [5-37] and Formula [5-38], R 7 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. )
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(式[5-39]及び式[5-40]中、Rは、炭素数3~12のアルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。) (In Formula [5-39] and Formula [5-40], R 8 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer. .)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(式[5-41]中、Bはフッ素原子で置換されていてもよい炭素数3~20のアルキル基であり、Bは1,4-シクロへキシレン基又は1,4-フェニレン基であり、Bは酸素原子又はCOO-*(但し、「*」を付した結合手がBと結合する。)であり、Bは酸素原子又はCOO-*(但し、「*」を付した結合手が(CH)a)と結合する。)である。また、aは0又は1の整数であり、aは2~10の整数であり、aは0又は1の整数である。) (In the formula [5-41], B 4 is an alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom, and B 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group. B 2 is an oxygen atom or COO- * (where a bond marked with "*" is bonded to B 3 ), and B 1 is an oxygen atom or COO- * (where "*" is The bond attached is bonded to (CH 2 ) a 2 ). A 1 is an integer of 0 or 1, a 2 is an integer of 2 to 10, and a 3 is an integer of 0 or 1. )
 上記第2のジアミン化合物は、組成物とした際の溶媒への溶解性や塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The second diamine compound has one kind according to the characteristics such as solubility in a solvent and coating property when it is made into a composition, liquid crystal orientation when it is made into a liquid crystal alignment film, voltage holding ratio, accumulated charge and the like. Alternatively, two or more types can be mixed and used.
<第2のジアミン化合物の合成方法>
 式[5]で示されるジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては、以下に示すものが挙げられる。
<Synthesis Method of Second Diamine Compound>
Although the method to manufacture the diamine compound shown by Formula [5] is not specifically limited, What is shown below is mentioned as a preferable method.
 例えば、式[5]で示されるジアミン化合物は、下記式[5A]で示されるジニトロ体を合成し、さらにニトロ基を還元してアミノ基に変換することで得られる。 For example, the diamine compound represented by the formula [5] can be obtained by synthesizing a dinitro compound represented by the following formula [5A], further reducing the nitro group and converting it to an amino group.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 ジニトロ基を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系溶剤などの溶媒中において、水素ガス、ヒドラジン、塩化水素などによって行う方法がある。なお、式[5A]中のX及びnは、上記した第2のジアミン化合物における式[5]中の定義と同意義である。 The method for reducing the dinitro group is not particularly limited, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in a solvent such as an alcohol solvent. In addition, X and n in Formula [5A] are the same meaning as the definition in Formula [5] in the above-mentioned 2nd diamine compound.
<その他のジアミン化合物>
 本発明の効果を損なわない限りにおいて、分子内にカルボキシル基を有するジアミン化合物や、式[5]で示される構造の第2のジアミン化合物の他に、他の構造のジアミン化合物(その他のジアミン化合物とも称する)を用いることができる。これらを併用してポリイミド前駆体を得た後ポリイミドとし、得られたポリイミドを含む組成物を調製して、液晶配向処理剤としてもよい。
<Other diamine compounds>
As long as the effects of the present invention are not impaired, a diamine compound having a carboxyl group in the molecule or a diamine compound having another structure (other diamine compounds) in addition to the second diamine compound having the structure represented by the formula [5] Can also be used. It is good also as a liquid-crystal aligning agent by preparing the composition containing the polyimide obtained after using together these to obtain a polyimide precursor, and making the obtained polyimide.
 その他のジアミン化合物の具体例を以下に挙げる。
 その他のジアミン化合物としては、例えば、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;などが挙げられる。
Specific examples of other diamine compounds are listed below.
Examples of other diamine compounds include p-phenylenediamine, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 3,3′-dimethoxy-4,4′-diamino. Biphenyl, 3,3′-dihydroxy-4,4′-diaminobiphenyl, 3,3′-dicarboxy-4,4′-diaminobiphenyl, 3,3′-difluoro-4,4′-biphenyl, 3,3 '-Trifluoromethyl-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4' -Diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2,3'-diaminodiphe Nylmethane, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline 3,3′-sulfonyldianiline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3 ' -Diaminodiphenylamine, N-methyl (4,4'-diaminodi Enyl) amine, N-methyl (3,3′-diaminodiphenyl) amine, N-methyl (3,4′-diaminodiphenyl) amine, N-methyl (2,2′-diaminodiphenyl) amine, N-methyl ( 2,3′-diaminodiphenyl) amine, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2, , 3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6 diaminonaphthalene, 2, 7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis ( 4-Aminophenoxy) benzene, 4,4 ′-[1,4-phenylenebis (methylene)] dianiline, 4,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,4 ′-[1 , 4-fe Nylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1 , 3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [ (4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate) 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenoxy) ) Terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-aminobenzamide) ), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1,4-phenylene) bis (3-aminobenzamide), N, N ′-(1, 3-phenylene) bis (3-aminobenzamide), N, N′-bis (4-aminophenyl) terephthalamide, N, N′-bis (3-aminophenyl) terephthalamide, N, N′-bis (4 -Aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4'- (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoro Propane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1, 3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane, 1,4-bi (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) hexane, 1, 6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophenoxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-aminophenoxy) undecane, Aromatic diamines such as 2- (4-aminophenoxy) dodecane and 1,12- (3-aminophenoxy) dodecane; bis (4-aminocyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane and the like 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1, And aliphatic diamines such as 9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, and 1,12-diaminododecane.
 また、その他のジアミン化合物として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環又は複素環を有するもの、さらに、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記式[DA1]~[DA13]で示されるジアミン化合物を例示することができる。 Examples of other diamine compounds include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, and those having a macrocyclic substituent composed of these. it can. Specifically, diamine compounds represented by the following formulas [DA1] to [DA13] can be exemplified.
Figure JPOXMLDOC01-appb-C000042
 (式[DA1]~[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-であり、Aは炭素数1~22の直鎖状若しくは分岐状のアルキル基、又は炭素数1~22の直鎖状若しくは分岐状のフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000042
(Wherein [DA1] ~ [DA6], A 2 is -COO -, - OCO -, - CONH -, - NHCO -, - CH 2 -, - O -, - CO- or a NH-, A 3 Represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000043
(式[DA7]中、pは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000043
(In the formula [DA7], p is an integer of 1 to 10.)
 本発明の効果を損なわない限りにおいて、下記式[DA8]~[DA13]で示されるジアミン化合物を用いることもできる。 As long as the effects of the present invention are not impaired, diamine compounds represented by the following formulas [DA8] to [DA13] can also be used.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(式[DA10]中、mは0~3の整数であり、式[DA13]中、nは1~5の整数である。) (In the formula [DA10], m is an integer of 0 to 3, and in the formula [DA13], n is an integer of 1 to 5.)
 さらに、下記式[DA14]及び式[DA15]で示されるジアミン化合物を用いることもできる。 Furthermore, diamine compounds represented by the following formula [DA14] and formula [DA15] can also be used.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 上記のその他のジアミン化合物は、組成物とした際の溶媒への溶解性や塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの液晶配向膜において重要となる特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other diamine compounds are important in the liquid crystal alignment film, such as the solubility and coating properties in the solvent when the composition is formed, the alignment of the liquid crystal when the liquid crystal alignment film is formed, the voltage holding ratio, and the accumulated charge. Depending on the characteristics, one kind or a mixture of two or more kinds may be used.
 <テトラカルボン酸成分>
 本発明のポリイミド前駆体を得るためには、下記式[7]で示される脂環構造を有するテトラカルボン酸二無水物(特定テトラカルボン酸二無水物ともいう)をテトラカルボン酸成分の一部として用いることが好ましい。
<Tetracarboxylic acid component>
In order to obtain the polyimide precursor of the present invention, a tetracarboxylic dianhydride having an alicyclic structure represented by the following formula [7] (also referred to as a specific tetracarboxylic dianhydride) is part of the tetracarboxylic acid component. It is preferable to use as.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 式[7]中、Zは、炭素数4~13の4価の有機基であり、かつ、炭素数4~10の非芳香族環状炭化水素基を含有する。具体的には、下記式[7a]~[7j]で示される基が好ましい。 In the formula [7], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms. Specifically, groups represented by the following formulas [7a] to [7j] are preferable.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 式[7a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ同じであっても異なってもよい。
 式[7g]中、Z及びZは、水素原子又はメチル基であり、それぞれ同じであっても異なってもよい。
In the formula [7a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
In the formula [7g], Z 6 and Z 7 are a hydrogen atom or a methyl group, and may be the same or different.
 式[7]中、Zの好ましい基は、重合反応性や合成の容易性から、式[7a]、式[7c]、式[7d]、式[7e]、式[7f]又は式[7g]で示される基である。なかでも、式[7a]、式[7e]、式[7f]又は式[7g]で示される基が好ましく、式[7e]又は式[7f]が最も好ましい。
 式[7f]の構造のテトラカルボン酸二無水物を用いる場合、テトラカルボン酸二無水物の成分全体のうちの20質量%以上とすることで、所望の効果が得られる。より好ましくは、30質量%以上である。ポリイミド合成に用いるテトラカルボン酸成分の全てを式[7f]の構造のテトラカルボン酸二無水物とすることも可能である。
In the formula [7], a preferable group of Z 1 is preferably represented by the formula [7a], the formula [7c], the formula [7d], the formula [7e], the formula [7f] or the formula [7] because of polymerization reactivity and ease of synthesis. 7g]. Among these, a group represented by the formula [7a], the formula [7e], the formula [7f] or the formula [7g] is preferable, and the formula [7e] or the formula [7f] is most preferable.
When the tetracarboxylic dianhydride having the structure of the formula [7f] is used, the desired effect can be obtained by setting it to 20% by mass or more of the total components of the tetracarboxylic dianhydride. More preferably, it is 30 mass% or more. All of the tetracarboxylic acid components used for the polyimide synthesis may be tetracarboxylic dianhydrides having the structure of the formula [7f].
 本発明の効果を損なわない限りにおいて、特定テトラカルボン酸二無水物以外のその他のテトラカルボン酸成分を用いることができる。
 その他のテトラカルボン酸成分としては、テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸二無水物、テトラカルボン酸のカルボン酸基をジアルキルエステル化したエステル化物、テトラカルボン酸ジハライドのカルボン酸基をジアルキルエステル化したエステル化物等が挙げられる。
 その具体例としては、例えば、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などが挙げられる。
As long as the effects of the present invention are not impaired, other tetracarboxylic acid components other than the specific tetracarboxylic dianhydride can be used.
Other tetracarboxylic acid components include tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic dianhydride, esterified product obtained by dialkyl esterifying the carboxylic acid group of tetracarboxylic acid, and dialkyl carboxylic acid group of tetracarboxylic acid dihalide. Examples include esterified esterified products.
Specific examples thereof include, for example, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid. 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4 -Biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ', 4,4'-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4 -Dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dical) Xylphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3 Examples include 4-cyclobutanetetracarboxylic acid.
 上記のその他のテトラカルボン酸成分は、形成される液晶配向膜の液晶配向性、電圧保持特性及び蓄積電荷などの特性を考慮して、1種類又は2種類以上を選択して用いることができる。 The above-mentioned other tetracarboxylic acid components can be used by selecting one type or two or more types in consideration of characteristics such as liquid crystal alignment properties, voltage holding characteristics and accumulated charges of the liquid crystal alignment film to be formed.
<特定重合体及び溶媒>
 本発明の特定重合体とは、カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体(ポリアミド酸)及び/又は該ポリイミド前駆体を脱水閉環させて得られるポリイミドからなる重合体である。
 本発明のポリイミド前駆体は、下記の式[A]で示される構造である。
Figure JPOXMLDOC01-appb-C000048
(式[A]中、Rは4価の有機基であり、Rは2価の有機基であり、A及びAは水素原子又は炭素数1~8のアルキル基であり、それぞれ同じであっても異なってもよく、nは正の整数を示す)。
<Specific polymer and solvent>
The specific polymer of the present invention refers to a polyimide precursor (polyamide acid) obtained by reacting a diamine component containing a carboxyl group-containing diamine compound and a tetracarboxylic acid component and / or dehydrating and ring-closing the polyimide precursor. It is a polymer made of the resulting polyimide.
The polyimide precursor of the present invention has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000048
(In the formula [A], R 1 is a tetravalent organic group, R 2 is a divalent organic group, A 1 and A 2 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, They may be the same or different, and n represents a positive integer).
 本発明の特定重合体は、下記の式[B]で示されるジアミン成分と下記の式[C]で示されるテトラカルボン酸二無水物とを原料とすることで比較的簡便に得られるという理由から、下記の式[D]で示される繰り返し単位の構造式からなるポリアミド酸をイミド化させたポリイミドが好ましい。 The reason why the specific polymer of the present invention can be obtained relatively easily by using a diamine component represented by the following formula [B] and a tetracarboxylic dianhydride represented by the following formula [C] as raw materials. Therefore, a polyimide obtained by imidizing a polyamic acid having a structural formula of a repeating unit represented by the following formula [D] is preferable.
Figure JPOXMLDOC01-appb-C000049
(式[B]及び式[C]中、R及びRは式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000050

(式[B]及び式[C]中、R及びRは式[A]で定義したものと同意義である)。
Figure JPOXMLDOC01-appb-C000049
(In formula [B] and formula [C], R 1 and R 2 are as defined in formula [A]).
Figure JPOXMLDOC01-appb-C000050

(In formula [B] and formula [C], R 1 and R 2 are as defined in formula [A]).
 特定重合体を合成する方法は特に限定されないが、通常、上述のように、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。したがって、ポリイミド前駆体から得られるポリイミドは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体から調製される。
 一般的には、テトラカルボン酸及びその誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、1種又は複数種のジアミン化合物からなるジアミン成分とを反応させて、ポリアミド酸を得る。具体的には、テトラカルボン酸二無水物とジアミン成分とを重縮合させてポリアミド酸を得る方法、テトラカルボン酸とジアミン成分とを脱水重縮合反応させてポリアミド酸を得る方法又はテトラカルボン酸ジハライドとジアミン成分とを重縮合させてポリアミド酸を得る方法が用いられる。
Although the method for synthesizing the specific polymer is not particularly limited, it is usually obtained by reacting a diamine component and a tetracarboxylic acid component as described above. Therefore, the polyimide obtained from a polyimide precursor is prepared from the polyimide precursor obtained by making a diamine component and a tetracarboxylic acid component react.
Generally, at least one tetracarboxylic acid component selected from the group consisting of tetracarboxylic acids and derivatives thereof is reacted with a diamine component consisting of one or more diamine compounds to obtain a polyamic acid. Specifically, a method of obtaining polyamic acid by polycondensation of tetracarboxylic dianhydride and a diamine component, a method of obtaining polyamic acid by dehydration polycondensation reaction of tetracarboxylic acid and a diamine component, or tetracarboxylic acid dihalide A method is used in which a polyamic acid is obtained by polycondensation of a diamine component and diamine component.
 ポリアミド酸アルキルエステルを得るには、カルボン酸基をジアルキルエステル化したテトラカルボン酸とジアミン成分とを重縮合させる方法、カルボン酸基をジアルキルエステル化したテトラカルボン酸ジハライドとジアミン成分とを重縮合させる方法又はポリアミド酸のカルボキシル基をエステルに変換する方法が用いられる。
 ポリイミドを得るには、前記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
Polyamide acid alkyl ester can be obtained by polycondensation of carboxylic acid group with dialkyl esterified tetracarboxylic acid and diamine component, tetracarboxylic acid dihalide with carboxylic acid group dialkylesterified and diamine component. A method or a method of converting a carboxyl group of a polyamic acid into an ester is used.
In order to obtain polyimide, a method is used in which the polyamic acid or polyamic acid alkyl ester is cyclized to form polyimide.
 本発明の特定重合体は、分子内にカルボキシル基を有するジアミン化合物を含むジアミン成分と、上記した脂環構造を有するテトラカルボン酸成分とを反応させることにより得られ、さらに、得られたポリイミド前駆体をイミド化することにより得られる。
 上記ジアミン成分とテトラカルボン酸成分とから得られた特定重合体は、溶媒への溶解性が向上する。さらに、特定の溶媒を含む組成物の塗布性が向上する。
The specific polymer of the present invention is obtained by reacting a diamine component containing a diamine compound having a carboxyl group in the molecule with a tetracarboxylic acid component having the above alicyclic structure, and further, the obtained polyimide precursor It is obtained by imidizing the body.
The specific polymer obtained from the diamine component and the tetracarboxylic acid component has improved solubility in a solvent. Furthermore, the applicability | paintability of the composition containing a specific solvent improves.
 本発明の特定重合体を得るためには、上記式[4]で示される構造のジアミン化合物を用いることが好適であり、その使用量は、ポリイミドを得る反応に用いるジアミン成分全体の10~100モル%であることが好ましく、より好ましくは、20~100モル%である。 In order to obtain the specific polymer of the present invention, it is preferable to use a diamine compound having the structure represented by the above formula [4], and the amount used is 10 to 100 of the total diamine component used in the reaction for obtaining polyimide. The mol% is preferable, and more preferably 20 to 100 mol%.
 本発明の特定重合体を得るために用いるジアミン成分中に上記式[5]で示される構造のジアミン化合物が含有される場合、その使用量は特定重合体を得る反応に用いるジアミン成分全体の90モル%以下であることが好ましく、より好ましくは80モル%以下である。その場合、分子内にカルボキシル基を有するジアミン化合物の好ましい使用量との関係から、20モル%以上とすることが好ましい。 When the diamine component having the structure represented by the above formula [5] is contained in the diamine component used for obtaining the specific polymer of the present invention, the amount used is 90 of the total diamine component used for the reaction for obtaining the specific polymer. It is preferably at most mol%, more preferably at most 80 mol%. In that case, it is preferable to set it as 20 mol% or more from the relationship with the preferable usage-amount of the diamine compound which has a carboxyl group in a molecule | numerator.
 本発明の特定重合体を得るためには、公知の合成手法を用いて、ジアミン成分とテトラカルボン酸成分との反応によりポリアミド酸を得て、その後ポリイミドを得ることができる。ポリアミド酸を得る方法としては、例えば、ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる方法が可能である。この方法は、有機溶媒中で比較的効率よく反応が進行するとともに、副生成物の発生が少ない点で好ましい。 In order to obtain the specific polymer of the present invention, a polyamic acid can be obtained by a reaction of a diamine component and a tetracarboxylic acid component using a known synthesis method, and then a polyimide can be obtained. As a method for obtaining the polyamic acid, for example, a method of reacting a diamine component and a tetracarboxylic acid component in an organic solvent is possible. This method is preferable in that the reaction proceeds relatively efficiently in an organic solvent and generation of by-products is small.
 後記する適当な有機溶媒中でポリイミド前駆体を合成し、脱水閉環反応をさせてポリイミドを得た後、ポリイミドを分離し、上記式[1]で示される化合物からな群から選択された少なくとも1種の化合物を含有する溶媒に溶解することにより、本発明の組成物を得ることができる。 After synthesizing a polyimide precursor in an appropriate organic solvent to be described later and performing a dehydration ring-closing reaction to obtain a polyimide, the polyimide is separated, and at least one selected from the group consisting of compounds represented by the above formula [1] The composition of the present invention can be obtained by dissolving in a solvent containing a seed compound.
 ジアミン成分とテトラカルボン酸成分との反応に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。
 その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。
 これらは、単独で使用してもよく、混合して使用してもよい。また、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲であれば、上記有機溶媒に混合して使用することもできる。尚、有機溶媒中の水分は、重合反応を阻害し、生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は、脱水乾燥させたものを用いることが好ましい。
The organic solvent used for the reaction between the diamine component and the tetracarboxylic acid component is not particularly limited as long as the generated polyimide precursor is soluble.
Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclohexane Examples include pentanone and 4-hydroxy-4-methyl-2-pentanone.
These may be used alone or in combination. Moreover, even if it is a solvent which does not dissolve a polyimide precursor, if it is a range in which the produced | generated polyimide precursor does not precipitate, it can also be mixed and used for the said organic solvent. In addition, since the water | moisture content in an organic solvent inhibits a polymerization reaction and causes the produced | generated polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散又は溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は、有機溶媒に分散若しくは溶解させて、添加する方法を用いることが可能である。また、逆に、テトラカルボン酸成分を有機溶媒に分散又は溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法なども挙げることができる。本発明においては、これらの何れの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させて高分子量体としてもよい。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. Thus, it is possible to use a method of adding. Conversely, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like can also be mentioned. Any of these methods may be used in the present invention. In addition, when the diamine component or tetracarboxylic acid component is composed of a plurality of types of compounds, they may be reacted in a premixed state, individually reacted sequentially, and further mixed individually with low molecular weight substances. It is good also as a high molecular weight body by making it react.
 ジアミン成分とテトラカルボン酸成分とを反応させる温度は、-20~150℃の範囲内で任意に選択することができるが、反応効率を考慮して、-5~100℃の範囲とすることが好ましい。また、反応は、任意の濃度で行うことができる。但し、濃度が低すぎると、高分子量のポリイミド前駆体を得ることが難しくなる。一方、濃度が高すぎると、反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。したがって、好ましくは1~50質量%、より好ましくは5~30質量%である。なお、反応初期は高濃度で行い、その後に有機溶媒を追加することも可能である。 The temperature at which the diamine component and the tetracarboxylic acid component are reacted can be arbitrarily selected within the range of −20 to 150 ° C., but in view of the reaction efficiency, it may be set within the range of −5 to 100 ° C. preferable. Moreover, reaction can be performed by arbitrary density | concentrations. However, if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor. On the other hand, if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. In addition, it is also possible to carry out at a high concentration at the initial stage of the reaction and then add an organic solvent.
 ポリイミド前駆体を得るための重合反応においては、ジアミン成分の合計モル数と、テトラカルボン酸成分の合計モル数との比が、0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成する重合体の分子量は大きくなる。したがって、場合に応じて適宜選択して合計モル比を決めることが可能である。 In the polymerization reaction for obtaining the polyimide precursor, the ratio between the total number of moles of the diamine component and the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polymer produced. Therefore, it is possible to determine the total molar ratio by appropriately selecting depending on the case.
 本発明のポリイミドは、上記したように、ポリイミド前駆体を脱水閉環させて得られる。このポリイミドは、液晶配向膜を得るための重合体として有用である。
 本発明のポリイミドにおいて、ポリイミド前駆体の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて、例えば、35~95%の範囲で、より好ましくは45~80%の範囲で調整することができる。
As described above, the polyimide of the present invention is obtained by dehydrating and ring-closing a polyimide precursor. This polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
In the polyimide of the present invention, the dehydration cyclization rate (imidation rate) of the polyimide precursor is not necessarily 100%, and is, for example, in the range of 35 to 95%, more preferably 45, depending on the application and purpose. It can be adjusted within a range of ˜80%.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、ポリイミド前駆体の溶液に触媒を添加する触媒イミド化などが挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃である。ポリイミド前駆体のイミド化においては、イミド化反応により生成する水を反応系外に除きながら行うことが好ましい。
Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is, and catalyst imidization in which a catalyst is added to the polyimide precursor solution.
The temperature when the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C. The imidization of the polyimide precursor is preferably performed while removing water generated by the imidization reaction from the reaction system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができる。なかでもピリジンは反応を進行させるのに適度な塩基性を持つ点で好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができる。なかでも無水酢酸は反応終了後の精製が容易となる点で好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することで制御可能である。
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable in that it has an appropriate basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, acetic anhydride is preferred because it allows easy purification after completion of the reaction. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 ポリイミドの反応溶液から、生成したポリイミドを回収する場合には、反応溶液を沈殿溶媒に投入して沈殿させればよい。沈殿に用いる沈殿溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。沈殿溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再度、沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の沈殿溶媒としては、上述した沈殿溶媒が挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polyimide from the reaction solution of polyimide, the reaction solution may be poured into a precipitation solvent and precipitated. Examples of the precipitation solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water. The polymer that has been introduced into the precipitation solvent and precipitated can be collected by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. Further, when the polymer recovered by precipitation is redissolved in a solvent and the precipitate is recovered again by repeating the operation 2 to 10 times, impurities in the polymer can be reduced. Examples of the precipitation solvent at this time include the above-described precipitation solvents, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
 本発明の組成物に含有される特定重合体の分子量は、これを用いて得られる塗膜の強度、塗膜形成時の作業性及び塗膜の均一性を考慮し、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the specific polymer contained in the composition of the present invention is GPC (Gel Permeation Chromatography) in consideration of the strength of the coating film obtained by using this, the workability during coating film formation, and the uniformity of the coating film. The weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 <液晶配向処理剤>
 本発明の液晶配向処理剤は、上述した組成物からなり、液晶配向膜を形成するための塗布液であり、重合体膜を形成するための重合体成分を溶媒に溶解させて得られた溶液状の組成物である。重合体成分中には、上記した本発明の特定重合体から選ばれる少なくとも一種の重合体を含む。液晶配向処理剤中の重合体成分の含有量は、0.1~20質量%が好ましく、より好ましくは1~15質量%、特に好ましくは2~10質量%である。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is a coating solution for forming a liquid crystal alignment film, which is composed of the above-described composition, and is a solution obtained by dissolving a polymer component for forming a polymer film in a solvent. Composition. The polymer component contains at least one polymer selected from the above-described specific polymer of the present invention. The content of the polymer component in the liquid crystal aligning agent is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass.
 本発明においては、液晶配向処理剤に含まれる重合体成分の全てが本発明の特定重合体であってもよい。また、本発明の特定重合体以外の他の重合体が混合されていてもよい。その際、重合体成分中における他の重合体の含有量は、0.5~15質量%、好ましくは1~10質量%である。 In the present invention, all of the polymer components contained in the liquid crystal aligning agent may be the specific polymer of the present invention. Moreover, polymers other than the specific polymer of this invention may be mixed. In that case, the content of the other polymer in the polymer component is 0.5 to 15% by mass, preferably 1 to 10% by mass.
 他の重合体としては、上記した分子内にカルボキシル基を有するジアミン化合物を含むジアミン成分と、脂環構造を有するテトラカルボン酸成分とを反応されて得られる特定重合体以外のポリイミド前駆体及び/又はポリイミド前駆体をイミド化したポリイミドが挙げられる。
 さらには、ポリイミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミドなどが挙げられる。
Other polymers include polyimide precursors other than a specific polymer obtained by reacting a diamine component containing a diamine compound having a carboxyl group in the molecule and a tetracarboxylic acid component having an alicyclic structure, and / or Or the polyimide which imidized the polyimide precursor is mentioned.
Furthermore, polymers other than polyimide, specifically, acrylic polymer, methacrylic polymer, polystyrene, polyamide and the like can be mentioned.
 本発明の液晶配向処理剤においては、上記特定重合体が溶媒中に溶解された状態で含有される。用いられる溶媒としては、本発明の特定重合体であるポリイミドを溶解し、例えば、NMPに比べて低い表面張力特性を備えた化合物を含む溶媒が好ましい。
 具体的には、溶媒は、下記式[1]で示される化合物を含む溶媒の使用が好ましい。
Figure JPOXMLDOC01-appb-C000051
  式[1]中、Rは、炭素数1~4のアルキル基である。
In the liquid crystal aligning agent of this invention, the said specific polymer is contained in the state melt | dissolved in the solvent. As the solvent to be used, a solvent containing a compound that dissolves the polyimide that is the specific polymer of the present invention and has lower surface tension characteristics than NMP, for example, is preferable.
Specifically, it is preferable to use a solvent containing a compound represented by the following formula [1].
Figure JPOXMLDOC01-appb-C000051
In the formula [1], R 1 is an alkyl group having 1 to 4 carbon atoms.
 なかでも、上記の式[1]で示される化合物は、下記式[2]又は下記式[3]で示される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Among these, the compound represented by the above formula [1] is preferably a compound represented by the following formula [2] or the following formula [3].
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 上記式[1]で表される化合物は、1種でもよく、2種以上の混合物でもよい。上記式[1]で示される化合物を溶媒として用いることにより、塗布性に優れた液晶配向処理剤を提供することができる。 The compound represented by the above formula [1] may be one kind or a mixture of two or more kinds. By using the compound represented by the formula [1] as a solvent, it is possible to provide a liquid crystal aligning agent having excellent coatability.
 本発明の液晶配向処理剤においては、塗布により均一な膜を形成するという観点から、溶媒の含有量は70~99質量%であることが好ましい。含有量は、目的とする液晶配向膜の膜厚によって適宜変更することができる。溶媒としては、上記式[1]で示される化合物のいずれか、又は式[1]で示される化合物で表わされる複数の化合物の混合物が用いられる。
 さらに、液晶配向処理剤中の溶媒としては、塗布性の向上の妨げとならない範囲内で、上記式[1]で示される化合物以外の他の有機溶媒を混合して含有させることができる。
In the liquid crystal aligning agent of the present invention, the content of the solvent is preferably 70 to 99% by mass from the viewpoint of forming a uniform film by coating. Content can be suitably changed with the film thickness of the target liquid crystal aligning film. As the solvent, any one of the compounds represented by the formula [1] or a mixture of a plurality of compounds represented by the compound represented by the formula [1] is used.
Furthermore, as a solvent in a liquid-crystal aligning agent, other organic solvents other than the compound shown by said Formula [1] can be mixed and contained in the range which does not interfere with an applicability | paintability improvement.
 他の有機溶媒としては、具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
 かかる他の有機溶媒を含有させる場合、その含有量は、全溶媒中50質量%以下であり、好ましくは、40質量%以下である。より好ましくは、30質量%以下である。
Specific examples of other organic solvents include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone. Methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like. These may be used alone or in combination.
When such other organic solvent is contained, the content thereof is 50% by mass or less, preferably 40% by mass or less, based on the total solvent. More preferably, it is 30 mass% or less.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限りにおいて、液晶配向処理剤を塗布した際の膜の膜厚均一性や表面平滑性をさらに向上させる目的で、塗布性向上のための貧溶媒を含有させることができる。 The liquid crystal alignment treatment agent of the present invention is for the purpose of further improving the film thickness uniformity and surface smoothness of the film when the liquid crystal alignment treatment agent is applied, as long as the effects of the present invention are not impaired. The poor solvent can be contained.
 上記貧溶媒の具体例としては、次のものが挙げられる。例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2-(メトキシメトキシ)エタノール、エチレングリコールイソプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールものヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなど。これらの貧溶媒は、1種類で用いてもよく、複数種類を混合して用いてもよい。 Specific examples of the poor solvent include the following. For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate , Ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 2- (methoxymethoxy) ethanol, ethylene glycol isopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol hexyl ether, 2- (hexyloxy) ethanol, Furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monomethyl ether Propylene glycol monoethyl ether, propylene glycol monobutyl ether, 1- (butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether , Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-Ethoxyethoxy) ethyl Acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate , Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, 3-methoxypropionate Acid butyl, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactate isoamyl ester and the like. These poor solvents may be used alone or in combination of two or more.
 かかる貧溶媒を含有させる場合、上記式[1]で示される化合物の含有量は、全溶媒中、90質量%以下であり、好ましくは、70質量%以下である。より好ましくは、40質量%以下である。 When such a poor solvent is contained, the content of the compound represented by the above formula [1] is 90% by mass or less, preferably 70% by mass or less in the total solvent. More preferably, it is 40 mass% or less.
 さらに、本発明の液晶配向処理剤は、本発明の効果を損なわない限りにおいて、液晶配向処理剤を塗布した際の膜の膜厚均一性や表面平滑性を向上させる化合物、液晶配向膜と基板との密着性を向上させる化合物などを用いることができる。 Furthermore, the liquid crystal aligning agent of the present invention is a compound, liquid crystal aligning film and substrate for improving the film thickness uniformity and surface smoothness when the liquid crystal aligning agent is applied, as long as the effects of the present invention are not impaired. A compound that improves the adhesion to the substrate can be used.
 膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent. .
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物であるものが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。 Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-tri Toxisilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxy Silane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyl Trimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, poly Lopylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl -2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N ′ , N′-tetraglycidyl-4, 4′-diaminodiphenylmethane and the like.
 基板との密着性を向上させる化合物を使用する場合、その添加量は、液晶配向処理剤に含有される樹脂成分、すなわち、上記の特定重合体の100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When a compound that improves the adhesion to the substrate is used, the addition amount thereof is 0.1 to 30 mass with respect to 100 mass parts of the resin component contained in the liquid crystal aligning agent, that is, the specific polymer. Parts, and more preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基、及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を含有することができる。 The liquid crystal aligning agent of the present invention comprises a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, and a lower alkoxyalkyl group unless the effects of the present invention are impaired. A crosslinkable compound having at least one substituent selected from the group or a crosslinkable compound having a polymerizable unsaturated bond can be contained.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン、1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシフェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノール等が挙げられる。
 オキセタン基を有する架橋性化合物としては、下記式[8]で示されるオキセタン基を少なくとも2個有する架橋性化合物である。
Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl, Liglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane, 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxyphenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetane groups represented by the following formula [8].
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 具体的には、下記式[8-1]~[8-11]で示される架橋性化合物である。 Specifically, it is a crosslinkable compound represented by the following formulas [8-1] to [8-11].
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 シクロカーボネート基を有する架橋性化合物としては、下記式[9]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。 The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [9].
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 具体的には、下記式[9-1]~[9-37]で示される架橋性化合物である。 Specifically, it is a crosslinkable compound represented by the following formulas [9-1] to [9-37].
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
(式[9-24]中、nは1~5の整数であり、式[9-25]中、nは1~5の整数であり、式[9-36]中、nは1~100の整数であり、式[9-37]中、nは1~10の整数である。) (In the formula [9-24], n is an integer of 1 to 5, and in the formula [9-25], n is an integer of 1 to 5, and in the formula [9-36], n is 1 to 100. (In the formula [9-37], n is an integer of 1 to 10.)
 さらに、下記式[9-38]~[9-40]に示される少なくとも1種の構造を有するポリシロキサンを挙げることもできる。 Furthermore, polysiloxanes having at least one structure represented by the following formulas [9-38] to [9-40] can also be mentioned.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
(式[9-38]~[9-40]中、R、R、R、R及びRは、それぞれ独立して、式[9]で示される構造、水素原子、水酸基、炭素数1~10のアルキル基、アルコキシル基、脂肪族環又は芳香族環であり、少なくとも1つは式[9]で示される構造である)。 (In the formulas [9-38] to [9-40], R 1 , R 2 , R 3 , R 4 and R 5 are each independently a structure represented by the formula [9], a hydrogen atom, a hydroxyl group, An alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic ring, at least one of which is a structure represented by the formula [9]).
 より具体的には、下記式[9-41]及び式[9-42]の化合物が挙げられる。 More specifically, compounds of the following formulas [9-41] and [9-42] can be mentioned.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
(式[9-41]中、Rは、それぞれ独立して、式[9]で示される構造、水素原子、水酸基、炭素数1~10のアルキル基、アルコキシル基、脂肪族環又は芳香族環であり、少なくとも1つは式[9]で示される構造である。式[9-42]中、nは1~10の整数である。) (In the formula [9-41], each R 6 independently represents a structure represented by the formula [9], a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group, an aliphatic ring or an aromatic group. A ring, at least one of which is a structure represented by the formula [9], wherein n is an integer of 1 to 10 in the formula [9-42].
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂、エチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基及び/又はアルコキシメチル基で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。メラミン誘導体及びベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。 Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin, ethyleneurea-formaldehyde resin and the like. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group and / or an alkoxymethyl group can be used. Melamine derivatives and benzoguanamine derivatives can also exist as dimers or trimers. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 このようなメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)等が挙げられる。また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリル、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基若しくはアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン、2,6-ジヒドロキシメチル-p-tert-ブチルフェノール等が挙げられる。
 具体的には、国際公開公報WO2011/132751(2011.10.27公開)の62頁~66頁に掲載される、式[6-1]~[6-48]で示される架橋性化合物が挙げられる。
Examples of such melamine derivatives or benzoguanamine derivatives include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5. methoxymethyl groups per triazine ring. Eight-substituted MW-30 (Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and other methoxymethylated melamines, Cymel 235, 236 Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123 and the like Methoxymethylated ethoxy Methylated butoxymethylated benzoguanamine such as silylated 1112-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxyl group-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide) and the like. Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, methoxymethylolated glycoluril such as Powderlink 1174, and the like.
Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene, 2,6-dihydroxymethyl-p-tert-butylphenol and the like.
Specifically, the crosslinkable compounds represented by the formulas [6-1] to [6-48], which are listed on pages 62 to 66 of International Publication No. WO2011 / 132751 (published 2011.10.27). It is done.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレート等の重合性不飽和基を分子内に3個有する架橋性化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の重合性不飽和基を分子内に2個有する架橋性化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル、N-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物;等が挙げられる。
 さらに、下記式[11]で示される化合物を用いることもできる。
Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) ) Acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (me ) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) ) Acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl ester phthalate di (meth) acrylate, neopentyl glycol dihydroxypivalate Crosslinkable compounds having two polymerizable unsaturated groups in the molecule such as (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropylene (Meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl ( Crosslinkable compounds having one polymerizable unsaturated group in the molecule such as (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester, N-methylol (meth) acrylamide; Can be mentioned.
Furthermore, a compound represented by the following formula [11] can also be used.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式[11]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環及びフェナントレン環からからなる群から選ばれる基であり、Eは下記式[11a]及び式[11b]から選ばれる基であり、nは1~4の整数である。 In the formula [11], E 1 is a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring and a phenanthrene ring, and E 2 Is a group selected from the following formula [11a] and formula [11b], and n is an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。
 また、本発明の液晶配向処理剤に含有される架橋性化合物は、1種類であってもよく、2種類以上組み合わせてもよい。
 本発明の液晶配向処理剤における、架橋性化合物の含有量は、重合体成分100質量部に対して、0.1~150質量部であることが好ましい。架橋反応が進行し目的の効果を発現し、かつ液晶の配向性を低下させないためには、重合体成分100質量部に対して0.1~100質量部がより好ましく、1~50質量部が最も好ましい。
The said compound is an example of a crosslinkable compound, It is not limited to these.
Moreover, the crosslinkable compound contained in the liquid crystal aligning agent of this invention may be one type, and may be combined two or more types.
The content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of the polymer component. In order for the crosslinking reaction to proceed and to exhibit the desired effect and not to reduce the orientation of the liquid crystal, the amount is more preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer component, and 1 to 50 parts by weight. Most preferred.
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を向上させる目的の誘電体や導電物質を添加してもよい。
 液晶配向処理剤を用いて形成される液晶配向膜中の電荷移動を促進し、この液晶配向膜を用いた液晶セルの電荷抜けを促進させる化合物として、国際公開公報WO2011/132751(2011.10.27公開)の69頁~73頁に掲載される、式[M1]~[M156]で示される窒素含有複素環アミン化合物を添加することもできる。これらのアミン化合物は、組成物の溶液に直接添加しても構わないが、適当な溶媒で濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。溶媒としては、上記式[1]の化合物の他、ポリアミド酸やポリイミドを溶解させる有機溶媒であれば特に限定されない。
In addition to the above, the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of improving the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. May be added.
As a compound that promotes charge transfer in a liquid crystal alignment film formed using a liquid crystal alignment treatment agent and promotes charge removal of a liquid crystal cell using the liquid crystal alignment film, International Publication No. WO2011-132751 (2011.10. 27), nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156] described on pages 69 to 73 can also be added. These amine compounds may be added directly to the solution of the composition, but it is preferable to add them after making a solution with a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass with an appropriate solvent. . The solvent is not particularly limited as long as it is an organic solvent capable of dissolving polyamic acid and polyimide in addition to the compound of the above formula [1].
 <液晶配向膜及び液晶表示素子>
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では、配向処理なしでも液晶配向膜が形成できる。
 基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment or light irradiation. Further, in the case of vertical alignment use, a liquid crystal alignment film can be formed without alignment treatment.
The substrate is not particularly limited as long as it is a highly transparent substrate. In addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。本発明の配向処理剤は、以上の塗布法を用いた場合であっても塗布性は良好である。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet methods are generally used. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose. Even if the orientation processing agent of this invention is a case where the above application | coating method is used, applicability | paintability is favorable.
 液晶配向処理剤を基板上に塗布した後は、特定重合体としてポリイミドが主に含まれる場合、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて塗膜とすることができる。 After the liquid crystal aligning agent is applied on the substrate, when polyimide is mainly contained as the specific polymer, it is preferably 50 to 300 ° C. by a heating means such as a hot plate, a thermal circulation oven, an IR (infrared) oven, etc. Can be formed into a coating film by evaporating the solvent at 80 to 250 ° C.
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング、偏光紫外線照射などで処理する。
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the baked coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal alignment treatment agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 本発明の液晶配向膜は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。
As a method for manufacturing a liquid crystal cell, prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and place the other side of the liquid crystal alignment film on the other side. And a method of sealing the substrate by injecting liquid crystal under reduced pressure, a method of bonding the substrate after dropping the liquid crystal on the surface of the liquid crystal alignment film on which the spacers are dispersed, and the like.
The liquid crystal alignment film of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and includes a polymerizable compound that is polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display device manufactured through a process of polymerizing a polymerizable compound by arranging at least one of active energy rays and heating while applying a voltage between electrodes. Here, ultraviolet rays are suitable as the active energy ray.
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるため、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要とせず、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。 The above liquid crystal display element controls the pretilt of liquid crystal molecules by a PSA (Polymer Sustained Alignment) method. In the PSA method, a small amount of a photopolymerizable compound, for example, a photopolymerizable monomer is mixed in a liquid crystal material, and after assembling a liquid crystal cell, a predetermined voltage is applied to the liquid crystal layer and an ultraviolet ray is applied to the photopolymerizable compound. The pretilt of the liquid crystal molecules is controlled by the produced polymer. Since the alignment state of the liquid crystal molecules when the polymer is formed is stored even after the voltage is removed, the pretilt of the liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer. The PSA method is suitable for forming a vertical alignment type liquid crystal layer that does not require a rubbing process and it is difficult to control the pretilt by the rubbing process.
 すなわち、本発明の液晶表示素子は、上記した手法により、液晶配向処理剤から液晶配向膜付き基板を得た後、液晶セルを作製し、紫外線の照射及び加熱の少なくとも一方により重合性化合物を重合することで液晶分子の配向を制御することができる。
 PSA方式の液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。
That is, in the liquid crystal display element of the present invention, after obtaining a substrate with a liquid crystal alignment film from a liquid crystal alignment treatment agent by the above-described method, a liquid crystal cell is prepared, and a polymerizable compound is polymerized by at least one of ultraviolet irradiation and heating. By doing so, the orientation of the liquid crystal molecules can be controlled.
To give an example of manufacturing a PSA type liquid crystal cell, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. .
 液晶には、熱や紫外線照射により重合する重合性化合物が混合される。重合性化合物としては、アクリレート基、メタクリレート基等の重合性不飽和基を分子内に1個以上有する化合物が挙げられる。その際、重合性化合物は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。 In the liquid crystal, a polymerizable compound that is polymerized by heat or ultraviolet irradiation is mixed. Examples of the polymerizable compound include compounds having at least one polymerizable unsaturated group such as an acrylate group or a methacrylate group in the molecule. In that case, the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component. When the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the orientation of the liquid crystal cannot be controlled, and when it exceeds 10 parts by mass, the amount of the unreacted polymerizable compound increases and the liquid crystal display element. The seizure characteristics of the steel deteriorate.
 液晶セルを作製した後は、液晶セルに交流又は直流の電圧を印加しながら、熱や紫外線の照射をして重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
 さらに、本発明の液晶配向処理剤は、電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、活性エネルギー線としては、紫外線が好適である。
After the liquid crystal cell is produced, the polymerizable compound is polymerized by applying heat or ultraviolet light while applying an alternating current or direct current voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
Furthermore, the liquid crystal aligning agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group that is polymerized by at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element manufactured through the process of arrange | positioning the liquid crystal aligning film containing this, and applying a voltage between electrodes is used preferably. Here, ultraviolet rays are suitable as the active energy ray.
 活性エネルギー線及び熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向処理剤中に添加する方法、重合性基を含む重合体成分を用いる方法等が挙げられる。本発明の液晶配向処理剤は、熱や紫外線の照射により、反応する2重結合部位を持つ特定化合物を含んでいるため、紫外線の照射及び加熱の少なくとも一方により液晶分子の配向を制御することができる。 In order to obtain a liquid crystal alignment film containing a polymerizable group that is polymerized from at least one of active energy rays and heat, a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent, a polymer containing a polymerizable group Examples include methods using components. Since the liquid crystal aligning agent of the present invention contains a specific compound having a double bond site that reacts by irradiation with heat or ultraviolet rays, the alignment of liquid crystal molecules can be controlled by at least one of ultraviolet irradiation and heating. it can.
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが挙げられる。 If an example of liquid crystal cell production is given, prepare a pair of substrates on which a liquid crystal alignment film is formed, spread spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is bonded and liquid crystal is injected under reduced pressure to seal, and a method in which the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed.
 上記した工程を経ることにより、本発明の液晶表示素子が得られる。これらの液晶表示素子は、本発明の液晶配向膜を有していることから、製造プロセスがより低温なものになり、信頼性に優れ、大画面で高精細の液晶テレビなどに好適に利用可能である。 The liquid crystal display element of the present invention is obtained through the above steps. Since these liquid crystal display elements have the liquid crystal alignment film of the present invention, the manufacturing process becomes lower temperature, excellent in reliability, and can be suitably used for large-screen high-definition liquid crystal televisions. It is.
 本発明の組成物は、液晶配向膜の形成に使用する液晶配向処理剤以外の用途において、ポリイミド膜を形成するために用いることが可能である。例えば、他の電子デバイスにおいて、層間絶縁膜や保護膜の形成に使用することが可能である。その場合、本発明の組成物には、その用途に応じて、多様な成分を添加することが可能である。 The composition of the present invention can be used for forming a polyimide film in applications other than the liquid crystal alignment treatment agent used for forming the liquid crystal alignment film. For example, in other electronic devices, it can be used to form an interlayer insulating film and a protective film. In that case, various components can be added to the composition of the present invention depending on the application.
 以下に実施例を挙げるが、本発明はこれらに限定して解釈されるべきではない。
 本実施例及び比較例で用いる略語は、以下の通りである。
Examples are given below, but the present invention should not be construed as being limited thereto.
Abbreviations used in the examples and comparative examples are as follows.
<分子内にカルボキシル基を有するジアミン化合物>
 D1:3,5-ジアミノ安息香酸
 D2:1,4-ジアミノ安息香酸
<Diamine compound having a carboxyl group in the molecule>
D1: 3,5-diaminobenzoic acid D2: 1,4-diaminobenzoic acid
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
<式[5]で示される構造の第2のジアミン化合物>
 D3:m-フェニレンジアミン
 D4:ジアミン5:1,3-ジアミノ-4-(オクタデシロキシ)ベンゼン
 D5:ジアミン6:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ〕ベンゼン
 D6:1,3-ジアミノ-4-{4-〔トランス-4-(トランス-4-n-ペンチルシクロヘキシル)シクロヘキシル〕フェノキシ}ベンゼン
<Second diamine compound having a structure represented by the formula [5]>
D3: m-phenylenediamine D4: diamine 5: 1,3-diamino-4- (octadecyloxy) benzene D5: diamine 6: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) ) Phenoxy] benzene D6: 1,3-diamino-4- {4- [trans-4- (trans-4-n-pentylcyclohexyl) cyclohexyl] phenoxy} benzene
Figure JPOXMLDOC01-appb-C000072
<その他のジアミン化合物>
 D7:p-フェニレンジアミン
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000072
<Other diamine compounds>
D7: p-phenylenediamine
Figure JPOXMLDOC01-appb-C000073
<テトラカルボン酸二無水物>
 M1:1,2,3,4-シクロブタンテトラカルボン酸二無水物
 M2:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
 M3:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
 M4:2,3,5-トリカルボキシシクロペンチル酢酸二無水物
<Tetracarboxylic dianhydride>
M1: 1,2,3,4-cyclobutanetetracarboxylic dianhydride M2: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride M3: 3,4-di Carboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride M4: 2,3,5-tricarboxycyclopentyl acetic acid dianhydride
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
<式[1]で示される構造の化合物(有機溶媒)>
DEME:ジエチレングリコールモノメチルエーテル
DEEE:ジエチレングリコールモノエチルエーテル
<その他の化合物(溶媒)>
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
<Compound with the structure represented by the formula [1] (organic solvent)>
DEME: Diethylene glycol monomethyl ether DEEE: Diethylene glycol monoethyl ether <other compound (solvent)>
NMP: N-methyl-2-pyrrolidone BCS: Ethylene glycol monobutyl ether
 ポリアミド酸及びポリイミドに関する分子量やイミド化率等の物性は、次のようにして評価した。 The physical properties such as molecular weight and imidization rate of polyamide acid and polyimide were evaluated as follows.
(ポリアミド酸及びポリイミドの分子量測定)
 ポリアミド酸及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル),リン酸・無水結晶(o-リン酸)が30mmol/L,テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量:約900,000、150,000、100,000、及び30,000)(東ソー社製)及びポリエチレングリコール(分子量:約12,000、4,000、及び1,000)(ポリマーラボラトリー社製)。
(Molecular weight measurement of polyamic acid and polyimide)
The molecular weights of the polyamic acid and the polyimide are as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) (manufactured by Showa Denko KK) and columns (KD-803, KD-805) (manufactured by Shodex). The measurement was performed as described above.
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as an additive, lithium bromide-hydrate (LiBr · H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) 10ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: (About 12,000, 4,000, and 1,000) (manufactured by Polymer Laboratory).
(イミド化率の測定)
 合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末(20mg)をNMRサンプル管(NMRサンプリングチューブスタンダードφ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(Measurement of imidization rate)
The imidation ratio of polyimide in the synthesis example was measured as follows. Polyimide powder (20 mg) was put into an NMR sample tube (NMR sampling tube standard φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) mixture) ( 0.53 ml) was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
<ポリイミドの合成>
<合成例1>
 M2(3.94g,15.7mmol)、D1(1.60g,10.5mmol)、及びD6(4.56g,10.5mmol)をNMP(30.31g)中で混合し、80℃で5時間反応させた後、M1(1.01g,5.2mmol)とNMP(14.1g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(1.93g)、及びピリジン(1.49g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(A)を得た。このポリイミド(A)のイミド化率は55%であり、数平均分子量は21,300であり、重量平均分子量は63,800であった。
<Synthesis of polyimide>
<Synthesis Example 1>
M2 (3.94 g, 15.7 mmol), D1 (1.60 g, 10.5 mmol), and D6 (4.56 g, 10.5 mmol) were mixed in NMP (30.31 g) and at 80 ° C. for 5 hours. After the reaction, M1 (1.01 g, 5.2 mmol) and NMP (14.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (1.93 g) and pyridine (1.49 g) were added as an imidization catalyst and reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (A). The imidation ratio of this polyimide (A) was 55%, the number average molecular weight was 21,300, and the weight average molecular weight was 63,800.
<合成例2>
 M2(4.32g,17.3mmol)、D1(2.80g,18.4mmol)、及びD6(2.00g,4.6mmol)をNMP(27.3g)中で混合し、80℃で5時間反応させた後、M1(1.07g,5.5mmol)とNMP(13.4g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.29g)、及びピリジン(1.78g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(B)を得た。このポリイミド(B)のイミド化率は51%であり、数平均分子量は18,400であり、重量平均分子量は57,100であった。
<Synthesis Example 2>
M2 (4.32 g, 17.3 mmol), D1 (2.80 g, 18.4 mmol), and D6 (2.00 g, 4.6 mmol) were mixed in NMP (27.3 g) and at 80 ° C. for 5 hours. After the reaction, M1 (1.07 g, 5.5 mmol) and NMP (13.4 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.29 g) and pyridine (1.78 g) are added as an imidization catalyst and reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (B). The imidation ratio of this polyimide (B) was 51%, the number average molecular weight was 18,400, and the weight average molecular weight was 57,100.
<合成例3>
 M2(9.01g,36.0mmol)、D1(6.57g,43.2mmol)、及びD6(2.09g,4.8mmol)をNMP(53.0g)中で混合し、80℃で5時間反応させた後、M1(2.21g,11.3mmol)とNMP(26.5g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.44g)、及びピリジン(1.90g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(C)を得た。このポリイミド(C)のイミド化率は52%であり、数平均分子量は15,700であり、重量平均分子量は50,100であった。
<Synthesis Example 3>
M2 (9.01 g, 36.0 mmol), D1 (6.57 g, 43.2 mmol), and D6 (2.09 g, 4.8 mmol) were mixed in NMP (53.0 g) and at 80 ° C. for 5 hours. After the reaction, M1 (2.21 g, 11.3 mmol) and NMP (26.5 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.44 g) and pyridine (1.90 g) were added as an imidization catalyst, and the mixture was stirred at 90 ° C. for 2.5 hours. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (C). The imidation ratio of this polyimide (C) was 52%, the number average molecular weight was 15,700, and the weight average molecular weight was 50,100.
<合成例4>
 M2(5.07g,20.3mmol)、及びD1(4.11g,27.0mmol)をNMP(27.5g)中で混合し、80℃で5時間反応させた後、M1(1.22g,6.2mmol)とNMP(14.1g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.63g)、及びピリジン(2.04g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(D)を得た。このポリイミド(D)のイミド化率は49%であり、数平均分子量は15,700であり、重量平均分子量は47,000であった。
<Synthesis Example 4>
M2 (5.07 g, 20.3 mmol) and D1 (4.11 g, 27.0 mmol) were mixed in NMP (27.5 g), reacted at 80 ° C. for 5 hours, and then M1 (1.22 g, 6.2 mmol) and NMP (14.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.63 g) and pyridine (2.04 g) were added as imidation catalysts, and the mixture was stirred at 90 ° C. for 2.5 hours. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (D). The imidation ratio of this polyimide (D) was 49%, the number average molecular weight was 15,700, and the weight average molecular weight was 47,000.
<合成例5>
 M2(6.13g,24.5mmol)、及びD1(3.80g,25.0mmol)をNMP(39.7g)中で混合し、80℃で16時間反応させ、ポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.54g)、及びピリジン(1.97g)を加え、90℃で3.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(E)を得た。このポリイミド(E)のイミド化率は49%であり、数平均分子量は14,800であり、重量平均分子量は42,200であった。
<Synthesis Example 5>
M2 (6.13 g, 24.5 mmol) and D1 (3.80 g, 25.0 mmol) were mixed in NMP (39.7 g) and reacted at 80 ° C. for 16 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.54 g) and pyridine (1.97 g) were added as imidization catalysts, and 3.5 hours at 90 ° C. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (E). The imidation ratio of this polyimide (E) was 49%, the number average molecular weight was 14,800, and the weight average molecular weight was 42,200.
<合成例6>
 M2(17.7g,70.7mmol)、D1(8.20g,53.9mmol)、及びD6(12.6g,29.0mmol)をNMP(115.5g)中で混合し、80℃で5時間反応させた後、M1(2.35g,12.0mmol)とNMP(47.6g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、及びピリジン(1.28g)を加え、90℃で2時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(F)を得た。このポリイミド(F)のイミド化率は53%であり、数平均分子量は18,900であり、重量平均分子量は51,400であった。
<Synthesis Example 6>
M2 (17.7 g, 70.7 mmol), D1 (8.20 g, 53.9 mmol), and D6 (12.6 g, 29.0 mmol) were mixed in NMP (115.5 g) and at 80 ° C. for 5 hours. After the reaction, M1 (2.35 g, 12.0 mmol) and NMP (47.6 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.48 g) and pyridine (1.28 g) were added as an imidization catalyst and reacted at 90 ° C. for 2 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (F). The imidation ratio of this polyimide (F) was 53%, the number average molecular weight was 18,900, and the weight average molecular weight was 51,400.
<合成例7>
 M2(5.25g,21.0mmol)、D1(4.15g,27.3mmol)、及びD6(6.40g,14.7mmol)をNMP(47.4g)中で混合し、80℃で5時間反応させた後、M1(4.10g,20.9mmol)とNMP(31.9g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.15g)、及びピリジン(1.67g)を加え、80℃で3.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(G)を得た。このポリイミド(G)のイミド化率は63%であり、数平均分子量は19,400であり、重量平均分子量は60,400であった。
<Synthesis Example 7>
M2 (5.25 g, 21.0 mmol), D1 (4.15 g, 27.3 mmol), and D6 (6.40 g, 14.7 mmol) were mixed in NMP (47.4 g) and at 80 ° C. for 5 hours. After the reaction, M1 (4.10 g, 20.9 mmol) and NMP (31.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.15 g) and pyridine (1.67 g) were added as imidization catalysts, and 3.5 hours at 80 ° C. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (G). The imidation ratio of this polyimide (G) was 63%, the number average molecular weight was 19,400, and the weight average molecular weight was 60,400.
<合成例8>
 M2(1.67g,6.7mmol)、D1(2.14g,14.1mmol)、及びD6(3.35g,7.7mmol)をNMP(21.5g)中で混合し、80℃で5時間反応させた後、M1(2.93g,14.9mmol)とNMP(18.9g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.20g)、及びピリジン(1.71g)を加え、50℃で1.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(H)を得た。このポリイミド(H)のイミド化率は55%であり、数平均分子量は21,600であり、重量平均分子量は61,400であった。
<Synthesis Example 8>
M2 (1.67 g, 6.7 mmol), D1 (2.14 g, 14.1 mmol), and D6 (3.35 g, 7.7 mmol) were mixed in NMP (21.5 g) and at 80 ° C. for 5 hours. After the reaction, M1 (2.93 g, 14.9 mmol) and NMP (18.9 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.20 g) and pyridine (1.71 g) were added as imidization catalysts, and 1.5 hours at 50 ° C. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (H). The imidation ratio of this polyimide (H) was 55%, the number average molecular weight was 21,600, and the weight average molecular weight was 61,400.
<合成例9>
 M2(4.13g,16.5mmol)、D1(2.34g,15.4mmol)、及びD4(2.49g,6.6mmol)をNMP(26.9g)中で混合し、80℃で5時間反応させた後、M1(1.03g,5.3mmol)とNMP(13.1g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.24g)、及びピリジン(1.73g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(I)を得た。このポリイミド(I)のイミド化率は55%であり、数平均分子量は18,900であり、重量平均分子量は59,000であった。
<Synthesis Example 9>
M2 (4.13 g, 16.5 mmol), D1 (2.34 g, 15.4 mmol), and D4 (2.49 g, 6.6 mmol) were mixed in NMP (26.9 g) and at 80 ° C. for 5 hours. After the reaction, M1 (1.03 g, 5.3 mmol) and NMP (13.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.24 g) and pyridine (1.73 g) were added as an imidization catalyst and reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (I). The imidation ratio of this polyimide (I) was 55%, the number average molecular weight was 18,900, and the weight average molecular weight was 59,000.
<合成例10>
 M2(4.13g,16.5mmol)、D1(2.34g,15.4mmol)、及びD5(2.51g,6.6mmol)をNMP(27.0g)中で混合し、80℃で5時間反応させた後、M1(1.04g,5.3mmol)とNMP(13.1g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.23g)、及びピリジン(1.73g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(J)を得た。このポリイミド(J)のイミド化率は50%であり、数平均分子量は19,700であり、重量平均分子量は60,000であった。
<Synthesis Example 10>
M2 (4.13 g, 16.5 mmol), D1 (2.34 g, 15.4 mmol), and D5 (2.51 g, 6.6 mmol) were mixed in NMP (27.0 g) and at 80 ° C. for 5 hours. After the reaction, M1 (1.04 g, 5.3 mmol) and NMP (13.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.23 g) and pyridine (1.73 g) were added as an imidization catalyst and reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (J). The imidation ratio of this polyimide (J) was 50%, the number average molecular weight was 19,700, and the weight average molecular weight was 60,000.
<合成例11>
 M2(4.13g,16.5mmol)、D2(2.34g,15.4mmol)、及びD5(2.51g,6.6mmol)をNMP(27.0g)中で混合し、80℃で5時間反応させた後、M1(1.06g,5.4mmol)とNMP(13.2g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.23g)、及びピリジン(1.73g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(K)を得た。このポリイミド(K)のイミド化率は52%であり、数平均分子量は17,900であり、重量平均分子量は57,600であった。
<Synthesis Example 11>
M2 (4.13 g, 16.5 mmol), D2 (2.34 g, 15.4 mmol), and D5 (2.51 g, 6.6 mmol) were mixed in NMP (27.0 g) and at 80 ° C. for 5 hours. After the reaction, M1 (1.06 g, 5.4 mmol) and NMP (13.2 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.23 g) and pyridine (1.73 g) were added as an imidization catalyst, and the mixture was reacted at 80 ° C. for 3 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (K). The imidation ratio of this polyimide (K) was 52%, the number average molecular weight was 17,900, and the weight average molecular weight was 57,600.
<合成例12>
 M2(8.07g,32.3mmol)、D1(4.58g,30.1mmol)、及びD6(5.61g,12.9mmol)をNMP(54.8g)中で混合し、80℃で5時間反応させた後、M1(2.05g,10.5mmol)とNMP(26.5g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(80.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(17.25g)、及びピリジン(5.35g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(1010ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(L)を得た。このポリイミド(L)のイミド化率は80%であり、数平均分子量は20,500であり、重量平均分子量は53,100であった。
<Synthesis Example 12>
M2 (8.07 g, 32.3 mmol), D1 (4.58 g, 30.1 mmol), and D6 (5.61 g, 12.9 mmol) were mixed in NMP (54.8 g) and at 80 ° C. for 5 hours. After the reaction, M1 (2.05 g, 10.5 mmol) and NMP (26.5 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (80.0 g) and diluting to 6% by mass, acetic anhydride (17.25 g) and pyridine (5.35 g) were added as an imidization catalyst and reacted at 100 ° C. for 3 hours. It was. This reaction solution was poured into methanol (1010 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (L). The imidation ratio of this polyimide (L) was 80%, the number average molecular weight was 20,500, and the weight average molecular weight was 53,100.
<合成例13>
 M2(17.7g,70.7mmol)、D1(8.18g,53.8mmol)、及びD6(12.5g,28.8mmol)をNMP(115.5g)中で混合し、80℃で5時間反応させた後、M1(2.28g,11.7mmol)とNMP(47.6g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.48g)、及びピリジン(1.28g)を加え、100℃で2.5時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(M)を得た。このポリイミド(M)のイミド化率は70%であり、数平均分子量は19,300であり、重量平均分子量は54,000であった。
<Synthesis Example 13>
M2 (17.7 g, 70.7 mmol), D1 (8.18 g, 53.8 mmol), and D6 (12.5 g, 28.8 mmol) were mixed in NMP (115.5 g) and at 80 ° C. for 5 hours. After the reaction, M1 (2.28 g, 11.7 mmol) and NMP (47.6 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.48 g) and pyridine (1.28 g) were added as an imidization catalyst, and the mixture was added at 100 ° C. for 2.5 hours. Reacted. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (M). The imidation ratio of this polyimide (M) was 70%, the number average molecular weight was 19,300, and the weight average molecular weight was 54,000.
<合成例14>
 M3(6.91g,23.0mmol)、D1(2.45g,16.1mmol)、及びD5(2.63g,6.9mmol)をNMP(47.9g)中で混合し、40℃で40時間反応させ、ポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(3.92g)、及びピリジン(3.04g)を加え、40℃で1.5時間反応させた。この反応溶液をメタノール(260ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(N)を得た。このポリイミド(N)のイミド化率は69%であり、数平均分子量は10,900であり、重量平均分子量は24,400であった。
<Synthesis Example 14>
M3 (6.91 g, 23.0 mmol), D1 (2.45 g, 16.1 mmol), and D5 (2.63 g, 6.9 mmol) were mixed in NMP (47.9 g) and 40 ° C. for 40 hours. Reaction was performed to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (3.92 g) and pyridine (3.04 g) were added as an imidization catalyst, and the mixture was heated at 40 ° C. for 1.5 hours. Reacted. This reaction solution was poured into methanol (260 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (N). The imidation ratio of this polyimide (N) was 69%, the number average molecular weight was 10,900, and the weight average molecular weight was 24,400.
<合成例15>
 M4(5.13g,22.9mmol)、D1(2.45g,16.1mmol)、及びD5(2.63g,6.9mmol)をNMP(40.8g)中で混合し、60℃で24時間反応させ、ポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.30g)、及びピリジン(1.78g)を加え、90℃で2時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(O)を得た。このポリイミド(O)のイミド化率は49%であり、数平均分子量は15,800であり、重量平均分子量は36,500であった。
<Synthesis Example 15>
M4 (5.13 g, 22.9 mmol), D1 (2.45 g, 16.1 mmol), and D5 (2.63 g, 6.9 mmol) were mixed in NMP (40.8 g) and at 60 ° C. for 24 hours. Reaction was performed to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (2.30 g) and pyridine (1.78 g) were added as an imidization catalyst and reacted at 90 ° C. for 2 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (O). The imidation ratio of this polyimide (O) was 49%, the number average molecular weight was 15,800, and the weight average molecular weight was 36,500.
<合成例16>
 M4(5.13g,22.9mmol)、D1(2.45g,16.1mmol)、及びD5(2.63g,6.9mmol)をNMP(40.8g)中で混合し、60℃で24時間反応させ、ポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.59g)、及びピリジン(1.78g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(260ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(P)を得た。このポリイミド(P)のイミド化率は77%であり、数平均分子量は14,600であり、重量平均分子量は32,200であった。
<Synthesis Example 16>
M4 (5.13 g, 22.9 mmol), D1 (2.45 g, 16.1 mmol), and D5 (2.63 g, 6.9 mmol) were mixed in NMP (40.8 g) and at 60 ° C. for 24 hours. Reaction was performed to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.59 g) and pyridine (1.78 g) were added as an imidization catalyst and reacted at 100 ° C. for 3 hours. It was. This reaction solution was poured into methanol (260 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (P). The imidation ratio of this polyimide (P) was 77%, the number average molecular weight was 14,600, and the weight average molecular weight was 32,200.
<合成例17>
 M2(5.07g,20.3mmol)、及びD1(4.11g,27.0mmol)をNMP(27.5g)中で混合し、80℃で5時間反応させた後、M1(1.22g,6.2mmol)とNMP(14.1g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(5.26g)、及びピリジン(2.04g)を加え、100℃で4時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(Q)を得た。このポリイミド(Q)のイミド化率は79%であり、数平均分子量は15,000であり、重量平均分子量は45,700であった。
<Synthesis Example 17>
M2 (5.07 g, 20.3 mmol) and D1 (4.11 g, 27.0 mmol) were mixed in NMP (27.5 g), reacted at 80 ° C. for 5 hours, and then M1 (1.22 g, 6.2 mmol) and NMP (14.1 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (5.26 g) and pyridine (2.04 g) were added as an imidization catalyst and reacted at 100 ° C. for 4 hours. It was. This reaction solution was poured into methanol (250 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (Q). The imidation ratio of this polyimide (Q) was 79%, the number average molecular weight was 15,000, and the weight average molecular weight was 45,700.
<合成例18>
 M2(2.87g,11.5mmol)、D3(1.24g,11.5mmol)、D1(0.70g,4.6mmol)、及びD6(3.00g,6.9mmol)をNMP(23.5g)中で混合し、80℃で5時間反応させた後、M1(2.21g,11.3mmol)とNMP(16.7g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.66g)、及びピリジン(1.81g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(256ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(R)を得た。このポリイミド(R)のイミド化率は49%であり、数平均分子量は20,700であり、重量平均分子量は61,100であった。
<Synthesis Example 18>
M2 (2.87 g, 11.5 mmol), D3 (1.24 g, 11.5 mmol), D1 (0.70 g, 4.6 mmol), and D6 (3.00 g, 6.9 mmol) were added to NMP (23.5 g). ) And reacted at 80 ° C. for 5 hours, M1 (2.21 g, 11.3 mmol) and NMP (16.7 g) were added, and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.66 g) and pyridine (1.81 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (256 ml), and the resulting precipitate was filtered off. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain polyimide powder (R). The imidation ratio of this polyimide (R) was 49%, the number average molecular weight was 20,700, and the weight average molecular weight was 61,100.
<合成例19>
 M2(2.87g,11.5mmol)、D7(1.24g,11.5mmol)、D1(0.70g,4.6mmol)、及びD6(3.00g,6.9mmol)をNMP(23.5g)中で混合し、80℃で5時間反応させた後、M1(2.24g,11.4mmol)とNMP(16.7g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.66g)、及びピリジン(1.81g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(256ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(S)を得た。このポリイミド(S)のイミド化率は51%であり、数平均分子量は16,200であり、重量平均分子量は49,900であった。
<Synthesis Example 19>
M2 (2.87 g, 11.5 mmol), D7 (1.24 g, 11.5 mmol), D1 (0.70 g, 4.6 mmol), and D6 (3.00 g, 6.9 mmol) were added to NMP (23.5 g). ) And reacted at 80 ° C. for 5 hours, M1 (2.24 g, 11.4 mmol) and NMP (16.7 g) were added, and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 6% by mass, acetic anhydride (4.66 g) and pyridine (1.81 g) were added as an imidization catalyst and reacted at 50 ° C. for 3 hours. It was. This reaction solution was poured into methanol (256 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (S). The imidation ratio of this polyimide (S) was 51%, the number average molecular weight was 16,200, and the weight average molecular weight was 49,900.
<合成例20>
 M2(5.63g,22.5mmol)、及びD7(3.24g,30.0mmol)をNMP(26.6g)中で混合し、40℃で5時間反応させた後、M1(1.24g,6.3mmol)とNMP(13.8g)を加え、25℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(20.0g)にNMPを加え5質量%に希釈した後、イミド化触媒として無水酢酸(2.96g)、及びピリジン(2.29g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(300ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(T)を得た。このポリイミド(T)のイミド化率は51%であり、数平均分子量は15,300であり、重量平均分子量は68,800であった。このポリイミドは、ジアミン成分として分子内にカルボキシル基を有するジアミン化合物を用いていない。
<Synthesis Example 20>
M2 (5.63 g, 22.5 mmol) and D7 (3.24 g, 30.0 mmol) were mixed in NMP (26.6 g), reacted at 40 ° C. for 5 hours, and then M1 (1.24 g, 6.3 mmol) and NMP (13.8 g) were added and reacted at 25 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (20.0 g) and diluting to 5% by mass, acetic anhydride (2.96 g) and pyridine (2.29 g) were added as imidization catalysts, and the mixture was stirred at 90 ° C. for 2.5 hours. Reacted. This reaction solution was put into methanol (300 ml), and the resulting precipitate was separated by filtration. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (T). The imidation ratio of this polyimide (T) was 51%, the number average molecular weight was 15,300, and the weight average molecular weight was 68,800. This polyimide does not use a diamine compound having a carboxyl group in the molecule as a diamine component.
<合成例21>
 M2(11.2g,44.8mmol)、及びD3(6.49g,60.0mmol)をNMP(53.2g)中で混合し、80℃で5時間反応させた後、M1(2.73g,14.0mmol)とNMP(28.7g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(30.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(4.44g)、及びピリジン(3.44g)を加え、90℃で2.5時間反応させた。この反応溶液をメタノール(380ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥して、ポリイミド粉末(U)を得た。このポリイミド(U)のイミド化率は50%であり、数平均分子量は17,600であり、重量平均分子量は52,000であった。このポリイミドは、ジアミン成分として分子内にカルボキシル基を有するジアミン化合物を用いていない。
 合成例1~21で得られたポリイミドの組成、イミド化率についてまとめて表1に示す。
<Synthesis Example 21>
M2 (11.2 g, 44.8 mmol) and D3 (6.49 g, 60.0 mmol) were mixed in NMP (53.2 g), reacted at 80 ° C. for 5 hours, and then M1 (2.73 g, 14.0 mmol) and NMP (28.7 g) were added and reacted at 40 ° C. for 6 hours to obtain a polyamic acid solution.
After adding NMP to this polyamic acid solution (30.0 g) and diluting to 6% by mass, acetic anhydride (4.44 g) and pyridine (3.44 g) were added as imidization catalysts, and the mixture was stirred at 90 ° C. for 2.5 hours. Reacted. This reaction solution was poured into methanol (380 ml), and the resulting precipitate was filtered off. This deposit was wash | cleaned with methanol, and it dried under reduced pressure at 100 degreeC, and obtained the polyimide powder (U). The imidation ratio of this polyimide (U) was 50%, the number average molecular weight was 17,600, and the weight average molecular weight was 52,000. This polyimide does not use a diamine compound having a carboxyl group in the molecule as a diamine component.
Table 1 summarizes the compositions and imidization ratios of the polyimides obtained in Synthesis Examples 1 to 21.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
<ポリイミドの溶解性試験>
<実施例1~19、比較例1及び比較例2>
 実施例1~19として、合成例1~19で得られたポリイミド粉末(A)~(S)を用い、DEME(ジエチレングリコールモノメチルエーテル)及びDEEE(ジエチレングリコールモノエチルエーテル)の各溶媒に対する溶解性の比較を行った。
 同様に、比較例1及び2として、合成例20及び21で得られたポリイミド粉末(T)及び(U)を用い、DEME及びDEEEの各溶媒に対する溶解性の比較を行った。
<Polyimide solubility test>
<Examples 1 to 19, Comparative Example 1 and Comparative Example 2>
Comparison of the solubility of DEME (diethylene glycol monomethyl ether) and DEEE (diethylene glycol monoethyl ether) in each solvent using the polyimide powders (A) to (S) obtained in Synthesis Examples 1 to 19 as Examples 1 to 19 Went.
Similarly, as Comparative Examples 1 and 2, the solubility of DEME and DEEE in each solvent was compared using the polyimide powders (T) and (U) obtained in Synthesis Examples 20 and 21.
 試験方法は、下記の通りである。すなわち、各ポリイミド粉末(A)~(S)(1.0g)に、DEME(15.7g)を加え、25℃にて24時間攪拌し、濁りや析出などの有無を目視で確認して溶解性を確認した。
 さらに、DEEEを用いて、上記と同様の方法で試験を行い、濁りや析出などの有無を目視で確認して溶解性を確認した。
 その際、濁りや析出が起こらず、均一な溶液が得られたものを溶解と、濁りや析出が起こったものを不溶とした。
 実施例1~19、比較例1及び比較例2の溶解性試験の結果を、まとめて表2に示す。
The test method is as follows. That is, DEME (15.7 g) was added to each of the polyimide powders (A) to (S) (1.0 g), stirred at 25 ° C. for 24 hours, and visually checked for the presence or absence of turbidity or precipitation. The sex was confirmed.
Furthermore, using DEEE, a test was performed in the same manner as described above, and the solubility was confirmed by visually confirming the presence or absence of turbidity or precipitation.
At that time, turbidity and precipitation did not occur, and a uniform solution was dissolved, and turbidity and precipitation were insoluble.
Table 2 summarizes the results of the solubility tests of Examples 1 to 19, Comparative Example 1 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
 実施例1~19で得られた結果より、実施例のポリイミド粉末(A)~(S)は、DEME及びDEEEに均一に溶解することを確認した。一方、比較例のポリイミド粉末(T)及び(U)は、これら溶媒に不溶であることがわかった。 From the results obtained in Examples 1 to 19, it was confirmed that the polyimide powders (A) to (S) of the examples were uniformly dissolved in DEME and DEEE. On the other hand, it was found that the polyimide powders (T) and (U) of the comparative examples were insoluble in these solvents.
<ポリイミドと溶媒を含有する組成物及び液晶配向処理剤の調製>
<実施例20~27>
 合成例1、合成例8、合成例9、合成例10、合成例12、合成例14、合成例15及び合成例16で得られたポリイミド粉末(A)、(H)、(I)、(J)、(L)、(N)、(O)及び(P)(各2.0g)のそれぞれに、DEME(28.0g)を加え、50℃にて24時間攪拌し、各ポリイミドを溶解させた。いずれのポリイミド溶液とも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が5質量%である液晶配向処理剤(1)~(8)を得た。
<Preparation of a composition containing a polyimide and a solvent and a liquid crystal alignment treatment agent>
<Examples 20 to 27>
Synthesis Example 1, Synthesis Example 8, Synthesis Example 9, Synthesis Example 10, Synthesis Example 12, Synthesis Example 14, Synthesis Example 15 and Synthesis Example 15 Polyimide powders (A), (H), (I), ( JME, (L), (N), (O) and (P) (each 2.0 g) were added with DEME (28.0 g) and stirred at 50 ° C. for 24 hours to dissolve each polyimide. I let you. In any of the polyimide solutions, no abnormality such as turbidity or precipitation was observed, and it was confirmed that the solution was uniform.
Next, the obtained polyimide solutions were pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain liquid crystal aligning agents (1) to (8) having a polyimide component content of 5 mass%.
<実施例28~35>
 合成例1、合成例8、合成例9、合成例10、合成例12、合成例14、合成例15及び合成例16で得られたポリイミド粉末(A)、(H)、(I)、(J)、(L)、(N)、(O)及び(P)(各2.0g)のそれぞれに、DEEE(28.0g)を加え、50℃にて24時間攪拌し、各ポリイミドを溶解させた。いずれのポリイミド溶液とも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が5質量%である液晶配向処理剤(9)~(16)を得た。
<Examples 28 to 35>
Synthesis Example 1, Synthesis Example 8, Synthesis Example 9, Synthesis Example 10, Synthesis Example 12, Synthesis Example 14, Synthesis Example 15 and Synthesis Example 15 Polyimide powders (A), (H), (I), ( DE) (28.0 g) was added to each of J), (L), (N), (O) and (P) (each 2.0 g), and stirred at 50 ° C. for 24 hours to dissolve each polyimide. I let you. In any of the polyimide solutions, no abnormality such as turbidity or precipitation was observed, and it was confirmed that the solution was uniform.
Next, the obtained polyimide solutions were pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain liquid crystal alignment agents (9) to (16) having a polyimide component content of 5 mass%.
<実施例36~39>
 合成例1、合成例10、合成例12及び合成例16で得られたポリイミド粉末(A)、(J)、(L)及び(P)(各2.0g)のそれぞれに、DEME(26.0g)を加え、50℃にて24時間攪拌し、各ポリイミドを溶解させた。さらに得られた各溶液のそれぞれに、NMP(12.0g)を加えて攪拌し、各ポリイミド溶液を得た。いずれのポリイミド溶液とも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が5質量%である液晶配向処理剤(17)~(20)を得た。
<Examples 36 to 39>
In each of the polyimide powders (A), (J), (L) and (P) (2.0 g each) obtained in Synthesis Example 1, Synthesis Example 10, Synthesis Example 12 and Synthesis Example 16, DEME (26. 0 g) was added and stirred at 50 ° C. for 24 hours to dissolve each polyimide. Further, NMP (12.0 g) was added to each of the obtained solutions and stirred to obtain each polyimide solution. In any of the polyimide solutions, no abnormality such as turbidity or precipitation was observed, and it was confirmed that the solution was uniform.
Subsequently, the obtained polyimide solutions were pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain liquid crystal alignment agents (17) to (20) having a polyimide component content of 5 mass%.
<実施例40~43>
 合成例1、合成例10、合成例12及び合成例16で得られたポリイミド粉末(A)、(J)、(L)及び(P)(各2.0g)のそれぞれに、DEME(18.0g)を加え、50℃にて24時間攪拌し、各ポリイミドを溶解させた。さらに得られた各溶液にそれぞれに、NMP(12.0g)及びBCS(8.0g)を加えて攪拌し、各ポリイミド溶液を得た。いずれのポリイミド溶液とも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が5質量%である液晶配向処理剤(21)~(24)を得た。
<Examples 40 to 43>
In each of the polyimide powders (A), (J), (L), and (P) (each 2.0 g) obtained in Synthesis Example 1, Synthesis Example 10, Synthesis Example 12, and Synthesis Example 16, DEME (18. 0 g) was added and stirred at 50 ° C. for 24 hours to dissolve each polyimide. Further, NMP (12.0 g) and BCS (8.0 g) were added to each of the obtained solutions and stirred to obtain each polyimide solution. In any of the polyimide solutions, no abnormality such as turbidity or precipitation was observed, and it was confirmed that the solution was uniform.
Next, each obtained polyimide solution was pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain liquid crystal alignment agents (21) to (24) having a polyimide component content of 5 mass%.
<実施例44~47>
 合成例1、合成例10、合成例12及び合成例16で得られたポリイミド粉末(A)、(J)、(L)及び(P)(各2.0g)のそれぞれに、DEEE(18.0g)を加え、50℃にて24時間攪拌し、各ポリイミドを溶解させた。さらに得られた各溶液それぞれに、NMP(12.0g)を加えて攪拌し、各ポリイミド溶液を得た。いずれのポリイミド溶液とも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が5質量%である液晶配向処理剤(25)~(28)を得た。
<Examples 44 to 47>
In each of the polyimide powders (A), (J), (L) and (P) (each 2.0 g) obtained in Synthesis Example 1, Synthesis Example 10, Synthesis Example 12 and Synthesis Example 16, DEEE (18. 0 g) was added and stirred at 50 ° C. for 24 hours to dissolve each polyimide. Further, NMP (12.0 g) was added to each of the obtained solutions and stirred to obtain each polyimide solution. In any of the polyimide solutions, no abnormality such as turbidity or precipitation was observed, and it was confirmed that the solution was uniform.
Next, the obtained polyimide solutions were pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain liquid crystal alignment agents (25) to (28) having a polyimide component content of 5 mass%.
<比較例3>
 実施例1のポリイミド粉末(A)(2.0g)に、NMP(31.3g)を加え、50℃にて24時間攪拌し、ポリイミドを溶解させた。このポリイミド溶液に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
 次いで、得られた各ポリイミド溶液を細孔径1μmのメンブランフィルタで加圧濾過し、ポリイミド成分の含有量が6質量%である液晶配向処理剤(29)を得た。
 実施例20~47及び比較例3で得られた液晶配向処理剤における溶媒とその溶解性について、表3及び表4に示す。
<Comparative Example 3>
NMP (31.3 g) was added to the polyimide powder (A) (2.0 g) of Example 1 and stirred at 50 ° C. for 24 hours to dissolve the polyimide. No abnormality such as turbidity or precipitation was observed in this polyimide solution, and it was confirmed that the polyimide solution was a uniform solution.
Subsequently, each polyimide solution obtained was pressure filtered through a membrane filter having a pore diameter of 1 μm to obtain a liquid crystal alignment agent (29) having a polyimide component content of 6 mass%.
Tables 3 and 4 show the solvents and solubility in the liquid crystal aligning agents obtained in Examples 20 to 47 and Comparative Example 3.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
<液晶配向膜の作製と液晶表示素子の製造>
 実施例20~47で得られた液晶配向処理剤(1)~(28)を用いて液晶配向膜を作製し、その液晶配向膜を有する液晶表素子を製造した。液晶表示素子としては、液晶配向膜の特性に対応して、垂直配向の液晶セルを製造した。
<Production of liquid crystal alignment film and production of liquid crystal display element>
A liquid crystal alignment film was prepared using the liquid crystal aligning agents (1) to (28) obtained in Examples 20 to 47, and a liquid crystal surface element having the liquid crystal alignment film was manufactured. As the liquid crystal display element, a vertically aligned liquid crystal cell was manufactured in accordance with the characteristics of the liquid crystal alignment film.
 液晶セルの製造方法としては、液晶配向処理剤(1)~(28)をITO電極付きガラス基板(厚さ0.7mm、横30mm、縦40mm)にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、220℃で焼成し、膜厚100nmの塗膜として液晶配向膜を形成し、液晶配向膜付き基板を得た。基板上に形成された液晶配向膜はいずれも膜厚の均一性に優れ、液晶配向処理剤(1)~(28)は優れた塗布性を示すことがわかった。 As a method for producing a liquid crystal cell, the liquid crystal alignment treatment agents (1) to (28) are spin-coated on a glass substrate with an ITO electrode (thickness 0.7 mm, width 30 mm, length 40 mm) on a hot plate at 80 ° C. After drying for 5 minutes, it baked at 220 degreeC, the liquid crystal aligning film was formed as a coating film with a film thickness of 100 nm, and the board | substrate with a liquid crystal aligning film was obtained. It was found that all of the liquid crystal alignment films formed on the substrate were excellent in film thickness uniformity, and the liquid crystal alignment treatment agents (1) to (28) exhibited excellent coating properties.
 この液晶配向膜付き基板を2枚用意し、一方の液晶配向膜面上に6μmのスペーサを散布した後、この上からシール剤(XN-1500T、三井化学社製)を印刷した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を熱循環型クリーンオーブン中にて150℃で90分間加熱処理をすることにより硬化して空セルを作製した。この空セルに減圧注入法によって、ネマティック液晶(MLC-6608、メルク社製)を注入し、注入口を封止して、垂直配向の液晶セルを得た。 Two substrates with this liquid crystal alignment film were prepared, 6 μm spacers were sprayed on one liquid crystal alignment film surface, and then a sealant (XN-1500T, manufactured by Mitsui Chemicals) was printed thereon. Next, after bonding the other substrate and the liquid crystal alignment film face each other, the sealing agent was cured by heat treatment at 150 ° C. for 90 minutes in a heat-circulating clean oven to produce an empty cell. . Nematic liquid crystal (MLC-6608, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a vertically aligned liquid crystal cell.
 得られた液晶セルについて、液晶の配向状態を偏光顕微鏡で観察したところ、欠陥の無い均一な液晶の垂直配向が形成されていることが確認された。 For the obtained liquid crystal cell, the alignment state of the liquid crystal was observed with a polarizing microscope, and it was confirmed that uniform vertical alignment of the liquid crystal without defects was formed.
 液晶表示素子の液晶の配向状態の結果を、表5にまとめて示す。 Table 5 summarizes the results of the alignment state of the liquid crystal of the liquid crystal display element.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
<印刷性試験>
 実施例20、実施例28、実施例36、実施例40、実施例44、及び比較例3で得られた液晶配向処理剤を用いて印刷を行った。印刷は、印刷機として簡易印刷機(S15型、日本写真印刷社製)を用い、洗浄したクロム蒸着基板上に、印刷面積8cm×8cm、印圧0.2mm、捨て基板5枚、印刷から仮乾燥までの時間90秒、仮乾燥温度70℃、仮乾燥時間5分にて行った。
<Printability test>
Printing was performed using the liquid crystal alignment treatment agents obtained in Example 20, Example 28, Example 36, Example 40, Example 44, and Comparative Example 3. Printing is performed using a simple printing machine (S15 type, manufactured by Nissha Printing Co., Ltd.) as a printing machine, on a cleaned chromium vapor deposition substrate, with a printing area of 8 cm × 8 cm, a printing pressure of 0.2 mm, five discarded substrates, and temporary printing. The drying time was 90 seconds, the temporary drying temperature was 70 ° C., and the temporary drying time was 5 minutes.
 ピンホールの確認は、ナトリウムランプの下で目視観察を行った。具体的には、塗膜全面をナトリウムランプの下で目視観察を行い、塗膜面上に存在するピンホールの数を数えた。
 膜厚ムラの確認は、光学顕微鏡を用いて行った。具体的には、塗膜面を光学顕微鏡で観察し、塗膜面に膜厚ムラが無いものをA、塗膜面の部分的に膜厚ムラが見られるものをB、塗膜面の全体に膜厚ムラが見られるものをCの判定とした。
The pinhole was confirmed by visual observation under a sodium lamp. Specifically, the entire coating film was visually observed under a sodium lamp, and the number of pinholes existing on the coating film surface was counted.
Confirmation of film thickness unevenness was performed using an optical microscope. Specifically, the coating film surface is observed with an optical microscope, the coating film surface has no film thickness unevenness A, the coating film surface has a partially uneven film thickness B, the entire coating film surface In the case where the film thickness unevenness was observed, C was determined.
 結果を表6にまとめて示す。
Figure JPOXMLDOC01-appb-T000080
The results are summarized in Table 6.
Figure JPOXMLDOC01-appb-T000080
 以上の結果から、カルボキシル基を有する特定構造のジアミン化合物を含むジアミン成分を用いて得られるポリイミド前駆体及び/又はポリイミド前駆体をイミド化したポリイミドと化合物(溶媒)を含有する組成物から本発明の液晶配向処理剤を得ることができ、該液晶配向処理剤は塗布性に優れていることが分かった。さらに、本発明の液晶配向処理剤を用いて得ることができる液晶配向膜は、欠陥の少ない、信頼性の高い液晶表示素子を提供できることが分かった。 From the above results, the present invention is made from a composition containing a polyimide precursor obtained by using a diamine component containing a diamine compound having a specific structure having a carboxyl group and / or a polyimide obtained by imidizing a polyimide precursor and a compound (solvent). It was found that the liquid crystal aligning agent can be obtained, and the liquid crystal aligning agent is excellent in coatability. Furthermore, it was found that the liquid crystal alignment film that can be obtained using the liquid crystal alignment treatment agent of the present invention can provide a highly reliable liquid crystal display element with few defects.
 本発明の組成物は、電子デバイスなどにおける層間絶縁膜や保護膜などの膜の形成に広く使用でき、特に、液晶配向処理剤としては、塗布性に優れ、はじきやピンホールなどの欠陥が抑制された、信頼性の高い液晶配向膜の形成に使用される。

 なお、2011年7月12日に出願された日本特許出願2011-153523号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The composition of the present invention can be widely used for the formation of films such as interlayer insulation films and protective films in electronic devices, etc. Especially as a liquid crystal alignment treatment agent, it has excellent coating properties and suppresses defects such as repellency and pinholes. Used for forming a highly reliable liquid crystal alignment film.

The entire contents of the description, claims and abstract of Japanese Patent Application No. 2011-153523 filed on July 12, 2011 are incorporated herein as the disclosure of the specification of the present invention. It is.

Claims (14)

  1.  カルボキシル基を有するジアミン化合物を含むジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体及び/又は該ポリイミド前駆体をイミド化したポリイミドと、下記式[1]で示される化合物と、を含有することを特徴とする組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Rは、炭素数1~4のアルキル基である。)
    A polyimide precursor obtained by reacting a diamine component containing a diamine compound having a carboxyl group and a tetracarboxylic acid component and / or a polyimide obtained by imidizing the polyimide precursor, a compound represented by the following formula [1], The composition characterized by containing.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], R 1 is an alkyl group having 1 to 4 carbon atoms.)
  2.  前記式[1]で示される化合物が、下記式[2]又は下記式[3]で示される化合物である請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    The composition according to claim 1, wherein the compound represented by the formula [1] is a compound represented by the following formula [2] or the following formula [3].
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  3.  前記カルボキシル基を有するジアミン化合物は、-(CH-COOH基(aは0~4の整数である)を有する請求項1又は2に記載の組成物。 3. The composition according to claim 1, wherein the diamine compound having a carboxyl group has a — (CH 2 ) a —COOH group (a is an integer of 0 to 4).
  4.  前記カルボキシル基を有するジアミン化合物は、下記式[4]で示される構造のジアミン化合物である請求項1~3のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式[4]中、aは0~4の整数であり、nは1~4の整数を表す。)
    The composition according to any one of claims 1 to 3, wherein the diamine compound having a carboxyl group is a diamine compound having a structure represented by the following formula [4].
    Figure JPOXMLDOC01-appb-C000004
    (In the formula [4], a represents an integer of 0 to 4, and n represents an integer of 1 to 4.)
  5.  前記ジアミン化合物の含有量は、前記ジアミン成分中の20~100モル%である請求項1~4のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein the content of the diamine compound is 20 to 100 mol% in the diamine component.
  6.  前記ジアミン成分は、下記式[5]で示される構造の第2のジアミン化合物を含む請求項1~5のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式[5]中、Xは、-(CH-OH基(bは0~4の整数である)、炭素数1~22の炭化水素基、炭素数1~6の炭化水素基で置換されたジ置換アミノ基又は下記式[6]で表される基であり、nは1~4の整数を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式[6]中、Yは単結合、-(CH-(aは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yは単結合又は(CH-(bは1~15の整数である)である。Yは単結合、-(CH-(cは1~15の整数である)、-O-、-CHO-、-COO-又はOCO-である。Yはベンゼン環、シクロへキシル環、及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基、又はフッ素原子で置換されていてもよい)、又はステロイド骨格を有する炭素数12~25の2価の有機基である。Yはベンゼン環、シクロへキシル環及び複素環から選ばれる2価の環状基(これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい)である。Yは水素原子、炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~18のフッ素含有アルコキシル基である。nは0~4の整数を表す。)
    The composition according to any one of claims 1 to 5, wherein the diamine component includes a second diamine compound having a structure represented by the following formula [5].
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [5], X represents a — (CH 2 ) b —OH group (b is an integer of 0 to 4), a hydrocarbon group having 1 to 22 carbon atoms, and a hydrocarbon group having 1 to 6 carbon atoms. And a di-substituted amino group substituted by or a group represented by the following formula [6], and n represents an integer of 1 to 4.)
    Figure JPOXMLDOC01-appb-C000006
    (In formula [6], Y 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—. Y 2 is a single bond or (CH 2 ) b — (b is an integer of 1 to 15) Y 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15) ), —O—, —CH 2 O—, —COO— or OCO— Y 4 is a divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (on these cyclic groups) The optional hydrogen atom is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. it may be substituted), or a divalent organic group having a carbon number of 12 to 25 having a steroid skeleton .Y 5 A divalent cyclic group selected from a benzene ring, a cyclohexyl ring and a heterocyclic ring (an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, carbon Y 6 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a carbon atom, which may be substituted with a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom. A fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms, n represents an integer of 0 to 4.)
  7.  前記テトラカルボン酸二無水物が、下記式[7]で表される化合物である請求項1~6のいずれか1項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式[7]中、Zは炭素数4~13の4価の有機基であり、かつ炭素数4~10の非芳香族環状炭化水素基を含有する。)
    The composition according to any one of claims 1 to 6, wherein the tetracarboxylic dianhydride is a compound represented by the following formula [7].
    Figure JPOXMLDOC01-appb-C000007
    (In Formula [7], Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and contains a non-aromatic cyclic hydrocarbon group having 4 to 10 carbon atoms.)
  8.  Zが、下記式[7a]~[7j]で表される構造である請求項7に記載の組成物。
    Figure JPOXMLDOC01-appb-C000008
    (式[7a]中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環であり、それぞれ、同じであっても異なってもよく、式[7g]中、Z及びZは水素原子又はメチル基であり、それぞれ、同じであっても異なってもよい。)
    The composition according to claim 7, wherein Z 1 has a structure represented by the following formulas [7a] to [7j].
    Figure JPOXMLDOC01-appb-C000008
    (In the formula [7a], Z 2 to Z 5 are a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, which may be the same or different. In the formula [7g], Z 6 and Z 7 Are hydrogen atoms or methyl groups, which may be the same or different.
  9.  請求項1~8のいずれか1項に記載の組成物を含む液晶配向処理剤。 A liquid crystal aligning agent comprising the composition according to any one of claims 1 to 8.
  10.  請求項9に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal aligning agent according to claim 9.
  11.  請求項9に記載の液晶配向処理剤を用いて、インクジェット法にて得られる液晶配向膜。 The liquid crystal aligning film obtained by the inkjet method using the liquid-crystal aligning agent of Claim 9.
  12.  電極を備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造される液晶表示素子に用いられることを特徴とする請求項10又は11に記載の液晶配向膜。 A liquid crystal composition comprising a liquid crystal layer between a pair of substrates provided with electrodes and comprising a polymerizable compound that is polymerized by at least one of active energy rays and heat is disposed between the pair of substrates, and the electrodes 12. The liquid crystal alignment film according to claim 10, wherein the liquid crystal alignment film is used for a liquid crystal display device manufactured through a step of polymerizing the polymerizable compound while applying a voltage therebetween.
  13.  請求項10又は11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 10.
  14.  電極と前記液晶配向膜とを備えた一対の基板の間に液晶層を有してなり、前記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、前記電極間に電圧を印加しつつ前記重合性化合物を重合させる工程を経て製造されることを特徴とする請求項13に記載の液晶表示素子。 A liquid crystal composition comprising a polymerizable compound having a liquid crystal layer between a pair of substrates provided with an electrode and the liquid crystal alignment film and polymerized between at least one of active energy rays and heat between the pair of substrates. The liquid crystal display element according to claim 13, wherein the liquid crystal display element is manufactured through a step of polymerizing the polymerizable compound while applying a voltage between the electrodes.
PCT/JP2012/067721 2011-07-12 2012-07-11 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element WO2013008852A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280044162.4A CN103827211B (en) 2011-07-12 2012-07-11 Composition, aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal display cells
KR1020147003452A KR20140045556A (en) 2011-07-12 2012-07-11 Composition liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
KR1020187014933A KR102026039B1 (en) 2011-07-12 2012-07-11 Composition liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP2013523965A JP6079627B2 (en) 2011-07-12 2012-07-11 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-153523 2011-07-12
JP2011153523 2011-07-12

Publications (1)

Publication Number Publication Date
WO2013008852A1 true WO2013008852A1 (en) 2013-01-17

Family

ID=47506132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067721 WO2013008852A1 (en) 2011-07-12 2012-07-11 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP6079627B2 (en)
KR (2) KR102026039B1 (en)
CN (1) CN103827211B (en)
TW (1) TWI627202B (en)
WO (1) WO2013008852A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061781A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061779A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061778A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061780A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN105190415A (en) * 2013-02-28 2015-12-23 日产化学工业株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017122808A1 (en) * 2016-01-15 2017-07-20 日本ゼオン株式会社 Method for manufacturing film for thermoelectric conversion element
JP2017197631A (en) * 2016-04-26 2017-11-02 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078968A (en) * 2004-09-13 2006-03-23 Sharp Corp Liquid crystal display and manufacturing method therefor
WO2006040922A1 (en) * 2004-10-14 2006-04-20 Nissan Chemical Industries, Ltd. Composition for forming bottom anti-reflective coating containing aromatic sulfonic acid ester compound and light photoacid-generating agent
JP2008063523A (en) * 2006-09-11 2008-03-21 Kaneka Corp Novel polyimide resin
JP2009015016A (en) * 2007-07-04 2009-01-22 Sharp Corp Liquid crystal display device and method for manufacturing liquid crystal display device
JP2010286666A (en) * 2009-06-11 2010-12-24 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2011118354A (en) * 2009-10-28 2011-06-16 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2011170321A (en) * 2010-01-19 2011-09-01 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2011186049A (en) * 2010-03-05 2011-09-22 Jsr Corp Method for manufacturing liquid crystal display element
JP2011242427A (en) * 2010-05-14 2011-12-01 Jsr Corp Liquid crystal aligner and liquid crystal display element
JP2011257736A (en) * 2010-05-10 2011-12-22 Jsr Corp Liquid crystal aligning agent
JP2012017402A (en) * 2010-07-08 2012-01-26 Ube Industries Ltd Production method of polyimide siloxane solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4085206B2 (en) 1996-02-15 2008-05-14 日産化学工業株式会社 Diaminobenzene derivative, polyimide and liquid crystal alignment film using the same
DE69929040T2 (en) * 1998-03-20 2006-08-24 Rolic Ag LIQUID CRYSTAL ORIENTATION LAYER
JP5006310B2 (en) * 2006-03-03 2012-08-22 株式会社ピーアイ技術研究所 Photosensitive ink composition for screen printing and method for forming positive relief pattern using the same
TWI427121B (en) * 2006-09-01 2014-02-21 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR101486301B1 (en) * 2007-06-15 2015-01-26 닛산 가가쿠 고교 가부시키 가이샤 Resin composition for forming heat-cured film
JP5501672B2 (en) * 2008-06-26 2014-05-28 サンワ化学工業株式会社 Photosensitive polyimide, photosensitive polyimide ink composition, and insulating film
WO2010035719A1 (en) * 2008-09-24 2010-04-01 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display element using same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078968A (en) * 2004-09-13 2006-03-23 Sharp Corp Liquid crystal display and manufacturing method therefor
WO2006040922A1 (en) * 2004-10-14 2006-04-20 Nissan Chemical Industries, Ltd. Composition for forming bottom anti-reflective coating containing aromatic sulfonic acid ester compound and light photoacid-generating agent
JP2008063523A (en) * 2006-09-11 2008-03-21 Kaneka Corp Novel polyimide resin
JP2009015016A (en) * 2007-07-04 2009-01-22 Sharp Corp Liquid crystal display device and method for manufacturing liquid crystal display device
JP2010286666A (en) * 2009-06-11 2010-12-24 Jsr Corp Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2011118354A (en) * 2009-10-28 2011-06-16 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2011170321A (en) * 2010-01-19 2011-09-01 Jsr Corp Liquid crystal aligning agent and liquid crystal display element
JP2011186049A (en) * 2010-03-05 2011-09-22 Jsr Corp Method for manufacturing liquid crystal display element
JP2011257736A (en) * 2010-05-10 2011-12-22 Jsr Corp Liquid crystal aligning agent
JP2011242427A (en) * 2010-05-14 2011-12-01 Jsr Corp Liquid crystal aligner and liquid crystal display element
JP2012017402A (en) * 2010-07-08 2012-01-26 Ube Industries Ltd Production method of polyimide siloxane solution

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061781A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061779A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061778A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014061780A1 (en) * 2012-10-18 2014-04-24 日産化学工業株式会社 Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5930239B2 (en) * 2012-10-18 2016-06-08 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5930238B2 (en) * 2012-10-18 2016-06-08 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5930237B2 (en) * 2012-10-18 2016-06-08 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5950137B2 (en) * 2012-10-18 2016-07-13 日産化学工業株式会社 Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
CN105190415A (en) * 2013-02-28 2015-12-23 日产化学工业株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
CN105190415B (en) * 2013-02-28 2017-11-10 日产化学工业株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and liquid crystal represent element
WO2017122808A1 (en) * 2016-01-15 2017-07-20 日本ゼオン株式会社 Method for manufacturing film for thermoelectric conversion element
JP2017197631A (en) * 2016-04-26 2017-11-02 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, polyimide laminate, and polyimide/hard coat laminate

Also Published As

Publication number Publication date
KR102026039B1 (en) 2019-09-26
TWI627202B (en) 2018-06-21
KR20140045556A (en) 2014-04-16
CN103827211A (en) 2014-05-28
JP6079627B2 (en) 2017-02-15
TW201319123A (en) 2013-05-16
KR20180061414A (en) 2018-06-07
CN103827211B (en) 2017-06-06
JPWO2013008852A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP2020056034A (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
WO2013035803A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6299977B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6331028B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014061778A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015053394A1 (en) Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
WO2014133042A1 (en) Polymer, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6281568B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2014178406A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6465159B2 (en) Novel diamine compounds, polyimide precursors and polyimides
WO2015046373A1 (en) Liquid crystal aligning agent and liquid crystal display element using same
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2013115387A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2012121259A1 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6361887B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6003882B2 (en) Composition, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2014133043A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147003452

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12810603

Country of ref document: EP

Kind code of ref document: A1